NASA/FAA Tailplane Icing Program Overview
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.
1999-01-01
The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.
NASA Technical Reports Server (NTRS)
1997-01-01
The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second multi-phase research program for tailplane icing (TIP II) to develop test methodologies and tailplane performance and handling qualities evaluation tools. The main objectives of this new NASA/Industry/Academia collaborative research programs were: (1) define and evaluate a sub-scale wind tunnel test methodology for determining tailplane performance degradation due to icing. (2) develop an experimental database of tailplane aerodynamic performance with and without ice contamination for a range of tailplane configurations. Wind tunnel tests were planned with representative general aviation aircraft, i.e., the Learjet 45, and a twin engine low speed aircraft. This report summarizes the research performed during the first year of the study, and outlines the work tasks for the second year.
NASA Technical Reports Server (NTRS)
Hiltner, Dale W.
2000-01-01
This report presents the assessment of an analytical tool developed as part of the NASA/FAA Tailplane Icing Program. The analytical tool is a specialized simulation program called TAILSM4 which was developed to model the effects of tailplane icing on the flight dynamics Twin Otter Icing Research Aircraft. This report compares the responses of the TAILSIM program directly to flight test data. The comparisons should be useful to potential users of TAILSIM. The comparisons show that the TAILSIM program qualitatively duplicates the flight test aircraft response during maneuvers with ice on the tailplane. TAILSIM is shown to be quantitatively "in the ballpark" in predicting when Ice Contaminated Tailplane Stall will occur during pushover and thrust transition maneuvers. As such, TAILSIM proved its usefulness to the flight test program by providing a general indication of the aircraft configuration and flight conditions of concern. The aircraft dynamics are shown to be modeled correctly by the equations of motion used in TAILSIM. However, the general accuracy of the TAILSIM responses is shown to be less than desired primarily due to inaccuracies in the aircraft database. The high sensitivity of the TAILSIM program responses to small changes in load factor command input is also shown to be a factor in the accuracy of the responses. A pilot model is shown to allow TAILSIM to produce more accurate responses and contribute significantly to the usefulness of the program. Suggestions to improve the accuracy of the TAILSIM responses are to further refine the database representation of the aircraft aerodynamics and tailplane flowfield and to explore a more realistic definition of the pilot model.
NASA Technical Reports Server (NTRS)
Gregorek, Gerald; Dresse, John J.; LaNoe, Karine; Ratvasky, Thomas (Technical Monitor)
2000-01-01
The need for fundamental research in Ice Contaminated Tailplane Stall (ICTS) was established through three international conferences sponsored by the FAA. A joint NASA/FAA Tailplane Icing Program was formed in 1994 with the Ohio State University playing a critical role for wind tunnel and analytical research. Two entries of a full-scale 2-dimensional tailplane airfoil model of a DHC-6 Twin Otter were made in The Ohio State University 7x10 ft wind tunnel. This report describes the second test entry that examined additional ice shapes and roughness, as well as airfoil section differences. The addition data obtained in this test fortified the original database of aerodynamic coefficients that permit a detailed analysis of flight test results with an OSU-developed analytical program. The testing encompassed a full range of angles of attack and elevator deflections at flight Reynolds number conditions. Aerodynamic coefficients, C(L), C(M), and C(He), were obtained by integrating static pressure coefficient, C(P), values obtained from surface taps. Comparisons of clean and iced airfoil results show a significant decrease in the tailplane aeroperformance (decreased C(Lmax), decreased stall angle, increased C(He)) for all ice shapes with the grit having the lease affect and the LEWICE shape having the greatest affect. All results were consistent with observed tailplane stall phenomena and constitute an effective set of data for comprehensive analysis of ICTS.
NASA/FAA Tailplane Icing Program: Flight Test Report
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex
2000-01-01
This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.
NASA Technical Reports Server (NTRS)
Hiltner, Dale; McKee, Michael; LaNoe, Karine; Gregorek, Gerald; Ratvasky, Thomas (Technical Monitor)
2000-01-01
Ice contaminated tailplane stall (ICTS) has been found to be responsible for 16 accidents with 139 fatalities over the last three decades, and is suspected to have played a role in other accidents and incidents. The need for fundamental research in this area has been recognized at three international conferences sponsored by the FAA since 1991. In order to conduct such research, a joint NASA/FAA Tailplane Icing Program was formed in 1994: the Ohio State University has played an important role in this effort. The program employs icing tunnel testing, dry wind tunnel testing, flight testing, and analysis using a six-degrees-of-freedom computer code tailored to this problem. A central goal is to quantify the effect of tailplane icing on aircraft stability and control to aid in the analysis of flight test procedures to identify aircraft susceptibility to ICTS. This report contains the results ot testing of a full scale 2D model of a tailplane section of NASA's Icing Research Aircraft, with and without ice shapes, in an Ohio State University 7 x 10 Low Speed wind tunnel in 1994. The results have been integrated into a comprehensive database of aerodynamic coefficients and stability and control derivatives that will permit detailed analysis of flight test results with the analytical computer program. The testing encompassed a full range of angles of attack and elevator deflections, as well as two velocities to evaluate Reynolds number effects. Lift, drag, pitching moment, and hinge moment coefficients were obtained. In addition. instrumentation for use during flight testing was verified to be effective, all components showing acceptable fidelity. Comparison of clean and iced airfoil results show the ice shapes causing a significant decrease in the magnitude of CLmax (from -1.3 to -0.64) and associated stall angle (from -18.6 deg to -8.2 deg). Furthermore, the ice shapes caused an increase in hinge moment coefficient of approximately 0.02, the change being markedly abrupt for one of the ice shapes. A noticeable effect of elevator deflection is that magnitude of the stall angle is decreased for negative (upward) elevator deflections. All these result are consistent with observed tailplane phenomena. and constitute an effective set of data for comprehensive analysis of ICTS
Flying Qualities Evaluation of a Commuter Aircraft With an Ice Contaminated Tailplane
NASA Technical Reports Server (NTRS)
Ranaudo, Richard J.; Ratvasky, Thomas P.; FossVanZante, Judith
2000-01-01
During the NASA/FAA (Federal Aviation Administration) Tailplane Icing Program, pilot evaluations of aircraft flying qualities were conducted with various ice shapes attached to the horizontal tailplane of the NASA Twin Otter Icing Research Aircraft. Initially, only NASA pilots conducted these evaluations, assessing the differences in longitudinal flight characteristics between the baseline or clean aircraft, and the aircraft configured with an Ice Contaminated Tailplane (ICT). Longitudinal tests included Constant Airspeed Flap Transitions, Constant Airspeed Thrust Transitions, zero-G Pushovers, Repeat Elevator Doublets, and Simulated Approach and Go-Around tasks. Later in the program, guest pilots from government and industry were invited to fly the NASA Twin Otter configured with a single full-span artificial ice shape attached to the leading edge of the horizontal tailplane. This shape represented ice formed due to a 'Failed Boot' condition, and was generated from tests in the Glenn Icing Research Tunnel on a full-scale tailplane model. Guest pilots performed longitudinal handling tests, similar to those conducted by the NASA pilots, to evaluate the ICT condition. In general, all pilots agreed that longitudinal flying qualities were degraded as flaps were lowered, and further degraded at high thrust settings. Repeat elevator doublets demonstrated reduced pitch damping effects due to ICT, which is a characteristic that results in degraded flying qualities. Pilots identified elevator control force reversals (CFR) in zero-G pushovers at a 20 deg flap setting, a characteristic that fails the FAR 25 no CFR certification requirement. However, when the same pilots used the Cooper-Harper rating scale to perform a simulated approach and go-around task at the 20 deg flap setting, they rated the airplane as having Level I and Level II flying qualities respectively. By comparison, the same task conducted at the 30 deg flap setting, resulted in Level II flying qualities for the approach portion, and Level III for the go-around portion.The results of this program indicate that safe and acceptable flying qualities with an ICT condition, can be effectively assessed by task-oriented pilot maneuvers. In addition, other maneuvers such as repeat elevator doublets provide good qualitative and quantitative assessments of pitch damping and elevator effectiveness, which are characteristics that correlate well with pilot task ratings. The results of this testing indicate that the FAR 25 zero-G pushover maneuver, which requires no CFR during its execution, may be an overly conservative pass/fail criteria for aircraft certification.
Analysis of an Artificial Tailplane Icing Flight Test of a High-Wing, Twin-Engine Aircraft
NASA Astrophysics Data System (ADS)
Shaikh, Shehzad M.
The US Air Force Flight Test Center (AFFTC) conducted a civilian, Federal Aviation Administration (FAA) sponsored, evaluation of tailplane icing of a twin-turboprop business transport at Edwards Air Force Base. The flight test was conducted to evaluate ice shape growth and extent of ice on the tailplane for specific weather conditions of Liquid Water Content (LWC), droplet size, and ambient temperature. This work analyzes the flight test data comparing the drag for various tailplane icing conditions with respect to a flight test verified calibrated aircraft model. Although less than a third of the test aircraft was involved in the icing environment, the results of this analysis shows a significant increase in the aircraft drag with respect to the LWC, droplet size, and ambient temperature.
NASA Research Being Shared Through Live, Interactive Video Tours
NASA Technical Reports Server (NTRS)
Petersen, Ruth A.; Zona, Kathleen A.
2001-01-01
On June 2, 2000, the NASA Glenn Research Center Learning Technologies Project (LTP) coordinated the first live remote videoconferencing broadcast from a Glenn facility. The historic event from Glenn's Icing Research Tunnel featured wind tunnel technicians and researchers performing an icing experiment, obtaining results, and discussing the relevance to everyday flight operations and safety. After a brief overview of its history, students were able to "walk through" the tunnel, stand in the control room, and observe a live icing experiment that demonstrated how ice would grow on an airplane wing in flight through an icing cloud. The tour was interactive, with a spirited exchange of questions and explanations between the students and presenters. The virtual tour of the oldest and largest refrigerated icing research tunnel in the world was the second of a series of videoconferencing connections with the AP Physics students at Bay Village High School, Bay Village, Ohio. The first connection, called Aircraft Safety and Icing Research, introduced the Tailplane Icing Program. In an effort to improve aircraft safety by reducing the number of in-flight icing events, Glenn's Icing Branch uses its icing research aircraft to conduct flight tests. The presenter engaged the students in discussions of basic aircraft flight mechanics and the function of the horizontal tailplane, as well as the effect of ice on airfoil (wing or tail) surfaces. A brief video of actual flight footage provided a view of the pilot's actions and reactions and of the horizon during tailplane icing conditions.
Icing: Accretion, Detection, Protection
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1994-01-01
The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.
Iced Aircraft Flight Data for Flight Simulator Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.
2003-01-01
NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.
Wind Tunnel Tests Conducted to Develop an Icing Flight Simulator
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.
2001-01-01
As part of NASA's Aviation Safety Program goals to reduce aviation accidents due to icing, NASA Glenn Research Center is leading a flight simulator development activity to improve pilot training for the adverse flying characteristics due to icing. Developing flight simulators that incorporate the aerodynamic effects of icing will provide a critical element in pilot training programs by giving pilots a pre-exposure of icing-related hazards, such as ice-contaminated roll upset or tailplane stall. Integrating these effects into training flight simulators will provide an accurate representation of scenarios to develop pilot skills in unusual attitudes and loss-of-control events that may result from airframe icing. In order to achieve a high level of fidelity in the flight simulation, a series of wind tunnel tests have been conducted on a 6.5-percent-scale Twin Otter aircraft model. These wind tunnel tests were conducted at the Wichita State University 7- by 10-ft wind tunnel and Bihrle Applied Research's Large Amplitude Multiple Purpose Facility in Neuburg, Germany. The Twin Otter model was tested without ice (baseline), and with two ice configurations: 1) Ice on the horizontal tail only; 2) Ice on the wing, horizontal tail, and vertical tail. These wind tunnel tests resulted in data bases of aerodynamic forces and moments as functions of angle of attack; sideslip; control surface deflections; forced oscillations in the pitch, roll, and yaw axes; and various rotational speeds. A limited amount of wing and tail surface pressure data were also measured for comparison with data taken at Wichita State and with flight data. The data bases from these tests will be the foundation for a PC-based Icing Flight Simulator to be delivered to Glenn in fiscal year 2001.
Scaling Methods for Simulating Aircraft In-Flight Icing Encounters
NASA Technical Reports Server (NTRS)
Anderson, David N.; Ruff, Gary A.
1997-01-01
This paper discusses scaling methods which permit the use of subscale models in icing wind tunnels to simulate natural flight in icing. Natural icing conditions exist when air temperatures are below freezing but cloud water droplets are super-cooled liquid. Aircraft flying through such clouds are susceptible to the accretion of ice on the leading edges of unprotected components such as wings, tailplane and engine inlets. To establish the aerodynamic penalties of such ice accretion and to determine what parts need to be protected from ice accretion (by heating, for example), extensive flight and wind-tunnel testing is necessary for new aircraft and components. Testing in icing tunnels is less expensive than flight testing, is safer, and permits better control of the test conditions. However, because of limitations on both model size and operating conditions in wind tunnels, it is often necessary to perform tests with either size or test conditions scaled. This paper describes the theoretical background to the development of icing scaling methods, discusses four methods, and presents results of tests to validate them.
14 CFR 25.331 - Symmetric maneuvering conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Conditions § 25.331 Symmetric maneuvering conditions. (a) Procedure. For the analysis of the maneuvering... factor (at point A2 in § 25.333(b)), or the resulting tailplane normal load reaches its maximum...
NASA Technical Reports Server (NTRS)
Hiltner, Dale W.
2000-01-01
The TAILSIM program uses a 4th order Runge-Kutta method to integrate the standard aircraft equations-of-motion (EOM). The EOM determine three translational and three rotational accelerations about the aircraft's body axis reference system. The forces and moments that drive the EOM are determined from aerodynamic coefficients, dynamic derivatives, and control inputs. Values for these terms are determined from linear interpolation of tables that are a function of parameters such as angle-of-attack and surface deflections. Buildup equations combine these terms and dimensionalize them to generate the driving total forces and moments. Features that make TAILSIM applicable to studies of tailplane stall include modeling of the reversible control System, modeling of the pilot performing a load factor and/or airspeed command task, and modeling of vertical gusts. The reversible control system dynamics can be described as two hinged masses connected by a spring. resulting in a fifth order system. The pilot model is a standard form of lead-lag with a time delay applied to an integrated pitch rate and/or airspeed error feedback. The time delay is implemented by a Pade approximation, while the commanded pitch rate is determined by a commanded load factor. Vertical gust inputs include a single 1-cosine gust and a continuous NASA Dryden gust model. These dynamic models. coupled with the use of a nonlinear database, allow the tailplane stall characteristics, elevator response, and resulting aircraft response, to be modeled. A useful output capability of the TAILSIM program is the ability to display multiple post-run plot pages to allow a quick assessment of the time history response. There are 16 plot pages currently available to the user. Each plot page displays 9 parameters. Each parameter can also be displayed individually. on a one plot-per-page format. For a more refined display of the results the program can also create files of tabulated data. which can then be used by other plotting programs. The TAILSIM program was written straightforwardly assuming the user would want to change the database tables, the buildup equations, the output parameters. and the pilot model parameters. A separate database file and input file are automatically read in by the program. The use of an include file to set up all common blocks facilitates easy changing of parameter names and array sizes.
2006-06-01
winglets : 35.81m Length: 38.56m Height: 12.83m Fuselage length: 38.02m Tailplane: 14.35m Maximum taxi weight: 83,778kg Maximum fuel...visual and aerodynamic handling deficiencies (by today’s standards) and are only capable of partially qualifying a VP-30 Cat I or Cat III pilot in
1980-09-01
0 Q 4W i Im 0 0000 Uz 00000 00000 00000 00000 0oco 0 00000 00000 00000 00000 0000 11111 I If J il l ti l l I -J 000 0000- mooc 00000 0000 i f ! ! ! ,I...Joint Intelligence Organisation 4 Defence Library 5 Document Exchange Centre, D.I.S.B. 6-23 Aeronautical Research Laboratories Chief Superintendent...24 Library 25 Superintendent - Aerodynamics Division 26 Divisional File - Aerodynamics 27 Author: B. D. Fairlie 28 Transonic Aerodynamics Group 29-33
NASA's program on icing research and technology
NASA Technical Reports Server (NTRS)
Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.
1989-01-01
NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.
Screech Noise Generation From Supersonic Underexpanded Jets Investigated
NASA Technical Reports Server (NTRS)
Panda, Jayanta; Seasholtz, Richard G.
2000-01-01
Many supersonic military aircraft and some of the modern civilian aircraft (such as the Boeing 777) produce shock-associated noise. This noise is generated from the jet engine plume when the engine nozzle is operated beyond the subsonic operation limit to gain additional thrust. At these underexpanded conditions, a series of shock waves appear in the plume. The turbulent vortices present in the jet interact with the shock waves and produce the additional shock-associated noise. Screech belongs to this noise category, where sound is generated in single or multiple pure tones. The high dynamic load associated with screech can damage the tailplane. One purpose of this study at the NASA Glenn Research Center at Lewis Field was to provide an accurate data base for validating various computational fluid dynamics (CFD) codes. These codes will be used to predict the frequency and amplitude of screech tones. A second purpose was to advance the fundamental physical understanding of how shock-turbulence interactions generate sound. Previously, experiments on shock-turbulence interaction were impossible to perform because no suitable technique was available. As one part of this program, an optical Rayleigh-scattering measurement technique was devised to overcome this difficulty.
The NASA aircraft icing research program
NASA Technical Reports Server (NTRS)
Shaw, Robert J.; Reinmann, John J.
1990-01-01
The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.
Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development
NASA Astrophysics Data System (ADS)
Hamilton, C.
2009-12-01
Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.
NASA's aircraft icing technology program
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1991-01-01
NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.
Commercial aviation icing research requirements
NASA Technical Reports Server (NTRS)
Koegeboehn, L. P.
1981-01-01
A short range and long range icing research program was proposed. A survey was made to various industry and goverment agencies to obtain their views of needs for commercial aviation ice protection. Through these responsed, other additional data, and Douglas Aircraft icing expertise; an assessment of the state-of-the-art of aircraft icing data and ice protection systems was made. The information was then used to formulate the icing research programs.
Ice Skating Instruction at the University of Illinois.
ERIC Educational Resources Information Center
Christensen, Char; And Others
1981-01-01
The University of Illinois at Urbana-Champaign conducts a instructional ice skating program for its students and the community. Activities include: a figure skating club; a speed skating club; ice hockey program; and ice skating classes. (CJ)
Rotorcraft aviation icing research requirements: Research review and recommendations
NASA Technical Reports Server (NTRS)
Peterson, A. A.; Dadone, L.; Bevan, A.
1981-01-01
The status of rotorcraft icing evaluation techniques and ice protection technology was assessed. Recommendations are made for near and long term icing programs that describe the needs of industry. These recommended programs are based on a consensus of the major U.S. helicopter companies. Specific activities currently planned or underway by NASA, FAA and DOD are reviewed to determine relevance to the overall research requirements. New programs, taking advantage of current activities, are recommended to meet the long term needs for rotorcraft icing certification.
NWS Alaska Sea Ice Program: Operations and Decision Support Services
NASA Astrophysics Data System (ADS)
Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.
2015-12-01
The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.
NWS Alaska Sea Ice Program: Operations, Customer Support & Challenges
NASA Astrophysics Data System (ADS)
Heim, R.; Schreck, M. B.
2016-12-01
The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.
The effect of a complex training program on skating abilities in ice hockey players.
Lee, Changyoung; Lee, Sookyung; Yoo, Jaehyun
2014-04-01
[Purpose] Little data exist on systemic training programs to improve skating abilities in ice hockey players. The purpose of this study was to evaluate the effectiveness of a complex training program on skating abilities in ice hockey players. [Methods] Ten male ice hockey players (training group) that engaged in 12 weeks of complex training and skating training and ten male players (control group) that only participated in 12 weeks of skating training completed on-ice skating tests including a 5 time 18 meters shuttle, t-test, Rink dash 5 times, and line drill before, during, and the training. [Results] Significant group-by-time interactions were found in all skating ability tests. [Conclusion] The complex training program intervention for 12 weeks improved their skating abilities of the ice hockey players.
Comparison of LEWICE and GlennICE in the SLD Regime
NASA Technical Reports Server (NTRS)
Wright, William B.; Potapczuk, Mark G.; Levinson, Laurie H.
2008-01-01
A research project is underway at the NASA Glenn Research Center (GRC) to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from two different computer programs. The first program, LEWICE version 3.2.2, has been reported on previously. The second program is GlennICE version 0.1. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the GRC Icing Research Tunnel (IRT) has also been performed, including additional data taken to extend the database in the Super-cooled Large Drop (SLD) regime. This paper will show the differences in ice shape between LEWICE 3.2.2, GlennICE, and experimental data. This report will also provide a description of both programs. Comparisons are then made to recent additions to the SLD database and selected previous cases. Quantitative comparisons are shown for horn height, horn angle, icing limit, area, and leading edge thickness. The results show that the predicted results for both programs are within the accuracy limits of the experimental data for the majority of cases.
Systematic model researches on the stability limits of the DVL series of float designs
NASA Technical Reports Server (NTRS)
Sottorf, W.
1949-01-01
To determine the trim range in which a seaplane can take off without porpoising, stability tests were made of a Plexiglas model, composed of float, wing, and tailplane, which corresponded to a full-size research airplane. The model and full-size stability limits are in good agreement. After all structural parts pertaining to the air frame were removed gradually, the aerodynamic forces replaced by weight forces, and the moment of inertia and position of the center of gravity changed, no marked change of limits of the stable zone was noticeable. The latter, therefore, is for practical purposes affected only by hydrodynamic phenomena. The stability limits of the DVL family of floats were determined by a systematic investigation independent of any particular sea-plane design, thus a seaplane may be designed to give a run free from porpoising.
The Effect of a Complex Training Program on Skating Abilities in Ice Hockey Players
Lee, Changyoung; Lee, Sookyung; Yoo, Jaehyun
2014-01-01
[Purpose] Little data exist on systemic training programs to improve skating abilities in ice hockey players. The purpose of this study was to evaluate the effectiveness of a complex training program on skating abilities in ice hockey players. [Methods] Ten male ice hockey players (training group) that engaged in 12 weeks of complex training and skating training and ten male players (control group) that only participated in 12 weeks of skating training completed on-ice skating tests including a 5 time 18 meters shuttle, t-test, Rink dash 5 times, and line drill before, during, and the training. [Results] Significant group-by-time interactions were found in all skating ability tests. [Conclusion] The complex training program intervention for 12 weeks improved their skating abilities of the ice hockey players. PMID:24764628
NASA Lewis Research Center's Program on Icing Research
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.
1982-01-01
The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.
Pechak, Celia M; Black, Jill D
2014-02-01
Increasingly physical therapist students complete part of their clinical training outside of their home country. This trend is understudied. The purposes of this study were to: (1) explore, in depth, various international clinical education (ICE) programs; and (2) determine whether the Conceptual Model of Optimal International Service-Learning (ISL) could be applied or adapted to represent ICE. Qualitative content analysis was used to analyze ICE programs and consider modification of an existing ISL conceptual model for ICE. Fifteen faculty in the United States currently involved in ICE were interviewed. The interview transcriptions were systematically analyzed by two researchers. Three models of ICE practices emerged: (1) a traditional clinical education model where local clinical instructors (CIs) focus on the development of clinical skills; (2) a global health model where US-based CIs provide the supervision in the international setting, and learning outcomes emphasized global health and cultural competency; and (3) an ICE/ISL hybrid where US-based CIs supervise the students, and the foci includes community service. Additionally the data supported revising the ISL model's essential core conditions, components and consequence for ICE. The ICE conceptual model may provide a useful framework for future ICE program development and research.
Preparing and Analyzing Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.;
2004-01-01
SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.
Simulation Model Development for Icing Effects Flight Training
NASA Technical Reports Server (NTRS)
Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.
2003-01-01
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Nonisentropic unsteady three dimensional small disturbance potential theory
NASA Technical Reports Server (NTRS)
Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.
1986-01-01
Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.
Observations of sea ice and icebergs in the western Barents Sea during the winter of 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeset, S.; Carstens, T.
1995-12-31
A multisensor ice data acquisition program for the western Barents Sea was carried out during three field campaigns in the mid winter and fall of 1987. The main purpose of the program was to obtain comprehensive information about the ice in the area at that time. The reasoning was that prior to any oil/gas exploration and production in the Barents Sea, the physical environment has to be quantitatively surveyed in order to ensure safe operations related to human safety, the regular operability and safety of the structure and protection of the environment. Prior to this field investigation program in 1987more » data on sea ice and icebergs for engineering purposes for the western Barents Sea were meager. The present paper highlights some of the findings with emphasis on ice edge speeds, ice edge displacement and ice drift. For icebergs, the paper focuses on population, size distributions and geometric parameters.« less
NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.
1988-01-01
In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
Sea-Ice Mission Requirements for the US FIREX and Canada RADARSAT programs
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Ramseier, R. O.; Weeks, W. F.
1982-01-01
A bilateral synthetic aperture radar (SAR) satellite program is defined. The studies include addressing the requirements supporting a SAR mission posed by a number of disciplines including science and operations in sea ice covered waters. Sea ice research problems such as ice information and total mission requirements, the mission components, the radar engineering parameters, and an approach to the transition of spacecraft SAR from a research to an operational tool were investigated.
National Ice Center Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Austin, Meg
2001-01-01
The objectives of the work done by Dr. Kim Partington were to manage NASA's polar research program, including its strategic direction, research funding and interagency and international collaborations. The objectives of the UCAR Visiting Scientist Program at the National Ice Center (NIC) are to: (1) Manage a visiting scientist program for the NIC Science Center in support of the mission of the NIC; (2) Provide a pool of researchers who will share expertise with the NIC and the science community; (3) Facilitate communications between the research and operational communities for the purpose of identifying work ready for validation and transition to an operational environment; and (4) Act as a focus for interagency cooperation. The NIC mission is to provide worldwide operational sea ice analyses and forecasts for the armed forces of the US and allied nations, the Departments of Commerce and Transportation, and other US Government and international agencies, and the civil sector. The NIC produces these analyses and forecasts of Arctic, Antarctic, Great Lakes, and Chesapeake Bay ice conditions to support customers with global, regional, and tactical scale interests. The NIC regularly deploys Naval Ice Center NAVICECEN Ice Reconnaissance personnel to the Arctic and Antarctica in order to perform aerial ice observation and analysis in support of NIC customers. NIC ice data are a key part of the US contribution to international global climate and ocean observing systems.
KSC ice/frost/debris assessment for space shuttle mission STS-29R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.
Ice/frost/debris assessment for space shuttle mission STS-26R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1988-01-01
An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.
Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.
Aircraft Surveys of the Beaufort Sea Seasonal Ice Zone
NASA Astrophysics Data System (ADS)
Morison, J.
2016-02-01
The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter sea ice extent and minimum summer sea ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. The increasing size and changing air-ice-ocean properties of the SIZ are central to recent reductions in Arctic sea ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort Sea SIZ aboard Coast Guard C-130H aircraft from USCG Air Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the sea surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.
Collaborations for Arctic Sea Ice Information and Tools
NASA Astrophysics Data System (ADS)
Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.
2017-12-01
The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support informed decision-making. One of SEARCH's primary science topics is focused on Arctic sea ice; the SEARCH Sea Ice Action Team is leading efforts to advance understanding and awareness of the impacts of Arctic sea-ice loss.
Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.
2007-01-01
Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.
Evaluation of Droplet Splashing Algorithm in LEWICE 3.0
NASA Technical Reports Server (NTRS)
Homenko, Hilary N.
2004-01-01
The Icing Branch at NASA Glenn Research has developed a computer program to simulate ice formation on the leading edge of an aircraft wing during flight through cold, moist air. As part of the branch's current research, members have developed software known as LEWICE. This program is capable of predicting the formation of ice under designated weather conditions. The success of LEWICE is an asset to airplane manufacturers, ice protection system manufacturers, and the airline industry. Simulations of ice formation conducted in the tunnel and in flight is costly and time consuming. However, the danger of in-flight icing continues to be a concern for both commercial and military pilots. The LEWICE software is a step towards inexpensive and time efficient prediction of ice collection. In the most recent version of the program, LEWICE contains an algorithm for droplet splashing. Droplet splashing is a natural occurrence that causes accumulation of ice on aircraft surfaces. At impingement water droplets lose a portion of their mass to splashing. With part of each droplet joining the airflow and failing to freeze, early versions of LEWICE without the splashing algorithm over-predicted the collection of ice on the leading edge. The objective of my project was to determine whether the revised version of LEWICE accurately reflected the ice collection data obtained from the Icing Research Tunnel (IRT). The experimental data from the IRT was collected by Mark Potapczuk in January, March and July of 2001 and April and December of 2002. Experimental data points were the result of ice tracings conducted shortly after testing in the tunnel. Run sheets, which included a record of velocity, temperature, liquid water content and droplet diameter, served as the input of the LEWICE computer program. Parameters identical to the tunnel conditions were used to run LEWICE 2.0 and LEWICE 3.0. The results from IRT and versions of LEWICE were compared graphically. After entering the raw experimental data and computer output into a spread sheet, I mapped each ice formation onto a clean airfoil. The LEWICE output provided the data points to graphically depict ice formations developed by the program. weather conditions of runs conducted in January 2001, it was evident that the splashing algorithm of LEWICE 3.0 predicts ice formations more accurately than LEWICE 2.0. Especially at conditions with droplet size between 80 and 160 microns, the splashing algorithm of the new LEWICE version compensated for the loss of droplet mass as a result of splashing. In contrast, LEWICE 2.0 consistently over-predicted the mass of the ice in conditions with droplet size exceeding 80 microns. This evidence confirms that changes made to algorithms of LEWICE 3.0 have increased the accuracy of predicting ice collection.
KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.
2014-09-30
OBJECTIVES • What is the volume of sea ice in the Beaufort Sea Seasonal Ice Zone (SIZ) and how does this evolve during summer as the ice edge...retreats? Recent observations suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest...surrounding ice . Recent analyses have indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer
Preliminary Survey of Icing Conditions Measured During Routine Transcontinental Airline Operation
NASA Technical Reports Server (NTRS)
Perkins, Porter J.
1952-01-01
Icing data collected on routine operations by four DC-4-type aircraft equipped with NACA pressure-type icing-rate meters are presented as preliminary information obtained from a statistical icing data program sponsored by the NACA with the cooperation of many airline companies and the United States Air Force. The program is continuing on a much greater scale to provide large quantities of data from many air routes in the United States and overseas. Areas not covered by established air routes are also being included in the survey. The four aircraft which collected the data presented in this report were operated by United Air Lines over a transcontinental route from January through May, 1951. An analysis of the pressure-type icing-rate meter was satisfactory for collecting statistical data during routine operations. Data obtained on routine flight icing encounters from.these four instrumented aircraft, although insufficient for a conclusive statistical analysis, provide a greater quantity and considerably more realistic information than that obtained from random research flights. A summary of statistical data will be published when the information obtained daring the 1951-52 icing season and that to be obtained during the 1952-53 season can be analyzed and assembled. The 1951-52 data already analyzed indicate that the quantity, quality, and range of icing information being provided by this expanded program should afford a sound basis for ice-protection-system design by defining the important meteorological parameters of the icing cloud.
Ice interaction with offshore structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammaert, A.B.; Muggeridge, D.B.
1988-01-01
Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.
Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D
2012-10-01
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
2014-09-30
Institution The Scottish Association for Marine Science tmaksym@whoi.edu Phil.Hwang@sams.ac.uk LONG-TERM GOALS This DRI TECHNICAL PROGRAM (Emerging...jpw28@bas.ac.uk tmaksym@whoi.edu Co-PRINCIPAL INVESTIGATOR: Byongjun (Phil) Hwang The Scottish Association for Marine Science Phil.Hwang@sams.ac.uk 2
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1992-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1991-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Summer Institute for Career Exploration (ICE), 1988. OREA Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; Rosenberg, Jan
In its fourth year, the English-as-a-Second-Language (ESL) component of the Summer Institute for Career Exploration (ICE) program was funded by the federal government's Emergency Immigrant Education Assistance program. Program goals were to help recent immigrants develop English language skills, introduce students to high school requirements and…
2013-09-30
What is the volume of sea ice in the Beaufort Sea SIZ and how does this evolve during summer as the ice edge retreats? Recent observations...suggest that the remaining ice in the Beaufort Sea is younger and thinner in recent years in part because even the oldest ice advected into the region does...indicated that ponds on thinner ice are often darker, accelerating the ice - albedo feedback over thin ice in summer. During winter, leads and very
Proceedings of the Airframe Icing Workshop
NASA Technical Reports Server (NTRS)
Colantonio, Ron O. (Editor)
2009-01-01
The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.
Evaluation of capillary reinforced composites
NASA Technical Reports Server (NTRS)
Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.
1985-01-01
Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-33R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-33R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and photographic analysis of Mission STS-33R, and their overall effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-31R
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1990-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-31R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-31R, is presented along with their overall effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83
NASA Technical Reports Server (NTRS)
Lin, Jill D.; Katnik, Gregory N.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94
NASA Technical Reports Server (NTRS)
Bowen, Barry C.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-38
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A debris/ice/TPS assessment and photographic analysis was conducted for the Space Shuttle Mission STS-38. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-38, and their overall effect on the Space Shuttle Program are documented.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis for Shuttle Mission STS-49
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-49. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-49, and the resulting effect on the Space Shuttle Program are discussed.
Debris/ice/TPS assessment and photographic analysis of shuttle mission STS-48
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-48. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-48 are documented, along with their overall effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-37
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-37. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-37 are documented, along with their overall effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-77
NASA Technical Reports Server (NTRS)
Katnik, GregoryN.; Lin, Jill D. (Compiler)
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-77. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-77 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-51
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1993-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-51. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-51 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-55
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle mission STS-55. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-55, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1990-01-01
A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-69
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-69. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system condition and integrated photographic analysis of Shuttle Mission STS-69 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-42
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Shuttle Mission STS-42. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flighr anomalies. The debris/ice/TPS conditions are documented along with photographic analysis of Mission STS-42, and their overall effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-52
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-52, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Kelley, J. David (Technical Monitor)
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-41
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley
1990-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-41. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-41, and their overall effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis of shuttle mission STS-76
NASA Technical Reports Server (NTRS)
Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-76. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-76 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-53
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-53. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/Frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-53, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-54
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1993-01-01
A Debris/Ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-54. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-54, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-61
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-58
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Rivera, Jorge E.; Katnik, Gregory N.; Bowen, Barry C.; Speece, Robert F.; Rosado, Pedro J.
