Sample records for tails intracluster star

  1. Abundant molecular gas and inefficient star formation in intracluster regions: ram pressure stripped tail of the Norma galaxy ESO137-001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jáchym, Pavel; Combes, Françoise; Cortese, Luca

    For the first time, we reveal large amounts of cold molecular gas in a ram-pressure-stripped tail, out to a large 'intracluster' distance from the galaxy. With the Actama Pathfinder EXperiment (APEX) telescope, we have detected {sup 12}CO(2-1) emission corresponding to more than 10{sup 9} M {sub ☉} of H{sub 2} in three Hα bright regions along the tail of the Norma cluster galaxy ESO 137-001, out to a projected distance of 40 kpc from the disk. ESO 137-001 has an 80 kpc long and bright X-ray tail associated with a shorter (40 kpc) and broader tail of numerous star formingmore » H II regions. The amount of ∼1.5 × 10{sup 8} M {sub ☉} of H{sub 2} found in the most distant region is similar to molecular masses of tidal dwarf galaxies, though the standard Galactic CO-to-H{sub 2} factor could overestimate the H{sub 2} content. Along the tail, we find the amount of molecular gas to drop, while masses of the X-ray-emitting and diffuse ionized components stay roughly constant. Moreover, the amounts of hot and cold gas are large and similar, and together nearly account for the missing gas from the disk. We find a very low SFE (τ{sub dep} > 10{sup 10} yr) in the stripped gas in ESO 137-001 and suggest that this is due to a low average gas density in the tail, or turbulent heating of the interstellar medium that is induced by a ram pressure shock. The unprecedented bulk of observed H{sub 2} in the ESO 137-001 tail suggests that some stripped gas may survive ram pressure stripping in the molecular phase.« less

  2. Isolated Star-Forming Cloud Discovered in Intracluster Space

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Subaru and VLT Join Forces in New Study of Virgo Galaxy Cluster [1] Summary At a distance of some 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation of the same name (The Virgin) and is a large and dense assembly of hundreds of galaxies. The "intracluster" space between the Virgo galaxies is permeated by hot X-ray emitting gas and, as has become clear recently, by a sparse "intracluster population of stars". So far, stars have been observed to form in the luminous parts of galaxies. The most massive young stars are often visible indirectly by the strong emission from surrounding cocoons of hot gas, which is heated by the intense radiation from the embedded stars. These "HII regions" (pronounced "Eitch-Two" and so named because of their content of ionized hydrogen) may be very bright and they often trace the beautiful spiral arms seen in disk galaxies like our own Milky Way. New observations by the Japanese 8-m Subaru telescope and the ESO Very Large Telescope (VLT) have now shown that massive stars can also form in isolation, far from the luminous parts of galaxies. During a most productive co-operation between astronomers working at these two world-class telescopes, a compact HII region has been discovered at the very boundary between the outer halo of a Virgo cluster galaxy and Virgo intracluster space. This cloud is illuminated and heated by a few hot and massive young stars. The estimated total mass of the stars in the cloud is only a few hundred times that of the Sun. Such an object is rare at the present epoch. However, there may have been more in the past, at which time they were perhaps responsible for the formation of a fraction of the intracluster stellar population in clusters of galaxies. Massive stars in such isolated HII regions will explode as supernovae at the end of their short lives, and enrich the intracluster medium with heavy elements. Observations of two other Virgo cluster

  3. The interaction between the intracluster medium and the cluster stellar content

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh

    We study specific aspects of the relationship between the stellar content and the intracluster media (ICM) of galaxy clusters. First, we attempt to solve the long-standing difficulty in explaining the highly enriched ICM by including a previously unaccounted for stellar component: the intracluster stars. To determine the relative contributions of galactic and intracluster stars to the enrichment of the intracluster medium (ICM), we present X-ray surface brightness, temperature, and Fe abundance profiles for a set of twelve galaxy clusters for which we have extensive optical photometry. Assuming a standard IMF and simple chemical evolution model scaled to match the present-day cluster early-type SN Ia rate, the stars in the brightest cluster galaxy (BCG) plus the intracluster stars (ICS) generate 31 +11-9 %, on average, of the observed ICM Fe within r500 (∼0.6 - r200 , the virial radius). Because the ICS typically contribute 80% of the BCG+ICS Fe, we conclude that the ICS are significant, yet often neglected, contributors to the ICM Fe within r500 . However, the BCG+ICS fall short of producing all the Fe, so metal loss from stars in other cluster galaxies must also contribute. By combining the enrichment from intracluster and galactic stars, we can account for all the observed Fe. These models require a galactic metal loss fraction (0.84 +0.11 -0.14 ) that, while large, is consistent with theoretical models of Fe mass not retained by galactic stars. The SN Ia rates, especially as a function of galaxy environment and redshift, remain a significant source of uncertainty in further constraining the metal loss fraction. Second, we study the effects of ram-pressure stripping on infalling galaxies using a warm molecular hydrogen (H2 ) as a tracer by carrying out a Spitzer infrared spectrograph (IRS) survey of four galaxies with signatures of ram-pressure stripping. We have discovered two galaxies, ESO 137-001 and NGC 4522, with warm htwo tails stretching 20 kpc and 4

  4. Orphan Stars Found in Long Galaxy Tail

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Astronomers have found evidence that stars have been forming in a long tail of gas that extends well outside its parent galaxy. This discovery suggests that such "orphan" stars may be much more prevalent than previously thought. The comet-like tail was observed in X-ray light with NASA's Chandra X-ray Observatory and in optical light with the Southern Astrophysical Research (SOAR) telescope in Chile. The feature extends for more than 200,000 light years and was created as gas was stripped from a galaxy called ESO 137-001 that is plunging toward the center of Abell 3627, a giant cluster of galaxies. "This is one of the longest tails like this we have ever seen," said Ming Sun of Michigan State University, who led the study. "And, it turns out that this is a giant wake of creation, not of destruction." Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 Chandra X-ray Image of ESO 137-001 and Tail in Abell 3627 The observations indicate that the gas in the tail has formed millions of stars. Because the large amounts of gas and dust needed to form stars are typically found only within galaxies, astronomers have previously thought it unlikely that large numbers of stars would form outside a galaxy. "This isn't the first time that stars have been seen to form between galaxies," said team member Megan Donahue, also of MSU. "But the number of stars forming here is unprecedented." The evidence for star formation in this tail includes 29 regions of ionized hydrogen glowing in optical light, thought to be from newly formed stars. These regions are all downstream of the galaxy, located in or near the tail. Two Chandra X-ray sources are near these regions, another indication of star formation activity. The researchers believe the orphan stars formed within the last 10 million years or so. The stars in the tail of this fast-moving galaxy, which is some 220 million light years away, would be much more isolated than the vast majority of stars in galaxies. H-alpha Image of

  5. TIDAL TAILS OF MINOR MERGERS. II. COMPARING STAR FORMATION IN THE TIDAL TAILS OF NGC 2782

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knierman, Karen A.; Scowen, Paul; Veach, Todd

    2013-09-10

    The peculiar spiral NGC 2782 is the result of a minor merger with a mass ratio {approx}4: 1 occurring {approx}200 Myr ago. This merger produced a molecular and H I-rich, optically bright eastern tail and an H I-rich, optically faint western tail. Non-detection of CO in the western tail by Braine et al. suggested that star formation had not yet begun. However, deep UBVR and H{alpha} narrowband images show evidence of recent star formation in the western tail, though it lacks massive star clusters and cluster complexes. Using Herschel PACS spectroscopy, we discover 158 {mu}m [C II] emission at themore » location of the three most luminous H{alpha} sources in the eastern tail, but not at the location of the even brighter H{alpha} source in the western tail. The western tail is found to have a normal star formation efficiency (SFE), but the eastern tail has a low SFE. The lack of CO and [C II] emission suggests that the western tail H II region may have a low carbon abundance and be undergoing its first star formation. The western tail is more efficient at forming stars, but lacks massive clusters. We propose that the low SFE in the eastern tail may be due to its formation as a splash region where gas heating is important even though it has sufficient molecular and neutral gas to make massive star clusters. The western tail, which has lower gas surface density and does not form high-mass star clusters, is a tidally formed region where gravitational compression likely enhances star formation.« less

  6. Multi-wavelength studies of spectacular ram-pressure stripping of a galaxy. II. Star formation in the tail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Masafumi; Gu, Liyi; Nakazawa, Kazuhiro

    With multiband photometric data in public archives, we detected four intracluster star-forming regions in the Virgo Cluster. Two of them were at a projected distance of 35 kpc from NGC 4388 and the other two were 66 kpc away. Our new spectroscopic observations revealed that their recessional velocities were comparable to the ram-pressure-stripped tail of NGC 4388 and confirmed the association. The stellar mass of the star-forming regions ranged from 10{sup 4} to 10{sup 4.5} M {sub ☉} except for that of the faintest one, which was <10{sup 3} M {sub ☉}. The metallicity was comparable to a solar abundancemore » and the age of the stars was ∼10{sup 6.8} yr. Their young stellar age meant that the star formation should have started after the gas was stripped from NGC 4388. This implied in situ condensation of the stripped gas. We also found that two star-forming regions were located near the leading edge of a filamentary dark cloud. The extinction of the filament was smaller than that derived from the Balmer decrement of the star-forming regions, implying that the dust in the filament would be locally dense around the star-forming regions.« less

  7. Shocking Tails in the Major Merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  8. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-raymore » images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.« less

  9. AGES OF STAR CLUSTERS IN THE TIDAL TAILS OF MERGING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulia, A. J.; Chandar, R.; Whitmore, B. C.

    We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find amore » lack of very young clusters (≤10 Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, dN/dL ∝ L{sup α}, with −2.6 < α < −2.0. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of (1) newly formed stars and clusters along the dense center of the tail and (2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.« less

  10. A 70 Kiloparsec X-Ray Tail in the Cluster A3627

    NASA Technical Reports Server (NTRS)

    Sun, M.; Jones, C.; Forman, W.; Nulsen, P. E. J.; Donahue, M.; Voit, G. M.

    2006-01-01

    We present the discovery of a 70 kpc X-ray tail behind the small late-type galaxy ESO 137-001, in the nearby, hot (T=6.5 keV) merging cluster A3627, from both Chandra and XMM-Newton observations. The tail has a length-to-width ratio of approx. 10. It is luminous (L(0.5-2keV) approx 1041 ergs/s), with a temperature of approx. 0.7 keV and an X-ray gas mass of approx 10(exp 9) solar masses (approx 10% of the galaxy's stellar mass). We interpret this tail as the stripped interstellar medium of ESO 137-001 mixed with the hot cluster medium, with this blue galaxy being converted into a gas-poor galaxy. Three X-ray point sources are detected in the axis of the tail, which may imply active star formation there. The straightness and narrowness of the tail also imply that the turbulence in the intracluster medium is not strong on scales of 20-70 kpc.

  11. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  12. Ram pressure stripping in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Verdugo, C.; Combes, F.; Dasyra, K.; Salomé, P.; Braine, J.

    2015-10-01

    Gas can be violently stripped from their galaxy disks in rich clusters, and be dispersed over 100 kpc-scale tails or plumes. Young stars have been observed in these tails, suggesting they are formed in situ. This will contribute to the intracluster light, in addition to tidal stripping of old stars. We want to quantify the efficiency of intracluster star formation. We present CO(1-0) and CO(2-1) observations, made with the IRAM-30 m telescope, towards the ram-pressure stripped tail northeast of NGC 4388 in Virgo. We selected HII regions found all along the tails, together with dust patches, as observing targets. We detect molecular gas in 4 positions along the tail, with masses between 7 × 105 to 2 × 106M⊙. Given the large distance from the NGC 4388 galaxy, the molecular clouds must have formed in situ, from the HI gas plume. We compute the relation between surface densities of star formation and molecular gas in these regions, and find that the star formation has very low efficiency. The corresponding depletion time of the molecular gas can be up to 500 Gyr and more. Since this value exceeds a by far Hubble time, this gas will not be converted into stars, and will stay in a gaseous phase to join the intracluster medium.

  13. The Relationship Between Brightest Cluster Galaxy Star Formation and the Intracluster Medium in CLASH

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Larson, Rebecca; Donahue, Megan; Moustakas, John

    2017-09-01

    We study the nature of feedback mechanisms in the 11 CLASH brightest cluster galaxies (BCGs) that exhibit extended ultraviolet and nebular line emission features. We estimate star formation rates (SFRs), dust masses, and starburst durations using a Bayesian photometry-fitting technique that accounts for both stellar and dust emission from the UV through far-IR. By comparing these quantities to intracluster medium (ICM) cooling times and freefall times derived from X-ray observations and lensing estimates of the cluster mass distribution, we discover a tight relationship between the BCG SFR and the ICM cooling time to freefall time ratio, {t}{cool}/{t}{ff}, with an upper limit on the intrinsic scatter of 0.15 dex. Furthermore, starburst durations may correlate with ICM cooling times at a radius of 0.025 {R}500, and the two quantities converge upon reaching the gigayear regime. Our results provide a direct observational link between the thermodynamical state of the ICM and the intensity and duration of BCG star formation activity, and appear consistent with a scenario where active galactic nuclei induce condensation of thermally unstable ICM overdensities that fuel long-duration (>1 Gyr) BCG starbursts. This scenario can explain (a) how gas with a low cooling time is depleted without causing a cooling flow and (b) the scaling relationship between SFR and {t}{cool}/{t}{ff}. We also find that the scaling relation between SFR and dust mass in BCGs with SFRs < 100 {M}⊙ yr-1 is similar to that in star-forming field galaxies; BCGs with large (> 100 {M}⊙ yr-1) SFRs have dust masses comparable to extreme starbursts.

  14. Enrichment and heating of the intracluster medium by ejection from galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Chris; Evrard, August

    1993-01-01

    Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.

  15. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head-Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    NASA Astrophysics Data System (ADS)

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2017-04-01

    The distinctive morphology of head-tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head-tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head-tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head-tail radio galaxies.

  16. Three-dimensional Magnetohydrodynamical Simulations of the Morphology of Head–Tail Radio Galaxies Based on the Magnetic Tower Jet Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Zhaoming; Yuan, Feng; Li, Hui

    The distinctive morphology of head–tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head–tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather.more » Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head–tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head–tail radio galaxies.« less

  17. NGC 2782: A Merger Remnant with Young Stars in its Gaseous Tidal Tail

    NASA Technical Reports Server (NTRS)

    Torres-Flores, S.; de Oliveira, C. Mendes; de Mello, D. F.; Scarano, S. Jr.; Urrutia-Viscarra, R.

    2012-01-01

    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGG 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of l to ll11yr and masses ranging from 10(exp 3.9) to l0(exp 4.6) Solar Mass. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74+/-0.20, 8.81+/-0.20 and 8.78+/-0.20). These metallicities are similar to the value presented by the nuclear region of NGG 2782 and also similar to the value presented for an object located close to the main body of NGG 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGG 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

  18. Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.

  19. The Physical Properties of Intracluster Gas at z > 1

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Ford, Holland C.

    2004-01-01

    We have used XMM-Newton, Chandra and HST/ACS data on one of the most distant clusters known to date, RDCS1252-29 at z= 1.24, to measure the mass of its baryonic and dark components for the first time at these large redshifts. By comparing physical properties of cluster galaxies and of the X-ray emitting intra-cluster medium (including the iron abundance) with those in low-redshift clusters, we have found that little evolution has taken place over 60% of the lifetime of the Universe. This suggests that most of the stars formed at z>approx.3 and metal enrichment processes took place early in the evolutionary history of galaxy clusters. These findings have a strong bearing on galaxy and cluster evolution models.