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-58. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The ice/debris/TPS conditions and integrated photographic analysis of Shuttle mission STS-58, and the resulting effect on the Space Shuttle Program are documented.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-47
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/TPS assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-47, and the resulting effect on the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
Flemming, Robert J.; Britton, Randall K.; Bond, Thomas H.
1994-01-01
The cost and time to certify or qualify a rotorcraft for flight in forecast icing has been a major impediment to the development of ice protection systems for helicopter rotors. Development and flight test programs for those aircraft that have achieved certification or qualification for flight in icing conditions have taken many years, and the costs have been very high. NASA, Sikorsky, and others have been conducting research into alternative means for providing information for the development of ice protection systems, and subsequent flight testing to substantiate the air-worthiness of a rotor ice protection system. Model rotor icing tests conducted in 1989 and 1993 have provided a data base for correlation of codes, and for the validation of wind tunnel icing test techniques. This paper summarizes this research, showing test and correlation trends as functions of cloud liquid water content, rotor lift, flight speed, and ambient temperature. Molds were made of several of the ice formations on the rotor blades. These molds were used to form simulated ice on the rotor blades, and the blades were then tested in a wind tunnel to determine flight performance characteristics. These simulated-ice rotor performance tests are discussed in the paper. The levels of correlation achieved and the role of these tools (codes and wind tunnel tests) in flight test planning, testing, and extension of flight data to the limits of the icing envelope are discussed. The potential application of simulated ice, the NASA LEWICE computer, the Sikorsky Generalized Rotor Performance aerodynamic computer code, and NASA Icing Research Tunnel rotor tests in a rotorcraft certification or qualification program are also discussed. The correlation of these computer codes with tunnel test data is presented, and a procedure or process to use these methods as part of a certification or qualification program is introduced.
Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.
2007-01-01
Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.
Lewis Research Center earth resources program
NASA Technical Reports Server (NTRS)
Mark, H.
1972-01-01
The Lewis Research Center earth resources program efforts are in the areas of: (1) monitoring and rapid evaluation of water quality; (2) determining ice-type and ice coverage distribution to aid operations in a possible extension of the Great Lakes ice navigation and shipping season; (3) monitoring spread of crop viruses; and (4) extent of damage to strip mined areas as well as success of efforts to rehabilitate such areas for agriculture.
EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Markus,T.
2003-01-01
In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.
IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft
NASA Astrophysics Data System (ADS)
Frearson, N.; Bell, R. E.; Zappa, C. J.
2011-12-01
The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize the imaging systems and a high altitude flight mode that will facilitate wider use of the instrumentation suite on routine NYANG support missions. Proposals for new observations are welcome. The sensor system will become a research facility operated for the science community, and data will be maintained at and provided through a polar data center.
New Optical Constants for Amorphous and Crystalline H2O-ice
NASA Technical Reports Server (NTRS)
Mastrapa, Rachel; Bernstein, Max; Sandford, Scott
2006-01-01
We have used the infrared spectra of laboratory ices to calculate the real and imaginary indices of refraction for amorphous and crystalline H2O-ice. We create H2O-ice samples in vacuum (approx. 10(exp ^-8)Torr). We measure the thickness of the sample by reflecting a He-Ne laser off of the sample and counting interference fringes as it grows and then collect transmission spectra of the samples in the wavelength range 1.25-22 micrometers. Using the ice thickness and transmission spectrum we calculate the imaginary part of the index of refraction. A Kramers-Kronig calculation is then used to calculate the real part of the index of refraction (Berland et al. 1994; Hudgins et al. 1993). These optical constants can be used to create model spectra for comparison to spectra from Solar System objects. We will summarize the differences between the amorphous and crystalline H2O-ice spectra. These include weakening of features and shifting of features to shorter wavelength in amorphous H,O-ice spectra. We will also discuss methods of using band area ratios to quickly estimate the fraction of amorphous to crystalline H2O-ice. We acknowledge financial support from the NASA Origins of the Solar System Program, the NASA Planetary Geology and Geophysics Program, and the NASA Postdoctoral Program.
Implementation and Validation of 3-D Ice Accretion Measurement Methodology
NASA Technical Reports Server (NTRS)
Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd
2014-01-01
A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.
Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-35
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley
1991-01-01
A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-35. Debris inspections of the flight elements and launch pad were performed before and after the launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-35, and the overall effect of these conditions on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112
NASA Technical Reports Server (NTRS)
Oliu, Armando
2002-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-74
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-74. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-74 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-28R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
A Debris/Ice/TPS assessment and photographic analysis was conducted for Space Shuttle Mission STS-28R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-28R is documented along with their overall effect on the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Bowen, Barry C.; Rivera, Jorge E.; Speece, Robert F.; Katnik, Gregory N.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-68
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-68. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report-documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-68, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98
NASA Technical Reports Server (NTRS)
Speece, Robert F.
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of shuttle mission STS-63
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-66
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-66. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer program nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-66, and the resulting effect on the Space Shuttle Program.
School of Ice: US Ice Drilling Program Made Accessible to Faculty at Minority-Serving Institutions
NASA Astrophysics Data System (ADS)
Davis, H. B.; Hoffman, L. T.
2017-12-01
The School of Ice program is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities to help build their background knowledge about ice core science and climate change and gain activities and labs for transferring information to their students. In this session, you will learn about the information and activities shared with faculty and the effect of the Institute on faculty. This session will provide an overview of activities that faculty can use to engage students in ice drilling processes and results. Faculty who have attended this institute in the last four years have reported increases in their understanding of the content and how to teach it.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100
NASA Technical Reports Server (NTRS)
Oliu, Armando
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.
NASA Astrophysics Data System (ADS)
Orlich, A.; Hutchings, J. K.; Green, T. M.
2013-12-01
The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with coordination from the International Arctic Research Center, software development by the Geographic Information Network of Alaska, and funding support from the Japanese Aerospace Exploration Agency (JAXA), the Japan Agency for Marine-Earth Science & Technology (JAMSTEC), and the National Science Foundation (NSF).
Martyn, Julie-Anne; Scott, Jackie; van der Westhuyzen, Jasper H; Spanhake, Dale; Zanella, Sally; Martin, April; Newby, Ruth
2018-06-12
Objective. Continuing education (CE) is essential for a healthcare workforce, but in regional areas of Australia there are challenges to providing and accessing relevant, reliable and low-cost opportunities. The aim of the present study was to collaborate with the local regional healthcare workforce to design, deliver and evaluate an interdisciplinary CE (ICE) program. Methods. A participatory action research (PAR) model combined with an appreciative inquiry (AI) framework was used to design, deliver and evaluate an ICE program. A focus group of 11 health professionals developed an initial program. Evaluation data from 410 program participants were analysed using AI. Results. The ICE program addressed the CE barriers for the regional healthcare workforce because the locally derived content was delivered at a reasonable cost and in a convenient location. Program participants identified that they most valued shared experiences and opportunities enabling them to acquire and confirm relevant knowledge. Conclusion. ICE programs enhance interdisciplinary collaboration. However, attendance constraints for regional healthcare workforce include location, cost, workplace and personal factors. Through community engagement, resource sharing and cooperation, a local university and the interdisciplinary focus group members successfully designed and delivered the local education and research nexus program to address a CE problem for a regional healthcare workforce. What is known about the topic? Participation in CE is mandatory for most health professionals. However, various barriers exist for regional health workers to attending CE. Innovative programs, such as webinars and travelling workshops, address some of the issues but create others. Bringing various health workers together for the simultaneous education of multiple disciplines is beneficial. Collectively, this is called ICE. What does this paper add? Using PAR combined with AI to design an ICE program will focus attention on the enablers of the program and meet the diverse educational needs of the healthcare workforce in regional areas. Engaging regional health professionals with a local university to design and deliver CE is one way to increase access to quality, cost-effective education. What are the implications for practitioners? Regional healthcare workers' CE needs are more likely to be met when education programs are designed by them and developed for them. ICE raises awareness of the roles of multiple healthcare disciplines. Learning together strengthens healthcare networks by bolstering relationships through a greater understanding of each other's roles. Enriching communication between local health workers has the potential to enhance patient care.
1991 LLWAS anemometer test program
DOT National Transportation Integrated Search
1992-01-01
Performance tests of anemometers under icing and snow conditions were conducted during 1990-1991 on the test field at : Rochester, MN and in icing chambers and wind tunnels at Sterling, VA. These tests were done for the FAA LLWAS program : to test se...
The 1991 LLWAS anemometer test program
NASA Astrophysics Data System (ADS)
Phillips, Charles O.; Burnham, David; Jacobs, Leo; Hazen, David
1992-09-01
Performance tests of anemometers under icing and snow conditions were conducted during 1990-1991 on the test field at Rochester, MN and in icing chambers and wind tunnels at Sterling, VA. These tests were done for the FAA Low Level Windshear Alert System (LLWAS) program to test sensors for the next phase of LLWAS. Sensors from ten manufacturers were accepted into the test program from the respondents to the Commerce Business Daily. These sensors were required first to pass an icing chamber test in order to be field tested. The field tests lasted from Nov. 1990 to Jul. 1991. Afterwards, all sensors were sent to Sterling, VA for wind tunnel tests in September 1991. All units from the eight manufacturers that passed the icing chamber test were in the field test. A propeller/vane sensor that failed the icing chamber test was put in the field as a reference. All the units that passed were not affected by icing during the field test although a mechanical unit was affected by snow during one event. The propeller/vane was affected by icing during one event. Wind tunnel tests were done to check starting thresholds and calibration anomalies found in the field. It was concluded that there is no one winning technology that could be found from the tests.
Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project
NASA Technical Reports Server (NTRS)
Colantonio, Ron
2011-01-01
Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena
NACA Researcher Measures Ice on a Turbojet Engine Inlet
1948-11-21
The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory conducted an extensive icing research program in the late 1940s that included studies in the Icing Research Tunnel and using specially modified aircraft. One facet of this program was the investigation of the effects of icing on turbojets. Although jet engines allowed aircraft to pass through inclement weather at high rates of speed, ice accumulation was still a concern. The NACA’s B-24M Liberator was initially reconfigured with a General Electric I-16 engine installed in the aircraft’s waist compartment with an air scoop and spray nozzles to produce the artificial icing conditions. The centrifugal engine appeared nearly impervious to the effects of icing. Axial-flow jet engines, however, were much more susceptible to icing damage. The inlet guide vanes were particularly vulnerable, but the cowling’s leading edge, the main bearing supports, and accessory housing could also ice up. If pieces of ice reached the engine’s internal components, the compressor blades could be damaged. To study this phenomenon, a Westinghouse 24C turbojet, seen in this photograph, was installed under the B-24M’s right wing. In January 1948 flight tests of the 24C in icing conditions began. Despite ice buildup into the second stage of the compressor, the engine was able to operate at takeoff speeds. Researchers found the ice on the inlet vanes resulted in half of the engine’s decreased performance.
Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE
NASA Astrophysics Data System (ADS)
Bell, R. E.
2015-12-01
Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between the two IceBridge lines located 47 km apart. The ROSETTA-ICE program will begin a systematic mapping of the Ross Ice Shelf and sub-ice topography using the IcePod system beginning in 2015. Together the new gravity-derived bathymetry and the mapping of the ice shelf structure will provide key insights into the stability of the ice shelf.
An Overview of NASA Engine Ice-Crystal Icing Research
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Veres, Joseph P.
2011-01-01
Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.
Particle trajectory computer program for icing analysis of axisymmetric bodies
NASA Technical Reports Server (NTRS)
Frost, Walter; Chang, Ho-Pen; Kimble, Kenneth R.
1982-01-01
General aviation aircraft and helicopters exposed to an icing environment can accumulate ice resulting in a sharp increase in drag and reduction of maximum lift causing hazardous flight conditions. NASA Lewis Research Center (LeRC) is conducting a program to examine, with the aid of high-speed computer facilities, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. This study, as part of the NASA/LeRC research program, develops a computer program for the calculation of icing particle trajectories and impingement limits relative to axisymmetric bodies in the leeward-windward symmetry plane. The methodology employed in the current particle trajectory calculation is to integrate the governing equations of particle motion in a flow field computed by the Douglas axisymmetric potential flow program. The three-degrees-of-freedom (horizontal, vertical, and pitch) motion of the particle is considered. The particle is assumed to be acted upon by aerodynamic lift and drag forces, gravitational forces, and for nonspherical particles, aerodynamic moments. The particle momentum equation is integrated to determine the particle trajectory. Derivation of the governing equations and the method of their solution are described in Section 2.0. General features, as well as input/output instructions for the particle trajectory computer program, are described in Section 3.0. The details of the computer program are described in Section 4.0. Examples of the calculation of particle trajectories demonstrating application of the trajectory program to given axisymmetric inlet test cases are presented in Section 5.0. For the examples presented, the particles are treated as spherical water droplets. In Section 6.0, limitations of the program relative to excessive computer time and recommendations in this regard are discussed.
NASA Astrophysics Data System (ADS)
Moritz, R. E.; Rigor, I.
2006-12-01
ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.
A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Geland, S.; Perovich, D. K.
2017-12-01
The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.
77 FR 1591 - Energy Conservation Program: Test Procedure for Automatic Commercial Ice Makers
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
.... Establishment of a Metric for Potable Water Used to Produce Ice 6. Standardization of Water Hardness for Measurement of Potable Water Used in Making Ice 7. Testing of Batch Type Ice Makers at the Highest Purge..., AHRI Standard 810 with Addendum 1. This addendum revised the definition of ``potable water use rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... type ice maker. This is the inverse of the ice hardness factor, as defined in AHRI 810-2007, presented... compressor and condenser energy consumption are excluded because ice maker manufacturers do not have control...
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.
2010-12-01
Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.
Ice Skating: Special Olympics Sports Skills Instructional Program.
ERIC Educational Resources Information Center
Special Olympics, Inc., Washington, DC.
One of seven booklets on Special Olympics Sports Skills Instructional Programs, this guide presents teaching suggestions for ice skating coaches working with mentally retarded persons. An overview section introduces the sport and considers ideas for effective teaching. Goals, objectives, and benefits are considered along with information on…
Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.
2001-01-01
An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the snow accumulation and the ice discharge of the ice sheet. Uncertainties in this calculation include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken throughout the ice sheet. The sparse data associated with ice cores, coupled with the high spatial and temporal resolution provided by remote sensing, have motivated scientists to investigate relationships between accumulation rate and microwave observations.
NASA Astrophysics Data System (ADS)
Grundy, W. M.; Young, L. A.; Young, E. F.; Buie, M. W.; Spencer, J. R.
2004-11-01
We present new 0.8 to 2.4 μ m spectral observations of Neptune's satellite Triton, obtained at IRTF\\slash SpeX between 2001 and 2004 as part of an ongoing search for time-variable phenomena associated with Triton's seasonal volatile transport processes, and also perhaps with reported shorter-term "reddening" events. The ability to detect spectral changes on these time scales depends critically on accurate characterization of any cyclic variations resulting from Triton's 5.877 day rotation period. We will report on our observations of periodic variations of Triton's near-IR absorption bands of N2, CH4, and H2O ices, but not of CO2 ice, in this initial stage of our Triton monitoring program. The observed variations (or lack thereof) give an indication of how these four ice species are distributed in longitude. The most heterogeneously distributed ice is N2, which shows nearly twice as much absorption on Triton's Neptune-facing hemisphere as on the anti-Neptune hemisphere. Comparison with Voyager-era, visual wavelength imaging of Triton's surface suggest that the observed N2 ice is concentrated on low-latitude regions of Triton's polar cap, which are predominantly located on the Neptune-facing hemisphere. Non-volatile H2O ice seems to be slightly concentrated on Triton's leading hemisphere. Despite being highly diluted in N2 ice, the longitudinal distribution of Triton's CH4 ice differs from that of Triton's N2 ice, being slightly concentrated on Triton's trailing hemisphere. Triton's CO2 ice shows the least longitudinal variation, suggesting that it is either very uniformly distributed or that it is confined to high latitudes. This work was supported by NASA's Planetary Astronomy and Planetary Geology &\\ Geophysics programs, and by NSF's Planetary Astronomy program. \\hangindent=0.3truein Grundy, W.M., and L.A. Young (2004) Near infrared spectral monitoring of Triton with IRTF\\slash SpeX I: Establishing a baseline. Icarus (in press).
NASA Astrophysics Data System (ADS)
Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.
2011-12-01
The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.
Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview
NASA Technical Reports Server (NTRS)
Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard
1996-01-01
The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'
Selected bibliography of NACA-NASA aircraft icing publications
NASA Technical Reports Server (NTRS)
Reinmann, J. J. (Compiler)
1981-01-01
A summary of NACA-NASA icing research from 1940 to 1962 is presented. It includes: the main results of the NACA icing program from 1940 to 1950; a selected bibliography of 132 NACA-NASA aircraft icing publications; a technical summary of each document cited in the selected bibliography; and a microfiche copy of each document cited in the selected bibliography.
Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)
NASA Technical Reports Server (NTRS)
Peterson, Andrew A.; Oldenburg, John R.
1990-01-01
A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-50
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley; Katnik, Gregory N.
1992-01-01
Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-50. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-50, and the resulting effect on the Space Shuttle Program are documented.
Microwave remote sensing of sea ice in the AIDJEX Main Experiment
Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom
1978-01-01
During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J. (Editor); Crawford, John P.; Drinkwater, Mark R.; Emery, William J.; Eppler, Duane T.; Farmer, L. Dennis; Fowler, Charles W.; Goodberlet, Mark; Jentz, Robert R.; Milman, Andrew
1992-01-01
The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided.
Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.
2001-01-01
An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.
Simulation of multistatic and backscattering cross sections for airborne radar
NASA Astrophysics Data System (ADS)
Biggs, Albert W.
1986-07-01
In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.
The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development
NASA Technical Reports Server (NTRS)
Blaha, B. J.; Shaw, R. J.
1985-01-01
Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.
NEW Planetarium Programs for Polar Informal Science Education
NASA Astrophysics Data System (ADS)
Sumners, C.; Schloss, A. L.; Reiff, P.
2007-12-01
The modern planetarium is an immersive full-dome theater that can take audiences to Polar Regions in the past, present, or future and can simulate dynamic polar events. With the goal of public engagement and education, we are producing two programs: Night of the Titanic and Ice Worlds. Night of the Titanic uses a famous tragedy to uncover the science that could have saved the ship and the changing conditions in the North Atlantic over the last century. This program also fosters discussion about how humans evaluate data and make critical decisions related to the changing condition of polar ice. Ice Worlds uses comparative planetology themes to present Earth in the context of all ice worlds in the solar system, thus providing a broader perspective for analysis of changes in Earth's Polar Regions. Both programs rely on themes of high public interest to drive attendance and engagement. Both programs are being developed for the large dome theater or planetarium market and for portable Discovery Domes, which can reach urban and rural audiences throughout the world. This paper focuses on techniques for presentation of rigorous science content in a context that will engage the general public as well as school groups over a wide age range.
Sea ice dynamics across the Mid-Pleistocene transition in the Bering Sea.
Detlef, H; Belt, S T; Sosdian, S M; Smik, L; Lear, C H; Hall, I R; Cabedo-Sanz, P; Husum, K; Kender, S
2018-03-05
Sea ice and associated feedback mechanisms play an important role for both long- and short-term climate change. Our ability to predict future sea ice extent, however, hinges on a greater understanding of past sea ice dynamics. Here we investigate sea ice changes in the eastern Bering Sea prior to, across, and after the Mid-Pleistocene transition (MPT). The sea ice record, based on the Arctic sea ice biomarker IP 25 and related open water proxies from the International Ocean Discovery Program Site U1343, shows a substantial increase in sea ice extent across the MPT. The occurrence of late-glacial/deglacial sea ice maxima are consistent with sea ice/land ice hysteresis and land-glacier retreat via the temperature-precipitation feedback. We also identify interactions of sea ice with phytoplankton growth and ocean circulation patterns, which have important implications for glacial North Pacific Intermediate Water formation and potentially North Pacific abyssal carbon storage.
Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.
2001-01-01
Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.
Nightingale, Steven C; Miller, Stuart; Turner, Anthony
2013-06-01
Ice hockey, like most sports, uses fitness testing to assess athletes. This study reviews the current commonly used fitness testing protocols for ice hockey players, discussing their predictive values and reliability. It also discusses a range of less commonly used measures and limitations in current testing protocols. The article concludes with a proposed testing program suitable for ice hockey players.
NASA Astrophysics Data System (ADS)
Flocco, D.; Laxon, S. W.; Feltham, D. L.; Haas, C.
2012-04-01
The GlobIce project has provided high resolution sea ice product datasets over the Arctic derived from SAR data in the ESA archive. The products are validated sea ice motion, deformation and fluxes through straits. GlobIce sea ice velocities, deformation data and sea ice concentration have been validated using buoy data provided by the International Arctic Buoy Program (IABP). Over 95% of the GlobIce and buoy data analysed fell within 5 km of each other. The GlobIce Eulerian image pair product showed a high correlation with buoy data. The sea ice concentration product was compared to SSM/I data. An evaluation of the validity of the GlobICE data will be presented in this work. GlobICE sea ice velocity and deformation were compared with runs of the CICE sea ice model: in particular the mass fluxes through the straits were used to investigate the correlation between the winter behaviour of sea ice and the sea ice state in the following summer.
High Resolution Simulations of Arctic Sea Ice, 1979-1993
2003-01-01
William H. Lipscomb * PO[ARISSP To evaluate improvements in modelling Arctic sea ice, we compare results from two regional models at 1/120 horizontal...resolution. The first is a coupled ice-ocean model of the Arctic Ocean, consisting of an ocean model (adapted from the Parallel Ocean Program, Los...Alamos National Laboratory [LANL]) and the "old" sea ice model . The second model uses the same grid but consists of an improved "new" sea ice model (LANL
The IceCube MasterClass: providing high school students an authentic research experience
NASA Astrophysics Data System (ADS)
Bravo Gallart, Silvia; Bechtol, Ellen; Schultz, David; Madsen, Megan; Demerit, Jean; IceCube Collaboration
2017-01-01
In May 2014, the first one-day long IceCube Masterclass for high school students was offered. The program was inspired by the masterclasses started in 2005 by the International Particle Physics Outreach Group and supported in the U.S. by QuarkNet. Participation in the IceCube masterclasses has grown each year, with a total of over 500 students in three U.S states and three European countries after three editions. In a masterclass, students join an IceCube research team to learn about astrophysics and replicate the results of a published paper, such as the discovery of astrophysical neutrinos or a measurement of the cosmic ray flux. We will discuss both the scientific and educational goals of the program as well as the organizational challenges. Data from the program evaluation will be used to support the need of educational activities based on actual research as a powerful approach for motivating more students to pursue STEM college programs, making science and scientists more approachable to teenagers, and helping students envision a career in science.
Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond
NASA Astrophysics Data System (ADS)
Naish, Timothy
2016-04-01
Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.
Constraining the Antarctic contribution to interglacial sea-level rise
NASA Astrophysics Data System (ADS)
Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.
2015-12-01
Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the scientific challenges, some potential sub-glacial sedimentary targets, and a strategy for future drilling of sub-glacial sedimentary basins.
Sea Ice Prediction Has Easy and Difficult Years
NASA Technical Reports Server (NTRS)
Hamilton, Lawrence C.; Bitz, Cecilia M.; Blanchard-Wrigglesworth, Edward; Cutler, Matthew; Kay, Jennifer; Meier, Walter N.; Stroeve, Julienne; Wiggins, Helen
2014-01-01
Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013).
Simulation Tools Model Icing for Aircraft Design
NASA Technical Reports Server (NTRS)
2012-01-01
Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee
2010-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to understand system-scale arctic change. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities. The SEARCH program is guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and focused panels. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the National Science Foundation’s (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF’s Arctic System Science (ARCSS) Program. The SEARCH Sea Ice Outlook (http://www.arcus.org/search/seaiceoutlook/index.php) is an "Understanding Change" synthesis effort that aims to advance our understanding of the arctic sea ice system. The Responding to Change element currently includes initial planning efforts by the International Study of Arctic Change (ISAC) program as well as a newly-launched "Sea Ice for Walrus Outlook," which is a weekly report of sea ice conditions geared to Alaska Native walrus subsistence hunters, coastal communities, and others interested in sea ice and walrus (http://www.arcus.org/search/siwo). SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS); or Hajo Eicken, hajo.eicken@gi.alaska.edu, SEARCH SSC Chair.
NASA Astrophysics Data System (ADS)
Letu, H.; Nagao, T. M.; Nakajima, T. Y.; Ishimoto, H.; Riedi, J.; Shang, H.
2017-12-01
Ice cloud property product from satellite measurements is applicable in climate change study, numerical weather prediction, as well as atmospheric study. Ishimoto et al., (2010) and Letu et al., (2016) developed a single scattering property of the highly irregular ice particle model, called the Voronoi model for developing ice cloud product of the GCOM-C satellite program. It is investigated that Voronoi model has a good performance on retrieval of the ice cloud properties by comparing it with other well-known scattering models. Cloud property algorithm (Nakajima et al., 1995, Ishida and Nakajima., 2009, Ishimoto et al., 2009, Letu et al., 2012, 2014, 2016) of the GCOM-C satellite program is improved to produce the Himawari-8/AHI cloud products based on the variation of the solar zenith angle. Himawari-8 is the new-generational geostationary meteorological satellite, which is successfully launched by the Japan Meteorological Agency (JMA) on 7 October 2014. In this study, ice cloud optical and microphysical properties are simulated from RSTAR radiative transfer code by using various model. Scattering property of the Voronoi model is investigated for developing the AHI ice cloud products. Furthermore, optical and microphysical properties of the ice clouds are retrieved from Himawari-8/AHI satellite measurements. Finally, retrieval results from Himawari-8/AHI are compared to MODIS-C6 cloud property products for validation of the AHI cloud products.
SHOCK AND VIBRATION COMPUTER PROGRAMS. REVIEWS AND SUMMARIES
1975-01-01
hurricanes , special for- mulas nay have to be conaidered. Ice Ice load la usually specified by the thickness of the ice and by the ice- breaking force...Vibration Institute 5401 Katrine Downers Grove, Illinois 60515 Attn: Dr. Ronald. L. Eshleman, Director Critical Speeds ot a Rptor-Bearlng System...Instruction manual, and exanples. Contact: The Vibration Institute 5401 Katrine Downers Grove, 111. 60515 KOUTIMi MACHINSW 477 Attn; Dr. Ronald L
Behavioral Ecology of Narwhals in a Changing Arctic
2015-09-30
ecology in the pack ice of Baffin Bay. We will collect data on the species’ acoustic , movement, and diving ecology in the offshore pack ice of Baffin...Bay over a 4 year long research program with three ecological focus areas ( acoustic ecology, sea ice ecology, and foraging ecology). Our...questions: 2 1. Acoustic ecology: What are baseline characteristics of the acoustic repertoire of narwhals in the offshore Baffin Bay pack ice
1983-05-01
size and thickness characteris- tics. N’ore complete analysis will require combin- ing ice data with data obtained by the oceano - graphic... sol concentration and microwave brightness tem- perature. A long-range aircraft and a light aircraft Hying from Spitzbergen will study mesoscale
NASA Iced Aerodynamics and Controls Current Research
NASA Technical Reports Server (NTRS)
Addy, Gene
2009-01-01
This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.
Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David
1994-01-01
An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.
Drive Fan of the NACA's Icing Research Tunnel
1956-10-21
A researcher examines the drive fan inside the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory in Cleveland, Ohio. The facility was built in the mid-1940s to simulate the atmospheric conditions that caused ice to build up on aircraft. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45⁰ F, and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flow velocities up to 400 miles per hour. The 1950s were prime years for the Icing Research Tunnel. NACA engineers had spent the 1940s trying to resolve the complexities of the spray bar system. The final system put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The icing tunnel was used for extensive testing of civilian and military aircraft components in the 1950s. The NACA also launched a major investigation of the various methods of heating leading edge surfaces. The hot-air anti-icing technology used on today’s commercial transports was largely developed in the facility during this period. Lewis researchers also made significant breakthroughs with icing on radomes and jet engines. Although the Icing Research Tunnel yielded major breakthroughs in the 1950s, the Lewis icing research program began tapering off as interest in the space program grew. The icing tunnel’s use declined in 1956 and 1957. The launch of Sputnik in October 1957 signaled the end of the facility’s operation. The icing staff was transferred to other research projects and the icing tunnel was temporarily mothballed.
ARCTIC SEA ICE EXTENT AND DRIFT, MODELED AS A VISCOUS FLUID.
Ling, Chi-Hai; Parkinson, Claire L.
1986-01-01
A dynamic/thermodynamic numerical model of sea ice has been used to calculate the yearly cycle of sea ice thicknesses, concentrations, and velocities in the Arctic Ocean and surrounding seas. The model combines the formulations of two previous models, taking the thermodynamics and momentum equations from the model of Parkinson and Washington and adding the constitutive equation and equation of state from the model of Ling, Rasmussen, and Campbell. Simulated annually averaged ice drift vectors compare well with observed ice drift from the Arctic Ocean Buoy Program.
Got Ice? Teaching Ice-Skating as a Lifelong Activity
ERIC Educational Resources Information Center
Tarkinton, Brenda C.; Karp, Grace Goc
2010-01-01
With today's focus on the importance of lifelong physical activity, educators are increasingly offering a variety of such activities in their classes, as well as in before- and after-school programs. This article describes the benefits of offering ice skating as a challenging and rewarding lifetime activity, either before or after school or in…
Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques
2018-04-30
Title: Analysis and Prediction of Sea Ice Evolution using Koopman Mode Decomposition Techniques Subject: Monthly Progress Report Period of...Resources: N/A TOTAL: $18,687 2 TECHNICAL STATUS REPORT Abstract The program goal is analysis of sea ice dynamical behavior using Koopman Mode Decompo...sition (KMD) techniques. The work in the program’s first month consisted of improvements to data processing code, inclusion of additional arctic sea ice
Walsh, Sharon Fleming; Scharf, Michael G
2014-04-01
The purpose of this study was to describe the effects of an ice skating program on the ambulation, strength, posture and balance of a child with cerebral palsy (CP). The subject was a five-year-old female with a diagnosis of CP and a Gross Motor Classification System level of III. The subject was a slow and labored household ambulator on level surfaces with bilateral forearm crutches and bilateral ankle foot orthoses. She was unable to transfer to and from the floor to stand independently, stand unsupported or take steps independently. Until the initiation of this study she was receiving physical therapy services 2×/week. For the purpose of this study she participated in a 1 h/week local ice skating program for people with disabilities for a period of four months. The subject displayed clinically significant improvements in functional mobility including: improved standing posture; independent transfer to and from the floor to stand; maintenance of independent standing for 3 min; independent walking for 10 feet; increased ability to isolate extremity musculature; increased strength; improved Gross Motor Function Measure-88 scores and increased endurance. A subsequent testing session four months after the ice skating program had ended displayed declines but not to pre-intervention levels in muscle strength; ability to transfer to and from the floor to stand; functional mobility and standing balance. The results appear to suggest that the participation in an ice skating program clinically improved this child's functional mobility. Further research needs to be done with regard to physical recreational programs and the benefit they can have on the function of children with activity limitations.
NASA Astrophysics Data System (ADS)
Nagashima, Masaaki; Kondo, Yasuo; Tanaka, Hisataka; Miyachika, Kouitsu; Akiyama, Masahiko; Ishibuchi, Nobutaka; Hayakawa, Motozo
The ICEE (Innovation Center for Engineering Education) was founded in April 2004 as an educational facility in the Faculty of Engineering of Tottori University. The ICEE plans the development and training of creative professionals in all fields of engineering through Project Based Learning (PBL) programs in collaboration with local enterprises. In this report, the outline and the educational effect of the education program are described. Through PBL programs, we can give problem finding and solving abilities, self-initiative and communicative skill to the students.
1984-10-01
164 W.O. Smith, L.A. Codispoti and S.L. Smith Biological Production ................................................. 168 H.-J. Neubert ...in the vicinity of the Kvit Bj orn. 78 Ii The MIZEX-84 High Frequency Accelerometer Study Paul K. Becker and Seelye Martin The field portion of the...w,-9 tested. 4 Natural Tritium Content Hanns-J. Neubert * ~ At station no. 333 (see Fiq.) a hole of’ >7000 m was f’ound. To qet inf’ormation about
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.
1997-01-01
This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.
PIPOR - A Programme for International Polar Oceans Research
NASA Technical Reports Server (NTRS)
Gudmandsen, P.; Carsey, F.; Mcnutt, L.
1989-01-01
The Programme for International Polar Oceans Research is accepted as a part of the ERS-1 mission which will be initiated with the launch of the ERS-1 earth observation satellite by the European Space Agency in 1990. It is a bipolar program with participation by institutions engaged in studies of the atmosphere-ocean-sea ice interaction and the application of remote sensing data for operational uses. The program objectives are to develop the application of microwave data for studies and modeling of sea ice dynamics and for operational uses in sea ice infested areas. As such, it is closely connected with ongoing and forthcoming research in the Arctic and the Antarctic. With sea ice being a sensitive indicator of climate perturbations, PIPOR addresses objectives of the World Climate Research Programme.
Hazard calculations of diffuse reflected laser radiation for the SELENE program
NASA Technical Reports Server (NTRS)
Miner, Gilda A.; Babb, Phillip D.
1993-01-01
The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.
Development of the improved helicopter icing spray system (IHISS)
NASA Technical Reports Server (NTRS)
Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.
1989-01-01
Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.
Results of low power deicer tests on a swept inlet component in the NASA Lewis icing research tunnel
NASA Technical Reports Server (NTRS)
Bond, Thomas H.; Shin, Jaiwon
1993-01-01
Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection System were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.
Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Bond, Thomas H.; Shin, Jaiwon
1993-01-01
Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.
Analysis of a Hovering Rotor in Icing Conditions
NASA Technical Reports Server (NTRS)
Narducci, Robert; Kreeger, Richard E.
2012-01-01
A high fidelity analysis method is proposed to evaluate the ice accumulation and the ensuing rotor performance degradation for a helicopter flying through an icing cloud. The process uses computational fluid dynamics (CFD) coupled to a rotorcraft comprehensive code to establish the aerodynamic environment of a trimmed rotor prior to icing. Based on local aerodynamic conditions along the rotor span and accounting for the azimuthal variation, an ice accumulation analysis using NASA's Lewice3D code is made to establish the ice geometry. Degraded rotor performance is quantified by repeating the high fidelity rotor analysis with updates which account for ice shape and mass. The process is applied on a full-scale UH-1H helicopter in hover using data recorded during the Helicopter Icing Flight Test Program.
Light transport and general aviation aircraft icing research requirements
NASA Technical Reports Server (NTRS)
Breeze, R. K.; Clark, G. M.