  20. The Importance and Role of Intracluster Correlations in Planning Cluster Trials

    PubMed Central

    Preisser, John S.; Reboussin, Beth A.; Song, Eun-Young; Wolfson, Mark

    2008-01-01

    There is increasing recognition of the critical role of intracluster correlations of health behavior outcomes in cluster intervention trials. This study examines the estimation, reporting, and use of intracluster correlations in planning cluster trials. We use an estimating equations approach to estimate the intracluster correlations corresponding to the multiple-time-point nested cross-sectional design. Sample size formulae incorporating 2 types of intracluster correlations are examined for the purpose of planning future trials. The traditional intracluster correlation is the correlation among individuals within the same community at a specific time point. A second type is the correlation among individuals within the same community at different time points. For a “time × condition” analysis of a pretest–posttest nested cross-sectional trial design, we show that statistical power considerations based upon a posttest-only design generally are not an adequate substitute for sample size calculations that incorporate both types of intracluster correlations. Estimation, reporting, and use of intracluster correlations are illustrated for several dichotomous measures related to underage drinking collected as part of a large nonrandomized trial to enforce underage drinking laws in the United States from 1998 to 2004. PMID:17879427

  1. Simulating the interaction of jets with the intracluster medium

    NASA Astrophysics Data System (ADS)

    Weinberger, Rainer; Ehlert, Kristian; Pfrommer, Christoph; Pakmor, Rüdiger; Springel, Volker

    2017-10-01

    Jets from supermassive black holes in the centres of galaxy clusters are a potential candidate for moderating gas cooling and subsequent star formation through depositing energy in the intracluster gas. In this work, we simulate the jet-intracluster medium interaction using the moving-mesh magnetohydrodynamics code arepo. Our model injects supersonic, low-density, collimated and magnetized outflows in cluster centres, which are then stopped by the surrounding gas, thermalize and inflate low-density cavities filled with cosmic rays. We perform high-resolution, non-radiative simulations of the lobe creation, expansion and disruption, and find that its dynamical evolution is in qualitative agreement with simulations of idealized low-density cavities that are dominated by a large-scale Rayleigh-Taylor instability. The buoyant rising of the lobe does not create energetically significant small-scale chaotic motion in a volume-filling fashion, but rather a systematic upward motion in the wake of the lobe and a corresponding back-flow antiparallel to it. We find that, overall, 50 per cent of the injected energy ends up in material that is not part of the lobe, and about 25 per cent remains in the inner 100 kpc. We conclude that jet-inflated, buoyantly rising cavities drive systematic gas motions that play an important role in heating the central regions, while mixing of lobe material is subdominant. Encouragingly, the main mechanisms responsible for this energy deposition can be modelled already at resolutions within reach in future, high-resolution cosmological simulations of galaxy clusters.

  2. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  3. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  4. A Tale of Two Tails: Exploring Stellar Populations in the Tidal Tails of NGC 3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Konstantopoulos, Iraklis

    2016-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. We have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC 3256's twin tidal tails serve as a case study for this new technique. Our results show color values of u - g = 1.15 and r - i = 0.08 for the Western tail, and u - g = 1.33 and r - i = 0.22 for the Eastern tail, corresponding to discrepant ages between the tails of approximately 320 Myr and 785 Myr, respectively. With the interaction age of the system measured at 400 Myr, we find the stellar light in Western tail to be dominated by disrupted star clusters formed during and after the interaction, whereas the light from the Eastern tail is dominated by a 10 Gyr population originating from the host galaxies. We fit the Eastern tail color to a Mixed Stellar Population (MSP) model comprised 94% by mass of a 10 Gyr stellar population, and 6% of a 309 Myr population. We find 52% of the bolometric flux originating from this 10 Gyr population. We also detect a blue to red color gradient in each tail, running from galactic center to tail tip. In addition to tidal tail light, we detect 29 star cluster candidates (SCCs) in the Western tail and 19 in the Eastern, with mean ages of 282 Myr and 98 Myr respectively. Interestingly, we find an excess of very blue SCCs in the Eastern tail as compared to the Western tail, marking a recent, small episode of star formation.

  5. Lost but not forgotten: intracluster light in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    DeMaio, Tahlia; Gonzalez, Anthony H.; Zabludoff, Ann; Zaritsky, Dennis; Connor, Thomas; Donahue, Megan; Mulchaey, John S.

    2018-03-01

    With Hubble Space Telescope imaging, we investigate the progenitor population and formation mechanisms of the intracluster light (ICL) for 23 galaxy groups and clusters at 0.29 ≤ z ≤ 0.89. The colour gradients of the BCG+ICL become bluer with increasing radius out to 53-100 kpc for all but one system, suggesting that violent relaxation after major mergers with the BCG cannot be the dominant source of ICL. The BCG+ICL luminosities and stellar masses are too large for the ICL stars to come from the dissolution of dwarf galaxies alone, given the observed evolution of the faint end of the cluster galaxy luminosity function, implying instead that the ICL grows from the stripping of more massive galaxies. Using the colours of cluster members from the CLASH high-mass sample, we place conservative lower limits on the luminosities of galaxies from which the ICL at r < 100 kpc could originate via stripping. We find that the ICL at 100 kpc has a colour similar to a 1010.0 M⊙ galaxy and that 75 per cent of the total BCG+ICL luminosity at r < 100 kpc is consistent with originating in galaxies with L > 0.2 L* (log(M★ [M⊙])>10.4), assuming conservatively that these galaxies are completely disrupted. We conclude that the tidal stripping of massive galaxies is the likely source of the intracluster light from 10 to 100 kpc for galaxy groups and clusters.

  6. Metal enrichment of the intracluster medium: SN-driven galactic winds

    NASA Astrophysics Data System (ADS)

    Baumgartner, V.; Breitschwerdt, D.

    2009-12-01

    % We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.

  7. A Multiphase Model for the Intracluster Medium

    NASA Technical Reports Server (NTRS)

    Nagai, Daisuke; Sulkanen, Martin E.; Evrard, August E.

    1999-01-01

    Constraints on the clustered mass density of the universe derived from the observed population mean intracluster gas fraction of x-ray clusters may be biased by reliance on a single-phase assumption for the thermodynamic structure of the intracluster medium (ICM). We propose a descriptive model for multiphase structure in which a spherically symmetric ICM contains isobaric density perturbations with a radially dependent variance. Fixing the x-ray emission and emission weighted temperature, we explore two independently observable signatures of the model in the parameter space. For bremsstrahlung dominated emission, the central Sunyaev-Zel'dovich (SZ) decrement in the multiphase case is increased over the single-phase case and multiphase x-ray spectra in the range 0.1-20 keV are flatter in the continuum and exhibit stronger low energy emission lines than their single-phase counterpart. We quantify these effects for a fiducial 10e8 K cluster and demonstrate how the combination of SZ and x-ray spectroscopy can be used to identify a preferred location in the plane of the model parameter space. From these parameters the correct value of mean intracluster gas fraction in the multiphase model results, allowing an unbiased estimate of clustered mass density to he recovered.

  8. Spirals, Bridges and Tails: Star Formation and the Disturbed ISM in Colliding Galaxies before Merger.

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly

    2004-09-01

    We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.

  9. Intra-cluster Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos-Almendares, Felipe; Abadi, Mario; Muriel, Hernán; Coenda, Valeria

    2018-01-01

    Using a cosmological dark matter simulation of a galaxy-cluster halo, we follow the temporal evolution of its globular cluster population. To mimic the red and blue globular cluster populations, we select at high redshift (z∼ 1) two sets of particles from individual galactic halos constrained by the fact that, at redshift z = 0, they have density profiles similar to observed ones. At redshift z = 0, approximately 60% of our selected globular clusters were removed from their original halos building up the intra-cluster globular cluster population, while the remaining 40% are still gravitationally bound to their original galactic halos. As the blue population is more extended than the red one, the intra-cluster globular cluster population is dominated by blue globular clusters, with a relative fraction that grows from 60% at redshift z = 0 up to 83% for redshift z∼ 2. In agreement with observational results for the Virgo galaxy cluster, the blue intra-cluster globular cluster population is more spatially extended than the red one, pointing to a tidally disrupted origin.