1981-01-01
A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.
JPSS Support to the Arctic Testbed
NASA Astrophysics Data System (ADS)
Layns, A. L.
2017-12-01
The Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) program facilitates initiatives to increase or improve the use and value of JPSS data products in user products, services, and application or service areas. Building on the success of the Fire and Smoke, River Ice and Flooding, and Sounding initiatives, the JPSS Arctic Initiative is the latest endeavor of the JPSS PGRR program to increase of the use of JPSS atmospheric and cryosphere products to improve NOAA's products and services in the Arctic. The major participants in the Arctic Initiative to date are the JPSS program office, National Ice Center (NIC), National Weather Service (NWS) Alaska Sea Ice Program (ASIP), and the National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). This paper will outline the initiative, the potential benefits of the JPSS data products in the Arctic, and the plans for a product demonstration in 2018 within the NOAA Arctic Testbed.
Mass Balance of Multiyear Sea Ice in the Southern Beaufort Sea
2013-09-30
model of MY ice circulation, which is shown in Figure 1. In this model , we consider the Beaufort Sea to consist of four zones defined by mean drift...Arctic Regional Climate Model Simulation Project 3 International Arctic Buoy Program 4 Sea ice Experiment - Dynamic Nature of the Arctic 5Cold...2 Table 2: Datasets compiled to date Geophysical data type Source Time period acquired Buoy tracks IABP 12 hrly position data 1978-2012 Ice
Planetary Analogs in Antarctica: Icy Satellites
NASA Technical Reports Server (NTRS)
Malin, M. C.
1985-01-01
As part of a study to provide semi-quantitative techniques to date past Antarctic glaciations, sponsored by the Antarctic Research Program, field observations pertinent to other planets were also acquired. The extremely diverse surface conditions, marked by extreme cold and large amounts of ice, provide potential terrain and process analogs to the icy satellites of Jupiter and Saturn. Thin ice tectonic features and explosion craters (on sea ice) and deformation features on thicker ice (glaciers) are specifically addressed.
Tests of the Performance of Coatings for Low Ice Adhesion
NASA Technical Reports Server (NTRS)
Anderson, David N.; Reich, Allen D.
1997-01-01
This paper reports studies of the performance of low-ice-adhesion coatings by NASA Lewis and BFGoodrich. Studies used impact ice accreted both in the NASA Lewis Icing Research Tunnel (IRT) and in the BFGoodrich Icing Wind Tunnel (IWT) and static ice in a BFGoodrich bench-top parallel-plate shear rig. Early tests at NASA Lewis involved simple qualitative evaluations of the ease of removing impact ice from a surface. Coated surfaces were compared with uncoated ones. Some of the coatings were tested again with static ice at BFGoodrich to obtain quantitative measurements. Later, methods to establish the adhesion force on surfaces subjected to impact ice were explored at Lewis. This paper describes the various test programs and the results of testing some of the coatings looked at over the past 5 years. None of the coatings were found to be truly ice-phobic; however, the most effective coatings were found to reduce the adhesion of ice to about 1/2 that of an uncoated aluminum sample.
A Longer Look at Glaciers and Sea Ice: New and Updated Data Products from the NOAA Program at NSIDC
NASA Astrophysics Data System (ADS)
Ballagh, L. M.; Fetterer, F.
2006-12-01
The NOAA program at NSIDC supports over 60 cryospheric and related data products. With an emphasis on data rescue efforts and collections of in situ measurements, the team develops new and value added products and updates existing products, while contributing to broader NSIDC goals. Here we highlight new data in glacier and sea ice related products distributed by the NOAA program at NSIDC. NSIDC's glacier photograph collection contains many thousands of photographs taken from the ground and air by numerous photographers. Over 3,000 of these, dating from the late 1800s, are online. Viewing long-term variations in glacier terminus position provide useful information on how a glacier has responded to changing climate over time. Our collection contains comparative photographs: photographs taken of the same glacier from a similar perspective over several decades. The comparative photographs are a small subset of the entire collection, but the visual impact of this subset is impressive. A new sea ice edge position data set for Nordic Seas extends from 1750 to 2003. This data set uses observational (ship log books, for example) and remotely sensed data, with higher data density after 1850. Investigators with the Norwegian Polar Institute and the Climate and Cryosphere International Program Office used data from several existing data sets to construct a continuous record of sea ice position. The long-term coverage allows for better interpretations of how the sea ice edge has varied over time. Submarine data from upward looking sonar provide ice draft measurements. These can be used to estimate sea ice thickness. Because thickness cannot be measured using satellite data, observations of thickness are in great demand for modeling verification and to study changes in arctic ice mass balance. Data from 15 cruises have been added to our data set of 25 cruises by investigators at the University of Washington Polar Science Center. In all, the data now cover almost 122,000 km of submarine cruise tracks, with cruises dating from 1975 to 2000.
Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds
NASA Astrophysics Data System (ADS)
Kalogerakis, Konstantinos S.; Oza, A. U.; Marschall, J.; Wong, M. H.
2006-09-01
Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning") [2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).
Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds
NASA Astrophysics Data System (ADS)
Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.
2006-12-01
Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).
Ice sheet margins and ice shelves
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1984-01-01
The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.
Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry
NASA Astrophysics Data System (ADS)
Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.
2017-12-01
The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.
Validation Process for LEWICE Coupled by Use of a Navier-stokes Solver
NASA Technical Reports Server (NTRS)
Wright, William B.
2016-01-01
A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth for many meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. An extensive comparison of the results in a quantifiable manner against the database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will show the differences in ice shape between LEWICE 3.5 and experimental data. In addition, comparisons will be made between the lift and drag calculated on the ice shapes from experiment and those produced by LEWICE. This report will also provide a description of both programs. Quantitative geometric comparisons are shown for horn height, horn angle, icing limit, area and leading edge thickness. Quantitative comparisons of calculated lift and drag will also be shown. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.
Model helicopter performance degradation with simulated ice shapes
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Korkan, Kenneth D.
1987-01-01
An experimental program using a commercially available model helicopter has been conducted in the Texas A&M University Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice. The simulated ice, including both primary and secondary formations, was scaled by chord from previously documented artificial ice accretions. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. It was observed that the presence of simulated ice tends to decrease the lift to equivalent drag ratio, as well as thrust coefficient for the range of velocity ratios tested. Also, increases in torque coefficient due to the generic ice formations were observed. Evaluation of the data has indicated that the addition of roughness due to secondary ice formations is crucial for proper evaluation of the degradation in main rotor performance.
NASA Technical Reports Server (NTRS)
Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew
2009-01-01
The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.
NASA Technical Reports Server (NTRS)
Carsey, F.
1982-01-01
A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.
Antarctica and global change research
NASA Astrophysics Data System (ADS)
Weller, Gunter; Lange, Manfred
1992-03-01
The Antarctic, including the continent and Southern Ocean with the subantarctic islands, is a critical area in the global change studies under the International Geosphere-Biosphere Program (IGBP) and the World Climate Research Program (WCRP). Major scientific problems include the impacts of climate warming, the ozone hole, and sea level changes. Large-scale interactions between the atmosphere, ice, ocean, and biota in the Antarctic affect the entire global system through feedbacks, biogeochemical cycles, deep-ocean circulation, atmospheric transport of heat, moisture, and pollutants, and changes in ice mass balances. Antarctica is also a rich repository of paleoenvironmental information in its ice sheet and its ocean and land sediments.
Review of Thermal Properties of Snow, Ice and Sea Ice,
1981-06-01
AD-AL03 734 COLD RE61ONS RESEARCH AND ENGINEERING LAS HANOVER NH F/G 8/12AI3 3REVIEW OF THERMAL PROPERTIES OF SNOW. ICE AND SEA ICE,(U)UNCLASSIFIlED...Distribution/ Availability Codes Avail and/or D~ Dis~t Special D 1 7 C- T > L) UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING...PROGRAM ELEMENT, PROJECT. TASK AREA A WORK UNIT NUMBERS U.S. Army Cold Regions Research and Engineering Laboratory Hanover, New Hampshire 03755 DA Pr
Ice Accretion and Performance Degradation Calculations with LEWICE/NS
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.; Al-Khalil, Kamel M.; Velazquez, Matthew T.
1993-01-01
The LEWICE ice accretion computer code has been extended to include the solution of the two-dimensional Navier-Stokes equations. The code is modular and contains separate stand-alone program elements that create a grid, calculate the flow field parameters, calculate the droplet trajectory paths, determine the amount of ice growth, calculate aeroperformance changes, and plot results. The new elements of the code are described. Calculated results are compared to experiment for several cases, including both ice shape and drag rise.
Modeling seasonality of ice and ocean carbon production in the Arctic
NASA Astrophysics Data System (ADS)
Jin, M.; Deal, C. M.; Ji, R.
2011-12-01
In the Arctic Ocean, both phytoplankton and sea ice algae are important contributors to the primary production and the arctic food web. Copepod in the arctic regions have developed their feeding habit depending on the timing between the ice algal bloom and the subsequent phytoplankton bloom. A mismatch of the timing due to climate changes could have dramatic consequences on the food web as shown by some regional observations. In this study, a global coupled ice-ocean-ecosystem model was used to assess the seasonality of the ice algal and phytoplankton blooms in the arctic. The ice-ocean ecosystem modules are fully coupled in the physical model POP-CICE (Parallel Ocean Program- Los Alamos Sea Ice Model). The model results are compared with various observations. The modeled ice and ocean carbon production were analyzed by regions and their linkage to the physical environment changes (such as changes of ice concentration and water temperature, and light intensity etc.) between low- and high-ice years.
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
Field Results for an Arctic AUV Designed for Characterizing Circulation and Ice Thickness
NASA Astrophysics Data System (ADS)
Bellingham, J. G.; Kirkwood, W. J.; Tervalon, N.; Cokelet, E.; Thomas, H.; Sibenac, M.; Gashler, D.; McEwen, R.; Henthorn, R.; Shane, F.; Osborn, D. J.; Johnson, K.; Overland, J.; Stein, P.; Bahlavouni, A.; Anderson, D.
2002-12-01
An Autonomous Underwater Vehicle designed for operation at high latitudes and under ice completed its first Arctic field tests from the USCGC Healy in fall of 2001. The ALTEX AUV has been under development since 1998, and is being created to provide: unprecedented endurance, ability to navigate at high latitudes, a depth rating of 1500 to 4500 meters depending on payload, and the capability to relay data through the ice to satellites via data buoys. The AUV's initial applications are focused on tracking the warm Atlantic Layer inflow - the primary source of seawater to the Arctic Ocean. Consequently the primary payloads are twin pumped CTD systems. Oxygen and nitrate sensors provide the ability to use NO as a tracer. An ice profiling sonar allows the AUV to estimate the ice thickness in real-time and is designed to generate high quality post-processed ice draft data comparable to that collected through the SCICEX program. The experiments in October aboard the USCGC Healy generated numerous water column and under-ice data sets. Traditional ship-based CTD operations were used to provide a comparison data set for AUV water column measurements. The post-processed ice draft results show reasonable ice profiles and have the potential, when combined with other science data collected, to shed some additional light on upper water column processes in ice-covered regions. Cruise results include: operating the AUV from the USCGC Healy in the ice pack, demonstrating inertial navigation system performance, obtaining oceanographic sections with the AUV, obtaining ice draft measurements with an AUV born sonar, and testing the data-buoy system. This work is supported by the National Science Foundation under grant NSF-OPP 9910290. The Packard Foundation and the Office of Naval Research have also provided support. The project was initiated under the National Ocean Partnership Program under contract N00014-98-1-0814.
Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried
1979-01-01
A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)
Mechanical sea-ice strength parameterized as a function of ice temperature
NASA Astrophysics Data System (ADS)
Hata, Yukie; Tremblay, Bruno
2016-04-01
Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).
NASA Technical Reports Server (NTRS)
2002-01-01
With funding from Glenn's Small Business Innovation Research (SBIR) program, Cox & Company, Inc., built an ice protection system that combines thermal anti-icing and mechanical deicing to keep airfoils (wings and other lifting surfaces) clear of ice. Cox's concept was to combine an anti-icing system with NASA's Electro-Mechanical Expulsion Deicing System, a mechanical deicer. The anti-icing element of this hybrid would reduce the aerodynamic losses associated with deicing systems. The Cox Low Power Ice Protection System is the first new aircraft ice protection system that has been approved by the Federal Aviation Administration for use on a business jet in 40 years. While the system is currently sized for Premier class aircraft, there are no apparent constraints prohibiting its use on aircraft of any size. The company is investigating further applications, such as adapting the system for unmanned aerial vehicles and other military aircraft.
Future sea ice conditions and weather forecasts in the Arctic: Implications for Arctic shipping.
Gascard, Jean-Claude; Riemann-Campe, Kathrin; Gerdes, Rüdiger; Schyberg, Harald; Randriamampianina, Roger; Karcher, Michael; Zhang, Jinlun; Rafizadeh, Mehrad
2017-12-01
The ability to forecast sea ice (both extent and thickness) and weather conditions are the major factors when it comes to safe marine transportation in the Arctic Ocean. This paper presents findings focusing on sea ice and weather prediction in the Arctic Ocean for navigation purposes, in particular along the Northeast Passage. Based on comparison with the observed sea ice concentrations for validation, the best performing Earth system models from the Intergovernmental Panel on Climate Change (IPCC) program (CMIP5-Coupled Model Intercomparison Project phase 5) were selected to provide ranges of potential future sea ice conditions. Our results showed that, despite a general tendency toward less sea ice cover in summer, internal variability will still be large and shipping along the Northeast Passage might still be hampered by sea ice blocking narrow passages. This will make sea ice forecasts on shorter time and space scales and Arctic weather prediction even more important.
Dancing on Thinning Ice: Choreography and Science in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Sperling, J.
2016-12-01
In 2014, Jody Sperling was the first-ever choreographer in residence to participate in a polar science mission, thanks to an invitation from Dr. Robert Pickart (Woods Hole Oceanographic Institution). This 43-day mission (SUBICE) aboard the USCGC Healy traveled to the Chukchi Sea with Sperling serving as part of an outreach team on climate science communication. Since the mission, Sperling has shared her Arctic experience with more than 4,200 people through dozens of live performances, lectures and workshops, plus press coverage across the US. Her film "Ice Floe," created during SUBICE, won a Creative Climate Award and has been aired on Alaska Public Television reaching thousands more. While Arctic sea ice is vitally important to the global climate system, the public knows little about its function (other than as a habitat for polar bears) or its precipitous decline. Sperling's research during the mission focused on sea ice and had three components: 1) As a contributor to SUBICE's Ice Watch Survey, she learned the descriptive nomenclature for sea ice and its processes of formation to transport its dynamics and aesthetics to the stage. This information served as critical inspiration for the creation of her dance work "Ice Cycle" (2015); 2) Sperling collected media samples of sea ice that were subsequently used in performances of "Ice Cycle" as well as her frequent public lectures; 3) Sperling danced on sea ice at a dozen ice stations. In collaboration with the WHOI outreach team, the SUBICE science party and the Healy crew, she created the dance film short "Ice Floe". Sperling's dance company, Time Lapse Dance, has performed "Ice Cycle" as part of the larger program "Bringing the Arctic Home" at many venues nationally and the work has been mounted on students at Brenau University in Georgia. Wherever she performs, Sperling programs talkbacks, lectures and panels with scientists, artists and climate educators, with the aim of increasing awareness of sea ice, the rapid changes happening in the Arctic, the connectedness of our global climate system and stimulating conversations on climate action. Sperling's participation in the SUBICE mission has allowed her to bring a remote region of the world a little closer to home.
The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)
NASA Astrophysics Data System (ADS)
Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.
2009-12-01
Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has the potential to influence ice sheet flow. Crevassing and disrupted internal layers are present in the deep ice found in the inland extent of the Lambert Graben. Preliminary analysis indicates both a more dynamic East Antarctic ice sheet and a more complex tectonic evolution for East Antarctica.
Sea-level response to ice sheet evolution: An ocean perspective
NASA Technical Reports Server (NTRS)
Jacobs, Stanley S.
1991-01-01
The ocean's influence upon and response to Antarctic ice sheet changes is considered in relation to sea level rise over recent and future decades. Assuming present day ice fronts are in approximate equilibrium, a preliminary budget for the ice sheet is estimated from accumulation vs. iceberg calving and the basal melting that occurs beneath floating ice shelves. Iceberg calving is derived from the volume of large bergs identified and tracked by the Navy/NOAA Joint Ice Center and from shipboard observations. Basal melting exceeds 600 cu km/yr and is concentrated near the ice fronts and ice shelf grounding lines. An apparent negative mass balance for the Antarctic ice sheet may result from an anomalous calving rate during the past decade, but there are large uncertainties associated with all components of the ice budget. The results from general circulation models are noted in the context of projected precipitation increases and ocean temperature changes on and near the continent. An ocean research program that could help refine budget estimates is consistent with goals of the West Antarctic Ice Sheet Initiative.
2010-08-01
ALTERNATIVE FUEL SYSTEM ICING INHIBITOR FOR JP-8 FUEL 5a. CONTRACT NUMBER F33615-03-2-2347 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F...Government. The authors would like to acknowledge funding support from the DoD Reduction of Total Ownership Cost program through Ed Wells of ASC...following individuals contributed substantially to the success of this program : Rex Cash of the 540 ACSS/GFLBB, Travis Whitmer of Boeing IDS, Tedd Biddle of
Glacial/interglacial changes in subarctic north pacific stratification.
Jaccard, S L; Haug, G H; Sigman, D M; Pedersen, T F; Thierstein, H R; Röhl, U
2005-05-13
Since the first evidence of low algal productivity during ice ages in the Antarctic Zone of the Southern Ocean was discovered, there has been debate as to whether it was associated with increased polar ocean stratification or with sea-ice cover, shortening the productive season. The sediment concentration of biogenic barium at Ocean Drilling Program site 882 indicates low algal productivity during ice ages in the Subarctic North Pacific as well. Site 882 is located southeast of the summer sea-ice extent even during glacial maxima, ruling out sea-ice-driven light limitation and supporting stratification as the explanation, with implications for the glacial cycles of atmospheric carbon dioxide concentration.
Microwave properties of ice from The Great Lakes
NASA Technical Reports Server (NTRS)
Vickers, R. S.
1975-01-01
The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.
Stability relationship for water droplet crystallization with the NASA Lewis icing spray
NASA Technical Reports Server (NTRS)
Marek, C. John; Bartlett, C. Scott
1987-01-01
In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.
NASA Technical Reports Server (NTRS)
Fujiwara, Gustavo; Bragg, Mike; Triphahn, Chris; Wiberg, Brock; Woodard, Brian; Loth, Eric; Malone, Adam; Paul, Bernard; Pitera, David; Wilcox, Pete;
2017-01-01
This report presents the key results from the first two years of a program to develop experimental icing simulation capabilities for full-scale swept wings. This investigation was undertaken as a part of a larger collaborative research effort on ice accretion and aerodynamics for large-scale swept wings. Ice accretion and the resulting aerodynamic effect on large-scale swept wings presents a significant airplane design and certification challenge to air frame manufacturers, certification authorities, and research organizations alike. While the effect of ice accretion on straight wings has been studied in detail for many years, the available data on swept-wing icing are much more limited, especially for larger scales.
The History of Winter: teachers as scientists
NASA Astrophysics Data System (ADS)
Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.
2013-12-01
The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.
Marginal Ice Zone: Biogeochemical Sampling with Gliders
2014-09-30
chlorophyll primary productivity model to estimate and compare phytoplankton productivity under full ice cover, in the MIZ, and in open ice-free water...September, the gliders and still operating but will be retrieved in early October from the R/V Norseman. All gliders carried sensors for chlorophyll ...program, with modification for local conditions. The specific protocols for each sensor – backscatter and chlorophyll fluorescence – are described in
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... USFWS initiated a capture-based research program starting in 2008 on the sea ice off the Chukchi Sea coastline. Captures occur on the sea ice up to 100 mi (161 km) offshore of the Alaskan coastline between Shishmaref and Cape Lisburne (see Figure 1 in the USFWS' application). Take of ice seals may occur when the...
NASA Astrophysics Data System (ADS)
Hamilton, C.
2008-12-01
The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.
NASA Technical Reports Server (NTRS)
Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter
1998-01-01
During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.
1979-07-27
April 17-21, immediately after the solid ice cover had been broken up by heavy vessel traffic. 4. 1acroinvertebrates of 56 taxa were identified in 75...clams), Amphipoda (scuds), Polychaeta, Ephemeroptera (mayflies), and Trichoptera (caddisflies) were common in all samples and collectively made up about...period of solid ice cover. Comparison of drift net catches in March when there was solid ice cover and moderate vessel traffic with catches in April
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-43
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley
1991-01-01
A debris/ice Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Station Mission STS-43. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank (ET) were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-40
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A debris, ice, Thermal Protection System (TPS) assessment and photographic analysis for Space Shuttle Mission STS-40 was conducted. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice and frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice and debris sources and to evaluate potential vehicle damage and/or in-flight anomalies.
ERIC Educational Resources Information Center
Bertram, Kathryn Berry
2008-01-01
The National Science Foundation-funded Arctic Climate Modeling Program (ACMP) provides "curriculum resource-based professional development" materials that combine current science information with practical classroom instruction embedded with "best practice" techniques for teaching science to diverse students. The Sea Ice Board…
Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce)
NASA Technical Reports Server (NTRS)
Hammond, Brandy M.
2004-01-01
Many of the troubles associated with problem solving are alleviated when there is a model that can be used to represent the problem. Through the Advanced Graphics and Visualization (G-VIS) Laboratory and other facilities located within the Research Analysis Center, the Computer Services Division (CSD) is able to develop and maintain programs and software that allow for the modeling of various situations. For example, the Icing Research Branch is devoted to investigating the effect of ice that forms on the wings and other airfoils of airplanes while in flight. While running tests that physically generate ice and wind on airfoils within the laboratories and wind tunnels on site are done, it would be beneficial if most of the preliminary work could be done outside of the lab. Therefore, individuals from within CSD have collaborated with Icing Research in order to create SmaggIce. This software allows users to create ice patterns on clean airfoils or open files containing a variety of icing situations, manipulate and measure these forms, generate, divide, and merge grids around these elements for more explicit analysis, and specify and rediscretize subcurves. With the projected completion date of Summer 2005, the majority of the focus of the Smagglce team is user-functionality and error handling. My primary responsibility is to test the Graphical User Interface (GUI) in SmaggIce in order to ensure the usability and verify the expected results of the events (buttons, menus, etc.) within the program. However, there is no standardized, systematic way in which to test all the possible combinations or permutations of events, not to mention unsolicited events such as errors. Moreover, scripting tests, if not done properly and with a view towards inevitable revision, can result in more apparent errors within the software and in effect become useless whenever the developers of the program make a slight change in the way a specific process is executed. My task therefore requires a brief yet intense study into GUI coverage criteria and creating algorithms for GUI implementation. Nevertheless, there are still heavily graphical features of SmaggIceSmaggIce that must be either corrected or redesigned before its release. A particular feature of SmaggIce is the ability to smooth out curves created by control points that form an arbitrary shape into something more acquiescent to gridding (while maintaining the integrity of the data). This is done by a mathematical model known as Non-Uniform Rational B-Spline (NURBS) curves. Existing NURBS code is written in FORTRAN-77 with static arrays for holding information. My new assignment is to allow for dynamic memory allocation within the code and to make it possible for the developers to call out functions from the NURBS code using C.
Waterway Ice Thickness Measurements
NASA Technical Reports Server (NTRS)
1978-01-01
The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where icebreakers can cut paths easily or where shipping can move through thin ice without the aid of icebreakers. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.
Review of Ice-Induced Scour Impacts to Navigation and Structures
2017-07-17
ER D C SR -1 7- 3 Navigation Systems Research Program Review of Ice-Induced Scour Impacts to Navigation and Structures En gi ne er R...unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges...reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Navigation Systems Research Program ERDC SR-17
Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Franke, R.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Góra, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, .; VERITAS Collaboration; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Buchovecky, M.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Hütten, J. Grube M.; Håkansson, N.; Hervet, O.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.
2016-11-01
We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e.g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Papadakis, Michael
2005-01-01
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.
NASA Astrophysics Data System (ADS)
Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Myers, B.
2016-12-01
Declining Arctic sea ice, and its impacts on the Arctic and globe, is a topic of increasing attention by scientists, diverse stakeholder groups, and the media. Research on Arctic sea ice is broad and inter-disciplinary, ranging from new technologies to monitor sea ice, to process studies, to examining the impacts of declining sea ice on ecosystems and people. There remain barriers, however, in transferring scientific knowledge of sea ice to serve decision-maker needs. This poster will examine possible causes of these barriers—including issues of communications across disciplines and perspectives, professional culture, funding agency restrictions, and the state of the science—through the lens of Arctic sea ice efforts that have occurred over the past several years. The poster will draw on experiences from the Sea Ice for Walrus Outlook (https://www.arcus.org/search-program/siwo), the Sea Ice Outlook (https://www.arcus.org/sipn/sea-ice-outlook), and various science planning exercises. Finally, the poster will synthesize relevant efforts in this arena and highlight opportunities for improvement.
The IceAge ERS Program: Probing Building blocks of Life During the JWST Era
NASA Astrophysics Data System (ADS)
McClure, Melissa K.; Boogert, Adwin; Linnartz, Harold; Beck, Tracy L.; van Dishoeck, Ewine; Egami, Eiichi; Garrod, Robin; Gordon, Karl D.; Palumbo, Maria Elisabetta; Brown, Wendy; Fraser, Helen; Ioppolo, Sergio; Jimenez-Serra, Izaskun; McCoustra, Martin; Noble, Jennifer; Pendleton, Yvonne J.; Pontoppidan, Klaus; Viti, Serena; Chiar, Jean E.; Caselli, Paola; Bailey, John Ira; Jorgensen, Jes; Kristensen, Lars; Murillo, Nadia; Oberg, Karin I.; IceAge ERS Team Collaborators
2018-06-01
Icy grain mantles are the main reservoir for volatile elements in star-forming regions across the Universe, as well as the formation site of pre-biotic complex organic molecules (COMs) seen in our Solar System. Through the IceAge Early Release Science program, we will trace the evolution of pristine and complex ice chemistry in a representative low-mass star-forming region through observations of a: pre-stellar core, Class 0 protostar, Class I protostar, and protoplanetary disk. Comparing high spectral resolution (R~1500-3000) and sensitivity (S/N~100-300) observations from 3 to 15 micron to template spectra, we will map the spatial distribution of ices down to ~20-50 AU in these targets to identify when, and at what visual extinction, the formation of each ice species begins. Such high-resolution spectra will allow us to search for new COMs, as well as distinguish between different ice morphologies, thermal histories, and mixing environments.The analysis of these data will result in science products beneficial to Cycle 2 proposers. A newly updated public laboratory ice database will provide feature identifications for all of the expected ices, while a chemical model fit to the observed ice abundances will be released publically as a grid, with varied metallicity and UV fields to simulate other environments. We will create improved algorithms to extract NIRCAM WFSS spectra in crowded fields with extended sources as well as optimize the defringing of MIRI LRS spectra in order to recover broad spectral features. We anticipate that these resources will be particularly useful for astrochemistry and spectroscopy of fainter, extended targets like star forming regions of the SMC/LMC or more distant galaxies.
Marginal Ice Zone (MIZ) Program: Science and Experiment Plan
2012-10-01
decline and greatest loss in arctic summer ice (Shimada et al ., 2006 ). The Beaufort Sea lends its name to the Beaufort Gyre, the anti-cyclonic...which in turn influences regional atmospheric circulation patterns and temperature profiles, especially along the seasonal MIZ (Rinke et al ., 2006 ...coupling (Krinner et al ., 2010; Gerdes, 2006 ). Both for scientific and practical reasons, prediction of sea ice cover is particularly important as it
Code of Federal Regulations, 2010 CFR
2010-07-01
... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... SI ICE to Emission Standards in Table 1 of Subpart JJJJ 4 Table 4 to Subpart JJJJ of Part 60... Stationary SI ICE to Emission Standards in Table 1 of Subpart JJJJ [As stated in § 60.4247, you must comply... voluntary certification program and certifying stationary SI ICE to emission standards in Table 1 of subpart...
Test and Analysis Correlation of High Speed Impacts of Ice Cylinders
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris
2006-01-01
During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter s wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time-histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.
Dynamic Crush Characterization of Ice
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris
2006-01-01
During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter's wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.
CICE, The Los Alamos Sea Ice Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunke, Elizabeth; Lipscomb, William; Jones, Philip
The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less
NASA Astrophysics Data System (ADS)
Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.
2016-02-01
Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Pinella, David; Garrison, Peter
1999-01-01
Collection efficiency and ice accretion calculations were made for a commercial transport using the NASA Lewis LEWICE3D ice accretion code, the ICEGRID3D grid code and the CMARC panel code. All of the calculations were made on a Windows 95 based personal computer. The ice accretion calculations were made for the nose, wing, horizontal tail and vertical tail surfaces. Ice shapes typifying those of a 30 minute hold were generated. Collection efficiencies were also generated for the entire aircraft using the newly developed unstructured collection efficiency method. The calculations highlight the flexibility and cost effectiveness of the LEWICE3D, ICEGRID3D, CMARC combination.
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark
2006-01-01
The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.
Program for Arctic Regional Climate Assessment (PARCA)
NASA Technical Reports Server (NTRS)
Gogineni, Sivaprasad; Thomas, Robert H.; Abdalati, Waleed (Editor)
1999-01-01
The Program for Arctic Regional Climate Assessment (PARCA) is a NASA-sponsored initiative with the prime objective of understanding the mass balance of the Greenland ice sheet. In October 1998, PARCA investigators met to review activities of the previous year, assess the program's progress, and plan future investigations directed at accomplishing that objective. Some exciting results were presented and discussed, including evidence of dramatic thinning of the ice sheet near the southeastern coast. Details of the investigations and many of the accomplishments are given in this report, but major highlights are given in the Executive Summary of the report.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, J. A.; Shin, R. T.; Nghiem, S. V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is used to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. Thermal emissions based on the reciprocity and energy conservation principles are calculated. The effects of the random roughness at the air-ice, and ice-water interfaces are explained by adding the surface scattering to the volume scattering return incoherently. The theoretical model, which has been successfully applied to analyze the radar backscatter data of first-year sea ice, is used to interpret the measurements performed in the Cold Regions Research and Engineering Laboratory's CRRELEX program.
The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean
NASA Astrophysics Data System (ADS)
Lee, S.; Yi, Y.
2014-12-01
The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.
United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat
NASA Astrophysics Data System (ADS)
Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.
2012-12-01
The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed frosting on the camera during these same periods indicating that the anemometer has temporarily frozen up. Later when the camera lens clears, the anemometers resume providing reasonable wind speeds. The cameras have also provided confirmation of the onset of melt and freeze, and indications of cloudy and clear skies. USNA PSP will monitor meteorological and oceanographic parameters of the Arctic environment remotely via its own buoys. Web cameras will provide near real time visual observations of the buoys current positions, allowing for instant validation of other remotes sensors and modeled data. Each buoy will be developed with at a minimum a meteorological sensor package in accordance with IABP protocol (2m Air Temp, SLP). Platforms will also be developed with new sensor packages to possibly include, wind speed, ice temperature, sea ice thickness, underwater acoustics, and new communications suites (Iridium, Radio). The uniqueness of the IceGoat is that it is based on the new AXIB buoy designed by LBI, Inc. that has a proven record of being able to survive in the harsh marginal ice zone environment. IceGoat1 will be deployed in the High Arctic during the USCGC HEALY cruise in late August 2012.
NASA Astrophysics Data System (ADS)
Chaves-Vargas, M.; Dafnis, A.; Reimerdes, H.-G.; Schröder, K.-U.
2015-10-01
In order to study the dynamic response and the buckling behaviour of several load-carrying structural components of civil aircraft when subjected to transient load scenarios such as gusts or a landing impact, a generic mid-size aircraft is defined within the European research project DAEDALOS. From this aircraft, several sections or panels in different regions such as wing, vertical tailplane and fuselage are defined. The stiffened carbon-fibre-reinforced plastic (CFRP) plate investigated within the present work represents a simplified version of the wing panel selected from the generic aircraft. As part of the current work, the buckling behaviour and the modal properties of the stiffened plate under the effect of a static in-plane compression load are studied. This is accomplished by means of a test series including quasi-static buckling tests and an experimental modal analysis (EMA). One of the key objectives pursued is the correlation of the modal properties to the buckling behaviour by studying the relationship between the natural frequencies of the stiffened plate and its corresponding buckling load. The experimental work is verified by a finite element analysis.
National Ice Center Visiting Scientist Program
NASA Technical Reports Server (NTRS)
Austin, Meg
2002-01-01
The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.
Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data
NASA Technical Reports Server (NTRS)
Lee, Sam; Camello, Stephanie
2015-01-01
There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.
EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond2000 Flight Report
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.
2000-01-01
This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, NOAA, and NASA. The field component of the mission consisted of making five 8-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental TechnologyLaboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.
What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.
2017-12-01
The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice Shelves.
1986-03-01
8217 ILI L2.2363 31-25 UICRQCCW p O TEST C4ART’OPSMa, -f AoA IV 4 86 9 ’ 5 MIZEX BULLETIN SERIES: INFORMATION FOR CONTRIBUTORS The main purpose of the...Ice-Ocean Interaction Experiments in Arctic Marginal Ice Zones MIZEX BULLETIN VII LEC T E SEP 2 9 1986 ’Jl P March 1986 J A ’QOzltnal OontsSn$ ooLoP...studies in both the northern and southern hemispheres. W.D. HIBLER Ill March 1986 ii CONTENTS* Page P reface
Geenland Glacier Albedo Variability
NASA Astrophysics Data System (ADS)
2004-01-01
The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.
Greenland Glacier Albedo Variability
NASA Technical Reports Server (NTRS)
2004-01-01
The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.
NASA Technical Reports Server (NTRS)
Perkins, Porter J
1955-01-01
A statistical survey and a preliminary analysis are made of icing data collected from scheduled flights over the United States and Canada from November 1951 to June 1952 by airline aircraft equipped with NACA pressure-type icing-rate meters. This interim report presents information obtained from a continuing program sponsored by the NACA with the cooperation of the airlines. An analysis of over 600 icing encounters logged by three airlines operating in the United States, one operating in Canada and one operating up the coast to Alaska, is presented. The icing conditions encountered provided relative frequencies of many icing-cloud variables, such as horizontal extent, vertical thickness, temperatures, icing rate, liquid-water content, and total ice accumulation. Liquid-water contents were higher than data from earlier research flights in layer-type clouds but slightly lower than previous data from cumulus clouds. Broken-cloud conditions, indicated by intermittent icing, accounted for nearly one-half of all the icing encounters. About 90 percent of the encounters did not exceed a distance of 120 miles, and continuous icing did not exceed 50 miles for 90 percent of the unbroken conditions. Icing cloud thicknesses measured during climbs and descents were less than 4500 feet for 90 percent of the vertical cloud traverses.