  10. Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas

    2016-01-01

    The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

  11. Observed intra-cluster correlation coefficients in a cluster survey sample of patient encounters in general practice in Australia

    PubMed Central

    Knox, Stephanie A; Chondros, Patty

    2004-01-01

    Background Cluster sample study designs are cost effective, however cluster samples violate the simple random sample assumption of independence of observations. Failure to account for the intra-cluster correlation of observations when sampling through clusters may lead to an under-powered study. Researchers therefore need estimates of intra-cluster correlation for a range of outcomes to calculate sample size. We report intra-cluster correlation coefficients observed within a large-scale cross-sectional study of general practice in Australia, where the general practitioner (GP) was the primary sampling unit and the patient encounter was the unit of inference. Methods Each year the Bettering the Evaluation and Care of Health (BEACH) study recruits a random sample of approximately 1,000 GPs across Australia. Each GP completes details of 100 consecutive patient encounters. Intra-cluster correlation coefficients were estimated for patient demographics, morbidity managed and treatments received. Intra-cluster correlation coefficients were estimated for descriptive outcomes and for associations between outcomes and predictors and were compared across two independent samples of GPs drawn three years apart. Results Between April 1999 and March 2000, a random sample of 1,047 Australian general practitioners recorded details of 104,700 patient encounters. Intra-cluster correlation coefficients for patient demographics ranged from 0.055 for patient sex to 0.451 for language spoken at home. Intra-cluster correlations for morbidity variables ranged from 0.005 for the management of eye problems to 0.059 for management of psychological problems. Intra-cluster correlation for the association between two variables was smaller than the descriptive intra-cluster correlation of each variable. When compared with the April 2002 to March 2003 sample (1,008 GPs) the estimated intra-cluster correlation coefficients were found to be consistent across samples. Conclusions The demonstrated

  12. The quiescent intracluster medium in the core of the Perseus cluster.

    PubMed

    2016-07-07

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling--a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  13. DUST IN CLUSTERS: SEPARATING THE CONTRIBUTION OF GALAXIES AND INTRACLUSTER MEDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutiérrez, C. M.; López-Corredoira, M., E-mail: cgc@iac.es

    We have analyzed a sample of 327 clusters of galaxies, spanning the range of 0.06–0.70 in redshift. Strong constraints on their mean intracluster emission of dust have been obtained using maps and catalogs from the Herschel MerMES project; within a radius of 5 arcmin centered in each cluster, the 95% C.L. limits obtained are 86.6, 48.2, and 30.9 mJy at the observed frequencies of 250, 350, and 500 μ m. From these restrictions, and assuming physical parameters typical of interstellar media in the Milky Way, we have obtained tight upper limits on the visual extinction of background galaxies due tomore » the intracluster media (ICM): A {sub V} (95% C.L.) ≲ 10{sup −3} mag. Strong constraints are also obtained for the mass of such dust; for instance, using the data at 350 μ m we establish a 95% upper limit of <10{sup 9} M {sub ⊙} within a circle with a radius of 5 arcmin centered in the clusters. This corresponds to a fraction of the total mass of the clusters of 9.5 × 10{sup −6}, and indicates a deficiency in the gas-to-dust ratio in the ICM by about three orders of magnitude in relation to the value found in the Milky Way. Computing the total infrared luminosity of the clusters in three ranges of redshift (0.05–0.24, 0.24–0.42, and 0.42–0.71) and two ranges of mass (<10{sup 14} and >10{sup 14} M {sub ⊙}), respectively, a strong evolution of luminosity in redshift ( L ∼ z {sup 1.5}) for both ranges of masses is found. The results indicate a strong declining in star formation rate with time in the last ∼6 Gyr.« less

  14. The quiescent intracluster medium in the core of the Perseus cluster

    DOE PAGES

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...

    2016-07-06

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. In this paper, we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. Finally, we infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  15. The quiescent intracluster medium in the core of the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. In this paper, we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. Finally, we infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  16. The quiescent intracluster medium in the core of the Perseus cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie

    2016-07-06

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes1 of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffusemore » hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback2, 3, 4, 5, 6. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30–60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.« less

  17. The quiescent intracluster medium in the core of the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall; Blandford, Roger; Brenneman, Laura; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward; Chernyakova, Maria; Chiao, Meng; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Itoh, Masayuki; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kara, Erin; Kataoka, Jun; Katsuda, Satoru; Katsuta, Junichiro; Kawaharada, Madoka; Kawai, Nobuyuki; Kelley, Richard; Khangulyan, Dmitry; Kilbourne, Caroline; King, Ashley; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Shu; Koyama, Katsuji; Kretschmar, Peter; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, François; Lee, Shiu-Hang; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Mehdipour, Missagh; Miller, Eric; Miller, Jon; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Moseley, Harvey; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakano, Toshio; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Masayoshi; Noda, Hirofumi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stephane; Parmar, Arvind; Petre, Robert; Pinto, Ciro; Pohl, Martin; Porter, F. Scott; Pottschmidt, Katja; Ramsey, Brian; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sameshima, Hiroaki; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemitsos, Peter; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'Ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Keisuke; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shin'Ichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Watanabe, Shin; Werner, Norbert; Wik, Daniel; Wilkins, Dan; Williams, Brian; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki; Zhuravleva, Irina; Zoghbi, Abderahmen

    2016-07-01

    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling—a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.

  18. THE NARROW X-RAY TAIL AND DOUBLE Hα TAILS OF ESO 137-002 IN A3627

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Lin, X. B.; Kong, X.

    2013-11-10

    We present the analysis of a deep Chandra observation of a ∼2 L{sub *} late-type galaxy, ESO 137-002, in the closest rich cluster A3627. The Chandra data reveal a long (∼>40 kpc) and narrow tail with a nearly constant width (∼3 kpc) to the southeast of the galaxy, and a leading edge ∼1.5 kpc from the galaxy center on the upstream side of the tail. The tail is most likely caused by the nearly edge-on stripping of ESO 137-002's interstellar medium (ISM) by ram pressure, compared to the nearly face-on stripping of ESO 137-001 discussed in our previous work. Spectralmore » analysis of individual regions along the tail shows that the gas throughout it has a rather constant temperature, ∼1 keV, very close to the temperature of the tails of ESO 137-001, if the same atomic database is used. The derived gas abundance is low (∼0.2 solar with the single-kT model), an indication of the multiphase nature of the gas in the tail. The mass of the X-ray tail is only a small fraction (<5%) of the initial ISM mass of the galaxy, suggesting that the stripping is most likely at an early stage. However, with any of the single-kT, double-kT, and multi-kT models we tried, the tail is always 'over-pressured' relative to the surrounding intracluster medium (ICM), which could be due to the uncertainties in the abundance, thermal versus non-thermal X-ray emission, or magnetic support in the ICM. The Hα data from the Southern Observatory for Astrophysical Research show a ∼21 kpc tail spatially coincident with the X-ray tail, as well as a secondary tail (∼12 kpc long) to the east of the main tail diverging at an angle of ∼23° and starting at a distance of ∼7.5 kpc from the nucleus. At the position of the secondary Hα tail, the X-ray emission is also enhanced at the ∼2σ level. We compare the tails of ESO 137-001 and ESO 137-002, and also compare the tails to simulations. Both the similarities and differences of the tails pose challenges to the simulations. Several

  19. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  20. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, R. P.; Roediger, E.; Machacek, M.

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less

  1. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  2. Survival of molecular gas in Virgo's hot intracluster medium: CO near M 86

    NASA Astrophysics Data System (ADS)

    Dasyra, K. M.; Combes, F.; Salomé, P.; Braine, J.