Duke, Michael B
2002-03-01
The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
IceChrono v1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, Frédéric
2015-04-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores is essential to interpret the paleo records that they contain, but it is a complicated problem since it involves different dating methods. Here I present IceChrono v1, a new probabilistic model to combine different kinds of chronological information to obtain a common and optimized chronology for several ice cores, as well as its uncertainty. It is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the vertical thinning function. The chronological information used are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and gas dated horizons, ice and gas dated depth intervals, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air), stratigraphic links in between ice cores (ice-ice, air-air or mix ice-air and air-ice links). The optimization problem is formulated as a least squares problems, that is, all densities of probabilities are assumed gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono is similar in scope to the Datice model, but has differences from the mathematical, numerical and programming point of views. I apply IceChrono on an AICC2012-like experiment and I find similar results than Datice within a few centuries, which is a confirmation of both IceChrono and Datice codes. IceChrono v1 is freely available under the GPL v3 open source license.
Managing IceBridge Airborne Mission Data at the National Snow and Ice Data Center
NASA Astrophysics Data System (ADS)
Brodzik, M.; Kaminski, M. L.; Deems, J. S.; Scambos, T. A.
2010-12-01
Operation IceBridge (OIB) is a NASA airborne geophysical survey mission conducting laser altimetry, ice-penetrating radar profiling, gravimetry and other geophysical measurements to monitor and characterize the Earth's cryosphere. The IceBridge mission will operate from 2009 until after the launch of ICESat-II (currently planned for 2015), and provides continuity of measurements between that mission and its predecessor. Data collection sites include the Greenland and Antarctic Ice Sheets and the sea ice pack regions of both poles. These regions include some of the most rapidly changing areas of the cryosphere. IceBridge is also collecting data in East Antarctica via the University of Texas ICECAP program and in Alaska via the University of Alaska, Fairbanks glacier mapping program. The NSIDC Distributed Active Archive Center at the University of Colorado at Boulder provides data archive and distribution support for the IceBridge mission. Our IceBridge work is based on two guiding principles: ensuring preservation of the data, and maximizing usage of the data. This broadens our work beyond the typical scope of a data archive. In addition to the necessary data management, discovery, distribution, and outreach functions, we are also developing tools that will enable broader use of the data, and integrating diverse data types to enable new science research. Researchers require expeditious access to data collected from the IceBridge missions; our archive approach balances that need with our long-term preservation goal. We have adopted a "fast-track" approach to publish data quickly after collection and make it available via FTP download. Subsequently, data sets are archived in the NASA EOSDIS ECS system, which enables data discovery and distribution with the appropriate backup, documentation, and metadata to assure its availability for future research purposes. NSIDC is designing an IceBridge data portal to allow interactive data search, exploration, and subsetting via a map-based interface. This portal will provide flight line rendering and multi-instrument data previewing capabilities to facilitate use of the wide array of data types, resolutions, and configurations in this dynamic airborne mission. Together with the IceBridge Science Team and Ice Bridge Science Working Groups, NSIDC is generating value-added products from the Ice Bridge data streams and other ancillary data. These products will provide simple, useful combinations of Ice Bridge products and regional maps of important geophysical parameters from other sources. Planned value-added products include: (1) gridded products in which new profiles from Ice Bridge (e.g. elevation or ice thickness) are combined with existing DEMs or bed maps to produce revised grids and (2) flight-profile multi-instrument products in which data from several instruments are combined into ice sheet profiles (surface elevation, ice thickness, internal reflection data, bed reflection intensity, and gravimetry), sea ice profiles (freeboard, snow cover, and thickness), and surface data profiles (elevation, slope, roughness, near-surface layering, and imagery).
Radar studies of arctic ice and development of a real-time Arctic ice type identification system
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr.; Schell, J. A.; Permenter, J. A.
1973-01-01
Studies were conducted to develop a real-time Arctic ice type identification system. Data obtained by NASA Mission 126, conducted at Pt. Barrow, Alaska (Site 93) in April 1970 was analyzed in detail to more clearly define the major mechanisms at work affecting the radar energy illuminating a terrain cell of sea ice. General techniques for reduction of the scatterometer data to a form suitable for application of ice type decision criteria were investigated, and the electronic circuit requirements for implementation of these techniques were determined. Also, consideration of circuit requirements are extended to include the electronics necessary for analog programming of ice type decision algorithms. After completing the basic circuit designs a laboratory model was constructed and a preliminary evaluation performed. Several system modifications for improved performance are suggested. (Modified author abstract)
Enhancing Icing Training for Pilots Through Web-Based Multimedia
NASA Technical Reports Server (NTRS)
Fletcher, William; Nolan, Gary; Adanich, Emery; Bond, Thomas H.
2006-01-01
The Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids designed to increase pilot awareness about the hazards associated with various icing conditions. The challenges and advantages of transitioning these icing training materials to a Web-based delivery are discussed. Innovative Web-based delivery devices increased course availability to pilots and dispatchers while increasing course flexibility and utility. These courses are customizable for both self-directed and instructor-led learning. Part of our goal was to create training materials with enough flexibility to enable Web-based delivery and downloadable portability while maintaining a rich visual multimedia-based learning experience. Studies suggest that using visually based multimedia techniques increases the effectiveness of icing training materials. This paper describes these concepts, gives examples, and discusses the transitional challenges.
ERIC Educational Resources Information Center
Keller, Robert W.; Warpinski, Robert J.
1974-01-01
Project ICE is a regional, multidisciplinary, k-12 environmental education program that stresses student involvement. Four major project objectives and twelve unifying concepts for the curriculum are listed. The role of the teacher, project services, and available resources are discussed. Several specific examples illustrate student involvement…
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.
2014-01-01
From December 2013 to January 2014, MSFC Planetary Scientist Dr. Barbara Cohen participated in the Antarctic Search for Meteorites (ANSMET) 2013-2014 season. With a team of eight, a systematic search of the Antarctic ice in the South Miller Range turned up 333 samples; one of the largest is seen here with Dr. Cohen for scale. Since 1976, ANSMET has recovered more than 25,000 specimens from the ice along the Transantarctic Mountains. The icy surfaces of this area are particularly well suited for meteorite searches because of surface stranding: the surfaces must have bare ice, must be composed of large volumes, and the ice must flow out of the area more slowly than new ice arrives. The ANSMET specimens are currently the only reliable, continuous source of new, nonmicroscopic extraterrestrial material, and will continue to be until planetary sample-return missions are successful. The ANSMET program is supported by grants from the Solar System Exploration Division of NASA. Polar logistics are provided by the Office of Polar Programs of the U.S. National Science Foundation. The Principal Investigator of the current grant is Dr. Ralph P. Harvey at Case Western Reserve University. Dr. Barbara Cohen is seen with a large meteorite from the Antarctic's Miller Range
Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads
NASA Astrophysics Data System (ADS)
Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.
2018-01-01
Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.
Taste CREp: the Cosmic-Ray Exposure program
NASA Astrophysics Data System (ADS)
Martin, Léo; Blard, Pierre-Henri; Balco, Greg; Lavé, Jérôme; Delunel, Romain; Lifton, Nathaniel
2017-04-01
We present here the CREp program and the ICE-D production rate database, an online system to compute Cosmic Ray Exposure (CRE) ages with cosmogenic 3He and 10Be (crep.crpg.cnrs-nancy.fr). The CREp calculator is designed to automatically reflect the current state of the global calibration database production rate stored in ICE-D (http://calibration.ice-d.org). ICE-D will be regularly updated in order to incorporate new calibration data and reflect the current state of the available literature. The CREp program permits to calculate ages in a flexible way: 1) Two scaling models are available, i.e. i) the empirical Lal-Stone time-dependent model (Balco et al., 2008; Lal, 1991; Stone, 2000) with the muon parameters of Braucher et al. (2011), and ii) the Lifton-Sato-Dunai (LSD) theoretical model (Lifton et al., 2014). 2) Users may also test the impact of the atmosphere model, using either i) the ERA-40 database (Uppala et al., 2005), or ii) the standard atmosphere (N.O.A.A., 1976). 3) For the time-dependent correction, users or choose among the three proposed geomagnetic datasets (Lifton, 2016; Lifton et al., 2014; Muscheler et al., 2005) or import their own database. 4) For the important choice of the production rate, CREp is linked to a database of production rate calibration data, ICE-D. This database includes published empirical calibration rate studies that are publicly available at present, including those of the CRONUS-Earth and CRONUS-EU projects, as well as studies from other projects. Users may select the production rates either: i) using a worldwide mean value, ii) a regionally averaged value (not available in regions with no data), iii) a local unique value, which can be chosen among the existing dataset or imported by the user, or iv) any combination of single or multiple calibration data. We tested the efficacy of the different scaling models by looking at the statistical dispersion of the computed Sea Level High Latitude (SLHL) calibrated production rates. Lal/Stone and LSD models have comparable efficacies, and the impact of the tested atmospheric model and the geomagnetic database is also limited. If a global mean is chosen, the 1σ uncertainty arising from the production rate is about 5% for 10Be and 10% for 3He. If a regional production rate is picked, these uncertainties are potentially lower.
Submillimeter-Wave Cloud Ice Radiometry
NASA Technical Reports Server (NTRS)
Walter, Steven J.
1999-01-01
Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and spacecraft validation missions. This program has already extended the initial millimeter-wave modeling studies to submillimeter-wavelengths and has improved the realism of the cloud scattering models. Additionally a proof-of-concept airborne submillimeter-wave radiometer was constructed and fielded. It measured a radiometric signal from cirrus confirming the basic technical feasibility of this technique. This program is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory. Additional information is contained in the original.
1984-04-01
Ii TS C]r.I2 TAB 0] Unzanro’ unoed 0 justi fica ~r: 0 April 1984 vs - ASValabilitY Codes lvyall and/or U.S. Army Cold Regions Research and Engineering...coupled model. Fig. 1. Annual average simulated velocity fields. 3 192 Aloka 190 / 902 190+ WOO S’,. o Ice OnlY Mod" D"’, 55*w F~tth Yea’ Ice Ocean Model...A more precise delinga- inflow boundary conditions. 12 4- a. [ o ll ii traspert 00 0 0- 0e a I " i i , - - I I 1161 63 15 67 69 Ti 73 75 77 1980 *= 4h
Reducing injury risk from body checking in boys' youth ice hockey.
Brooks, Alison; Loud, Keith J; Brenner, Joel S; Demorest, Rebecca A; Halstead, Mark E; Kelly, Amanda K Weiss; Koutures, Chris G; LaBella, Cynthia R; LaBotz, Michele; Martin, Stephanie S; Moffatt, Kody
2014-06-01
Ice hockey is an increasingly popular sport that allows intentional collision in the form of body checking for males but not for females. There is a two- to threefold increased risk of all injury, severe injury, and concussion related to body checking at all levels of boys' youth ice hockey. The American Academy of Pediatrics reinforces the importance of stringent enforcement of rules to protect player safety as well as educational interventions to decrease unsafe tactics. To promote ice hockey as a lifelong recreational pursuit for boys, the American Academy of Pediatrics recommends the expansion of nonchecking programs and the restriction of body checking to elite levels of boys' youth ice hockey, starting no earlier than 15 years of age.
NASA Astrophysics Data System (ADS)
Lee, Seongsuk; Yi, Yu
2016-12-01
The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).
The EUMETSAT sea ice concentration climate data record
NASA Astrophysics Data System (ADS)
Tonboe, Rasmus T.; Eastwood, Steinar; Lavergne, Thomas; Sørensen, Atle M.; Rathmann, Nicholas; Dybkjær, Gorm; Toudal Pedersen, Leif; Høyer, Jacob L.; Kern, Stefan
2016-09-01
An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.
NASA Technical Reports Server (NTRS)
Shokr, Mohammed; Markus, Thorsten
2006-01-01
Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.
ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua
2010-01-01
Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).
NASA Astrophysics Data System (ADS)
Woods, J. E.; Rigor, I. G.; Valentic, T. A.
2013-12-01
The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system. Unfortunately a malfunction occurred post deployment and only a few hours of data was collected while under the ice. IK3T integrated a Vaisala all in one weather station for very accurate Air Temperature, Pressure, and Wind measurements. IK3T is still operating in Barrow, AK as part of the University of Washington's Arctic Observing Experiment (AOX) where very precise temperature measurements are being collected for validation studies.
Art as a key tool for engaging the public with the ICESat-2 mission
NASA Astrophysics Data System (ADS)
Casasanto, V.; Markus, T.
2017-12-01
NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in the Fall of 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, has provided an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas have experienced significant change in recent years. It is key to communicate what is happening, why we are measuring these areas and their importance to our global climate. Art is a powerful tool to inspire, engage, and provide an emotional connection to these remote areas. This paper will detail ICESat-2's art/science collaborations, including results from a unique collaboration with art and design school the Savannah College of Art Design (SCAD). Additional programs will be discussed including a multimedia live music program to engage on an emotional level, to communicate the importance of the polar regions to our global climate, and to inspire to take action.
NASA Astrophysics Data System (ADS)
Zhang, Damao; Wang, Zhien; Luo, Tao; Yin, Yan; Flynn, Connor
2017-03-01
Ice particle formation in slightly supercooled stratiform clouds is not well documented or understood. In this study, 4 years of combined lidar depolarization and radar reflectivity (Ze) measurements are analyzed to distinguish between cold drizzle and ice crystal formations in slightly supercooled Arctic stratiform clouds over the Atmospheric Radiation Measurement Program Climate Research Facility North Slope of Alaska Utqiaġvik ("Barrow") site. Ice particles are detected and statistically shown to be responsible for the strong precipitation in slightly supercooled Arctic stratiform clouds at cloud top temperatures as high as -4°C. For ice precipitating Arctic stratiform clouds, the lidar particulate linear depolarization ratio (δpar_lin) correlates well with radar Ze at each temperature range, but the δpar_lin-Ze relationship varies with temperature ranges. In addition, lidar depolarization and radar Ze observations of ice generation characteristics in Arctic stratiform clouds are consistent with laboratory-measured temperature-dependent ice growth habits.
NASA Technical Reports Server (NTRS)
Wieber, P. R.
1973-01-01
A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.
Iceberg B-15, Ross Ice Shelf, Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
Iceberg B-15 broke from the Ross Ice Shelf in Antarctica in late March. Among the largest ever observed, the new iceberg is approximately 170 miles long x 25 miles wide. Its 4,250 square-mile area is nearly as large as the state of Connecticut. The iceberg was formed from glacial ice moving off the Antarctic continent and calved along pre-existing cracks in the Ross Ice Shelf near Roosevelt Island. The calving of the iceberg essentially moves the northern boundary of the ice shelf about 25 miles to the south, a loss that would normally take the ice shelf as long as 50-100 years to replace. This infrared image was acquired by the DMSP (Defense Meteorological Satellite Program) F-13 satellite on April 13, 2000. For more images see Antarctic Meteorological Research Center Image courtesy of the University of Wisconsin - Madison, Space Science and Engineering Center, Antarctic Meteorological Research Center
Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images
NASA Technical Reports Server (NTRS)
Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.
1991-01-01
The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.
Wooden Fan Blades in the Icing Research Tunnel
1979-02-21
The drive fan for the Icing Research Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Lewis Icing Research Program, which began during World War II, utilized both research aircraft and the icing tunnel throughout the 1940s and 1950s. The research program was cancelled in 1958 as Lewis focused on space. The tunnel continued to be used occasionally for industrial customers in the 1960s and early 1970s. Lewis’ icing research was formally reinstituted just months before this photograph in 1978. The Icing Research Tunnel’s original 4100-horsepower induction motor was coupled directly to the 24-foot-diameter fan. Neoprene boots protected the leading edges of the 12 spruce fan blades. The system generated air speeds up to 300 miles per hour through the tunnel’s 6- by 9-foot test section. A large tail faring extended from the center of the fan to uniformly guide the airflow down the tunnel. NASA Headquarters ordered modifications to the Icing Research Tunnel in 1985 after wooden fan blades in a wind tunnel at Langley Research Center failed. Despite the fact that the large hub, seen in the center of the fan, provided an extra layer of protection against blade failure, Headquarters ordered the installation of a new set of wooden blades. The blades were ordered but not installed. The tunnel technicians instead agreed to inspect the fan after each run. A new 5000-horsepower motor was installed in 1987, and the original fan blades were finally replaced in 1993.
EOS Aqua AMSR-E Sea Ice Validation Program: Meltpond 2000 Flight Report
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.
2000-01-01
This flight report describes the field component of Meltpond2000, the first in a series of Arctic and Antarctic aircraft campaigns planned as part of NASA's Earth Observing System Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E). This prelaunch Arctic field campaign was carried out between June 25 and July 6, 2000 from Thule, Greenland, with the objective of quantifying the errors incurred by the AMSR-E sea ice algorithms resulting from the presence of melt ponds. A secondary objective of the mission was to develop a microwave capability to discriminate between melt ponds and seawater using low-frequency microwave radiometers. Meltpond2000 was a multiagency effort involving personnel from the Navy, National Oceanic and Atmospheric Administration (NOAA), and NASA. The field component of the mission consisted of making five eight-hour flights from Thule Air Base with a Naval Air Warfare Center P-3 aircraft over portions of Baffin Bay and the Canadian Arctic. The aircraft sensors were provided and operated by the Microwave Radiometry Group of NOAA's Environmental Technology Laboratory. A Navy ice observer from the National Ice Center provided visual documentation of surface ice conditions during each of the flights. Two of the five flights were coordinated with Canadian scientists making surface measurements of melt ponds at an ice camp located near Resolute Bay, Canada. Coordination with the Canadians will provide additional information on surface characteristics and will be of great value in the interpretation of the aircraft and high-resolution satellite data sets.
Active microwave measurements of Arctic sea ice under summer conditions
NASA Technical Reports Server (NTRS)
Onstott, R. G.; Gogineni, S. P.
1985-01-01
Radar provides a valuable tool in the study of sea-ice conditions and the solution of sea-ice operational problems. For this reason, the U.S. and Canada have conducted studies to define a bilateral synthetic aperture radar (SAR) satellite program. The present paper is concerned with work which has been performed to explore the needs associated with the study of sea-ice-covered waters. The design of a suitable research or operational spaceborne SAR or real aperture radar must be based on an adequate knowledge of the backscatter coefficients of the ice features which are of interest. In order to obtain the needed information, studies involving the use of a helicopter were conducted. In these studies L-C-X-Ku-band calibrated radar data were acquired over areas of Arctic first-year and multiyear ice during the first half of the summer of 1982. The results show that the microwave response in the case of sea ice is greatly influenced by summer melt, which produces significant changes in the properties of the snowpack and ice sheet.
Application of theoretical models to active and passive remote sensing of saline ice
NASA Technical Reports Server (NTRS)
Han, H. C.; Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Kwok, R.
1992-01-01
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program.
ICEX: Ice and Climate Experiment. Report of science and applications working group
NASA Technical Reports Server (NTRS)
1979-01-01
The Ice and Climate Experiment (ICEX), a proposed program of coordinated investigations of the ice and snow masses of the Earth (the "cryosphere") is described. These investigations are to be carried out with the help of satellite, aircraft, and surface based observations. Measurements derived from the investigations will be applied to an understanding of the role of the cryosphere in the system that determines the Earth's climate, to a better prediction of the responses of the ice and snow to climatic change, to studies of the basic nature of ice forms and ice dynamics, and to the development of operational techniques for assisting such activities in the polar regions as transportation, exploitation of natural resources, and petroleum exploration and production. A high-inclination satellite system with a set of remote-sensing instruments specially tailored to the task of observing the important features of snow, sea ice, and the ice sheets of Greenland and the Antarctic is to be used to record the near-simultaneous observations of multiple geophysical parameters by complementary sensors.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... written comments on these subjects. This document announces an extension of the time period for submitting... preliminary technical support document (preliminary TSD) for automatic commercial ice makers. The comment... published a Federal Register notice announcing the availability of its preliminary technical support...
Learning through Participatory Resource Management Programs: Case Studies from Costa Rica
ERIC Educational Resources Information Center
Sims, Laura; Sinclair, A. John
2008-01-01
Based on an ongoing qualitative case study in Costa Rica, this article presents the participatory work that the Instituto Costarricense de Electricidad (ICE) is doing with farmers to protect watersheds from erosion and contamination. Specifically, it includes a description of ICE's Watershed Management Agricultural Programme and how farmers…
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.
Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)
NASA Technical Reports Server (NTRS)
Clark, Robert; Cottter, Paul; Michalopoulos, Constantine
2013-01-01
This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.
Ice Loads and Ship Response to Ice. Summer 1982/Winter 1983 Test Program
1984-12-01
approximately 100 ft2 (9.2 M 2) was instrumented to measure ice pressures by measuring compressive strains in the webs of transverse frames. The panel...compressive strains in the webs of transverse frames. The panel was divided into 60 sub-panel areas, six rows of,-ten frames, over which uniform pressures...the Web and the Selection of Gage Spacing . . .............. 18 4.3 Across the Frame Influence on Strain .......... 20 4.4 Construction of the Data
Performance degradation of a model helicopter rotor with a generic ice shape
NASA Technical Reports Server (NTRS)
Korkan, K. D.; Cross, E. J., Jr.; Miller, T. L.
1984-01-01
An experimental program using a commercially available remotely controlled model helicopter in the Texas A&M University (TAMU) subsonic wind tunnel has been conducted to investigate the performance degradation resulting from the simulated formation of ice on the leading edge of the main rotor blades in both hover and forward flight. The rotor blades utilized a NACA 0012 airfoil with a 2.5-in. constant chord. A generic ice shape derived from a predetermined natural ice condition was applied to the 53.375-in.-diameter main rotor, and thrust and torque coefficients were measured for the main rotor as functions of velocity, main rotor rpm, fuselage angle of incidence, collective pitch angle, and spanwise extent of icing. The model helicopter test exhibited significant performance degradation of the main rotor when generic ice was added. An increase of approximately 150 percent in torque coefficient to maintain a constant thrust coefficient was noted when generic ice had been applied to the 85 percent rotor radial location. Also, considerable additional degradation occurred when generic ice was applied to the 100 percent rotor radial location, as compared with the 85 percent simulated ice performance values, indicating the sensitivity of the rotor tip region.
NASA Astrophysics Data System (ADS)
Behrendt, J. C.
2006-12-01
When 12 countries established scientific stations in Antarctica for the 1957-58 International Geophysical Year (IGY), the Cold War was at its height, seven countries had made claims in Antarctica, and the Antarctic Treaty was a few years in the future. I was a graduate student assistant seismologist, on the unexplored Filchner- Ronne Ice Shelf as part of the only major field project of the U.S. Antarctic program. Starting in 1957, the U.S. began a series of oversnow traverses making seismic reflection ice soundings (and other geophysical measurements) and glaciological studies to determine the thickness and budget of the Antarctic Ice Sheet. The U.S.S.R. and France made similar traverses coordinated through the IGY. Although geology and topographic mapping were not part of the IGY program because of the claims issue and the possibility of mineral resources, the oversnow traverse parties did geologic work, where unknown mountains were discovered. The oversnow traverses continued through 1966 and resulted in an excellent first approximation of the snow surface elevation, ice thickness and bed topography of Antarctica, as well as the mean annual temperature of that era and snow accumulation. The vacuum tube dictated the logistics of the oversnow traverse program. Seismic equipment including heavy batteries weighed about 500 kg. Therefore a Sno-Cat tracked vehicle was needed to carry this load. Usually three such vehicles were needed for safety. Because about 3 l/km of fuel were consumed by each Sno-Cat, about 100 kg/day of fuel per vehicle was required. A resupply flight could carry only ~600 kg/flight (varying greatly as to range and type of aircraft).The Filchner Ice Shelf Traverse, 1957-58, in which I participated, encountered many crevasses. Vehicles broke through thin snow bridges and one man fell deep into a crevasse. Fortunately there were no deaths and only one serious injury resulting from crevasse accidents on the U.S. oversnow traverse program. Starting in 1958 and continuing to 1964 the oversnow traverses were complimented by an airborne geophysical program comprising widely spaced landings for seismic reflection ice sounding and 75,000 km of widely spaced aeromagnetic and snow surface elevation profiles. The airborne profiles were concentrated over the West Antarctic Ice Sheet (WAIS) and along the length of the Transantarctic Mountains, and approximately defined the vast extent of a late Cenozoic volcanic province beneath the WAIS associated with the unknown West Antarctic rift system. There were numerous hazards encountered using these U.S. Navy planes of opportunity including denting a wing on a hidden mountain and a crash on one occasion killing the geophysicist (Edward Thiel) and four others. There was an aircraft death rate of 3.8 deaths per year in the U.S. program from 1955-66. The oversnow and airborne traverses of the IGY-IGC period employed the inductive method of scientific research with only the general objectives of defining the Antarctic Ice Sheet as to surface elevation, thickness, snow accumulation and temperature. In contrast, Antarctic research today employs deductive logic with narrowly defined objectives and testing of hypotheses. This change has been necessary because of expense, and competition of proposals by many scientists. Nonetheless something has been lost by this approach, and there is still the need for "exploration" types of research is the still unknown vast continent of Antarctica.
Recent developments in hydrologic instrumentation
Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.
1986-01-01
The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.
[Results of the NASA/University Joint Venture (JOVE) Program at the University of Vermont
NASA Technical Reports Server (NTRS)
Yu, Jun
1996-01-01
Sea ice parameters in the north and south polar regions are important components of the global climate system. Current air-sea-ice models do not take into account oscillatory behavior in the ice covers other than for the seasonal cycle, since the relative importance of such oscillations is not known. An analysis of oscillatory behavior then becomes important from the standpoints of determining the significance of the various oscillatory components and perhaps discovery of some new aspects of the air-sea-ice interaction processes. One of these components, the El Nino-Southern Oscillation (ENSO) is known to be associated with weather changes on a global scale. Indeed, its spectral components have also been observed in the sea ice distribution in both hemispheres.
Nature and History of Cenozoic Polar Ice Covers: The Case of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Spielhagen, R.; Thiede, J.
2009-04-01
The nature of the modern climate System is characterized by steep temperature gradients between the tropical and polar climatic zones and finds its most spectacular expression in the formation of ice caps in high Northern and Southern latitudes. While polar regions of Planet Earth have been glaciated repeatedly in the long course of their geological history, the Cenozoic transition from a „greenhouse" to an „icehouse" has in fact produced a unique climatic scenario with bipolar glacation, different from all previous glacial events. The Greenland ice sheet is a remainder of the Northern Hemisphere last glacial maximum ice sheets and represents hence a spectacular anomaly. Geological records from Tertiary and Quaternary terrestrial and oceanic sections have documented the presence of ice caps and sea ice covers both on the Southern as well on the Northern hemisphere since Eocene times, aqpprox. 45 Mio. years ago. While this was well known in the case of Antarctica already for some time, previous ideas about the origin of Northern hemisphere glaciation during Pliocene times (approx. 2-3 Mio. years ago) have been superceded by the dramatic findings of coarse, terrigenous ice rafted detritus in Eocene sediments from Lomonosov Ridge (close to the North Pole) apparently slightly older than the oldest Antarctic records of ice rafting.The histories of the onset of Cenozoic glaciation in high Northern and Southern latitudes remain enigmatic and are presently subjects of international geological drilling projects, with prospects to reveal some of their secrets over the coming decades. By virtue of the physical porperties of ice and the processes controlling the dynamics of the turn-over of the ice-sheets only young records of glacial ice caps on Antarctica and on Greemnland have been preserved, on Greenland with ice probably not older than a few hundred thousand years, on Antarctica potentially as old as 1.5-2 Mio. years. Deep-sea cores with their records od ice-rafting from off NE Greenland, Fram Strait and to the South of Greenland suggest the more or less continous existence of the Greenland ice sheet for the past 18 Mio. years, if not more, a phantastic supplement of the Northern hemisphere glaciation deduced from the ice cores. The dramatic decrease of extent and thickness of the Arctic sea ice cover of the past decades has aroused much public and political interest because of the potentially dramatic consequences for the exploitation of living and non-living resources as well as the socio-economic, technical and commercial systems developed in the Arctic seas and in the permafrost-infested adjacent land areas. The fate of the Greenland ice sheet with its impact on global sea level changes is one of the central unresolved problems. We urgently need novel marine research platforms which allow for an all-season presence of research and monitoring programs as well of scientific drilling programs in the Arctic Ocean.
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.
2015-05-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.
NASA Astrophysics Data System (ADS)
Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.
2014-12-01
The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.
Foods and Beverages Sold Outside the School Meals Program
... 8.7 17.9 Ice cream or frozen yogurt that is not low in fat 7.0 ... not low in fat, ice cream or frozen yogurt not low in fat, 2% or whole milk, ... not or frozen snacks not low in fat yogurt not low in fat low in fat 2000 ...
Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy.
Karpegina, Yu A; Okotrub, K A; Brusentsev, E Yu; Amstislavsky, S Ya; Surovtsev, N V
2016-04-01
The distribution of cryoprotectant (10% glycerol) and ice along the frozen plastic straw (the most useful container for freezing mammalian semen, oocytes and embryos) was studied by Raman scattering technique. Raman spectroscopy being a contactless, non-invasive tool was applied for the straws filled with the cryoprotectant solution and frozen by controlled rate programs commonly used for mammalian embryos freezing. Analysis of Raman spectra measured at different points along the straw reveals a non-uniform distribution of the cryoprotectant. The ratio between non-crystalline solution and ice was found to be increased by several times at the bottom side of the solution column frozen by the standard freezing program. The increase of the cryoprotectant fraction occurs in the area where embryos or oocytes are normally placed during their freezing. Possible effects of the cooling rate and the ice nucleation temperature on the cryoprotectant fraction at the bottom side of the solution column were considered. Our findings highlight that the ice fraction around cryopreserved embryos or oocytes can differ significantly from the averaged one in the frozen plastic straws. Copyright © 2016 Elsevier Inc. All rights reserved.
The future of spaceborne altimetry. Oceans and climate change: A long-term strategy
NASA Technical Reports Server (NTRS)
Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)
1992-01-01
The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.
NASA Astrophysics Data System (ADS)
Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.
2000-05-01
A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
NASA Technical Reports Server (NTRS)
Chennault, Jonathan
2004-01-01
The Icing Research Tunnel in Building 11 at the NASA Glenn Research Center is committed to researching the effects of in flight icing on aircraft and testing ways to stop the formation of hazardous icing conditions on planes. During this summer, I worked here with Richard DelRosa, the lead engineer for this area. address one of the major concerns of aviation: icing conditions. During the war, many planes crashed (especially supply planes going over the.Himalayas) because ice built up in their wings and clogged the engines. To this day, it remains the largest ice tunnel in the world, with a test section that measures 6 feet high, 9 feet long, and 20 feet wide. It can simulate airspeeds from 50 to 300 miles per hour at temperatures as low as -50 Fahrenheit. Using these capabilities, IRT can simulate actual conditions at high altitudes. The first thing I did was creating a cross reference in Microsoft Excel. It lists commands for the DPU units that control the pressure and temperature variations in the tunnel, as well as the type of command (keyboard, multiplier, divide, etc). The cross reference also contains the algorithm for every command, and which page it is listed in on the control sheet (visual Auto-CAD graphs, which I helped to make). I actually spent most of the time on the computer using Auto-CAD. I drew a diagram of the entire icing tunnel and then drew diagrams of its various parts. Between my mentor and me, we have drawings of every part of it, from the spray bars to the thermocouples, power cabinets, input-output connectors for power systems, and layouts of various other machines. I was also responsible for drawing schematics for the Escort system (which controls the spray bars), the power system, DPUs, and other electrical systems. In my spare time, I am attempting to build and program the "toddler". Toddler is a walking robot that I have to program in PBASIC language. When complete, it should be able to walk on level terrain while avoiding obstacles in real-time. It features an infrared detector that can keep it from falling over edges, as well as follow or avoid a light source. The toddler is giving me a much better understanding of the basics of electronic circuitry and computer programming.
Fram Strait: Atmospheric Forcing of The Sea Ice Flux
NASA Astrophysics Data System (ADS)
Widell, K.; Østerhus, S.; Gammelsrød, T.
Measuring the magnitude and variability of the ice and freshwater flux through Fram Strait is an important element in understanding climate variability in the Arctic. Since the major part of the ice and freshwater that leaves the Arctic passes through Fram Strait, this passage can be considered a key area for estimating the net ice production in the Arctic Ocean. In 1990, the Norwegian Polar Institute (NPI) started a monitoring program in the strait, most years by means of two moorings with Upward Looking Sonars (ULS) measuring ice draft. From 1995 and on, these moorings were also equipped with Doppler Current Meters (DCM) to measure the ice velocity. These measurements give an opportunity to investigate the different forces affecting ice motion in the strait. Maximum correlation coefficient between atmospheric sea level pressure (from NCEP/NCAR reanalysed data) and southward ice velocity is found when using the cross strait pressure difference along 80N between 10W and 5E (R = 0.72) consider- ing monthly means. Subtracting current velocity at 50 m depth (also measured by the DCM) from ice velocity improves the correlation to R = 0.84. This gives insight in the relative importance of current and wind on the ice motion, and indicates that pressure data can be used to make fairly good estimates of the ice velocity in the strait. In combination with data on ice thickness and ice stream width, this result is used to calculate the ice volume transport. By making assumptions on the parameters in- volved, the time series is extended back to 1948, the start of the pressure record. This time series will be presented and compared to literature, and annual and seasonal vari- ation of the ice flux will be discussed.
N2 and CO Desorption Energies from Water Ice
NASA Astrophysics Data System (ADS)
Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.
2016-01-01
The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.
Grumman S2F-1 Tracker at NACA Lewis
1956-08-21
The NACA’s Lewis Flight Propulsion Laboratory acquired the Grumman S2F-1 Tracker from the Navy in 1955 to study icing instrumentation. Lewis’s icing research program was winding down at the time. The use of jet engines was increasing thus reducing the threat of ice accumulation. Nonetheless Lewis continued research on the instrumentation used to detect icing conditions. The S2F-1 Tracker was a carrier-based submarine hunter for the Navy. Grumman developed the Tracker as a successor to its Korean War-era Guardian patrol aircraft. Prototypes first flew in late 1952 and battle-ready versions entered Naval service in early 1954. The Navy utilized the Trackers to protect fleets from attack.
Development of a novel ice-resistant semisubmersible drilling unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, E.N.; Schloerb, D.W.; Yashima, N.
1983-05-01
A multiyear program was initiated by ARCO Alaska, Inc. to assess the operational feasibility of drilling operations year-round in the ice-covered waters of the Bering, Chukchi, and Beaufort Seas. ARCO Alaska, Inc. is considering several alternative concepts for year-round drilling in the Bering Sea. One such concept, the Ice-Resistant Semisubmersible Drilling Unit, is a design concept of Mitsui Engineering and Shipbuilding Company. The design is intended to operate in broken, continuous, and ridged sea ice, and withstand severe open water sea conditions. The requirement to operate in two dissimilar environments results in a unit that is somewhat unusual when comparedmore » to typical semisubmersible drilling units.« less
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.
1978-01-01
A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.
In-Flight Icing Training for Pilots Using Multimedia Technology
NASA Technical Reports Server (NTRS)
Burke, Kevin M.; VanZante, Judith Foss; Bond, Thomas H.
2004-01-01
Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the mutlimedia technology that has been introduced and give examples of how it was used.
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie
2016-04-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.
Infrared Spectroscopy of Ammonia - Hydrocarbon Ices Relevant to Jupiter's Clouds
NASA Astrophysics Data System (ADS)
Engel, P. A.; Kalogerakis, K. S.
2005-12-01
Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas.1,2 This discrepancy highlights an important gap in our understanding of ammonia and its spectral signatures in Jupiter's atmosphere. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning").2,3 We are performing laboratory experiments that investigate the above hypotheses. Thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light. These spectroscopic measurements aim to identify the photophysical and chemical processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. Our current results indicate a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hexane, cyclohexane, and benzene. Furthermore, strongest suppression is observed in the case of benzene, followed in magnitude by hexane and cyclohexane. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 is gratefully acknowledged. The participation of Patricia A. Engel was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.; Bhatt, U. S.; Lindsey, S. D.; Plumb, E. W.; Thoman, R. L.
2015-06-01
In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and flood occurrence in rural communities of the Far North.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
The School of Ice (SOI) program from the US Ice Drilling Program Office (IDPO) is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities, but lessons learned transfer easily to any science course based on current research. The institute builds participants' background knowledge about ice core science and climate change while also providing experiences with activities and labs for transferring information to their students. After three years of highly successful workshops, our model has provided valuable lessons for creating powerful experiences for participants. This presentation will identify some of the key ideas including pairing researchers and educators as presenters; creating leadership teams capitalizing on partner strengths; building a science community willing to participate in education and outreach; and building participants' science content background knowledge and confidence while providing them with teaching models for transferring the knowledge to their students. Another important element is to demand teacher buy-in to ensure replication and dissemination. Also, IDPO's drilling technologies make it an ideal platform for intertwining engineering concepts and practices with science research to meet new science standards. In this session, we will share results of the institute evaluations including the impact on the educators as well as longitudinal analysis of data from interviews with past participants concerning continued impacts on their teaching, their courses and their students. Faculty who have attended this institute in the last three years have reported increases in their understanding of the content and how to teach it. They also report increased confidence in their ability to teach ice core science and climate change concepts. Elements of these successful workshops can inform both the development of college professional development and student courses, as well as the creation of successful education and outreach programs for science research teams wanting to increase broader impacts of their research results.
NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2015-01-01
The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.
Pack ice along the Kamchatka Peninsula, Russia as seen from STS-60
1994-02-09
STS060-73-038 (3-11 Feb 1994) --- Pack ice is documented in this photograph along the coast of the Kamchatka Peninsula of Russia in Zaliv Ozernoj. Newly formed ice continually breaks away from the land and takes the form imposed by coastal currents. Detailed photographs of the ice provide information to scientists in both Russia and the united States about the location and fluctuation of ice edges, and how this new sea ice interacts with ocean and littoral currents. This information results in better ice warnings to shipping traffic and provides data points for long-range climate change research for both the Mission-To-Planet Earth and the Russian Priroda ("Nature") monitoring and assessment programs that are respectively coordinated by NASA and the Russian Academy of Sciences. This photography of ice development in the North Pacific, North Atlantic, the Southern Ocean, the Baltic and North Seas, and the Great Lakes is of great interest to the international scientific community. NASA scientists feel high-resolution analog and digital photography from the Space Shuttle and future craft can be a particularly important component in satisfying their data needs on both an operational and a long-term research basis.
Rethink, Reform, Reenter: An Entrepreneurial Approach to Prison Programming.
Keena, Linda; Simmons, Chris
2015-07-01
The purpose of this article was to present a description and first-stage evaluation of the impact of the Ice House Entrepreneurship Program on the learning experience of participating prerelease inmates at a Mississippi maximum-security prison and their perception of the transfer of skills learned in program into securing employment upon reentry. The Ice House Entrepreneurship Program is a 12-week program facilitated by volunteer university professors to inmates in a prerelease unit of a maximum-security prison in Mississippi. Participants' perspectives were examined through content analysis of inmates' answers to program Reflection and Response Assignments and interviews. The analyses were conducted according to the constant comparative method. Findings reveal the emergent of eight life-lessons and suggest that this is a promising approach to prison programming for prerelease inmates. This study discusses three approaches to better prepare inmates for a mindset change. The rethink, reform, and reenter approaches help break the traditional cycle of release, reoffend, and return. © The Author(s) 2014.
A Revised Validation Process for Ice Accretion Codes
NASA Technical Reports Server (NTRS)
Wright, William B.; Porter, Christopher E.
2017-01-01
A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. A quantitative comparison of the results against a database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will extend the comparison of ice shapes between LEWICE 3.5 and experimental data from a previous paper. Comparisons of lift and drag are made between experimentally collected data from experimentally obtained ice shapes and simulated (CFD) data on simulated (LEWICE) ice shapes. Comparisons are also made between experimentally collected and simulated performance data on select experimental ice shapes to ensure the CFD solver, FUN3D, is valid within the flight regime. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.
Detection of cryogenic water ice contaminants and the IR AI&T environment
NASA Astrophysics Data System (ADS)
Lynch, David K.; Russell, Ray W.
2000-12-01
Several remote sensing/infrared space surveillance programs in the midst of assembly, integration and test have recently experienced delays when water vapor was deposited as ice on cold surfaces in a sensor under test or calibration. When these surfaces were at critical locations, the sensitivity or response of the sensor decreased significantly because the ice absorbed the incoming signal. The source of water vapor could be from a chamber leak or outgassing from the sensor system or the vacuum chamber itself. In order to quantify the effects of ice deposits on signals in various spectral bands, published optical constants for amorphous and crystalline water ice have been used to calculate the transmission of water ice films as a function of wavelength from 1 to 20 microns. The results are presented in two ways: spectra of the physical thickness of a layer of ice whose absorption optical depth is unity, and transmission spectra for several characteristic layer thicknesses. These tools can be used in estimating the amount of ice - and by inference water vapor - present in the system. Related calculations can also be used to assess the probability that a given hardware setup or resulting data set is showing signs of degradation of response due to ice absorption, and the implications for those trying to interpret the results.
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J. (Editor); Swift, Calvin T. (Editor)
1987-01-01
This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed.
2015-09-30
as a package called CULPIS [Crocker et al., 2012 ]. The CULPIS-X instruments are designed to acquire: • Distance to surface measured at 400...Control Board (ACCB) request was re-initiated in early 2015 with the USCG ALC by our POC in Kodiak, AK, LT. William Coombs . The CFD and FED data were...X Assembly manual and an Operations Manual for use by the USCG. These documents were requested by our USCG Kodiak contact, LT. William Coombs
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Harding, David J.; Dabney, Philip W.
2016-01-01
The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.
2013-09-30
Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound
Sea Ice Summer Camp: Bringing Together Arctic Sea Ice Modelers and Observers
NASA Astrophysics Data System (ADS)
Perovich, D. K.; Holland, M. M.
2016-12-01
The Arctic sea ice has undergone dramatic change and numerical models project this to continue for the foreseeable future. Understanding the mechanisms behind sea ice loss and its consequences for the larger Arctic and global systems is of critical importance if we are to anticipate and plan for the future. One impediment to progress is a disconnect between the observational and modeling communities. A sea ice summer camp was held in Barrow Alaska from 26 May to 1 June 2016 to overcome this impediment and better integrate the sea ice community. The 25 participants were a mix of modelers and observers from 13 different institutions at career stages from graduate student to senior scientist. The summer camp provided an accelerated program on sea ice observations and models and also fostered future collaborative interdisciplinary activities. Each morning was spent in the classroom with a daily lecture on an aspect of modeling or remote sensing followed by practical exercises. Topics included using models to assess sensitivity, to test hypotheses and to explore sources of uncertainty in future Arctic sea ice loss. The afternoons were spent on the ice making observations. There were four observational activities; albedo observations, ice thickness measurements, ice coring and physical properties, and ice morphology surveys. The last field day consisted of a grand challenge where the group formulated a hypothesis, developed an observational and modeling strategy to test the hypothesis, and then integrated the observations and model results. The impacts of changing sea ice are being felt today in Barrow Alaska. We opened a dialog with Barrow community members to further understand these changes. This included an evening discussion with two Barrow sea ice experts and a community presentation of our work in a public lecture at the Inupiat Heritage Center.
Rising methane emissions from northern wetlands associated with sea ice decline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less
Rising methane emissions from northern wetlands associated with sea ice decline.
Parmentier, Frans-Jan W; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J; Zhuang, Qianlai; Christensen, Torben R; McGuire, A David
2015-09-16
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH 4 yr -1 higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
Rising methane emissions from northern wetlands associated with sea ice decline
Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; ...
2015-09-10
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less
Rising methane emissions from northern wetlands associated with sea ice decline
Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David
2015-01-01
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
50 CFR 300.103 - Procedure for according protection to CCAMLR Ecosystem Monitoring Program Sites.
Code of Federal Regulations, 2013 CFR
2013-10-01
... applicable statutes and implementing regulations governing the activities of persons in Antarctica. (e... designation takes effect on May 1, 1995. Cape Shirreff is a low, ice-free peninsula towards the western end of.... long., between Barclay Bay and Hero Bay. San Telmo Island is the largest of a small group of ice-free...
50 CFR 300.103 - Procedure for according protection to CCAMLR Ecosystem Monitoring Program Sites.
Code of Federal Regulations, 2012 CFR
2012-10-01
... applicable statutes and implementing regulations governing the activities of persons in Antarctica. (e... designation takes effect on May 1, 1995. Cape Shirreff is a low, ice-free peninsula towards the western end of.... long., between Barclay Bay and Hero Bay. San Telmo Island is the largest of a small group of ice-free...
50 CFR 300.103 - Procedure for according protection to CCAMLR Ecosystem Monitoring Program Sites.
Code of Federal Regulations, 2014 CFR
2014-10-01
... applicable statutes and implementing regulations governing the activities of persons in Antarctica. (e... designation takes effect on May 1, 1995. Cape Shirreff is a low, ice-free peninsula towards the western end of.... long., between Barclay Bay and Hero Bay. San Telmo Island is the largest of a small group of ice-free...
50 CFR 300.103 - Procedure for according protection to CCAMLR Ecosystem Monitoring Program Sites.
Code of Federal Regulations, 2011 CFR
2011-10-01
... applicable statutes and implementing regulations governing the activities of persons in Antarctica. (e... designation takes effect on May 1, 1995. Cape Shirreff is a low, ice-free peninsula towards the western end of.... long., between Barclay Bay and Hero Bay. San Telmo Island is the largest of a small group of ice-free...
19 CFR 181.53 - Collection and waiver or reduction of duty under duty-deferral programs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Canada or Mexico. Example. Company N imports tea into the United States and makes a Class 6 warehouse entry. Company N manufactures sweetened ice tea mix by combining the imported tea with refined cane sugar and other flavorings and packaging it in retail size canisters. Upon withdrawal of the ice tea mix...
Killaq Sikumi (The Hole in the Ice).
ERIC Educational Resources Information Center
Pope, Mary L.; And Others
This fourth grade elementary language text is designed for children in bilingual Inupiat-English programs in the Alaskan villages of Ambler, Kobuk, Kiana, Noorvik, and Shungnak. It contains a story about two friends who fall through a hole in the ice and land in a hidden spaceship with a being from outer space aboard. Each page of text is…
First results from a new interdisciplinary robotic vehicle for under-ice research
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Katlein, C.; Schiller, M.
2016-12-01
Research at the ice-water interface below drifting sea-ice is crucial for the investigation of the fluxes of energy, momentum and matter across the atmosphere-ice-ocean boundary. Transmission of solar energy through the ice and snow layers causes warming of the upper ocean and melting of the ice itself. It is also a key factor for in and under-ice primary production, supplying the ice associated food-chain and causing carbon export to deeper water layers and the sea floor. The complex geometry of sea ice does not only cause a large spatial variability in optical properties of the ice cover, but also influences biomass accumulations and especially the hydrodynamic interaction between the ice cover and the uppermost layers of the ocean. Access to the ice underside is however still sparse, as diving operations are risky and logistically challenging. In the last decade, robotic underwater technologies have evolved significantly and enabled the first targeted large-scale observations by remotely operated and autonomous underwater vehicles. A new remotely operated vehicle was commissioned for under ice research at the Alfred Wegener Institute supported by the FRAM infrastructure program of the Helmholtz-Society. Apart from proven under-ice navigation and operation capabilities, the vehicle provides an extended interdisciplinary sensor platform supporting oceanographic, biological, biogeochemical and physical sea-ice research. Here we present the first preliminary data obtained with the new vehicle during the PS101 expedition of the German icebreaker RV Polarstern to the Central Arctic in September and October 2016. Apart from measurements of spectral light transmittance of sea ice during the autumn freeze-up, we show vertical profiles of the bio-optical and oceanographic properties of the upper water column. This data is combined with under-ice topography obtained from upward-looking multibeam sonar, still imagery and HD-video material.
NASA Technical Reports Server (NTRS)
Nguyen, Louis; Minnis, Patrick; Spangenberg, Douglas A.; Nordeen, Michele L.; Palikonda, Rabindra; Khaiyer, Mandana M.; Gultepe, Ismail; Reehorst, Andrew L.
2004-01-01
Satellites are ideal for continuous monitoring of aircraft icing conditions in many situations over extensive areas. The satellite imager data are used to diagnose a number of cloud properties that can be used to develop icing intensity indices. Developing and validating these indices requires comparison with objective "cloud truth" data in addition to conventional pilot reports (PIREPS) of icing conditions. Minnis et al. examined the relationships between PIREPS icing and satellite-derived cloud properties. The Atlantic-THORPEX Regional Campaign (ATReC) and the second Alliance Icing Research Study (AIRS-II) field programs were conducted over the northeastern USA and southeastern Canada during late 2003 and early 2004. The aircraft and surface measurements are concerned primarily with the icing characteristics of clouds and, thus, are ideal for providing some validation information for the satellite remote sensing product. This paper starts the process of comparing cloud properties and icing indices derived from the Geostationary Operational Environmental Satellite (GOES) with the aircraft in situ measurements of several cloud properties during campaigns and some of the The comparisons include cloud phase, particle size, icing intensity, base and top altitudes, temperatures, and liquid water path. The results of this study are crucial for developing a more reliable and objective icing product from satellite data. This icing product, currently being derived from GOES data over the USA, is an important complement to more conventional products based on forecasts, and PIREPS.
Subsonic Aircraft Safety Icing Study
NASA Technical Reports Server (NTRS)
Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.
2008-01-01
NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.
Integrated Data Collection Analysis (IDCA) Program - NaClO 3/Icing Sugar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.
The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of NaClO 3 and icing sugar—NaClO 3/icing sugar mixture. The mixture was found to: be more sensitive than RDX but less sensitive than PETN in impact testing (180-grit sandpaper); be more sensitive than RDX and about the same sensitivity as PETN in BAM fiction testing; be less sensitive than RDX and PETN except for one participant found themore » mixture more sensitive than PETN in ABL ESD testing; and to have one to three exothermic features with the lowest temperature event occurring at ~ 160°C always observed in thermal testing. Variations in testing parameters also affected the sensitivity.« less
Wind tunnel tests of rotor blade sections with replications of ice formations accreted in hover
NASA Technical Reports Server (NTRS)
Lee, J. D.; Berger, J. H.; Mcdonald, T. J.
1986-01-01
Full scale reproductions of ice accretions molded during the documentation of a hover test program were fabricated by means of epoxy castings and used for a wind tunnel test program. Surface static pressure distributions were recorded and used to evaluate lift and pitching moment increments while drag was determined by wake surveys. Through the range of the tests, corresponding to those conditions encountered in hover and in flat pitch, integration of the pressure distributions showed negligible changes in lift and in pitching moment, but the drag was significantly increased.
Promoting Knowledge to Action through the Study of Environmental Arctic Change (SEARCH) Program
NASA Astrophysics Data System (ADS)
Myers, B.; Wiggins, H. V.
2016-12-01
The Study of Environmental Arctic Change (SEARCH) is a multi-institutional collaborative U.S. program that advances scientific knowledge to inform societal responses to Arctic change. Currently, SEARCH focuses on how diminishing Arctic sea ice, thawing permafrost, and shrinking land ice impact both Arctic and global systems. Emphasizing "knowledge to action", SEARCH promotes collaborative research, synthesizes research findings, and broadly communicates the resulting knowledge to Arctic researchers, stakeholders, policy-makers, and the public. This poster presentation will highlight recent program products and findings; best practices and challenges for managing a distributed, interdisciplinary program; and plans for cross-disciplinary working groups focused on Arctic coastal erosion, synthesis of methane budgets, and development of Arctic scenarios. A specific focus will include how members of the broader research community can participate in SEARCH activities. http://www.arcus.org/search
Collection of Arctic Ocean Data from US Navy Submarines on the New SCICEX Program
NASA Astrophysics Data System (ADS)
Smethie, W. M.; Sambrotto, R.; Boyd, T.; Richter-Menge, J.; Corbett, J.
2011-12-01
The SCICEX submarine Arctic science program originated in the 1990s when six dedicated science cruises were conducted in the Arctic Ocean aboard US Navy Sturgeon class submarines. After the cold war era Sturgeon class submarines were retired, several Science Accommodation cruises, for which a few days for scientific measurements were added to planned submarine transits through the Arctic Ocean, were carried out when opportunities arose. Renewed interest in conducting further Science Accommodation cruises on a regular basis to better document and understand how the Arctic Ocean responds to climate change resulted in publication of a scientific plan in 2010 (http://www.arctic.gov/publications/scicex_plan.pdf). In the spring of 2011 testing of data collection and water sampling methods aboard newer Virginia and Seawolf class submarines on transit from a Navy ice camp in the Beaufort Sea, was conducted in order to develop protocols and evaluate techniques. Ice draft measurements were also taken in the vicinity of the ice camp and near the North Pole to evaluate new data collection systems. This evaluation will include a comparison of the ice draft data with a comprehensive set of in situ ice thickness measurements taken near the ice camp. Under-ice submarine-launched eXpendable Condutivity Temperature Depth (XCTD) probes were deployed from the USS Connecticut (SSN-22), a Seawolf class submarine, and the resulting profiles compared to CTD casts from the APLIS ice station and historical profiles. Water samples were collected through the hull for measurements of tritium, helium isotopes, oxygen isotopes, chlorofluorocarbons, sulfur hexafluoride, nutrients, dissolved organic carbon, bacterioplankton, phytoplankton and particulates levels. These samples were returned to Lamont-Doherty Earth Observatory and were in the process of being measured at the time this abstract was written. Measurements completed at this time indicate good samples can be collected for CFC-12, nutrients and biological and inorganic particulates. Measurements of the other samples will be completed and reported on at the meeting. Early results indicate that both of the submarine types evaluated are capable of reliably collecting important information on water temperature, salinity, tracers, chemistry, and biology and ice draft.
Identification of sea ice types in spaceborne synthetic aperture radar data
NASA Technical Reports Server (NTRS)
Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.
1992-01-01
This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.
Mathematical modeling of ice accretion on airfoils
NASA Technical Reports Server (NTRS)
Macarthur, C. D.; Keller, J. L.; Luers, J. K.
1982-01-01
The progress toward development of a computer model suitable for predicting icing behavior on airfoils over a wide range of environmental conditions and airfoils shapes is reported. The LEWICE program was formulated to solve a set of equations which describe the physical processes which occur during accretion of ice on an airfoil, including heat transfer in a time dependent mode, with the restriction that the flow must be describable by a two-dimensional flow code. Input data comprises the cloud liquid water content, mean droplet diameter, ambient air temperature, air velocity, and relative humidity. A potential flowfield around the airfoil is calculated, along with the droplet trajectories within the flowfield, followed by local values of water droplet collection efficiency at the impact points. Both glaze and rime ice conditions are reproduced, and comparisons with test results on icing of circular cylinders showed good agreement with the physical situation.
A global view of atmospheric ice particle complexity
NASA Astrophysics Data System (ADS)
Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin
2016-11-01
Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.
Icing Frequencies Experienced During Climb and Descent by Fighter-Interceptor Aircraft
NASA Technical Reports Server (NTRS)
Perkins, Porter J.
1958-01-01
Data and analyses are presented on the relative frequencies of occurrence and severity of icing cloud layers encountered by jet aircraft in the climb and descent phases of flights to high altitudes. Fighter-interceptor aircraft operated by the Air Defense Command (USAF) at bases in the Duluth and Seattle areas collected the data with icing meters installed for a l-year period. The project was part of an extensive program conducted by the NACA to collect Icing cloud data for evaluating the icing problem relevant to routine operations. The average frequency of occurrence of icing was found to be about 5 percent of the number of climbs and descents during 1 year of operations The icing encounters were predominantly in the low and middle cloud layers, decreasing above 15,000 feet to practically none above 25,000 feet. The greatest thickness of ice that would accumulate on any aircraft component (as indicated by the accretion on a small object) was measured with the icing meters. The ice thicknesses on a small sensing probe averaged less than 1/32 inch and did not exceed 1/2 inch. Such accumulations are relatively small when compared with those that can form during horizontal flight in icing clouds. The light accretions resulted from relatively steep angles of flight through generally thin cloud layers. Because of the limited statistical reliability of the results, an analysis was made using previous statistics on icing clouds below an altitude of 20,000 feet to determine the general icing severity probabilities. The calculations were made using adiabatic lifting as a basis to establish the liquid-water content. Probabilities of over-all ice accretions on a small object as a function of airspeed and rate of climb were computed from the derived water contents. These results were then combined with the probability of occurrence of icing in order to give the icing severity that can be expected for routine aircraft operations.
NASA Astrophysics Data System (ADS)
Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.
2009-08-01
Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.
NASA Astrophysics Data System (ADS)
Hu, Xianmin; Sun, Jingfan; Chan, Ting On; Myers, Paul G.
2018-04-01
Sea ice thickness evolution within the Canadian Arctic Archipelago (CAA) is of great interest to science, as well as local communities and their economy. In this study, based on the NEMO numerical framework including the LIM2 sea ice module, simulations at both 1/4 and 1/12° horizontal resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice (˜ 4 m and thicker) in the northern CAA, thick sea ice (2.5 to 3 m) in the west-central Parry Channel and M'Clintock Channel, and thin ( < 2 m) ice (in winter months) on the east side of CAA (e.g., eastern Parry Channel, Baffin Island coast) and in the channels in southern areas. Even though the configurations still have resolution limitations in resolving the exact observation sites, simulated ice thickness compares reasonably (seasonal cycle and amplitudes) with weekly Environment and Climate Change Canada (ECCC) New Ice Thickness Program data at first-year landfast ice sites except at the northern sites with high concentration of old ice. At 1/4 to 1/12° scale, model resolution does not play a significant role in the sea ice simulation except to improve local dynamics because of better coastline representation. Sea ice growth is decomposed into thermodynamic and dynamic (including all non-thermodynamic processes in the model) contributions to study the ice thickness evolution. Relatively smaller thermodynamic contribution to ice growth between December and the following April is found in the thick and very thick ice regions, with larger contributions in the thin ice-covered region. No significant trend in winter maximum ice volume is found in the northern CAA and Baffin Bay while a decline (r2 ≈ 0.6, p < 0.01) is simulated in Parry Channel region. The two main contributors (thermodynamic growth and lateral transport) have high interannual variabilities which largely balance each other, so that maximum ice volume can vary interannually by ±12 % in the northern CAA, ±15 % in Parry Channel, and ±9 % in Baffin Bay. Further quantitative evaluation is required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers Test...
Comparison of DMSP SSM/I and Landsat 7 ETM+ Sea Ice Concentrations During Summer Melt
NASA Technical Reports Server (NTRS)
Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
As part of NASA's EOS Aqua sea ice validation program for the Advanced Microwave Scanning Radiometer (AMSR-E), Landsat 7 Enhanced Thematic Mapper (ETM+) images were acquired to develop a sea ice concentration data set with which to validate AMSR-E sea ice concentration retrievals. The standard AMSR-E Arctic sea ice concentration product will be obtained with the enhanced NASA Team (NT2) algorithm. The goal of this study is to assess the accuracy to which the NT2 algorithm, using DMSP Special Sensor Microwave Imager radiances, retrieves sea ice concentrations under summer melt conditions. Melt ponds are currently the largest source of error in the determination of Arctic sea ice concentrations with satellite passive microwave sensors. To accomplish this goal, Landsat 7 ETM+ images of Baffin Bay were acquired under clear sky conditions on the 26th and 27th of June 2000 and used to generate high-resolution sea ice concentration maps with which to compare the NT2 retrievals. Based on a linear regression analysis of 116 25-km samples, we find that overall the NT2 retrievals agree well with the Landsat concentrations. The regression analysis yields a correlation coefficient of 0.98. In areas of high melt ponding, the NT2 retrievals underestimate the sea ice concentrations by about 12% compared to the Landsat values.
Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment
NASA Technical Reports Server (NTRS)
Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.
2000-01-01
In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.
Laser Altimetry Sampling Strategies over Sea Ice
NASA Technical Reports Server (NTRS)
Farrell, Sinead L.; Markus, Thorsten; Kwok, Ron; Connor, Laurence
2011-01-01
With the conclusion of the science phase of the Ice, Cloud and land Elevation Satellite (ICESat) mission in late 2009, and the planned launch of ICESat-2 in late 2015, NASA has recently established the IceBridge program to provide continuity between missions. A major goal of IceBridge is to obtain a sea-ice thickness time series via airborne surveys over the Arctic and Southern Oceans. Typically two laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS), are utilized during IceBridge flights. Using laser altimetry simulations of conventional analogue systems such as ICESat, LVIS and ATM, with the multi-beam system proposed for ICESat-2, we investigate differences in measurements gathered at varying spatial resolutions and the impact on sea-ice freeboard. We assess the ability of each system to reproduce the elevation distributions of two seaice models and discuss potential biases in lead detection and sea-surface elevation, arising from variable footprint size and spacing. The conventional systems accurately reproduce mean freeboard over 25km length scales, while ICESat-2 offers considerable improvements over its predecessor ICESat. In particular, its dense along-track sampling of the surface will allow flexibility in the algorithmic approaches taken to optimize the signal-to-noise ratio for accurate and precise freeboard retrieval.
NASA Technical Reports Server (NTRS)
Perkins, Porter J.; Lewis, William; Mulholland, Donald R.
1957-01-01
A statistical study is made of icing data reported from weather reconnaissance aircraft flown by Air Weather Service (USAF). The weather missions studied were flown at fixed flight levels of 500 millibars (18,000 ft) and 700 millibars (10,000 ft) over wide areas of the Pacific, Atlantic, and Arctic Oceans. This report is presented as part of a program conducted by the NACA to obtain extensive icing statistics relevant to aircraft design and operation. The thousands of in-flight observations recorded over a 2- to 4-year period provide reliable statistics on icing encounters for the specific areas, altitudes, and seasons included in the data. The relative frequencies of icing occurrence are presented, together with the estimated icing probabilities and the relation of these probabilities to the frequencies of flight in clouds and cloud temperatures. The results show that aircraft operators can expect icing probabilities to vary widely throughout the year from near zero in the cold Arctic areas in winter up to 7 percent in areas where greater cloudiness and warmer temperatures prevail. The data also reveal a general tendency of colder cloud temperatures to reduce the probability of icing in equally cloudy conditions.
Validation Process for LEWICE by Use of a Navier-Stokes Solver
NASA Technical Reports Server (NTRS)
Wright, William B.; Porter, Christopher E.
2017-01-01
A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from the latest LEWICE release, version 3.5. This program differs from previous releases in its ability to model mixed phase and ice crystal conditions such as those encountered inside an engine. It also has expanded capability to use structured grids and a new capability to use results from unstructured grid flow solvers. A quantitative comparison of the results against a database of ice shapes that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. This paper will extend the comparison of ice shapes between LEWICE 3.5 and experimental data from a previous paper. Comparisons of lift and drag are made between experimentally collected data from experimentally obtained ice shapes and simulated (CFD) data on simulated (LEWICE) ice shapes. Comparisons are also made between experimentally collected and simulated performance data on select experimental ice shapes to ensure the CFD solver, FUN3D, is valid within the flight regime. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.
NASA Astrophysics Data System (ADS)
Wasilewski, P. J.
2007-12-01
The Global Snowflake Network (GSN) is a program that is simultaneously a science program and an education program. When the validation of the procedures (collection and identification of the type of snowflakes and the associated satellite image archive, as a serial record of a storm), is achieved, then the program becomes a scientific resource. This latter is the ultimate goal. That's why NASA has launched the Global Snowflake Network, a massive project that aims to involve the general public to "collect and classify" falling snowflakes. The data will be compiled into a massive database, along with satellite images, that will help climatologists and others who study climate-related phenomena gain a better understanding of wintry meteorology as they track various snowstorms around the globe. A great deal of information about the atmosphere dynamics and cloud microphysics can be derived from the serial collection and identification of the types of snow crystals and the degree of riming of the snow crystals during the progress of a snow storm. Forecasting winter weather depends in part on cloud physics, which deals with precipitation type, and if it happens to be snow- the crystal type, size, and density of the snowflake population. The History of Winter website will host the evolving snow and ice features for the IPY. Type "Global Snowflake Network" into the search engine (such as GOOGLE) and you will receive a demonstration of the operation of the preliminary GSN by the Indigenous community. The expeditions FINNMARK2007 and the POLAR Husky GoNorth 2007 expedition took the complement of Thermochrons with multimedia instructions for the Global Snowflake Network. This approach demonstrates the continuous Thermochron monitoring of expedition temperature and provides otherwise inaccessible snowflake information to NASA and others interested in the Polar region snow. In addition, reindeer herder and Ph.D. student, Inger Marie G. Eira, will incorporate the HOW, GSN thermochrons, snow pit observations, and snowflake identification protocols into her Ph.D. dissertation on snow changes, and reindeer pastures in Northern Norway. SCIENTISTS DISCOVER - ARTISTS INTERPRET - TOGETHER WE CAN OPEN THE EYES OF THE WORLD. This theme of the "Polar Artists "can be reached from the web search. Water ice is one of the most widespread, intriguing, and familiar compounds on the planet, in the solar system, and beyond. On the planet, it falls as snow, forms lacy deposits on winter windows, creates skating surfaces on lakes, gracefully drapes rock cliffs, packs thickly on the polar oceans, and lays even thicker on the ice caps blanketing Greenland and Antarctica. Of the 11 forms of water ice so far identified, only the form found on Earth can provide a "Frizion". Communicating this is part of Polar Artists outreach. We are working with Terje Isungset, from Norway, who creates musical instruments from ice. We will demonstrate how ART and Ice and Music and Ice are presented. In addition to video presentations appearing on YOUTUBE, we are preparing additional live performances of this work.
NASA Astrophysics Data System (ADS)
Kim, J.; Yu, J.; Wang, L.; Liu, H.
2017-12-01
Changes in Antarctic ice sheet are caused by various reasons such as changes in Holocene climate, precipitation, and ocean temperature. Such issues of changes in ice sheet has been mainly focused on the Antarctic peninsula, and it is known that ice retreat of the area is caused by changes in atmospheric and ocean temperatures. For the case of West Antarctica, ice front change research is relatively rarely conducted except the Pine island glacier area. This study has monitored ice front changes of West Antarctica and compared the patterns with the changes in brightness temperature based on remote sensing techniques. We used 2000 Radarsat-1 and 2008 Rasarsat-2 SAR data to delineate coastlines of whole West Antarctica based on the locally thresholding adaptive algorithm. The delineated coast lines are analyzed to figure out ice front change patterns between the duration. The variations in brightness temperature for the same duration are calculated based on Defense Meteorological Satellite Program (DMSP)'s Special Sensor Microwave/Images-Special Sensor Microwave Imager/Sounder (SSM/I-SSMIS) passive microwave data. The results show ice front of West Antarctica shows advancing trend except the pine island glacier area. The brightness temperature had decreasing trend during the study period. It infers that changes in ice front and brightness temperature of West Antarctica have considerable relationships. It is expected that a long term monitoring of the relationship would contribute understanding ice dynamics of West Antarctica significantly.
Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.
NASA Astrophysics Data System (ADS)
Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.
2017-12-01
Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.
Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model
NASA Astrophysics Data System (ADS)
Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.
2015-12-01
We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.
Allan Hills Pleistocene Ice Project (PIP)
NASA Astrophysics Data System (ADS)
Kurbatov, A.; Brook, E.; Campbell, S. W.; Conway, H.; Dunbar, N. W.; Higgins, J. A.; Iverson, N. A.; Kehrl, L. M.; McIntosh, W. C.; Spaulding, N. E.; Yan, Y.; Mayewski, P. A.
2016-12-01
A major international effort to identify at least 1.5 Ma old ice for paleoclimate reconstructions has successfully resulted in the selection of several potential drill sites in East Antarctica. At this point it is indisputable that the Antarctic ice sheet captures a continuous envinronmental record of the Earth that spans the Mid Pleistocene Transition (MPT). In addition to traditional ice coring approaches, the oldest ice can also be recovered in Antarctic Blue Ice Areas (BIA). We have already successfully demonstrated that the Allan Hills (AH) BIA captures a regional climate signal and robust record of 1Ma atmosphere that can be studied with a relatively uncomplicated logistical imprint and essentially unlimited sampling volume. The attractiveness of unlimited sampling of known age ice is the basis for the "ice park" concept proposed earlier by our research team. The idea is that, once the age of ice exposed along the flow line at the surface of BIA is mapped, it could be sampled for numerous research projects as needed. Here we propose an intermediate ( 1,150 m deep) ice core drill site, located only 240 km away from McMurdo base that will help to develop a, continuous, high quality regional paleoclimate record that is at least 1Ma old. We will introduce and discuss the glaciological settings, paleoclimate signals and possible limitations and advantages of the 1 Ma AH BIA regional paleoclimate record. The research was funded by NSF Division of Polar Programs.