    2012-04-01

    We carried out 12CO(1-0) and 12CO(2-1) observations of 21 different regions in the vicinity of M 86, NGC 4438, and along the 120 kpc-long, Hα-emitting filamentary trail that connects them, aiming to test whether molecular gas can survive to be transferred from a spiral to an elliptical galaxy in Virgo's 107 K intracluster medium (ICM). We targeted Hα-emitting regions that could be associated with the interface between cold molecular clouds and the hot ionized ICM. The data, obtained with the 30 m telescope of the Institut de Radioastronomie Millimétrique, led to the detection of molecular gas close to M 86. CO gas with a recession velocity that is similar to that of the stars, -265 km s-1, and with a corresponding H2 mass of 2 × 107 M⊙, was detected ~10 kpc southeast of the nucleus of M 86, near the peak of its H i emission. We argue that it is possible for this molecular gas either to have formed in situ from H i, or to have been stripped from NGC 4438 directly in molecular form. In situ formation is nonetheless negligible for the 7 × 106 M⊙ of gas detected at 12:26:15.9+12:58:49, at ~10 kpc northeast of M 86, where no (strong) H i emission is present. This detection provides evidence for the survival of molecular gas in filaments for timescales of ~100 Myr. An amount equivalent to 5 × 107 M⊙ of H2 gas that could be lost to the ICM or to neighboring galaxies was also discovered in the tidal tail northwest of NGC 4438. A scenario in which gas was alternatively brought to M 86 from NGC 4388 was also examined but it was considered unlikely because of the non-detection of CO below or at the H I stream velocities, 2000-2700 km s-1.

  3. Evidence for an extensive intracluster medium from radio observations of distant Abell clusters

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Ulmer, M. P.

    1985-01-01

    Observations have been made of 18 distance class 5 and 6 Abell clusters of galaxies using the VLA in its 'C' configuration at a frequency of 1460 MHz. Half of the clusters in the sample are confirmed or probable sources of X-ray emission. All the detected radio sources with flux densities above 10 mJy are reported, and information is provided concerning the angular extent of the sources, as well as the most likely optical identification. The existence of an extensive intracluster medium is inferred by identifying extended/distorted radio sources with galaxies whose apparent magnitudes are consistent with their being cluster members and that are at projected distances of 3-4 Abell radii (6-8 Mpc) from the nearest cluster center. By requiring that the radio sources are confined by the ambient medium, the ambient density is calculated and the total cluster mass is estimated. As a sample calculation, a wide-angle-tail radio source some 5 Mpc from the center of Abell 348 is used to estimate these quantities.

  4. Chandra Detection of Intracluster X-Ray sources in Virgo

    NASA Astrophysics Data System (ADS)

    Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze

    2017-09-01

    We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.

  5. ETA CARINAE’S THERMAL X-RAY TAIL MEASURED WITH XMM-NEWTON AND NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.

    The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ∼ 6 keV plasma. This temperature is ΔkT ∼ 2 keV higher than those measured from the iron K emission line complex, if the shockedmore » gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, N{sub H} ∼ 10{sup 24} H cm{sup −2}, marked one of the highest values ever observed for η Car, strongly suggesting increased obscuration of the wind–wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind–wind collision apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV γ-ray source.« less

  6. MSU Contributes to New Research on Star Formation

    NASA Astrophysics Data System (ADS)

    2010-01-01

    EAST LANSING, Mich. - "Crazy" and "cool" are two of the words Michigan State University astronomer Megan Donahue uses to describe the two distinct "tails" found on a long tail of gas that is believed to be forming stars where few stars have been formed before. Donahue was part of an international team of astronomers that viewed the gas tail with a very long, new observation made by the Chandra X-ray Observatory and detailed it in a paper published this month in the publication Astrophysical Journal. "The double tail is very cool - that is, interesting - and ridiculously hard to explain," said Donahue, a professor in MSU's Department of Physics and Astronomy. "It could be two different sources of gas or something to do with magnetic fields. We just don't know." What is also unusual is the gas tail, which is more than 200,000 light years in length, extends well outside any galaxy. It is within objects such as this that new stars are formed, but usually within the confines of a galaxy. "This system is really crazy because where we're seeing the star formation is well away from any galaxy," Donahue said. "Star formation happens primarily in the disks of galaxies. What we're seeing here is very unexpected." This gas tail was originally spotted by astronomers three years ago using a multitude of telescopes, including NASA's Chandra X-ray Observatory and the SOuthern Astrophysical Research telescope, a Chilean-based observatory in which MSU is one of the partners. The new observations show a second tail, and a fellow galaxy, ESO 137-002, that also has a tail of hot X-ray-emitting gas. How these newly formed stars came to be in this particular place remains a mystery as well. Astronomers theorize this gas tail might have "pulled" star-making material from nearby gases, creating what some have called "orphan stars." "This system continues to surprise us as we get better observations of it," Donahue said. The gas tail is located in the southern hemisphere near a

  7. Planetary nebulae populations as tracers of the stellar kinematics and light in the outer halos of galaxies and the intracluster regions in the nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    2015-08-01

    Planetary nebulae have been used sucessfully to trace the kinematics of stars and the spatial distribution of the parent stellar populations in regions where the continuum of the integrated light is only 1% of the night sky. The observed wavelength of the PN strong emission in the [OIII] line at 5007 A measures the line-of-sight velocity of that single star and can be used to derive the two-dimensional velocity fields in these extreme outer regions of galaxies and their angular momentum content out to 10 effective radii. The specific frequency or the PN luminosity number and the morphology of the PN luminosity function are probes of the properties of the parent stellar population, like the star formation history and metallicity. I will present the latest results from the survey of PN population in external galaxies and in the Virgo cluster, and the implications on the coexistence of galaxy halos and intracluster light, and the constraints of their stellar motions and physical parameters.

  8. From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.

    1999-12-01

    Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  9. The direct cooling tail method for X-ray burst analysis to constrain neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Suleimanov, Valery F.; Poutanen, Juri; Nättilä, Joonas; Kajava, Jari J. E.; Revnivtsev, Mikhail G.; Werner, Klaus

    2017-04-01

    Determining neutron star (NS) radii and masses can help to understand the properties of matter at supra-nuclear densities. Thermal emission during thermonuclear X-ray bursts from NSs in low-mass X-ray binaries provides a unique opportunity to study NS parameters, because of the high fluxes, large luminosity variations and the related changes in the spectral properties. The standard cooling tail method uses hot NS atmosphere models to convert the observed spectral evolution during cooling stages of X-ray bursts to the Eddington flux FEdd and the stellar angular size Ω. These are then translated to the constraints on the NS mass M and radius R. Here we present the improved, direct cooling tail method that generalizes the standard approach. First, we adjust the cooling tail method to account for the bolometric correction to the flux. Then, we fit the observed dependence of the blackbody normalization on flux with a theoretical model directly on the M-R plane by interpolating theoretical dependences to a given gravity, hence ensuring only weakly informative priors for M and R instead of FEdd and Ω. The direct cooling method is demonstrated using a photospheric radius expansion burst from SAX J1810.8-2609, which has happened when the system was in the hard state. Comparing to the standard cooling tail method, the confidence regions are shifted by 1σ towards larger radii, giving R = 11.5-13.0 km at M = 1.3-1.8 M⊙ for this NS.

  10. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Smith, Rory; Jaffé, Yara; Kim, Minjin; Yi, Sukyoung K.; Duc, Pierre-Alain; Nantais, Julie; Candlish, Graeme; Demarco, Ricardo; Treister, Ezequiel

    2017-05-01

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gas disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.

  11. The Robustness of Designs for Trials with Nested Data against Incorrect Initial Intracluster Correlation Coefficient Estimates

    ERIC Educational Resources Information Center

    Korendijk, Elly J. H.; Moerbeek, Mirjam; Maas, Cora J. M.