Charging of interplanetary grains
NASA Technical Reports Server (NTRS)
Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.
1995-01-01
The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.
Progress toward the development of an aircraft icing analysis capability
NASA Technical Reports Server (NTRS)
Shaw, R. J.
1984-01-01
An overview of the NASA efforts to develop an aircraft icing analysis capability is presented. Discussions are included of the overall and long term objectives of the program as well as current capabilities and limitations of the various computer codes being developed. Descriptions are given of codes being developed to analyze two and three dimensional trajectories of water droplets, airfoil ice accretion, aerodynamic performance degradation of components and complete aircraft configurations, electrothermal deicer, and fluid freezing point depressant deicer. The need for bench mark and verification data to support the code development is also discussed.
1986-04-01
forward modeling, with the pa- be telemetered via the ARGOS system for real - rameter changes needed to bring the predictions time evaluation, and the...integrated en ’i- rtinnental measurement svs fern. quisition system to the Winter MIZEX in I-ram To control and direct the experiment, real - time Strait...to measure, under- Electromagnetic sensing via aircraft and satellites stand, and model: will be employed in real time to identify eddy " Changes in
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.
2017-12-01
Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
NASA Astrophysics Data System (ADS)
Mangan, T. P.; Frankland, V. L.; Murray, B. J.; Plane, J. M. C.
2017-08-01
The uptake and potential reactivity of metal atoms on water ice can be an important process in planetary atmospheres and on icy bodies in the interplanetary and interstellar medium. For instance, metal atom uptake affects the gas-phase chemistry of the Earth's mesosphere, and has been proposed to influence the agglomeration of matter into planets in protoplanetary disks. In this study the fate of Mg and K atoms incorporated into water-ice films, prepared under ultra-high vacuum conditions at temperatures of 110-140 K, was investigated. Temperature-programmed desorption experiments reveal that Mg- and K-containing species do not co-desorb when the ice sublimates, demonstrating that uptake on ice particles causes irreversible removal of the metals from the gas phase. This implies that uptake on ice particles in terrestrial polar mesospheric clouds accelerates the formation of large meteoric smoke particles (≥1 nm radius above 80 km) following sublimation of the ice. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ ions shows that whereas K reacts on (or within) the ice surface to form KOH, adsorbed Mg atoms are chemically inert. These experimental results are consistent with electronic structure calculations of the metals bound to an ice surface, where theoretical adsorption energies on ice are calculated to be -68 kJ mol-1 for K, -91 kJ mol-1 for Mg, and -306 kJ mol-1 for Fe. K can also insert into a surface H2O to produce KOH and a dangling H atom, in a reaction that is slightly exothermic.
Consolidated B-24M Liberator Equipped for Icing Research
1946-07-21
A Consolidated B-25M Liberator modified for icing research by the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. NACA Lewis performed a limited amount of icing research during World War II, but the program expanded significantly in 1946. The accumulation of ice on aircraft was a continual problem. The ice formations could result in extra weight, aerodynamic penalties, and blockage engine inlets. Although the Lewis icing researchers utilized numerous aircraft, the program’s two workhorses were the B-24M Liberator, seen here, and a North American XB-25E Mitchell. The Consolidated Aircraft Company created the four-engine bomber in the early 1940s. During World War II the bomber was employed on long-duration bombing missions in both Europe and the Pacific. Production of the B-24M version did not begin until October 1944 with the end of the war in Europe approaching. This resulted in scores of unneeded bombers when hostilities ended. This B-24M arrived at the NACA Lewis laboratory in November 1945. At Lewis the B-24M was repeatedly modified to study ice accretion on aircraft components. Researchers analyzed different anti-icing and deicing strategies and gathered statistical ice measurement data. The B-24M was also used to study ice buildup on jet engines. A General Electric I-16 engine was installed in the aircraft’s waist compartment with an air scoop on the top of the aircraft to duct air to the engine. Water spray nozzles inside the aircraft were employed to simulate icing conditions at the turbojet’s inlet.
A new approach to driving and controlling precision lasers for cold-atom science
NASA Astrophysics Data System (ADS)
Luey, Ben; Shugrue, Jeremy; Anderson, Mike
2014-05-01
Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist
Lewis Rodert Receiving a Collier Trophy from President Truman
1947-12-21
Lewis Rodert, then of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory, receives the Collier Trophy from President Harry Truman for his work in the design and development of an ice prevention system for aircraft. The accumulation of ice on an aircraft had been a critical issue for years. Rodert developed a method of transferring engine heat to the wings and other vulnerable components to prevent ice buildup. Rodert began his icing investigations at Langley Memorial Aeronautical Laboratory in 1936. The NACA ordered a Lockheed 12A aircraft to be built using Rodert’s deicing system. The aircraft successfully flew through icing conditions during the following winter. Soon thereafter the military incorporated the system into a Consolidated B-24D Liberator and several other military aircraft, including a North American XB-25F. Rodert and the NACA icing program transferred to the Lewis lab in Cleveland in 1946. In Cleveland, the focus turned to the study of cloud composition and the causes of icing. Rodert’s role at Lewis diminished over the ensuing years. Rodert was honored in 1947 for his Collier Trophy at ceremonies at Langley, Ames, and then finally Lewis.
Wesley-Smith, James; Walters, Christina; Pammenter, N. W.
2015-01-01
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. PMID:25808653
Generic icing effects on forward flight performance of a model helicopter rotor
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Korkan, Kenneth D.
1989-01-01
An experimental program using a commercially available model helicopter has been conducted in the TAMU 7 ft x 10 ft Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice adhesion. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. The experimental values have shown that, in general, the presence of generic ice introduces decrements in performance caused by leading edge separation regions and increased surface roughness. In addition to the expected changes in aerodynamic forces caused by variations in test Reynolds number, forward flight data seemed to be influenced by changes in freestream and rotational velocity. The dependence of the data upon such velocity variations was apparently enhanced by increases in blade chord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A
With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less
Airborne profiling of ice thickness using a short pulse radar
NASA Technical Reports Server (NTRS)
Vickers, R. S.; Heighway, J. E.; Gedney, R. T.
1973-01-01
This paper describes helicopter-borne measurements of ice thickness in Lake Superior, Lake St. Clair, and the St. Clair river as part of NASA's program to develop an ice information system. The profiler described is a high resolution, nonimaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.
The Development and Assessment of Particle Physics Summer Program for High School Students
NASA Astrophysics Data System (ADS)
Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.
2017-01-01
A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... With Changes; State Criminal Alien Assistance Program ACTION: 30-day notice of information collection... collection expire. (2) The title of the form/collection: State Criminal Alien Assistance Program. (3) The... Criminal Alien Assistance Program (SCAAP) with the Bureau of Immigration and Customs Enforcement (ICE), and...
Medical advocacy on behalf of detained immigrants.
Venters, Homer D; Foote, Mary; Keller, Allen S
2011-06-01
Detention of immigrants by Immigration and Customs Enforcement (ICE) is a rapidly growing form of incarceration in the U.S. with almost 400,000 people detained in 2008 (Schriro in Immigration and Customs Enforcement, 2009, http://www.ice.gov/doclib/091005_ice_detention_report-final.pdf ). ICE detainees are predominantly from Mexico and Latin America and only a small minority of detainees are asylum seekers. Immigrant detainees lack a legal guarantee of medical care (unlike criminal arrestees and prisoners) and face challenges in receiving medical care, particularly those with chronic medical conditions (Venters and Keller in J Health Care Poor Underserved 20:951-957, 2009). Although we and others have long been involved in advocating for detained asylum seekers, few resources are dedicated to medical advocacy for the broader population of ICE detainees. At the NYU Center for Health and Human Rights (CHHR), a program of medical advocacy was initiated in 2007 on behalf of ICE detainees focused on improvement of care in detention and medical parole. Our preliminary efforts reveal a pressing need for more involvement by physicians and other health advocates in this area.
NASA Technical Reports Server (NTRS)
Bindschadler, Robert A. (Editor)
1990-01-01
The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.
ICE: An Automated Tool for Teaching Advanced C Programming
ERIC Educational Resources Information Center
Gonzalez, Ruben
2017-01-01
There are many difficulties with learning and teaching programming that can be alleviated with the use of software tools. Most of these tools have focused on the teaching of introductory programming concepts where commonly code fragments or small user programs are run in a sandbox or virtual machine, often in the cloud. These do not permit user…
Recent Glaciers on Mars: Description and Solar System Perspective
NASA Astrophysics Data System (ADS)
Kargel, J. S.
2001-11-01
Active or recently active ice deposits occur on Mars at middle and high latitudes in fretted terrain, around massifs in highlands east of Hellas and in southern Argyre, on crater walls in the highlands, and in the south polar cap. Most mid-latitude icy flows are debris covered, apparently stagnant, and eroded by partial sublimation. Others are scarred by fresh crevasses and gullies, thus suggesting recent deformation and surface melting. Erosional features include a variety of small-scale relief elements due mainly to sublimation, but sublimation has not obliterated evidence of flow. Similar to terrestrial glaciers in many respects, there are also notable differences, especially in the nature of accumulation. Deformation of the south polar cap is indicated by folding, boudinage, strike-slip or normal faulting, forebulge tectonics near scarps, and thrust faulting. The north polar cap locally also exhibits flow indicators. The south cap's glacial features suggest interbedding of two or more types of ice of differing volatility and rheology, plus a locally deforming surficial dry-ice cap overlying the other materials. Major ice types may include two (or more) of the following, in order of highest to lowest mechanical strength: CO2 clathrate hydrate, water ice, water ice containing traces of liquid-soluble salts, water ice containing traces of solid-soluble acids, and CO2 ice; dust is another variable. Within our Solar System, the closest geomorphic analog to icy Martian flows are Earth's alpine glaciers, rock glaciers, and continental ice sheets, though key differences are apparent. If made dominantly of water ice, important and recent climatic shifts seem to be implicated. Ice-flow landforms also occur on some outer planet satellites; among them are Io, Europa, Enceladus, Ariel, and Triton. Volatile flows on these bodies may involve diverse materials, such as sulfur, water ice, hydrated salts, ammonia-water ices, and nitrogen ice. Most of these would not be suitable materials on Mars. This work was funded by grants from the NASA Mars Data Analysis Program.
The Effects of Sulfuric Acid on Mechanical Properties of Polycrystalline Ice
NASA Astrophysics Data System (ADS)
DeAngelis, M. K.; Lee, M. S.; Huang, K.
2017-12-01
The rates of flow for ice streams and glaciers are an important contributor to models of future sea level rise. Soluble impurities, such as sulfuric acid from acid rain, have been identified in ice cores, making it of utmost importance to understand the complete effects of such impurities on the mechanical properties of ice. While previous studies have provided insight into how sulfuric acid affects the viscosity in glaciers, the effects of sulfuric acid on elastic stiffness and friction has received less attention. In this study, we measured and compared the Young's Modulus and steady-state friction of 10 ppm sulfuric acid doped water ice samples to that of pure water ice samples. Microstructure characterization of the sample indicated that, even at such low concentration, the acid was located in small melt pockets at grain triple junctions. With an ultrasonic velocity testing system at -22 °C, primary waves and secondary waves were sent through each sample and wave velocities were recorded. These values and the density of the samples were used to calculate Young's Modulus. The sulfuric acid doped ice has an elastic stiffness that is less than that of pure ice. Reduced modulus could influence calving rates and other ice shelf processes. Using a custom cryo-biaxial apparatus, the friction of doped ice on rock was directly measured at several programmed velocities. The double direct shear configuration was employed, with a normal stress of 100 kPa and a temperature of -5 °C. Compared to previous studies on pure ice, the sulfuric acid doped ice sample experienced similar steady state friction. However, preliminary results indicate that doped samples exhibited velocity weakening behavior (i.e. as velocity increased, friction decreased) and stick slip events, while pure ice maintained a relatively neutral velocity dependence at this temperature. Field observations have reported stick slip motion at Whillans Ice Stream in Antarctica, but an explanation is unclear. This study suggests an impurity, sulfuric acid, is one possible cause for such velocity weakening behavior.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
NASA Astrophysics Data System (ADS)
Frey, M. M.; France, J.; von Glasow, R.; Thomas, M.
2015-12-01
The ocean-ice-atmosphere system is very complex, and there are numerous challenges with conducting fieldwork on sea-ice including costs, safety, experimental controls and access. By creating a new coupled Ocean-Sea-Ice-(Snow)-Atmosphere facility at the University of East Anglia, UK, we are able to perform controlled investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice, and to quantify the bi-directional flux of gases in established, freezing and melting sea-ice. The environmental chamber is capable of controlled programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The sea-ice tank within the chamber measures 2.4 m x 1.4 m x 1 m water depth, with an identically sized Teflon film atmosphere on top of the tank. The tank and atmosphere forms a coupled, isolated mesocosm. Above the atmosphere is a light bank with dimmable solar simulation LEDs, and UVA and UVB broadband fluorescent battens, providing light for a range of experiments such as under ice biogeochemistry and photochemistry. Ice growth in the tank will be ideally suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Under water and above ice cameras are installed to observe the physical development of the sea-ice. The ASIBIA facility is also well equipped for gas exchange and diffusion studies through sea-ice with a suite of climate relevant gas measuring instruments (CH4, CO2, O3, NOx, NOy permanently installed, further instruments available) able to measure either directly in the atmospheric component, or via a membrane for water side dissolved gases. Here, we present the first results from the ASIBIA sea-ice chamber, focussing on the physical development of first-year sea-ice and show the future plans for the facility over the coming years. The ASIBIA sea-ice facility is a key component of a 5-year ERC funded program with a long-term goal to develop parameterisations for local to global scale models based on experimental results.
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.
2008-12-01
As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.
NASA Astrophysics Data System (ADS)
Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.
2015-12-01
The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that feeds Asia's largest rivers and helps sustain 1.5 billion people. Information on the accelerating warming of these glaciers and the impact on future water resources in this important region is urgently needed to help guide mitigation and adaptation policies.
Pacific Walrus and climate change: observations and predictions
MacCracken, James G
2012-01-01
The extent and duration of sea-ice habitats used by Pacific walrus (Odobenus rosmarus divergens) are diminishing resulting in altered walrus behavior, mortality, and distribution. I document changes that have occurred over the past several decades and make predictions to the end of the 21st century. Climate models project that sea ice will monotonically decline resulting in more ice-free summers of longer duration. Several stressors that may impact walruses are directly influenced by sea ice. How these stressors materialize were modeled as most likely-case, worst-case, and best-case scenarios for the mid- and late-21st century, resulting in four comprehensive working hypotheses that can help identify and prioritize management and research projects, identify comprehensive mitigation actions, and guide monitoring programs to track future developments and adjust programs as needed. In the short term, the most plausible hypotheses predict a continuing northward shift in walrus distribution, increasing use of coastal haulouts in summer and fall, and a population reduction set by the carrying capacity of the near shore environment and subsistence hunting. Alternatively, under worst-case conditions, the population will decline to a level where the probability of extinction is high. In the long term, walrus may seasonally abandon the Bering and Chukchi Seas for sea-ice refugia to the northwest and northeast, ocean warming and pH decline alter walrus food resources, and subsistence hunting exacerbates a large population decline. However, conditions that reverse current trends in sea ice loss cannot be ruled out. Which hypothesis comes to fruition depends on how the stressors develop and the success of mitigation measures. Best-case scenarios indicate that successful mitigation of unsustainable harvests and terrestrial haulout-related mortalities can be effective. Management and research should focus on monitoring, elucidating effects, and mitigation, while ultimately, reductions in greenhouse gas emissions are needed to reduce sea-ice habitat losses. PMID:22957206
NASA Astrophysics Data System (ADS)
Morlighem, M.; Wood, M.; Seroussi, H. L.; Bondzio, J. H.; Rignot, E. J.
2017-12-01
Glacier-front dynamics is an important control on Greenland's ice mass balance. Warm and salty Atlantic water, which is typically found at a depth below 200-300 m, has the potential to trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. It remains unclear, however, which glaciers are currently stable but may retreat in the future, and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 72.5° to 76°N) to ocean forcing using the Ice Sheet System Model (ISSM), and its new ice front migration capability. We rely on the ice melt parameterization from Rignot et al. 2016, and use ocean temperature and salinity from high-resolution ECCO2 simulations on the continental shelf to constrain the thermal forcing. The ice flow model includes a calving law based on a Von Mises criterion. We investigate the sensitivity of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model confirms that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (#NNX15AD55G), and the National Science Foundation's ARCSS program (#1504230).
NASA Technical Reports Server (NTRS)
Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.
1989-01-01
A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control derivatives were adequately determined by the flight test procedure and the MSR analysis method discussed herein.
NASA Astrophysics Data System (ADS)
Casasanto, Valerie A.; Campbell, Brian; Manrique, Adriana; Ramsayer, Kate; Markus, Thorsten; Neumann, Thomas
2018-07-01
NASA's Ice, Cloud, and land Elevation Satellite (ICESat-2), to be launched in 2018, will measure the height of Earth from space using lasers, collecting the most precise and detailed account yet of our planet's elevation. The mission will allow scientists to investigate how global warming is changing the planet's icy polar regions and to take stock of Earth's vegetation. ICESat-2's emphasis on polar ice, as well as its unique measurement approach, will provide an intriguing and accessible focus for the mission's education and outreach programs. Sea ice and land ice are areas that have experienced significant change in recent years. It is key to communicate why we are measuring these areas and their importance. ICESat-2 science data will provide much-needed answers to climate change questions such as, "Is the ice really melting in the polar regions?" and "What does studying Earth's frozen regions tell us about our changing climate?" In this paper, lessons-learned and novel techniques for engaging and educating all audiences in the mission will be discussed, such as including results of a unique collaboration with art design school the Savannah College of Art Design (SCAD) to create fun and exciting products such as animated characters and interactive stories. Future collaborations with wildlife researchers, a new citizen science program in collaboration with GLOBE, and evidence from other STEAM (Science, Technology, Engineering, Arts, Math) education approaches will also be detailed in this paper.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.
2017-12-01
The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.
NASA Astrophysics Data System (ADS)
Frearson, N.
2012-12-01
Columbia University in New York is developing a geophysical instrumentation package that is capable of monitoring dynamic en-glacial and sub-glacial processes. The instruments include a Riegl Scanning Laser for precise measurements of the ice surface elevation, Stereo photogrammetry from a high sensitivity (~20mK) Infra-Red camera and a high resolution Visible Imaging camera (2456 x 2058 pixels) to document fine scale ice temperature changes and surface features, near surface ice penetrating radar and an ice depth measuring radar that can be used to study interior and basal processes of ice shelves, glaciers, ice streams and ice-sheets. All instrument data sets will be time-tagged and geo-referenced using precision GPS satellite data. Aircraft orientation will be corrected using inertial measurement technology integrated into the pod. This instrumentation will be flown across some of the planets largest outlet glaciers in Antarctica and Greenland. However, a key aspect of the design is that at the conclusion of the program, the Pod, Deployment Arm, Data Acquisition and Power and Environmental Management system will become available for use by the science community at large to install their own instruments onto. It will also be possible to mount the Icepod onto other airframes. The sensor system will become part of a research facility operated for the science community, and data will be maintained at and made available through a Polar Data Center.
The effect of sequence of skating-specific training on skating performance.
Farlinger, Chris Mj; Fowles, Jonathon R
2008-06-01
To determine the effectiveness of a progressively "skating specific" periodized off-season training program on skating performance in competitive hockey players. Twenty (M = 18; F = 2) highly skilled hockey players (age 15.9 +/- 1.5 yr) completed 16 wk of standardized resistance and stability training supplemented with either off-ice simulated skating using the SkateSIM (SIM) or plyometric training (PLY) in a crossover design. Group 1 (PLY-SIM; N = 11) completed 8 wk of PLY followed by 8 wk of SIM. Group 2 (SIM-PLY; N = 9) completed 8 wk of SIM followed by 8 wk of PLY. Subjects completed on- and off-ice testing PRE, MID, and POST training. Significant improvements in on-ice 35-m skating sprint (1.0%; P = .009) with significant improvements of 5% to 12% in various off-ice testing measures were observed PRE-MID in both groups. While few off-ice tests improved MID-POST, on-ice 35-m skating sprint times improved MID-POST by 2.3% (P = .000) with greater improvement in PLYSIM (3.5%) versus SIM-PLY (0.8%; P < .002). Off-ice 30-m sprint (r = 0.56; P = .010) and Edgren side shuffle (r = -0.46; P < .040) were the only off-ice tests that significantly correlated to improvements in on-ice skating sprint performance. The initial gains PRE-MID and then the lack of improvement in many off-ice tests from the MID-POST supports the principle of diminishing returns in response to standardized resistance training. The improvement in on-ice skating sprint performance when supplemental training progressed in specificity supports the principle of specificity and promotes transfer to a complex sporting movement such as skating.
Infrared Spectra and Thermodynamic Properties of Co2/Methanol Ices
NASA Astrophysics Data System (ADS)
Maté, Belén; Gálvez, Óscar; Herrero, Víctor J.; Escribano, Rafael
2009-01-01
Ices of mixtures of carbon dioxide and methanol have been studied in a range of temperatures relevant for star-forming regions, comets, polar caps of planets and satellites, and other solar system bodies. We have performed temperature-programmed desorption measurements and recorded IR spectra of various types of samples. The presence of two slightly different structures of CO2 is manifest. A distorted CO2 structure is characterized by bandshifts between 5 cm-1 (ν3) and 10 cm-1 (ν2) with respect to normal CO2. If the samples are heated above 130 K, the distorted CO2 sublimates and only the normal structure remains. The latter can stay trapped until the sublimation of crystalline methanol (150 K). The desorption energy (E d ~ 20 kJ mol-1) of CO2 from methanol ice, and the specific adsorption surface area (6 m2 g-1) of amorphous CH3OH ice, have been determined. CO2 does not penetrate into crystalline ice. Whereas the desorption energy is similar to that of CO2/H2O samples, the specific surface of methanol is much smaller than that of amorphous solid water (ASW). The interaction of CO2 molecules with water and methanol is similar but ices of CH3OH are much less porous than ASW. The inclusion of CO2 into previously formed ices containing these two species would take place preferentially into ASW. However, in processes of simultaneous deposition, methanol ice can admit a larger amount of CO2 than water ice. CO2/CH3OH ices formed by simultaneous deposition admit two orders of magnitude more CO2 than sequentially deposited ices. These findings can have direct relevance to the interpretation of observations from protostellar environments (e.g., RAFGL7009S) and comet nuclei.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
Melody, Kevin; Senevirathne, Reshani; Janes, Marlene; Jaykus, Lee Ann; Supan, John
2008-07-01
The focus of this research was to investigate the efficacy of icing as a postharvest treatment for reduction of the levels of Vibrio vulnificus and Vibrio parahaemolyticus in commercial quantities of shellstock oysters. The experiments were conducted in June and August of 2006 and consisted of the following treatments: (i) on-board icing immediately after harvest; (ii) dockside icing approximately 1 to 2 h prior to shipment; and (iii) no icing (control). Changes in the levels of pathogenic Vibrio spp. during wholesale and retail handling for 2 weeks postharvest were also monitored. On-board icing achieved temperature reductions in all sacks in accordance with the National Shellfish Sanitation Program standard, but dockside icing did not meet this standard. Based on one-way analysis of variance, the only statistically significant relationship between Vibrio levels and treatment occurred for samples harvested in August; in this case, the levels of V. vulnificus in the noniced oysters were significantly higher (P < 0.05) than were the levels in the samples iced on-board. When analyzing counts over the 14-day storage period, using factorial analysis, there were statistically significant differences in V. vulnificus and V. parahaemolyticus levels by sample date and/or treatment (P < 0.05), but these relationships were not consistent. Treated (iced) oysters had significantly higher gaping (approximately 20%) after 1 week in cold storage than did noniced oysters (approximately 10%) and gaping increased significantly by day 14 of commercial storage. On-board and dockside icing did not predictably reduce the levels of V. vulnificus or V. parahaemolyticus in oysters, and icing negatively impacted oyster survival during subsequent cold storage.
Improved thermal storage material for portable life support systems
NASA Technical Reports Server (NTRS)
Kellner, J. D.
1975-01-01
The availability of thermal storage materials that have heat absorption capabilities substantially greater than water-ice in the same temperature range would permit significant improvements in performance of projected portable thermal storage cooling systems. A method for providing increased heat absorption by the combined use of the heat of solution of certain salts and the heat of fusion of water-ice was investigated. This work has indicated that a 30 percent solution of potassium bifluoride (KHF2) in water can absorb approximately 52 percent more heat than an equal weight of water-ice, and approximately 79 percent more heat than an equal volume of water-ice. The thermal storage material can be regenerated easily by freezing, however, a lower temperature must be used, 261 K as compared to 273 K for water-ice. This work was conducted by the United Aircraft Research Laboratories as part of a program at Hamilton Standard Division of United Aircraft Corporation under contract to NASA Ames Research Center.
2013-11-13
Operation IceBridge team members board a U.S. Air Force C-17 transport aircraft for a flight from Christchurch, New Zealand, to the U.S. Antarctic Program's McMurdo Station in Antarctica on Nov. 12, 2013. The C-17s that ferry people, equipment and supplies to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. In 2013, IceBridge is conducting its first field campaign directly from Antarctica. For more information about IceBridge, visit: www.nasa.gov/icebridge Credit: NASA/Goddard/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Showstack, Randy
2009-11-01
The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”
Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario
2017-09-01
The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued.
Allisse, Maxime; Sercia, Pierre; Comtois, Alain-Steve; Leone, Mario
2017-01-01
Abstract The purpose of this study was to describe the evolution of morphological, physiological and skating performance profiles of elite age-group ice hockey players based on repeated measures spread over one season. In addition, the results of fitness tests and training programs performed in off-ice conditions and their relationship with skating performance were analyzed. Eighteen high level age-group ice hockey players (13.1 ± 0.6 years) were assessed off and on-ice at the beginning and at the end of the hockey season. A third evaluation was also conducted at the beginning of the following hockey season. The players were taller, heavier, and showed bone breadths and muscle girths above the reference population of the same age. Muscular variables improved significantly during and between the two hockey seasons (p < 0.05). However, maximal aerobic power improved only during the off-season. All skating performance tests exhibited significant enhancements during the hockey season, but not during the off-season where some degradation was observed. Finally, weak observed variances (generally <20% of the explained variance) between physiological variables measured off-ice and on-ice skating performance tests indicated important gaps, both in the choice of the off-ice assessment tools as well as in training methods conventionally used. The reflection on the best way to assess and train hockey players certainly deserves to be continued. PMID:28828080
Ice flood velocity calculating approach based on single view metrology
NASA Astrophysics Data System (ADS)
Wu, X.; Xu, L.
2017-02-01
Yellow River is the river in which the ice flood occurs most frequently in China, hence, the Ice flood forecasting has great significance for the river flood prevention work. In various ice flood forecast models, the flow velocity is one of the most important parameters. In spite of the great significance of the flow velocity, its acquisition heavily relies on manual observation or deriving from empirical formula. In recent years, with the high development of video surveillance technology and wireless transmission network, the Yellow River Conservancy Commission set up the ice situation monitoring system, in which live videos can be transmitted to the monitoring center through 3G mobile networks. In this paper, an approach to get the ice velocity based on single view metrology and motion tracking technique using monitoring videos as input data is proposed. First of all, River way can be approximated as a plane. On this condition, we analyze the geometry relevance between the object side and the image side. Besides, we present the principle to measure length in object side from image. Secondly, we use LK optical flow which support pyramid data to track the ice in motion. Combining the result of camera calibration and single view metrology, we propose a flow to calculate the real velocity of ice flood. At last we realize a prototype system by programming and use it to test the reliability and rationality of the whole solution.
NASA Astrophysics Data System (ADS)
Delgado Arias, S.; Brown, M. E.; Escobar, V. M.; Jasinski, M. F.; Neumann, T.
2016-12-01
Since 2012, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Applications Program has worked to understand how future mission observations can be effectively used to inform operational sea ice forecasting for Arctic shipping, global flood risk monitoring, fire fuel mapping, and other applications. The ICESat-2 Applications Program has implemented various engagement and outreach activities, as well as an Early Adopter program, to facilitate dialogue between potential users, project scientists, science definition team members, NASA Headquarters and the mission's data distribution center. This dialogue clarifies how ICESat-2's science data can be integrated, improved or leveraged to advance science objectives aligned with or beyond those of the mission, and in support of a range of decisions and actions of benefit to communities across the globe. In this presentation, we will present an overview of the Program initiatives and highlight the research-to-applications chains that mission Early Adopters are helping build for ICESat-2. With a total of 19 Early Adopters and more than 400 people engaged as part of the applications community, ICESat-2 has positioned itself to ensure applications where its observations are used to meet the needs of decision makers, policy makers and managers at different scales. For more information visit: http://icesat-2.gsfc.nasa.gov/applications
NASA Astrophysics Data System (ADS)
Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel
2016-04-01
The Arctic Ocean has been in the focus of many studies during recent years, investigating the state, the causes and the implications of the observed rapid transition towards a thinner and younger sea-ice cover. However, consistent observational datasets of sea ice, ocean and atmosphere are still sparse due to the limited accessibility and harsh environmental conditions. One important tool to fill this gap has become more and more feasible during recent years: autonomous, ice-tethered measurement platforms (buoys). These drifting instruments independently transmit their data via satellites, and enable observations over larger areas and over longer time periods than manned expeditions, even throughout the winter. One aim of the newly established FRAM (FRontiers in Arctic marine Monitoring) infrastructure program at the Alfred-Wegener-Institute is to realize and maintain an interdisciplinary network of buoys in the Arctic Ocean, contributing to an integrated, Arctic-wide observatory. The additional buoy infrastructure, ship-time, and developments provided by FRAM are critical elements in the ongoing international effort to fill the large data gaps in a rapidly changing Arctic Ocean. Our focus is the particularly underrepresented Eurasian Basin. Types of instruments range from snow depth beacons and ice mass balance buoys for monitoring ice growth and snow accumulation, over radiation and weather stations for energy budget estimates, to ice-tethered profiling systems for upper ocean monitoring. Further, development of new bio-optical and biogeochemical buoys is expected to enhance our understanding of bio-physical processes associated with Arctic sea ice. The first set of FRAM buoys was deployed in September 2015 from RV Polarstern. All datasets are publicly available on dedicated web portals. Near real time data are reported into international initiatives, such as the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). The additional data acquired by FRAM buoys facilitate the validation of model results and remote sensing products, play an important role in understanding the linkages between the atmosphere, sea ice and upper ocean, and help assess the physical, biological and biogeochemical states of the future Arctic Ocean. Here we present our recent work and future plans, but are also aiming for additional collaborations, especially on technical developments, scientific questions and deployment logistics.
Computation of Low Speed Cavity Noise
NASA Technical Reports Server (NTRS)
Blech, Richard A. (Technical Monitor); Loh, Ching Y.
2004-01-01
Over the last five years, the Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids to support increased awareness for pilots of the hazards associated with atmospheric icing conditions. Through the development of this work, a number of new instructional design approaches and media delivery methods have been introduced to enhance the learning experience, expand user interactivity and participation, and, hopefully, increase the learner retention rates. The goal of using these multimedia techniques is to increase the effectiveness of the training materials. This paper will describe the multimedia technology that has been introduced and give examples of how it was used.
Balloons on Ice: Launch # 2 takes flight in Antarctica
2017-12-08
The second of three missions as part of NASA’s Antarctica Long Duration Balloon Flight Campaign was successfully launched at 8:10 a.m. EDT, Dec. 2. The Antarctic Impulsive Transient Antenna (ANITA) from the University of Hawaii at Manoa was launched from Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Scientists will use ANITA’s instruments to study the reactions in the core of stars and as they explode via the release of neutrinos that travel to Earth and interact with the Antarctica ice. More: go.nasa.gov/2ghR6Le
The 2012 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Hagen, R. A.; Liang, R.; Ball, D.
2012-12-01
The U.S. Naval Research Laboratory (NRL) is beginning a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in both 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. These measurements were coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map. The LiDAR and radar altimeter were also flown on grid patterns over the ice that were synchronous with 5 Cryosat2 satellite passes. These grids were intended to cover roughly 10 km long segments of Cryosat2 tracks with widths similar to the footprint of the satellite (~2 km). Reduction of these grids is challenging because of ice drift which can be many hundreds of meters over the 1-2 hours collection period of each grid. Relocation of the individual scanning LiDAR tracks is done by means of tie-points observed in the overlapping swaths. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.
2014-12-01
We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Cornford, S. L.; Price, S. F.; Ng, E. G.; Collins, W.
2015-12-01
We present POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period from 1990 to 2010. We use the CORE v. 2 interannual forcing data to force the ocean model. Simulations are performed at 0.1o(~5 km) ocean resolution with adaptive ice sheet resolution as fine as 500 m to adequately resolve the grounding line dynamics. We discuss the effect of improved ocean mixing and subshelf bathymetry (vs. the standard Bedmap2 bathymetry) on the behavior of the coupled system, comparing time-averaged melt rates below a number of major ice shelves with those reported in the literature. We also present seasonal variability and decadal melting trends from several Antarctic regions, along with the response of the ice shelves and the consequent dynamic response of the grounded ice sheet.POPSICLES couples the POP2x ocean model, a modified version of the Parallel Ocean Program, and the BISICLES ice-sheet model. POP2x includes sub-ice-shelf circulation using partial top cells and the commonly used three-equation boundary layer physics. Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP) and other continental-scale simulations and melt-rate observations. BISICLES makes use of adaptive mesh refinement and a 1st-order accurate momentum balance similar to the L1L2 model of Schoof and Hindmarsh to accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests (MISMIP-3d) and realistic configurations.The figure shows the BISICLES-computed vertically-integrated grounded ice velocity field 5 years into a 20-year coupled full-continent Antarctic-Southern-Ocean simulation. Submarine melt rates are painted onto the surface of the floating ice shelves. Grounding lines are shown in green.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Michael
The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, thismore » containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.« less
Comparison of icing cloud instruments for 1982-1983 icing season flight program
NASA Technical Reports Server (NTRS)
Ide, R. F.; Richter, G. P.
1984-01-01
A number of modern and old style liquid water content (LWC) and droplet sizing instruments were mounted on a DeHavilland DHC-6 Twin Otter and operated in natural icing clouds in order to determine their comparative operating characteristics and their limitations over a broad range of conditions. The evaluation period occurred during the 1982-1983 icing season from January to March 1983. Time histories of all instrument outputs were plotted and analyzed to assess instrument repeatability and reliability. Scatter plots were also generated for comparison of instruments. The measured LWC from four instruments differed by as much as 20 percent. The measured droplet size from two instruments differed by an average of three microns. The overall effort demonstrated the need for additional data, and for some means of calibrating these instruments to known standards.
West Antarctic Ice Sheet Initiative. Volume 1: Science and Implementation Plan
NASA Technical Reports Server (NTRS)
Bindschadler, Robert A. (Editor)
1990-01-01
The Science and Implementation Plan of the West Antarctic Ice Sheet Initiative (WAIS) is described. The goal of this initiative is the prediction of the future behavior of this ice sheet and an assessment of its potential to collapse, rapidly raising global sea level. The multidisciplinary nature of WAIS reflects the complexity of the polar ice sheet environment. The project builds upon past and current polar studies in many fields and meshes with future programs of both the U.S. and other countries. Important tasks in each discipline are described and a coordinated schedule by which the majority of these tasks can be accomplished in 5 years is presented. The companion report (Volume 2) contains seven discipline review papers on the state of knowledge of Antarctica and opinions on how that knowledge must be increased to attain the WAIS goal.
PLC based automatic control of pasteurize mix in ice cream production
NASA Astrophysics Data System (ADS)
Yao, Xudong; Liang, Kai
2013-03-01
This paper describes the automatic control device of pasteurized mix in the ice cream production process.We design a scheme of control system using FBD program language and develop the programmer in the STEP 7-Micro/WIN software, check for any bugs before downloading into PLC .These developed devices will able to provide flexibility and accuracy to control the step of pasteurized mix. The operator just Input the duration and temperature of pasteurized mix through control panel. All the steps will finish automatically without any intervention in a preprogrammed sequence stored in programmable logic controller (PLC). With the help of this equipment we not only can control the quality of ice cream for various conditions, but also can simplify the production process. This control system is inexpensive and can be widely used in ice cream production industry.
Prospecting Rovers for Lunar Exploration
NASA Technical Reports Server (NTRS)
Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.
2007-01-01
A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.
2007-03-01
Balmforth University of British Columbia Andrew Belmonte Penn State University Robert Bindschadler NASA Goddard Space Flight Center Goran Bjork Goteborg...Friday, July 7 10:30 AM Charles Doering, University of Michigan Twist and shout ! Maximal enstrophy generation in the 3-D Navier-Stokes equation July 10...shear flows Thursday, July 27 10:30 AM Robert Bindschadler, NASA Goddard Space Flight Center The new view of ice sheet dynamics 2:30 PM Petri Fast
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.
2014-01-01
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844
MGS TES Measurements of Dust and Ice Aerosol Behaviors
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Wolff, M. J.; Christensen, P. R.
2000-10-01
The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.
Analysis Tools for the Ion Cyclotron Emission Diagnostic on DIII-D
NASA Astrophysics Data System (ADS)
Del Castillo, C. A.; Thome, K. E.; Pinsker, R. I.; Meneghini, O.; Pace, D. C.
2017-10-01
Ion cyclotron emission (ICE) waves are excited by suprathermal particles such as neutral beam particles and fusion products. An ICE diagnostic is in consideration for use at ITER, where it could provide important passive measurement of fast ions location and losses, which are otherwise difficult to determine. Simple ICE data analysis codes had previously been developed, but more sophisticated codes are required to facilitate data analysis. Several terabytes of ICE data were collected on DIII-D during the 2015-2017 campaign. The ICE diagnostic consists of antenna straps and dedicated magnetic probes that are both digitized at 200 MHz. A suite of Python spectral analysis tools within the OMFIT framework is under development to perform the memory-intensive analysis of this data. A fast and optimized analysis allows ready access to data visualizations as spectrograms and as plots of both frequency and time cuts of the data. A database of processed ICE data is being constructed to understand the relationship between the frequency and intensity of ICE and a variety of experimental parameters including neutral beam power and geometry, local and global plasma parameters, magnetic fields, and many others. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...
2014-11-18
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less
The GLAS Science Algorithm Software (GSAS) User's Guide Version 7
NASA Technical Reports Server (NTRS)
Lee, Jeffrey E.
2013-01-01
The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document is the final version of the GLAS Science Algorithm Software Users Guide document. It contains the instructions to install the GLAS Science Algorithm Software (GSAS) in the production environment that was used to create the standard data products. It also describes the usage of each GSAS program in that environment with their required inputs and outputs. Included are a number of utility programs that are used to create ancillary data files that are used in the processing but generally are not distributed to the public as data products. Of importance is the values for the large number of constants used in the GSAS algorithm during processing are provided in an appendix.
Autonomous, Computer-Based Behavioral Health Countermeasure Evaluation at HI-SEAS Mars Analog.
Anderson, Allison P; Fellows, Abigail M; Binsted, Kim A; Hegel, Mark T; Buckey, Jay C
Living in an isolated, confined environment (ICE) can induce conflict, stress, and depression. Computer-based behavioral health countermeasures are appealing for training and treatment in ICEs because they provide confidentiality and do not require communication with the outside environment. We evaluated the Virtual Space Station (VSS), a suite of interactive computer-delivered psychological training and treatment programs, at the Hawaii Space Exploration Analog and Simulation (HI-SEAS) III expedition. Six subjects (3 male, 3 female) spent 8 mo in group-isolation and used the Conflict, Stress, and Depression modules in the VSS. Survey evaluations, data collected within the program, and postdeployment interviews were collected. This crew dealt with behavioral health issues common to ICEs. The VSS proved to be a valuable resource and was used both as intended, and in unanticipated ways, to help maintain behavioral health. The Conflict and Stress Modules were rated as highly acceptable (1.8 on a 7-point Likert scale). The crew identified a total of 13 stressors and worked on 9 problems through the VSS. Opinions about the modules were highly individualized. Crewmembers identified exercises in the VSS that were applicable and not applicable to their needs. Additional content to improve the program was identified. Autonomous, confidential training and treatment for behavioral health issues will need to be a critical component of long duration spaceflight travel. This work provides an evaluation of such a tool in a relevant ICE. Anderson AP, Fellows AM, Binsted KA, Hegel MT, Buckey JC. Autonomous, computer-based behavioral health countermeasure evaluation at HI-SEAS Mars analog. Aerosp Med Hum Perform. 2016; 87(11):912-920.
Lee, Gyunghee; Wang, Zixing; Sehgal, Ritika; Chen, Chun-Hong; Kikuno, Keiko; Hay, Bruce; Park, Jae H
2011-01-01
A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently known Drosophila caspases in the PCD of a group of interneurons (vCrz) that produce corazonin (Crz) neuropeptide in the ventral nerve cord. The molecular death program in the vCrz neurons initiates within 1 hour after pupariation, as demonstrated by the cytological signs of cell death and caspase activation. PCD was significantly suppressed in dronc-null mutants, but not in null mutants of either dredd or strica. A double mutation lacking both dronc and strica impaired PCD phenotype more severely than did a dronc mutation alone, but comparably to a triple dredd/strica/dronc mutation, indicating that dronc is a main initiator caspase, while strica plays a minor role that overlaps with dronc's. As for effector caspases, vCrz PCD requires both ice and dcp-1 functions, as they work cooperatively for a timely removal of the vCrz neurons. Interestingly, the activation of the Ice and Dcp-1 is not solely dependent on Dronc and Strica, implying an alternative pathway to activate the effectors. Two remaining effector caspase genes, decay and damm, found no apparent functions in the neuronal PCD, at least during early metamorphosis. Overall, our work revealed that vCrz PCD utilizes dronc, strica, dcp-1, and ice wherein the activation of Ice and Dcp-1 requires a novel pathway in addition to the initiator caspases.
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.
2015-12-01
The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.
NASA Astrophysics Data System (ADS)
Judge, S. A.; Wilson, T. J.
2005-12-01
The International Polar Year (IPY) provides an excellent opportunity for highlighting polar research in education. The ultimate goal of our outreach and education program is to develop a series of modules that are focused on societally-relevant topics being investigated in Antarctic earth science, while teaching basic geologic concepts that are standard elements of school curricula. For example, we envision a university-level, undergraduate, introductory earth science class with the entire semester/quarter laboratory program focused on polar earth science research during the period of the International Polar Year. To attain this goal, a series of modules will be developed, including inquiry-based exercises founded on imagery (video, digital photos, digital core scans), GIS data layers, maps, and data sets available from OSU research groups. Modules that highlight polar research are also suitable for the K-12 audience. Scaleable/grade appropriate modules that use some of the same data sets as the undergraduate modules can be outlined for elementary through high school earth science classes. An initial module is being developed that focuses on paleoclimate data. The module provides a hands-on investigation of the climate history archived in both ice cores and sedimentary rock cores in order to understand time scales, drivers, and processes of global climate change. The paleoclimate module also demonstrates the types of polar research that are ongoing at OSU, allowing students to observe what research the faculty are undertaking in their respective fields. This will link faculty research with student education in the classroom, enhancing learning outcomes. Finally, this module will provide a direct link to U.S. Antarctic Program research related to the International Polar Year, when new ice and sedimentary rock cores will be obtained and analyzed. As a result of this laboratory exercise, the students will be able to: (1) Define an ice core and a sedimentary rock core. (Knowledge) (2) Identify climate indicators in each type of core by using digital core images. These include layers of particulate material (such as volcanic tephra) in ice cores and layers of larger grains (such as ice-rafted debris) in sedimentary rock cores. (Knowledge) (3) Describe how cores are taken in extreme environments, such as Antarctica. (Comprehension) (4) Use actual data from proxies in the ice and sedimentary records to graph changes through time in the cores. (Application) (5) Recognize variances in data sets that might illustrate periods of climate change. (Analysis) (6) Integrate data results from several proxies in order to construct a climate record for both ice cores and sedimentary rock cores. (Synthesis) (7) Interpret both the ice core and sedimentary rock core records to ascertain the effectiveness of both of these tools in archiving climate records. (Evaluation)
Terrestrial Ice Sheets: Studies of Climate History, Internal Structure, Surface, and Bedrock
NASA Astrophysics Data System (ADS)
Thorsteinsson, Th.; Kipfstuhl, J.; Nixdorf, U.; Oerter, H.; Miller, H.; Fritsche, D.; Jung-Rothenhaeusler, F.; Mayer, C.; Schwager, M.; Wilhelms, F.; Steinhage, D.; Goektas, F.
1998-01-01
Recently drilled deep ice cores from Central Greenland (GRIP and GISP2) provide the most detailed results available on climatic variation in the northern hemisphere during the last 100,000 years, a period that includes the Holocene (0-11.5 ka) and most of the Wisconsin glacial period. Summer-winter variation in various physical and chemical properties of polar ice allows dating of ice cores by annual layer counting. Several such methods are currently being employed on an ice core drilled by the new North Greenland Ice Core Project (NGRIP), which is aimed at extending the Greenland ice palaeoclimatic record through the last interglacial, the Eemian. Two examples will be presented: (1) visual and photographic studies of seasonal variation in stratigraphic layering, crystal size, air bubble and clathrate concentration, and (2) studies of electric stratigraphy, using the method of dielectric profiling (DEP). This method records the AC conductivity of ice cores, which is negatively correlated with the concentration of airborne dust in the ice but positively correlated with volcanic and marine aerosols. Comprehensive surface traverse programs, which include shallow coring and ice velocity measurements, have recently been carried out by the Alfred Wegener Institute in previously little-investigated regions of Greenland and Antarctica. Serving partly as reconnaissance prior to deep drilling projects, such studies also help to reduce considerable uncertainties in the mass balance of the two large polar ice sheets and thus in their estimated response to climate change. Main results of a recent traverse in North Greenland include the following: (1) A new map of the accumulation distribution on the ice sheet indicates a large low-accumulation region in Northeast-Greenland; (2) North Greenland records show significantly greater climatic variability during the last 500 yr than corresponding records from the southern part of the ice sheet; and (3) data on variation in accumulation rates do not indicate a definite trend in the region during this century. The Alfred Wegener Institute has in recent years employed both airborne and ground-penetrating ice radar systems to map the bedrock around deep drilling sites in Central and North Greenland, as well as in a planned Antarctic site in Dronning Maud Land. The radar also records shallow and deep internal echoes, caused by rapid variation in density and ice acidity in layers of certain ages, allowing isochrones to be traced over wide reaches of the ice sheet. Disturbances in regular stratigraphic layering, due to ice flow over an irregular bed, were observed in the lowest 200-300 m of the GRIP and GISP2 ice cores. Since the aim of the new NGRIP coring program is to obtain an ice core reaching further back in time than the Central Greenland cores, this site was chosen in a region where the bedrock is relatively flat. Echo-sounding surveys between GRIP and NGREP show that the isochrones lie 100-200 in higher above the bed at NGRIP, indicating that the Eemian layer is unlikely to have been disturbed by ice flow at this location. Due to the flow pattern of ice sheets, layers forming a vertical sequence in the interior regions of an ice sheet can, under favorable conditions, be traced on horizontal profiles at the margins. Some meaningful correlations have already been established between Greenland deep ice core climatic records and corresponding records from ice margins. In these regions, a clear contrast is observed between ice of Holocene origin and significantly darker-looking ice dating from the Wisconsin glacial period, which displays summertime ablation rates 2-4x higher than the Holocene ice. This difference is due to higher concentrations of dust and other impurities in the Wisconsin ice, by 1-2 orders of magnitude, leading to reduced albedo. Furthermore, smaller crystal sizes in the Wisconsin ice lead to a more homogeneous distribution of impurities on the surface, which probably contributes to lowering the albedo. Comprehensive studies of ice crystal size and c-axis orientations on the GRIP and NGRIP deep cores provide detailed information on recrystallization processes in polar ice sheets. Based on the GRIP results, the Central-Greenland ice sheet can be vertically divided into three different recrystallization regimes: (1) normal grain growth regime (0-700 in), in which the average crystal size increases steadily to 4mm diameter; (2) polygonization regime (700-2800m), in which crystals are subdivided due to increasing strain and no further increase in crystal size is observed; and (3) migration recrystallization regime (2800-3050m), where higher temperatures (-10C) cause rapid crystal growth with average diameters increasing to 30 mm in the bottom layers. Higher impurity content in ice dating from glacial periods is seen to exert a strong inhibitive effect on crystal growth. The data on c-axis fabrics demonstrate the development of crystalline anisotropy with depth, leading to significant variation in flow properties. In particular, strong rheological contrasts are observed between glacial and interglacial ice, with fine-grained ice dating from glacial periods deforming more rapidly under conditions of simple shear than more coarse-grained interglacial ice. When the dynamics of ice masses are addressed by modeling, special attention must be given to the transition zone between ice resting on bedrock and floating ice shelves. One application for numerical ice-dynamics models that deal with such transition zones is the investigation of areas with special mass balance characteristics, like ice streams entering ice shelves or ice sheet areas over subglacial lakes. Recent results from a model applied to the ice above Lake Vostok in East Antarctica indicate that comparatively strong basal melting and adjacent refreezing occur close to the western shore of the lake.
Space/Time Statistics of Polar Ice Motion
NASA Technical Reports Server (NTRS)
Emery, William J.; Fowler, Charles; Maslanik, James A.
2003-01-01
Ice motions have been computed from passive microwave imagery (SMMR and SSM/I) on a daily basis for both Polar Regions. In the Arctic these daily motions have been merged with daily motions from AVHRR imagery and the Arctic buoy program. In the Antarctic motion only from the AVHRR were available for merging with the passive microwave vectors. Long-term means, monthly means and weekly means have all been computed from the resulting 22-year time series of polar ice motion. Papers are in preparation that present the long term (22 year) means, their variability and show animations of the monthly means over this time period for both Polar Regions. These papers will have links to "enhanced objects" that allow the reader to view the animations as part of the paper. The first paper presents the ice motion results from each of the Polar Regions. The second paper looks only at ice motion in the Arctic in order to develop a time series of ice age in the Arctic. Starting with the first full SMMR year in 1979 we keep track of each individual "ice element" (resolution of the sensor) and track it in the subsequent monthly time series. After a year we "age" each "particle" and we thus can keep track of the age of the ice starting in 1979. We keep track of ice age classes between one and five years and thus we can see the evolution of the ice as it ages after the initial 5-year period. This calculation shows how we are losing the older ice through Fram Strait at a rather alarming rate particularly in the past 15 years. This loss of older ice has resulted in an overall decrease in the thickest, oldest ice, which is now limited to a region just north of the Canadian Archipelago with tongues extending out across the pole towards the Siberian Shelf. This loss of old ice is consistent with the effects of global warming which provides the heat needed to melt, move and disperse this oldest ice through Fram Strait. This is the first step in a progression that may eventually open the Arctic ice pack and lead to an ice-free Arctic Ocean.
Onset of ice VII phase during ps laser pulse propagation through liquid water
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Vaddapally, Rakesh Kumar; Acrhem Team
2015-06-01
Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of 15 different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier
2010-01-01
The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.
Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
Accolla, Mario; Congiu, Emanuele; Dulieu, François; Manicò, Giulio; Chaabouni, Henda; Matar, Elie; Mokrane, Hakima; Lemaire, Jean Louis; Pirronello, Valerio
2011-05-07
The morphology of water ice in the interstellar medium is still an open question. Although accretion of gaseous water could not be the only possible origin of the observed icy mantles covering dust grains in cold molecular clouds, it is well known that water accreted from the gas phase on surfaces kept at 10 K forms ice films that exhibit a very high porosity. It is also known that in the dark clouds H(2) formation occurs on the icy surface of dust grains and that part of the energy (4.48 eV) released when adsorbed atoms react to form H(2) is deposited in the ice. The experimental study described in the present work focuses on how relevant changes of the ice morphology result from atomic hydrogen exposure and subsequent recombination. Using the temperature-programmed desorption (TPD) technique and a method of inversion analysis of TPD spectra, we show that there is an exponential decrease in the porosity of the amorphous water ice sample following D-atom irradiation. This decrease is inversely proportional to the thickness of the ice and has a value of ϕ(0) = 2 × 10(16) D-atoms cm(-2) per layer of H(2)O. We also use a model which confirms that the binding sites on the porous ice are destroyed regardless of their energy depth, and that the reduction of the porosity corresponds in fact to a reduction of the effective area. This reduction appears to be compatible with the fraction of D(2) formation energy transferred to the porous ice network. Under interstellar conditions, this effect is likely to be efficient and, together with other compaction processes, provides a good argument to believe that interstellar ice is amorphous and non-porous. This journal is © the Owner Societies 2011
Injury Patterns and Outcomes of Ice-Fishing in the United States
Thiels, Cornelius A.; Hernandez, Matthew C.; Zielinski, Martin D.; Aho, Johnathon M.
2016-01-01
Introduction Fishing is a common pastime. In the developed world, it is commonly performed as a recreational activity. We aim to determine injury patterns and outcomes among patients injured while ice fishing. Methods Data on initial emergency department visits from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) from 2009-2014 were analyzed. All patients with fishing related injuries were included. Primary endpoint was rate of admission or transfer. Secondary endpoints were defined a priori anatomical injury categories and patients were assigned into groups. Descriptive and power analysis was performed between patients with ice-fishing and traditional fishing related injuries. Results We identified 8220 patients who sustained fishing related injuries, of which n=85 (1%) involved ice fishing. Ice fishing injuries occurred primarily in males (88%) with a mean age of 39.4 years ± 17.5 (std dev). The most common injuries related to ice fishing were: orthopedic/musculoskeletal (46%), minor trauma (37%), and major trauma (6%). Hot thermal injuries (burns) were the fourth most common type of ice-fishing injury (5%) but rarely occurred in warmer fishing months (<1%, p=0.004). Cold thermal injuries (1%) and hypothermia (0%) were rare among ice-fishing injuries and immersion/drowning occurred in 5% of cases. The rate of admission/transfer was significantly greater in ice-fishing (11%) than the traditional fishing patients 3%, p<0.001), power was 89.7%. Conclusion Ice fishing is associated with more severe injury patterns and more thermal injuries and immersion injuries than traditional fishing. Providers and participants should be aware of the potential risks and benefits and counseled appropriately. PMID:27117462
Uncertainty Quantification for Ice Sheet Science and Sea Level Projections
NASA Astrophysics Data System (ADS)
Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.
2017-12-01
In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.
Injury patterns and outcomes of ice-fishing in the United States.
Thiels, Cornelius A; Hernandez, Matthew C; Zielinski, Martin D; Aho, Johnathon M
2016-07-01
Fishing is a common pastime. In the developed world, it is commonly performed as a recreational activity. We aim to determine injury patterns and outcomes among patients injured while ice fishing. Data on initial emergency department visits from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) from 2009-2014 were analyzed. All patients with fishing related injuries were included. Primary endpoint was rate of admission or transfer. Secondary endpoints were defined a priori anatomical injury categories and patients were assigned into groups. Descriptive and power analysis was performed between patients with ice-fishing and traditional fishing related injuries. We identified 8220 patients who sustained fishing related injuries, of which n=85 (1%) involved ice fishing. Ice fishing injuries occurred primarily in males (88%) with a mean age of 39.4years ±17.5 (std dev). The most common injuries related to ice fishing were: orthopedic/musculoskeletal (46%), minor trauma (37%), and major trauma (6%). Hot thermal injuries (burns) were the fourth most common type of ice-fishing injury (5%) but rarely occurred in warmer fishing months (<1%, P=.004). Cold thermal injuries (1%) and hypothermia (0%) were rare among ice-fishing injuries and immersion/drowning occurred in 5% of cases. The rate of admission/transfer was significantly greater in ice-fishing (11%) than the traditional fishing patients 3%, (P<.001), power was 90%. Ice fishing is associated with more severe injury patterns and more thermal injuries and immersion injuries than traditional fishing. Providers and participants should be aware of the potential risks and benefits and counseled appropriately. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.
2008-12-01
The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.
High-resolution coupled ice sheet-ocean modeling using the POPSICLES model
NASA Astrophysics Data System (ADS)
Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.
2014-12-01
It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.
The 2013 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Ball, D.; Hagen, R. A.; Liang, R.; Stoudt, C.
2013-12-01
The U.S. Naval Research Laboratory (NRL) is conducting a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. This field season, LiDAR data was collected using the Riegl Q680 which permitted higher density operation and data collection. Concident radar data was collected using an improved version of the NRL 10 GHz pulse limited radar that was used for the 2012 fieldwork. 8 coincident tracks of CryoSat2 satellite data were collected. Additionally a series of grids (7 total) of adjacent tracks were flown coincident with Cryosat2 satellite overpass. These grids cover the approximate satellite footprint of the satellite on the ice as it passes overhead. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint. We also coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map.
Summer 2007 and 2008 Arctic Sea Ice Loss in Context: OUTLOOK 2008
NASA Astrophysics Data System (ADS)
Overland, J. E.; Eicken, H.; Wiggins, H. V.
2008-12-01
The Arctic is changing faster than the publication cycle for new information. In response, the SEARCH and DAMOCLES Programs initiated an OUTLOOK 2008 to provide broad-based communication and assessment within the arctic science community on the causes of rapid summer sea ice loss, synthesizing information from Arctic observing networks and model simulations. The question for summer 2008 was whether the previous loss of multi-year sea ice and delay in sea ice formation in autumn 2007 would still allow sufficient winter growth of sea ice thickness to last through the summer 2008, potentially allowing for recovery from the 2007 minimum. The answer is no; summer 2008 was a second sequential year of extremely low minimum sea ice extent. To organize OUTLOOK 2008, respondents were asked in May, June and July to provide a rationale and semi-quantitative assessment of arctic sea ice extent anticipated for September 2008. OUTLOOK 2008 supplemented information maintained by ice centers, universities and other data providers. Using a range of methods, all of the approximately 20 groups responded that summer sea ice would not return to climatological mean conditions, with a median response near the 2007 extent. The range of responses depended on the relative weight given to "initial conditions," e.g., age and thickness of sea ice at the end of spring, versus whether summer winds in 2008 would be as supportive for ice loss as in 2007. Initial conditions turned out to be a primary factor for summer 2008, with implications for continued sea ice loss in future years. OUTLOOK 2008 highlighted aspects of the observation and modeling efforts that require further attention such as interpretation of summer microwave signatures, in situ buoy measurements, and data assimilation in models. We appreciate the contributions from respondents and reviewers who made OUTLOOK 2008 a success.
Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia
2015-05-01
Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2-0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses. Published by Oxford University Press on behalf of the Annals of Botany Company 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Seasonal variability in whale encounters in the Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Thiele, Deborah; Chester, Edwin T.; Moore, Sue E.; Širovic, Ana; Hildebrand, John A.; Friedlaender, Ari S.
2004-08-01
Cetacean sighting surveys were conducted as part of nine multidisciplinary research cruises over late summer, autumn and winter of 2 years (2001-2003) during the Southern Ocean Global Ocean Ecosystems (SO GLOBEC) program. Sea-ice cover differed markedly between years, with apparent effects on cetacean distribution. No ice was present until late June in 2001, while the previous winter sea ice never fully retreated (>30% cover) during the 2002 or 2003 summer, thus increasing the proportion of thicker and more complex ice, including multi-year floes. Humpback (237 sightings; 537 individuals) and minke (103 sightings: 267 individuals) whales were the most commonly detected species. Data from seven comparable cruises were used to identify habitat for minke and humpback whales over five geographically distinct spatial divisions in the study area. In all years, both species were predominantly found in near coastal habitat, particularly in the fjords where complex habitat likely concentrated prey. In 2002 and 2003 the presence of sea ice provided additional feeding habitat, and the numbers of minkes (in winter) and humpbacks (late summer and autumn) in the area doubled compared with 2001. Humpbacks in particular were concentrated at the ice boundaries during late summer and autumn, while minke numbers increased in the winter that followed and occupied ice-covered areas along the entire shelf edge. Important resource sites for these species are mainly located in near-coastal areas and are used in all years, but when ice margins exist and intersect with resource sites they attract much larger numbers of animals due to the dynamics between sea ice and prey.
CO Diffusion and Desorption Kinetics in CO2 Ices
NASA Astrophysics Data System (ADS)
Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.
2018-01-01
The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.
Seismic Events and Tidal Forces near the Grounding Line of Beardmore Glacier, Antarctica
NASA Astrophysics Data System (ADS)
Cooley, J.; Winberry, J. P.; Conway, H.; Koutnik, M. R.
2016-12-01
Ice shelves are floating extensions of large ice sheets. Weakening or break-up of these ice shelves allow ice upstream to move off the continent at increased rates, contributing to sea level rise. One prominent mechanism by which shelves are weakened is through crevasse formation. Icequakes are small magnitude seismic events that occur within a volume of ice which reveal areas where crevasses on an ice shelf might form, providing insight into ice shelf stability. The processes that drive these crevassing events are not well-understood, but past research on icequakes near the grounding line has found a correlation with tide. During high tide, there is a large mass of water pushing against the ice shelf, compressing it. As the tide falls, so does this pressure, allowing the ice shelf to stretch. This creates an enormous amount of stress, released as crevasses, near the grounding line. Preliminary examination of data taken over a three week period in the austral summer of 2013/14 at Beardmore Glacier also reveals a tidal correlation, but with rising tide playing a bigger role than previously thought. I aim to find a pattern in the physical locations of events which separates those that occur during rising tide from those that occur during falling tide, to take steps in understanding what constraint rising tide could have on the creation of crevasses. Research methods involve programming scripts to automate counting of events, locating the epicenters with beamforming, calculating the local magnitudes of the events, and utilizing processed GPS data to correlate the events to ocean tide.
NOAA Photo Library - Meet the Photographers/Dr. Michael Van Woert
, California. In January 1993 he assumed duties as the program scientist for the NASA TOPEX/POSEIDON altimeter mission and program manager for the Physical Oceanography Program at NASA Headquarters. The only snow and ice he encountered during the two years at NASA was above average winter snowfall on the streets of
NASA Technical Reports Server (NTRS)
Bernstein, Ben C.
2001-01-01
Supercooled Large Droplet (SLD) icing conditions were implicated in at least one recent aircraft crash, and have been associated with other aircraft incidents. Inflight encounters with SLD can result in ice accreting on unprotected areas of the wing where it can not be removed. Because this ice can adversely affect flight characteristics of some aircraft, there has been concern about flight safety in these conditions. The FAA held a conference on in-flight icing in 1996 where the state of knowledge concerning SLD was explored. One outcome of these meetings was an identified need to acquire SLD flight research data, particularly in the Great Lakes Region. The flight research data was needed by the FAA to develop a better understanding of the meteorological characteristics associated with SLD and facilitate an assessment of existing aircraft icing certification regulations with respect to SLD. In response to this need, NASA, the Federal Aviation Administration (FAA), and the National Center for Atmospheric Research (NCAR) conducted a cooperative icing flight research program to acquire SLD flight research data. The NASA Glenn Research Center's Twin Otter icing research aircraft was flown throughout the Great Lakes region during the winters of 1996-97 and 1997-98 to acquire SLD icing and meteorological data. The NASA Twin Otter was instrumented to measure cloud microphysical properties (particle size, LWC (Liquid Water Content), temperature, etc.), capture images of wing and tail ice accretion, and then record the resultant effect on aircraft performance due to the ice accretion. A satellite telephone link enabled the researchers onboard the Twin Otter to communicate with NCAR meteorologists. who provided real-time guidance into SLD icing conditions. NCAR meteorologists also provided preflight SLD weather forecasts that were used to plan the research flights, and served as on-board researchers. This document contains an evaluation of the tools and techniques NCAR forecasters used to predict the location of SLD icing conditions during the winter of 1997-1998. The objectives of this report are to: (1) assess the tools used to forecast in-flight icing. (2) assess the success/failure rate of the forecasts, and (3) discuss suggested changes to forecast techniques.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.
2015-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Corona from Ice, Thunderstorm Electrification and Lightning Suppression.
1980-11-01
rates of droplets highly charged by interaction with corona streamers. Laboratory and theoretical studies have been performed in an effort to explore in...CORONA FROM ICE, THUNDERSTORM ELECTRIFICATION Final AND LIGHTNING SUPPRESSION 1 Sep 77 to 31 Aug 80 6. Performing Org. Report Number 7. Author(s) 8...Contract or Grant Number J. Latham AFOSR-77-3429 O"o 9. Performing Organization Name and Address 10. Program Element, Project, Task Physics Department
ERIC Educational Resources Information Center
Gambler, Rebecca
2012-01-01
As of January 2012, more than 850,000 active foreign students were in the United States enrolled at over 10,000 U.S. schools. ICE, within DHS, is responsible for managing SEVP and certifying schools to accept foreign students. GAO was asked to review ICE's fraud prevention and detection procedures for SEVP. This report examines the extent to which…
Monthly average polar sea-ice concentration
Schweitzer, Peter N.
1995-01-01
The data contained in this CD-ROM depict monthly averages of sea-ice concentration in the modern polar oceans. These averages were derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) instruments aboard satellites of the U.S. Air Force Defense Meteorological Satellite Program from 1978 through 1992. The data are provided as 8-bit images using the Hierarchical Data Format (HDF) developed by the National Center for Supercomputing Applications.
Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity
NASA Astrophysics Data System (ADS)
Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.
2003-12-01
An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice velocity provides an upper limit for change in velocity for this glacier over the past decade. Two pairs of Landsat images were used to compare velocities from 2000-2001 to 1989-2000. No significant change in velocity is observed. A new ice discharge flux of 17.8 km3a-1 was determined, and basal melting at the grounding line was re-calculated at 11 m per year (Berthier et al., 2003, in press). Velocity data for the Institute Ice Stream was compiled at NSIDC using a Landsat images from 1986, 1989, and 1997. The data were recently used in a study outlining the velocity, mass balance, and morphology of the Institute ice stream and nearby Ronne ice shelf area. (Scambos et al., 2003, in review). The study indicates the Institute has regions with flow and morphology characteristics similar to the Ross Embayment ice streams. Ice velocity research contributes to understanding the mass balance and overall stability of the Antarctic Ice Sheet. The archiving of velocity data has proven to be a useful tool to the Antarctic science community, and VELMAP continues to grow as a valuable resource through PI contributions. If you have velocity data that you would like to contribute to the VELMAP archive please contact agdc@nsidc.org. The velocity data used in the two studies presented here can be accessed on the VELMAP web site at http://nsidc.org/data/velmap.
High-intensity interval training has positive effects on performance in ice hockey players.
Naimo, M A; de Souza, E O; Wilson, J M; Carpenter, A L; Gilchrist, P; Lowery, R P; Averbuch, B; White, T M; Joy, J
2015-01-01
In spite of the well-known benefits that have been shown, few studies have looked at the practical applications of high-intensity interval training (HIIT) on athletic performance. This study investigated the effects of a HIIT program compared to traditional continuous endurance exercise training. 24 hockey players were randomly assigned to either a continuous or high-intensity interval group during a 4-week training program. The interval group (IG) was involved in a periodized HIIT program. The continuous group (CG) performed moderate intensity cycling for 45-60 min at an intensity that was 65% of their calculated heart rate reserve. Body composition, muscle thickness, anaerobic power, and on-ice measures were assessed pre- and post-training. Muscle thickness was significantly greater in IG (p=0.01) when compared to CG. The IG had greater values for both ∆ peak power (p<0.003) and ∆ mean power (p<0.02). Additionally, IG demonstrated a faster ∆ sprint (p<0.02) and a trend (p=0.08) for faster ∆ endurance test time to completion for IG. These results indicate that hockey players may utilize short-term HIIT to elicit positive effects in muscle thickness, power and on-ice performance. © Georg Thieme Verlag KG Stuttgart · New York.
NASA's aviation safety - meteorology research programs
NASA Technical Reports Server (NTRS)
Winblade, R. L.
1983-01-01
The areas covering the meteorological hazards program are: severe storms and the hazards to flight generated by severe storms; clear air turbulence; icing; warm fog dissipation; and landing systems. Remote sensing of ozone by satellites, and the use of satellites as data relays is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.
1980-01-01
This report is one of a series of preliminary reports describing the laws and regulatory programs of the United States and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. This report describes laws and regulatory programs in Arizona. The Arizona state constitution establishes themore » Arizona Corporation Commission to regulate public service corporations. Within the area of its jurisdiction, the Commission has exclusive power and may not be interfered with by the legislature except in one narrow instance as described in the case Corporation Commission v. Pacific Greyhound Lines.« less
The interaction of ultraviolet light with Arctic sea ice during SHEBA
NASA Astrophysics Data System (ADS)
Perovich, Donald K.
The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.
Determining Greenland Ice Sheet Accumulation Rates from Radar Remote Sensing
NASA Technical Reports Server (NTRS)
Jezek, Kenneth C.