    2010-01-01

    In the case of trials with nested data, the optimal allocation of units depends on the budget, the costs, and the intracluster correlation coefficient. In general, the intracluster correlation coefficient is unknown in advance and an initial guess has to be made based on published values or subject matter knowledge. This initial estimate is likely…

  12. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Diego, Jose M.; Rodney, Steven; Kaiser, Nick; Broadhurst, Tom; Zitrin, Adi; Treu, Tommaso; Pérez-González, Pablo G.; Morishita, Takahiro; Jauzac, Mathilde; Selsing, Jonatan; Oguri, Masamune; Pueyo, Laurent; Ross, Timothy W.; Filippenko, Alexei V.; Smith, Nathan; Hjorth, Jens; Cenko, S. Bradley; Wang, Xin; Howell, D. Andrew; Richard, Johan; Frye, Brenda L.; Jha, Saurabh W.; Foley, Ryan J.; Norman, Colin; Bradac, Marusa; Zheng, Weikang; Brammer, Gabriel; Benito, Alberto Molino; Cava, Antonio; Christensen, Lise; de Mink, Selma E.; Graur, Or; Grillo, Claudio; Kawamata, Ryota; Kneib, Jean-Paul; Matheson, Thomas; McCully, Curtis; Nonino, Mario; Pérez-Fournon, Ismael; Riess, Adam G.; Rosati, Piero; Schmidt, Kasper Borello; Sharon, Keren; Weiner, Benjamin J.

    2018-04-01

    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

  13. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  14. Metallicity gradients in tidal tails and merging systems

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Scarano, S., Jr.; Olave, D.; Alfaro, M.; Mendes de Oliveira, C.; de Mello, D. F.; Carrasco, E. R.; Amram, P.; Plana, H.

    2014-10-01

    We present an analysis of the metal distribution in the tidal tails of two interacting systems and in the main body of a galaxy merger: NGC92, NGC6845 and HCG31, respectively. Using Gemini/GMOS spectroscopic data, we found no metallicity gradients for the tail of NGC92. The abundances in the tail are similar to the values displayed by the central regions of NGC92. This fact suggests that gas mixing triggered by the interaction produces a flattening in the metallicity distribution of this system. For the system NGC6845, we found that regions located in the tail have similar abundances to one source located in the inner region of this galaxy, also suggesting a flat metal distribution. For HCG 31 we found an inhomogeneous metal distribution for the central region. Apparently, each star forming complex keeps its metal abundance despite the strong gravitational interaction that this system suffered. In the case of the tidal tails, our results support the scenario in which gas mixing produces a flattening in the metal distribution. However, we suggest that the star formation is an important mechanism in enhancing the oxygen abundance of these structures.

  15. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis

    2003-09-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the

  16. Cosmic-Ray Feedback Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S.

    2017-07-01

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (I) CRs come into contact with the ambient ICM and efficiently heat it, (II) streaming instability heating dominates over Coulomb and hadronic heating, (III) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (IV) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  17. Cosmic-Ray Feedback Heating of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruszkowski, Mateusz; Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We findmore » that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.« less

  18. Discovery of Ram-pressure Stripped Gas around an Elliptical Galaxy in Abell 2670

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, Yun-Kyeong; Kim, Minjin; Smith, Rory

    Studies of cluster galaxies are increasingly finding galaxies with spectacular one-sided tails of gas and young stars, suggestive of intense ram-pressure stripping. These so-called “jellyfish” galaxies typically have late-type morphology. In this paper, we present Multi Unit Spectroscopic Explorer (MUSE) observations of an elliptical galaxy in Abell 2670 with long tails of material visible in the optical spectra, as well as blobs with tadpole-like morphology. The spectra in the central part of the galaxy reveal a stellar component as well as ionized gas. The stellar component does not have significant rotation, while the ionized gas defines a clear star-forming gasmore » disk. We argue, based on deep optical images of the galaxy, that the gas was most likely acquired during a past wet merger. It is possible that the star-forming blobs are also remnants of the merger. In addition, the direction and kinematics of the one-sided ionized tails, combined with the tadpole morphology of the star-forming blobs, strongly suggests that the system is undergoing ram pressure from the intracluster medium. In summary, this paper presents the discovery of a post-merger elliptical galaxy undergoing ram-pressure stripping.« less

  19. The history of chemical enrichment in the intracluster medium from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Planelles, S.; Borgani, S.; Fabjan, D.; Rasia, E.; Murante, G.; Tornatore, L.; Dolag, K.; Granato, G. L.; Gaspari, M.; Beck, A. M.

    2017-06-01

    The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analysing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the smoothed particle hydrodynamics (SPH) gadget-3 code, have been run including two different sets of baryonic physics: one accounts for radiative cooling, star formation, metal enrichment and supernova (SN) feedback, and the other one further includes the effects of feedback from active galactic nuclei (AGN). In agreement with observations, we find an anti-correlation between entropy and metallicity in cluster cores, and similar radial distributions of heavy-element abundances and abundance ratios out to large cluster-centric distances (˜R180). In the outskirts, namely outside of ˜0.2 R180, we find a remarkably homogeneous metallicity distribution, with almost flat profiles of the elements produced by either SNIa or SNII. We investigated the origin of this phenomenon and discovered that it is due to the widespread displacement of metal-rich gas by early (z > 2-3) AGN powerful bursts, acting on small high-redshift haloes. Our results also indicate that the intrinsic metallicity of the hot gas for this sample is on average consistent with no evolution between z = 2 and z = 0, across the entire radial range.

  20. The Distant Sodium Tail of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.; Morgan, T. H.

    2001-01-01

    Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.

  1. Shock-Bubble Heating of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Friedman, Samuel H.; Heinz, S.; Churazov, E.

    2011-01-01

    Active galactic nuclei (AGN) Feedback via extragalactic jets requires a thermalization of the energy injected into the intracluster medium (ICM) in order for energy feedback to occur. Heinz and Churazov (2005) proposed a method using shock waves and previously inflated bubbles in the ICM to extract energy from the shock waves and turn the energy into rotational kinetic energy. This energy would decay and allow heating to occur elsewhere throughout the galaxy cluster. In this paper, we extend to three dimensions (3D) the previous work using hydrodynamic simulations. We also compare our results to previous related work done performed experimentally.

  2. OSO-8 X-ray spectra of clusters of galaxies. 2: Discussion. [hot intracluster gas structures

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.

    1978-01-01

    X-ray spectral parameters obtained from 2 to 20 keV OSO-8 data on X-ray clusters and optical cluster properties were examined to obtain information for restricting models for hot intracluster gas structures. Topics discussed include the radius of the X-ray core in relation to the galaxy core radius, the viral mass of hotter clusters, and galaxy density and optical central cluster properties. A population of cool, dim X-ray clusters which have not been observed is predicted. The iron abundance determinations recently quoted for intracluster gas are uncertain by 50 to greater than 100 percent from this nonstatistical cause alone.

  3. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    NASA Technical Reports Server (NTRS)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  4. Far-Infrared Emission of Intracluster Dust (ICD)

    NASA Astrophysics Data System (ADS)

    Arimoto, N.; Takagi, T.; Hanami, H.

    2000-12-01

    In the young universe, clusters of galaxies could be bright FIR-Submm sources due to the dust emissions from young ellipticals. The intracluster dust (ICD) could also contribute to the FIR-Submm emissions considerably, but the ICD is fragile in the ambient hot ICM. Therefore, a chance to detect the ICD emission would be much smaller than the dust emissions from galaxies. Dust emissions from elliptical galaxies (EROs) in the young Coma cluster at a distance of z=2-3 would be easily detected by a future mission of H2L2 satellite, thus the FIR-Submm survey would become a powerful tool for searching high-z clusters.