2002-01-01
An important component of NASA's Program for Arctic Regional Climate Assessment (PARCA) is a mass balance investigation of the Greenland Ice Sheet. The mass balance is calculated by taking the difference between the areally Integrated snow accumulation and the net ice discharge of the ice sheet. Uncertainties in this calculation Include the snow accumulation rate, which has traditionally been determined by interpolating data from ice core samples taken from isolated spots across the ice sheet. The sparse data associated with ice cores juxtaposed against the high spatial and temporal resolution provided by remote sensing , has motivated scientists to investigate relationships between accumulation rate and microwave observations as an option for obtaining spatially contiguous estimates. The objective of this PARCA continuation proposal was to complete an estimate of surface accumulation rate on the Greenland Ice Sheet derived from C-band radar backscatter data compiled in the ERS-1 SAR mosaic of data acquired during, September-November, 1992. An empirical equation, based on elevation and latitude, is used to determine the mean annual temperature. We examine the influence of accumulation rate, and mean annual temperature on C-band radar backscatter using a forward model, which incorporates snow metamorphosis and radar backscatter components. Our model is run over a range of accumulation and temperature conditions. Based on the model results, we generate a look-up table, which uniquely maps the measured radar backscatter, and mean annual temperature to accumulation rate. Our results compare favorably with in situ accumulation rate measurements falling within our study area.
Stern, Harry; Kovacs, Kit M.; Lowry, Lloyd; Moore, Sue E.; Regehr, Eric V.; Ferguson, Steven H.; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P.; Born, Erik W.; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando
2015-01-01
Abstract Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. PMID:25783745
Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory
NASA Astrophysics Data System (ADS)
Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.
2014-12-01
In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.
Shape-Memory-Alloy-Based Deicing System Developed
NASA Technical Reports Server (NTRS)
1996-01-01
Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.
Edwardsiella andrillae, a new species of sea anemone from Antarctic ice.
Daly, Marymegan; Rack, Frank; Zook, Robert
2013-01-01
Exploration of the lower surface of the Ross Ice Shelf in Antarctica by the Submersible Capable of under-Ice Navigation and Imaging (SCINI) remotely operated vehicle discovered a new species of sea anemone living in this previously undocumented ecosystem. This discovery was a significant outcome of the Coulman High Project's geophysical and environmental fieldwork in 2010-2011 as part of the ANDRILL (ANtarctic geologic DRILLing) program. Edwardsiella andrillae n. sp., lives with most of its column in the ice shelf, with only the tentacle crown extending into the seawater below. In addition to being the only Antarctic representative of the genus, Edwardsiella andrillae is distinguished from all other species of the genus in the number of tentacles and in the size and distribution of cnidae. The anatomy and histology of Edwardsiella andrillae present no features that explain how this animal withstands the challenges of life in such an unusual habitat.
Edwardsiella andrillae, a New Species of Sea Anemone from Antarctic Ice
Daly, Marymegan; Rack, Frank; Zook, Robert
2013-01-01
Exploration of the lower surface of the Ross Ice Shelf in Antarctica by the Submersible Capable of under-Ice Navigation and Imaging (SCINI) remotely operated vehicle discovered a new species of sea anemone living in this previously undocumented ecosystem. This discovery was a significant outcome of the Coulman High Project’s geophysical and environmental fieldwork in 2010-2011 as part of the ANDRILL (ANtarctic geologic DRILLing) program. Edwardsiella andrillae n. sp., lives with most of its column in the ice shelf, with only the tentacle crown extending into the seawater below. In addition to being the only Antarctic representative of the genus, Edwardsiella andrillae is distinguished from all other species of the genus in the number of tentacles and in the size and distribution of cnidae. The anatomy and histology of Edwardsiella andrillae present no features that explain how this animal withstands the challenges of life in such an unusual habitat. PMID:24349517
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.
2013-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.
Coast Guard Assists with Mapping of Great Lakes Ice
1976-11-21
A group of Coast Guard seamen leave their ship to verify ice formations on the Great Lakes as part of an joint effort with the National Aeronautics and Space Administration (NASA) Lewis Research Center and the National Oceanic and Atmospheric Administration. The regular winter freezing of large portions of the Great Lakes stalled the shipping industry. Lewis began working on two complementary systems to monitor the ice. The Side Looking Airborne Radar (SLAR) system used microwaves to measure the ice distribution and electromagnetic systems used noise modulation to determine the thickness of the ice. The images were then transferred via satellite to the Coast Guard station. The Coast Guard then transmitted the pertinent images by VHF to the ship captains to help them select the best route. The Great Lakes ice mapping devices were first tested on NASA aircraft during the winter of 1972 and 1973. The pulsed radar system was transferred to the Coast Guard’s C-130 aircraft for the 1975 and 1976 winter. The SLAR was installed in the rear cargo door, and the small S-band antenna was mounted to the underside of the aircraft. Coast Guard flights began in January 1975 at an altitude of 11,000 feet. Early in the program, teams of guardsmen and NASA researchers frequently set out in boats to take samples and measurements of the ice in order to verify the radar information.
NASA Astrophysics Data System (ADS)
Forsberg, R.; Olesen, A. V.; Hvidegaard, S.; Skourup, H.
2010-12-01
Airborne laser and radar measurements over the Greenland ice sheet, Svalbard, and adjacent parts of the Arctic Ocean have been carried out by DTU-Space in a number of recent Danish/Greenlandic and European project campaigns, with the purpose to monitor ice sheet and sea-ice changes, support of Greenland societal needs (oil exploration and hydropower), and support of CryoSat pre-launch calibration and validation campaigns. The Arctic campaigns have been done using a Twin-Otter aircraft, carrying laser scanners and various radars. Since 2009 a new program of long-range gravity and magnetic surveys have been initiated using a Basler DC3 aircraft for large-scale surveys in the Arctic Ocean and Antarctica, with the 2010 cooperative Danish-Argentinean-Chilean-US ICEGRAV survey of the Antarctic Peninsula additionally including a UTIG 60 MHz ice-penetrating radar. In the paper we outline the recent and upcoming airborne survey activities, outline the usefulness of the airborne data for satellite validation (CryoSat and GOCE), and give examples of measurements and comparisons to satellite and in-situ data.
2013-11-13
NASA Operation IceBridge pilot Michael Anderson chats with Lt. Colonel Brent Keenan aboard a U.S. Air Force C-17 transport aircraft during a flight from Christchurch, New Zealand, to the U.S. Antarctic Program's McMurdo Station in Antarctica on Nov. 12, 2013. The C-17s that ferry people, equipment and supplies to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. In 2013, IceBridge is conducting its first field campaign directly from Antarctica. For more information about IceBridge, visit: www.nasa.gov/icebridge Credit: NASA/Goddard/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Gabrys, R. E.
2007-12-01
Each year since 2000, the NASA Goddard History of Winter (HOW) program has allowed teachers to develop an understanding of the consequences of one segment of the orbit of the tilted Earth in its path around the sun. Scientists from NASA, CRREL, and Michigan Tech, supported by the Whiteface Observatory, and the science program at Northwood School in Lake Placid, New York, use the weather and the stratigraphy in the ice and snow, consequences of the weather changes, as "teachers" in a team study of the winter record. Snow in the air and on the ground, ice, its crystal structure and axial orientation, and the ecosystem consequences of snow and ice constitute the weeklong content package. Teacher Professional Development Standards A, B, C, and D were the guiding principles in developing HOW with a content structure formulated as protocols to serve as inserts into lesson plans and inquiry guides. The concept of HOW within NASA is to provide understanding of the WHY? and WHAT? of satellite remote sensing. The content is appropriate ground validation in that techniques presented in protocols are identical to those used by professionals who study snow pits, evaluate features in snow metamorphism, and study thin sections of ice cores drilled in ice caps and glaciers. The HOW Teacher as scientist (TAS) model is a flexible model. HOW enables teachers who are required to use inquiry-based facilitation in the classroom to experience inquiry themselves. Teachers with little science content background as well as those with Science degrees have participated in HOW working alongside of the science team. Accommodations are made through differentiation of instruction so that each group leaves with a mastery of the content that is appropriate for the transition to presentation in the classroom. Each year builds on the previous year ensuring a time series record of the history of winter-by itself a learning experience. An offshoot of the NASA Goddard Center History of Winter (HOW) Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice Team scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program. Snowflakes are like frozen data points, their shape is a record of atmospheric conditions at the time of their formation. The shapes of snowflakes vary over the winter season, with the source of a weather system and over the course of a given snowfall. The objective of the Global Snowflake Network (GSN) is to create a global ground team of teachers, students, families, and researchers worldwide to identify snowflake types during the progress of snowfalls. The result is a unique and scientifically valid resource useful to meteorology and scientific modeling of Earth's Hydrosphere. The Global Snowflake Network (GSN), simultaneously a science program and an education program is presented as a simple, scientifically valid project that has the potential to spread the IPY message and produce a lasting resource to further scientific understanding of Earth's hydrology through the study of snow.
NASA Astrophysics Data System (ADS)
Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.
2015-12-01
On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important geographic locations. Recently, the GFP has developed a second website (http://gfp.usgs.gov) to provide more in-depth scientific descriptions of the time series to the public.
Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs
NASA Astrophysics Data System (ADS)
Gudipati, Murthy; Henderson, Bryana; Bateman, Fred
2017-10-01
MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration, and funded by JPL’s R&TD Program and NASA Solar System Workings Program.
Theissen, K.M.; Dunbar, R.B.; Cooper, A. K.; Mucciarone, D.A.; Hoffmann, D.
2003-01-01
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based ??18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36. 9 ?? 3.3 ka at 0.45 m below sea floor and correlate suspected glacial-interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The ??18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early-mid-Pleistocene (0.9-1.38 Ma). An increase in ?? 18O values after ??? 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The ??18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial-interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16-21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.
2016-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Sea Ice Mass Reconciliation Exercise (SIMRE) for altimetry derived sea ice thickness data sets
NASA Astrophysics Data System (ADS)
Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.
2017-12-01
Satellite altimetry is the primary remote sensing data source for retrieval of Arctic sea-ice thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The Sea Ice Mass Reconciliation Exercise (SIMRE) is a project by the sea-ice radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic sea ice mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent ice thickness estimates. Three regions representative of first-year ice, multiyear ice and mixed ice conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of sea ice thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.
Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)
NASA Astrophysics Data System (ADS)
McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.
2017-12-01
Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.
Coordination and Data Management of the International Arctic Buoy Program
1997-09-30
which can drive sea ice models , and for input into climate change studies. Recent research using the IABP databases includes back and forward trajectory...present. Figure 2 shows the mean annual field of ice motion and sea level pressure. APPROACH Coordination of the IABP falls into the categories of...products of the IABP are now also available on the World Wide Web. Our recent efforts to improve the database have been directed towards producing a
NASA Astrophysics Data System (ADS)
Lear, Caroline H.; Coxall, Helen K.; Foster, Gavin L.; Lunt, Daniel J.; Mawbey, Elaine M.; Rosenthal, Yair; Sosdian, Sindia M.; Thomas, Ellen; Wilson, Paul A.
2015-11-01
Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw-0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.
Thermo-chemical Ice Penetrator for Icy Moons
NASA Astrophysics Data System (ADS)
Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.
2016-12-01
The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.
Technology for a Thermo-chemical Ice Penetrator for Icy Moons
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.
2016-10-01
The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.
NASA Astrophysics Data System (ADS)
Rignot, E. J.; Larour, E. Y.; Scheuchl, B.; Khazendar, A.; Bamber, J. L.; Mouginot, J.
2017-12-01
In 2017, Larsen C experienced one of the largest calving events in the past century, retreating the ice front by 40 km. The rift that led to this calving event originated decades ago along the flank of Hollick-Kenyon Peninsula and stopped along a suture zone, but started progressing again in 2011 and especially 2014-2015, to eventually lead to the calving of A68. The retreat changed the ice front shape between Bawden Ice Rise and Gibbs Ice Rise from convex to concave, similar to what happened to Larsen B in the late 1990s and Larsen A in the 1980s. Following that retreat, Larsen B eventually collapsed in 2002. The calving is not driven by the traditional processes of viscous bending, hydrofracture, calving cliff failure, longitudinal stress stretching, necking of bottom crevasses joining with surface crevasses, but instead by fracture mechanics. Fracture would be facilitated by the melting of the ice mélange filling the rift, a thinning of the ice shelf, a melting of the heterogeneous marine ice column, or changes in the firn/ice column associated with warming. The ice shelf thinned from the top and below over the last decades; altimetry data from 1994 to 2014 suggesting a decrease in ice shelf thickness of 40-50 m near the zone of rupture. Changes in ocean temperature are relatively undocumented in this part of Antarctica. Air temperature has warmed by 2.4 degrees C over the last 3 decades with a return to colder conditions in recent years yet still much warmer than 30 years ago. We detect no significant change in ice shelf velocity from 2006 to 2017, including after the calving event. The calving front has now retreated within 20-30 km of the compressive arch. We analyze the ice mélange in between the rift with Operation IceBridge laser data from 2009 to 2016 and radio echo sounding data from OIB CreSIS sounder since 2009 to detect changes in ice mélange and marine ice composition. We conclude on how the loss of structural rigidity has lead - or not - to the propagation of the rift beyond its natural range in the mid 2010s and what magnitude ocean warming would have been necessary to explain this change. This work was performed under a contract with NASA Cryosphere Program.
NASA Astrophysics Data System (ADS)
Arp, C. D.; Alexeev, V. A.; Bondurant, A. C.; Creighton, A.; Engram, M. J.; Jones, B. M.; Parsekian, A.
2017-12-01
The winter of 2016/2017 was exceptionally warm and snowy along the coast of Arctic Alaska partly due to low fall sea ice extent. Based on several decades of field measurements, we documented a new record low maximum ice thickness (MIT) for lakes on the Barrow Peninsula, averaging 1.2 m. This is in comparison to a long-term average MIT of 1.7 m stretching back to 1962 with a maximum of 2.1 m in 1970 and previous minimum of 1.3 m in 2014. The relevance of thinner lake ice in arctic coastal lowlands, where thermokarst lakes cover greater than 20% of the land area, is that permafrost below lakes with bedfast ice is typically preserved. Lakes deeper than the MIT warm and thaw sub-lake permafrost forming taliks. Remote sensing analysis using synthetic aperture radar (SAR) is a valuable tool for scaling the field observations of MIT to the entire freshwater landscape to map bedfast ice. A new, long-term time-series of late winter multi-platform SAR from 1992 to 2016 shows a large dynamic range of bedfast ice extent, 29% of lake area or 6% of the total land area over this period, and adding 2017 to this record is expected to extend this range further. Empirical models of lake mean annual bed temperature suggest that permafrost begins to thaw at depths less than 60% of MIT. Based on this information and knowledge of average lake ice growth trajectories, we suggest that future SAR analysis of lake ice should focus on mid-winter (January) to evaluate the extent of bedfast ice and corresponding zones of sub-lake permafrost thaw. Tracking changes in these areas from year to year in mid-winter may provide the best landscape-scale evaluation of changing permafrost conditions in lake-rich arctic lowlands. Because observed changes in MIT coupled with mid-winter bedfast ice extent provide much information on permafrost stability, we suggest that these measurements can serve as Essential Climate Variables (EVCs) to indicate past and future changes in lake-rich arctic regions. The strong linkage between declining sea ice and terrestrial freshwater ice thickness, lake ice regimes, and sub-lake permafrost stability suggest more rapid degradation of landscape-wide permafrost than some observations and models might suggest, warranting a targeted program to indicate such arctic land-sea linkages.
Professional Development Which Provides an Icing on the Pedagogical Cake.
ERIC Educational Resources Information Center
Gardner, Jenny
Because the quality of teachers determines the quality of the school system, teachers must be provided with high-caliber inservice programs. During the 1980s, responsibility for the provision of professional development in Australia shifted to local schools. Under the current National Professional Development Program (NPDP), the Australian…
7 CFR 278.1 - Approval of retail food stores and wholesale food concerns.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vendors selling solely ice cream; and specialty doughnut shops or bakeries not selling bread. In addition... FNS determines it is required as a redemption outlet: (1) For one or more specified authorized drug...) Treatment programs. Drug addict or alcoholic treatment and rehabilitation programs wishing to redeem...
7 CFR 278.1 - Approval of retail food stores and wholesale food concerns.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vendors selling solely ice cream; and specialty doughnut shops or bakeries not selling bread. In addition... FNS determines it is required as a redemption outlet: (1) For one or more specified authorized drug...) Treatment programs. Drug addict or alcoholic treatment and rehabilitation programs wishing to redeem...
7 CFR 278.1 - Approval of retail food stores and wholesale food concerns.
Code of Federal Regulations, 2012 CFR
2012-01-01
... vendors selling solely ice cream; and specialty doughnut shops or bakeries not selling bread. In addition... FNS determines it is required as a redemption outlet: (1) For one or more specified authorized drug...) Treatment programs. Drug addict or alcoholic treatment and rehabilitation programs wishing to redeem...
7 CFR 278.1 - Approval of retail food stores and wholesale food concerns.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vendors selling solely ice cream; and specialty doughnut shops or bakeries not selling bread. In addition... FNS determines it is required as a redemption outlet: (1) For one or more specified authorized drug...) Treatment programs. Drug addict or alcoholic treatment and rehabilitation programs wishing to redeem...
7 CFR 278.1 - Approval of retail food stores and wholesale food concerns.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vendors selling solely ice cream; and specialty doughnut shops or bakeries not selling bread. In addition... FNS determines it is required as a redemption outlet: (1) For one or more specified authorized drug...) Treatment programs. Drug addict or alcoholic treatment and rehabilitation programs wishing to redeem...
Special Topics Courses - A Happy Medium between Mini-Courses and Full-Coverage Courses.
ERIC Educational Resources Information Center
Carpenter, John R.; And Others
1979-01-01
Describes a special topics program which allows students some choice in content to be studied. Topics include Continental Drift and Ice Ages, Geology and National Parks, the Coast of South Carolina, and Medical Geology. Student evaluations indicate positive attitudes towards the program. (MA)
NASA Oceanic Processes Program, fiscal year 1983
NASA Technical Reports Server (NTRS)
Nelson, R. M. (Editor); Pieri, D. C. (Editor)
1984-01-01
Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.
Ice Cream Seminars for Graduate Students: Imparting Chemical Information Literacy
ERIC Educational Resources Information Center
Garritano, Jeremy R.
2007-01-01
This article provides information on a chemical information literacy program designed primarily for new graduate students. The full implementation of this program is discussed, including defining its purpose, topics covered, content presented, methods of marketing, and evaluation. The result is a series of voluntary seminars given biweekly…
NASA Astrophysics Data System (ADS)
Behrendt, J. C.
2005-12-01
When 12 countries established scientific stations in Antarctica for the 1957-58 International Geophysical Year (IGY), the Cold War was at its height, seven countries had made claims in Antarctica, and the Antarctic Treaty was a few years in the future. The U.S. program was operated by the Navy and territorial claims were secretly made at several locations during the IGY; these were never officially announced and the U.S. remains a non-claimant state. I was a graduate student geophysicist (assistant seismologist) on the unexplored Filchner-Ronne Ice Shelf as part of the only large scale field project of the U.S. program. Starting in 1956, the U.S. began a series of oversnow traverses making seismic reflection ice soundings (and other geophysical measurements) and glaciological studies to determine the thickness and budget of the Antarctic Ice Sheet. The USSR and France made similar traverses coordinated through the IGY. Although geology and topographic mapping were not part of the IGY program because of the claims issue, and the possibility of mineral resources discoveries, the oversnow traverse parties did geologic work where unknown mountains were discovered. The oversnow traverses continued through 1966, and resulted in an excellent first approximation of the snow surface elevation, ice thickness and bed topography of Antarctica, as well as mean annual temperature of that era and snow accumulation. The vacuum tube dictated the logistics of the oversnow traverse program. Seismic equipment including heavy batteries weighed about 500 kg. Therefore a Sno-Cat tracked vehicle was needed to carry this load. Usually three such vehicles were needed for safety. Because about 3-4 l/km of Sno-Cat fuel was consumed, as much as 120 kg/day of fuel was required. A resupply flight could only carry only about 600 kg/flight (varying greatly as to range and type of aircraft), the major air logistic program of the U.S. IGY program were the three oversnow traverses (other than the resupply of the seven U.S. stations in Antarctica). The Filchner Ice Traverse, on which I participated, encountered many crevasses. Vehicles broke through thin snow bridges and one man fell deep into a crevasse. Fortunately there were no deaths and only one serious injury resulting from crevasse accidents on the U.S. Program. Because of hidden agenda related to the Cold War, U.S. (and possibly Soviet) scientists felt that Antarctic research was a duty rather than a privilege as today. The U.S. air program averaged 3.8 deaths/year from 1955-1961 in contrast to 0.1 death/year since about 1970. At least three U.S. scientists died in the early period of the U.S. program. When, if ever, do the ends justify the means? It is one thing if mature individual researchers, professional technicians, aviators, and others take risks with full awareness of the hazards. But it is quite another thing if relatively naive graduate students and new Ph.D.s looking for adventure, such as my colleagues and I in the 1956-1962 period, are sent into harm's way without knowing specifically what they will face, by ambitious senior researchers pursuing their personal scientific objectives, even though these may be of vital national and international importance. I have worked both sides of this street in the past 50 years.
Coastal environment of the Beaufort Sea from field data and ERTS-1 imagery, summer 1972
NASA Technical Reports Server (NTRS)
Reimnitz, E. (Principal Investigator); Barnes, P. W.
1972-01-01
The author has identified the following significant results. An extensive field program during the spring and summer in the coastal Beaufort Sea test site has been completed using a wide variety of sensing techniques. Reduction of field data and ERTS-1 image analysis have shown the coastal environment to be complexly influenced by unique processes, most of which involve or are related to sea ice. Active sedimentologic processes along the Arctic coast are set in motion by the melting, flooding, and eventual overflow of rivers onto the sea ice. It is now apparent that only minor amounts of sediment are transported offshore at this stage; however, scouring of the bottom is significant beneath the strudels (drain holes) which develop in the fast ice canopy in the region of overflow. Areal salinity and turbidity patterns together with ERTS-1 imagery confirm a consistent influx of colder, clearer, saltier water towards the coast just east of the Colville River. Strong (up to 3 knots) bidirectional but intermittent currents often manifest themselves in imagery and aerial photographs as wakes behind grounded ice. Ice movement vectors generated from repetitive images indicate that ice drift is closely associated with wind direction, especially in shallow bays, and displacements of 4-22 kilometers were noted in 24 hours.
Progress in the Development of Practical Remote Detection of Icing Conditions
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Politovich, Marcia K.; Zednik, Stephan; Isaac, George A.; Cober, Stewart
2006-01-01
The NASA Icing Remote Sensing System (NIRSS) has been under definition and development at NASA Glenn Research Center since 1997. The goal of this development activity is to produce and demonstrate the required sensing and data processing technologies required to accurately remotely detect and measure icing conditions aloft. As part of that effort NASA has teamed with NCAR to develop software to fuse data from multiple instruments into a single detected icing condition product. The multiple instrument approach utilizes a X-band vertical staring radar, a multifrequency microwave, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled liquid water profile and aircraft hazard depiction. Ground-based, remotely-sensed measurements and in-situ measurements from research aircraft were gathered during the international 2003-2004 Alliance Icing Research Study (AIRS II). Comparisons between the remote sensing system s fused icing product and the aircraft measurements are reviewed here. While there are areas where improvement can be made, the cases examined suggest that the fused sensor remote sensing technique appears to be a valid approach.
Retrieving Ice Basal Motion Using the Hydrologically Coupled JPL/UCI Ice Sheet System Model (ISSM)
NASA Astrophysics Data System (ADS)
Khakbaz, B.; Morlighem, M.; Seroussi, H. L.; Larour, E. Y.
2011-12-01
The study of basal sliding in ice sheets requires coupling ice-flow models with subglacial water flow. In fact, subglacial hydrology models can be used to model basal water-pressure explicitly and to generate basal sliding velocities. This study addresses the addition of a thin-film-based subglacial hydrologic module to the Ice Sheet System Model (ISSM) developed by JPL in collaboration with the University of California Irvine (UCI). The subglacial hydrology model follows the study of J. Johnson (2002) who assumed a non-arborscent distributed drainage system in the form of a thin film beneath ice sheets. The differential equation that arises from conservation of mass in the water system is solved numerically with the finite element method in order to obtain the spatial distribution of basal water over the study domain. The resulting sheet water thickness is then used to model the basal water-pressure and subsequently the basal sliding velocity. In this study, an introduction and preliminary results of the subglacial water flow and basal sliding velocity will be presented for the Pine Island Glacier west Antarctica.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.
NASA Astrophysics Data System (ADS)
Wiggins, H. V.; Eicken, H.; Fox, S. E.
2012-12-01
SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming permafrost, land ice and sea level, and societal and policy implications. Together, the goals will provide significant insight into arctic system change as a whole. The SEARCH SSC will release the goals in their revised form and then work closely with agency representatives to implement the goals through research opportunities and community activities. SEARCH is guided by a Science Steering Committee and several panels and working groups, with broad representation of the research community. SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an agency observer. For further information, please visit the website: http://www.arcus.org/search or contact: Helen V. Wiggins: helen@arcus.org, SEARCH Project Office, Arctic Research Consortium of the U.S. (ARCUS).
Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere
NASA Astrophysics Data System (ADS)
Moore, Marla; Hudson, Reggie; Ferrante, Robert; Moore, William
Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 cm-1 ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2 N2 , cyanogen; CH3 CN, acetonitrile; C2 H5 CN, propionitrile; and HC3 N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous-and crystalline-phase at 670 nm. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous-and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryo-stat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data. We acknowledge Mark Loeffler who recently joined in our refractive index measurements. The authors also acknowledge support from the Cassini Data Analysis Program. RLH and MHM acknowledge additional funding from NASA's PGG and Outer Planets Programs, and the Goddard Center for Astrobiology.
NASA Astrophysics Data System (ADS)
Sheffield Guy, L.; Wiggins, H. V.; Schreck, M. B.; Metcalf, V. K.
2017-12-01
The Sea Ice for Walrus Outlook (SIWO) provides Alaskan Native subsistence walrus hunters and Bering Strait coastal communities with weekly reports on spring sea ice and weather conditions to promote hunter safety, food security, and preservation of cultural heritage. These reports integrate scientific and Indigenous knowledge into a co-produced tool that is used by both local and scientific communities. SIWO is a team effort led by the Arctic Research Consortium of the U.S. (ARCUS, with funding from NSF Arctic Sciences Section), with the Eskimo Walrus Commission, National Weather Service - Alaska Sea Ice Program, University of Alaska Fairbanks - International Arctic Research Center, and local observers. For each weekly outlook, the National Weather Service provides location-specific weather and sea ice forecasts and regional satellite imagery. Local observations of sea ice, weather, and hunting conditions are provided by observers from five Alaskan communities in the Bering Strait region: Wales, Shishmaref, Nome, Gambell, and Savoonga. These observations typically include a written description of conditions accompanied by photographs of sea ice or subsistence activities. Outlooks are easily accessible and provide a platform for sharing of knowledge among hunters in neighboring communities. The opportunity to contribute is open, and Indigenous language and terms are encouraged. These observations from local hunters and community members also provide a valuable tool for validation of weather forecasts, satellite products, and other information for scientists. This presentation will discuss the process, products, and mutually beneficial outcomes of the Sea Ice for Walrus Outlook.
The Ice Worlds Partnership Takes Planetarium Audiences to our Polar Regions and Beyond
NASA Astrophysics Data System (ADS)
Schloss, A.; Sumners, C.; Reiff, P.
2008-12-01
The modern planetarium is an immersive full-dome theater that can take audiences to Polar Regions in the past, present, and future and can simulate dynamic polar events. The Ice Worlds show was produced for the International Polar Year by a collaborative effort led by the University of New Hampshire in partnership with the Houston Museum of Natural Science and Evans & Sutherland, and funded by the National Science Foundation. Ice Worlds uses an innovative mix of data, satellite imagery, actual footage in the field and animated scenes to tell the story of ice on Earth. Planetariums are extending their traditional space science content with Earth science topics: a move facilitated by the revolution in full-dome immersive video and techniques for capturing high-resolution still and video images. Ice Worlds appeals to planetarium audiences by also comparing Earth to other icy planets in our solar system. Ice Worlds presented several challenges: how to make a show about ice interesting and informative, how to include new research findings in the show without dating it, how to make the show appropriate for planetariums and suitable for use in school programs, and most critical - how to produce the entire show from initial concept to final cut in nine months. This paper describes the steps in producing Ice Worlds from concept to final product, and describes supporting materials designed to support education and outreach in the fast-growing portable dome (Discovery Dome) arena. We will show clips from the show. If space permits, we will show the show in fulldome in a portable dome system.
Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
Laidre, Kristin L; Stern, Harry; Kovacs, Kit M; Lowry, Lloyd; Moore, Sue E; Regehr, Eric V; Ferguson, Steven H; Wiig, Øystein; Boveng, Peter; Angliss, Robyn P; Born, Erik W; Litovka, Dennis; Quakenbush, Lori; Lydersen, Christian; Vongraven, Dag; Ugarte, Fernando
2015-06-01
Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979-2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5-10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
3D full-Stokes modeling of the grounding line dynamics of Thwaites Glacier, West Antarctica
NASA Astrophysics Data System (ADS)
Yu, H.; Rignot, E. J.; Morlighem, M.; Seroussi, H. L.
2016-12-01
Thwaites Glacier (TG) is the broadest and second largest ice stream in the West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of this glacier in the past few decades, which has been attributed to the enhanced basal melting in the Amundsen Sea Embayment. With a retrograde bed configuration, TG is on the verge of collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line position of TG to determine its stability, rate of retreat and sensitivity to enhanced basal melting using a three-dimensional full-Stokes numerical model. Simulations with simplified models (Higher Order (HO), and Shelfy-Stream Approximation (SSA)) are also conducted for comparison. We first validate our full Stokes model by conducting MISMIP3D experiments. Then we applied the model to TG using new bed elevation dataset combining IceBridge (OIB) gravity data, OIB ice thickness, ice flow vectors from interferometry and a mass conservation method at 450 m spacing. Basal friction coefficient and ice rheology of floating ice are inferred to match observed surface velocity. We find that the grounding line is capable of retreating at rate of 1km/yr under current forcing and that the glacier's sensitivity to melt is higher in the Stokes model than HO or SSA, which means that projections using SSA or HO might underestimate the future rate of retreat of the glacier. This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.
NASA Astrophysics Data System (ADS)
Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.
2018-05-01
This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.
Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen
2015-09-01
To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.
Validation of the 1/12 degrees Arctic Cap Nowcast/Forecast System (ACNFS)
2010-11-04
IBM Power 6 ( Davinci ) at NAVOCEANO with a 2 hr time step for the ice model and a 30 min time step for the ocean model. All model boundaries are...run using 320 processors on the Navy DSRC IBM Power 6 ( Davinci ) at NAVOCEANO. A typical one-day hindcast takes approximately 1.0 wall clock hour...meter. As more observations become available, further studies of ice draft will be used as a validation tool . The IABP program archived 102 Argos
Validation of the 1/12 deg Arctic Cap Nowcast/Forecast System (ACNFS)
2010-11-04
IBM Power 6 ( Davinci ) at NAVOCEANO with a 2 hr time step for the ice model and a 30 min time step for the ocean model. All model boundaries are...run using 320 processors on the Navy DSRC IBM Power 6 ( Davinci ) at NAVOCEANO. A typical one-day hindcast takes approximately 1.0 wall clock hour...meter. As more observations become available, further studies of ice draft will be used as a validation tool . The IABP program archived 102 Argos
1981-06-01
I0’ writing -up of results, and synthesis of the Bering km in surface area; the Bering Sea area is on the MIZ results with incoming results from the...application to rapid Ielting . Rev. Iho trne.ali Sea sdui ri Al ).f X, N. pi I 1975 Api I 19761 li la yer lj t ’ii.,i r wNil liet.,ii fol r1 od,% ’ir e r. S
1988-01-01
Joe D. Elms , for their editorial evaluation of the vironmental Assessmant Program. Additional depends to a large extent on weather condi- isopleth...waves, icing rates are open waters and coastal sectionsofAlaska.The temperatures less than 8°C, winds of 25 knots lower. icing causes slippery decks...thereby bias the oceanic climatology towards fair weather. A recent study by Elms (1986), in which he compared the Volunteer Observing Ship (VOS) data
Insights Into Ice-Ocean Interactions on Earth and Europa
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, B. E.; Winslow, L.; Doran, P. T.; Kim, S.; Walker, C. C.; Buffo, J.; Skidmore, M. L.; Soderlund, K. M.; Blankenship, D. D.; Bramall, N. E.; Johnson, A.; Rack, F. R.; Stone, W.; Kimball, P.; Clark, E.
2016-12-01
Europa and Earth appear to be drastically different worlds, yet below their icy crusts the two likely share similar oceanic conditions including temperatures, pressures (relatively), and salinity. Earth's ice shelves provide an important analog for the physiochemical, and potentially microbial, characteristics of icy worlds. NASA's ASTEP program funded Sub-Ice Marine and PLanetary-analog Ecosystems (SIMPLE) to help address the fundamental processes occurring at ice ocean interfaces, the extent and limitations of life in sub-ice environments, and how environmental properties and biological communities interact. The relationships between currents, temperature, and salinity with physical processes such as melt, freeze, and marine ice accretion at the basal surfaces of ice shelves influence habitability yet are poorly understood even on Earth. Resultant processes such as the inclusion of ocean-derived material in ice shelves and the transport of biotics from the interface towards the surface via ablation, convection, and diapirism also have important astrobiological implications for Europa.Here, we present results from CTD and imaging data gathered at multiple locations beneath the McMurdo Ice Shelf (MIS) to highlight how the ice and ocean interact in a Europan analog environment. Over the course of three years, the SIMPLE team observed heterogeneity in the water column and basal ice beneath the MIS. During the recent 2015 field season we deployed ARTEMIS, an AUV capable of characterizing the interface over multiple kilometer missions, and conducted daily CTD casts to 480 m (bottom depth 529 m) in November adjacent to the terminus of the MIS to capture temporal variation in the water column. These casts show the presence of transient water masses related to the tidal period, each containing a single or double temperature minimum (down to -1.97 °C from -1.93 °C) between 60 to 150 m depth. Further comparisons between years and sampling locations demonstrate the homogeneity of the subshelf environment even on the scale of tens of kilometers. The technologies supported by SIMPLE are also supporting the ice penetrating radar on the upcoming Europa Flagship mission, and will hopefully inform future ocean world exploration.
Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness
NASA Astrophysics Data System (ADS)
Singh, Preetpal
Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.