  5. Helium discovered in the tail of an exoplanet

    NASA Astrophysics Data System (ADS)

    Deming, Drake

    2018-05-01

    As the exoplanet WASP-107b orbits its host star, its atmosphere escapes to form a comet-like tail. Helium atoms detected in the escaping gases give astronomers a powerful tool for investigating exoplanetary atmospheres.

  6. Radiative processes in the intracluster plasma

    NASA Astrophysics Data System (ADS)

    Itoh, N.; Sakamoto, T.; Kusano, S.; Kawana, Y.; Nozawa, S.

    2002-02-01

    We present useful analytic fitting formulae for the study of the radiative processes which take place in the hot intracluster plasma (the plasma which exists in the clusters of galaxies). The first is for the frequency-integrated emissivity of the relativistic thermal bremsstrahlung. The Gaunt factor for the relativistic thermal bremsstrahlung as a function of the ionic charge Zj, the electron temperature Te, and the photon frequency omega has been recently calculated by us and its analytic fitting formula has been presented. In this paper we will integrate this Gaunt factor over the photon frequency omega and express the results by accurate analytic fitting formulae. These results will be useful when one wishes to evaluate the total amount of energy emitted by the hot intracluster plasma as well as other hot plasmas that exist in supernova remnants. The present results for the frequency-integrated emissivity of the thermal bremsstrahlung generally have accuracy of the order of 0.1%, thus making the present results the most accurate to date that calculate the thermal bremsstrahlung due to electron-ion scattering. The present accurate results will be especially useful for the analysis of the precision data taken by the Chandra X-Ray Observatory and XMM-Newton. The second analytic fitting formula that we will present in this paper is for the thermal Sunyaev-Zeldovich effect for clusters of galaxies. The thermal Sunyaev-Zeldovich effect for clusters of galaxies has been recently calculated with high precision by the present authors as well as by other groups. We have, in particular, presented an analytic fitting formula for this effect. In this paper we will present an analytic fitting formula which has still higher accuracy. The present fitting formula will be particularly suited for the forthcoming measurements of the kinematical Sunyaev-Zeldovich effect such as the BOLOCAM project that will be carried out in the crossover frequency region where the thermal Sunyaev

  7. Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.

    2006-01-01

    The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction

  8. X-ray astrophysics: Constraining thermal conductivity in intracluster gas in clusters of galaxies and placing limits on progenitor systems of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Russell, Brock Richard

    X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain

  9. Nonlinear dynamo in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  10. Detection of massive tidal tails around the globular cluster Pal 5 with SDSS commissioning data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odenkirchen, Michael; Grebel, Eva K.; Rockosi, Constance M.

    2000-12-01

    We report the discovery of two well-defined tidal tails emerging from the sparse remote globular cluster Palomar 5. These tails stretch out symmetrically to both sides of the cluster in the direction of constant Galactic latitude and subtend an angle of 2.6{sup o} on the sky. The tails have been detected in commissioning data of the Sloan Digital Sky Survey (SDSS), providing deep five-color photometry in a 2.5{sup o}-wide band along the equator. The stars in the tails make up a substantial part ({approx} 1/3) of the current total population of cluster stars in the magnitude interval 19.5 {le} i*more » {le} 22.0. This reveals that the cluster is subject to heavy mass loss. The orientation of the tails provides an important key for the determination of the cluster's Galactic orbit.« less

  11. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    PubMed Central

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-01-01

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272

  12. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    PubMed

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  13. Radial distribution of metals in the hot intra-cluster medium as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J.; Zhang, Y.; Akamatsu, H.; Gu, L.; Mao, J.; Pinto, C.; Reiprich, T.; Sanders, J.

    2017-10-01

    The hot intra-cluster medium (ICM), which accounts for ˜80% of the baryonic content in galaxy clusters, is rich in heavy elements. Since these metals have been produced by stars and supernovae before enriching the ICM, measuring metal abundance distributions in galaxy clusters and groups provides essential clues to determine the main astrophysical source(s) and epoch(s) of the ICM enrichment. In this work, we present radial abundance profiles averaged over 44 nearby cool-core galaxy clusters, groups, and massive ellipticals (the CHEERS sample) measured with XMM-Newton EPIC. While most of the Fe of the Universe is thought to be synthesised by Type Ia supernovae (SNIa), lighter elements, such as O, Mg, Si or S, are mostly produced by core-collapse supernovae (SNcc). The derived average radial profiles of the O, Mg, Si, S, Ar, Ca, Fe, and Ni abundances out to ˜ 0.5 r_{500} allows us to accurately compare the distributions of SNIa and SNcc products in clusters and groups. By comparing our results with recent chemo-dynamical simulations, we discuss the interpretation of the profiles in the context of early and late ICM enrichments.

  14. From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs

    NASA Astrophysics Data System (ADS)

    Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.

    2001-05-01

    Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.

  15. H i in Virgo’s “Red and Dead” Dwarf Ellipticals—A Tidal Tail and Central Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallenbeck, Gregory; Koopmann, Rebecca; Giovanelli, Riccardo

    We investigate a sample of three dwarf elliptical galaxies in the Virgo Cluster that have significant reservoirs of H i. We present deep optical imaging (from CFHT and KPNO), H i spectra (Arecibo), and resolved H i imaging (VLA) of this sample. These observations confirm their H i content and optical morphologies, and indicate that the gas is unlikely to be recently accreted. The sample has more in common with dwarf transitionals, though dwarf transitionals are generally lower in stellar mass and gas fraction. VCC 190 has an H i tidal tail from a recent encounter with the massive spiralmore » galaxy NGC 4224. In VCC 611, blue star-forming features are observed that were not seen by shallower SDSS imaging.« less

  16. H I in Virgo’s “Red and Dead” Dwarf Ellipticals—A Tidal Tail and Central Star Formation

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory; Koopmann, Rebecca; Giovanelli, Riccardo; Haynes, Martha P.; Huang, Shan; Leisman, Lukas; Papastergis, Emmanouil

    2017-08-01

    We investigate a sample of three dwarf elliptical galaxies in the Virgo Cluster that have significant reservoirs of H I. We present deep optical imaging (from CFHT and KPNO), H I spectra (Arecibo), and resolved H I imaging (VLA) of this sample. These observations confirm their H I content and optical morphologies, and indicate that the gas is unlikely to be recently accreted. The sample has more in common with dwarf transitionals, though dwarf transitionals are generally lower in stellar mass and gas fraction. VCC 190 has an H I tidal tail from a recent encounter with the massive spiral galaxy NGC 4224. In VCC 611, blue star-forming features are observed that were not seen by shallower SDSS imaging.

  17. The HST Frontier Field MACS 1159.5+2223: Flanking Observations for Intracluster Light

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony

    2017-08-01

    We propose a 6 orbit WFC3/IR imaging program targeting the environs of the HST Frontier Field cluster MACS 1149.5+2223 to obtain a comprehensive view of the intracluster stellar population in a massive galaxy cluster. WFC3/IR enables a vast improvement over ground-based studies in mapping emission from diffuse stellar populations. Our proposed observations are designed to build upon the existing investment in the Frontier Fields to conduct a new, more complete census of the intracluster light (ICL) extending out to 750 kpc. The requested observations are constructed to span the gap between the primary and parallel HFF pointings, detecting ICL to a surface brightness of 29.5 mag per square arcsec in F160W (equivalent to 31.5 mag per square arcsec in V-band). This depth is sufficient to trace the radial ICL profile out to 750 kpc from the BCG. These data will also yield a high-fidelity calibration of the background sky level, enabling two-dimensional mapping of the distribution and color of intracluster light down to 27 mag per square arcsec in F160W. From these maps we will quantify spatial variation in the ratio of the stellar baryons to the ICM, establishing whether the observed low scatter in the global ratio masks underlying smaller scale inhomogeneities due to astrophysical processes in the cluster. The requested observations further serve as a pilot program, enabling future similar analyses with the full ensemble of HFF clusters, and developing techniques that will be required for such low surface brightness programs with upcoming facilities including Euclid and WFIRST.

  18. Metal distribution in the intracluster medium: a comprehensive numerical study of twelve galaxy clusters

    NASA Astrophysics Data System (ADS)

    Höller, Harald; Stöckl, Josef; Benson, Andrew; Haider, Markus; Steinhauser, Dominik; Lovisari, Lorenzo; Pranger, Florian

    2014-09-01

    We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (Mvir = 1.17 × 1014 - 1.06 × 1015 M⊙). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulations with the semi-analytical galaxy formation model Galacticus for consistent treatment of the subgrid physics (such as galactic winds and ram-pressure stripping) in the cosmological hydrodynamical simulations. The interface between Galacticus and the hydro simulation of the ICM with FLASH is discussed with respect to observations of star formation rate histories, radial star formation trends in galaxy clusters, and the metallicity at different redshifts. As a test for the robustness of the wind model, we compare three prescriptions from different approaches. For the wind model directly taken from Galacticus, we find mean ICM metallicities between 0.2-0.8 Z⊙ within the inner 1 Mpc at z = 0. The main contribution to the metal mass fraction comes from galactic winds. The outflows are efficiently mixed in the ICM, leading to a steady homogenization of metallicities until ram-pressure stripping becomes effective at low redshifts. We find a very peculiar and yet common drop in metal mass fractions within the inner ~200 kpc of the cool cores, which is due to a combination of wind suppression by outer pressure within our model and a lack of mixing after the formation of these dense regions. Appendix A is available in electronic form at http://www.aanda.org

  19. GASP. III. JO36: A Case of Multiple Environmental Effects at Play?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Jacopo; Bruzual, Gustavo; Cervantes Sodi, Bernardo

    The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations inmore » this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.« less

  20. GASP. III. JO36: A Case of Multiple Environmental Effects at Play?

    NASA Astrophysics Data System (ADS)

    Fritz, Jacopo; Moretti, Alessia; Gullieuszik, Marco; Poggianti, Bianca; Bruzual, Gustavo; Vulcani, Benedetta; Nicastro, Fabrizio; Jaffé, Yara; Cervantes Sodi, Bernardo; Bettoni, Daniela; Biviano, Andrea; Fasano, Giovanni; Charlot, Stéphane; Bellhouse, Callum; Hau, George

    2017-10-01

    The so-called jellyfish galaxies are objects exhibiting disturbed morphology, mostly in the form of tails of gas stripped from the main body of the galaxy. Several works have strongly suggested ram pressure stripping to be the mechanism driving this phenomenon. Here, we focus on one of these objects, drawn from a sample of optically selected jellyfish galaxies, and use it to validate sinopsis, the spectral fitting code that will be used for the analysis of the GASP (GAs Stripping Phenomena in galaxies with MUSE) survey, and study the spatial distribution and physical properties of the gas and stellar populations in this galaxy. We compare the model spectra to those obtained with gandalf, a code with similar features widely used to interpret the kinematics of stars and gas in galaxies from IFU data. We find that sinopsis can reproduce the pixel-by-pixel spectra of this galaxy at least as well as gandalf does, providing reliable estimates of the underlying stellar absorption to properly correct the nebular gas emission. Using these results, we find strong evidences of a double effect of ram pressure exerted by the intracluster medium onto the gas of the galaxy. A moderate burst of star formation, dating between 20 and 500 Myr ago and involving the outer parts of the galaxy more strongly than the inner regions, was likely induced by a first interaction of the galaxy with the intracluster medium. Stripping by ram pressure, plus probable gas depletion due to star formation, contributed to create a truncated ionized gas disk. The presence of an extended stellar tail on only one side of the disk points instead to another kind of process, likely gravitational interaction by a fly-by or a close encounter with another galaxy in the cluster.

  1. GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201

    NASA Astrophysics Data System (ADS)

    Bellhouse, C.; Jaffé, Y. L.; Hau, G. K. T.; McGee, S. L.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Fasano, G.; D'Onofrio, M.; Fritz, J.; Omizzolo, A.; Sheen, Y.-K.; Vulcani, B.

    2017-07-01

    This paper presents a spatially resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey. By studying the environment of JO201, we find that it is moving through the dense intracluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intracluster medium and the galaxy’s mass, projected position, and velocity within the cluster, we estimate that JO201 must so far have lost ˜50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk accompanied by large projected tails of ionized ({{H}}α ) gas, composed of kinematically cold (velocity dispersion <40 km s-1) star-forming knots and very warm (>100 km s-1) diffuse emission, that extend out to at least ˜ 50 {kpc} from the galaxy center. The ionized {{H}}α -emitting gas in the disk rotates with the stars out to ˜6 kpc but, in the disk outskirts, it becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component resulting from intense face-on RPS along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.

  2. Origin of central abundances in the hot intra-cluster medium. I. Individual and average abundance ratios from XMM-Newton EPIC

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.

    2016-08-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) explosions and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z ~ 2-3). In this study, we use the EPIC and RGS instruments on board XMM-Newton to measure the abundances of nine elements (O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni) from a sample of 44 nearby cool-core galaxy clusters, groups, and elliptical galaxies. We find that the Fe abundance shows a large scatter (~20-40%) over the sample, within 0.2r500 and especially 0.05r500. Unlike the absolute Fe abundance, the abundance ratios (X/Fe) are uniform over the considered temperature range (~0.6-8 keV) and with a limited scatter. In addition to an unprecedented treatment of systematic uncertainties, we provide the most accurate abundance ratios measured so far in the ICM, including Cr/Fe and Mn/Fe which we firmly detected (>4σ with MOS and pn independently). We find that Cr/Fe, Mn/Fe, and Ni/Fe differ significantly from the proto-solar values. However, the large uncertainties in the proto-solar abundances prevent us from making a robust comparison between the local and the intra-cluster chemical enrichments. We also note that, interestingly, and despite the large net exposure time (~4.5 Ms) of our dataset, no line emission feature is seen around ~3.5 keV.

  3. Characterizing Intracluster Light in the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Morishita, Takahiro; Abramson, Louis E.; Treu, Tommaso; Schmidt, Kasper B.; Vulcani, Benedetta; Wang, Xin

    2017-09-01

    We investigate the intracluster light (ICL) in the six Hubble Frontier Field clusters at 0.3< z< 0.6. We employ a new method, which is free from any functional form of the ICL profile, and exploit the unprecedented depth of this Hubble Space Telescope imaging to map the ICL’s diffuse light out to clustrocentric radii R˜ 300 {kpc} ({μ }{ICL}˜ 27 mag arcsec-2). From these maps, we construct radial color and stellar mass profiles via SED fitting and find clear negative color gradients in all systems with increasing distance from the Brightest Cluster Galaxy (BCG). While this implies older/more metal-rich stellar components in the inner part of the ICL, we find that the ICL mostly consists of a ≲ 2 {Gyr} population, and plausibly originated with {log}{M}* /{M}⊙ ≲ 10 cluster galaxies. Furthermore, we find that 10%-15% of the ICL’s mass at large radii (≳ 150 kpc) lies in a younger/bluer stellar population (˜1 Gyr), a phenomenon not seen in local samples. We attribute this light to the higher fraction of star-forming/(post-)starburst galaxies in clusters at z˜ 0.5. Ultimately, we find the ICL’s total mass to be {log}{M}* {ICL}/{M}⊙ ˜ 11-12, constituting 5%-20% of the clusters’ total stellar mass, or about half of the value at z˜ 0. The above implies distinct formation histories for the ICL and BCGs/other massive cluster galaxies; I.e., the ICL at this epoch is still being constructed rapidly (˜ 40 {M}⊙ yr-1), while the BCGs have mostly completed their evolution. To be consistent with the ICL measurements of local massive clusters, such as Virgo, our data suggest mass acquisition mainly from quiescent cluster galaxies is the principal source of ICL material in the subsequent ˜5 Gyr of cosmic time.

  4. A NuSTAR observation of the center of the Coma Cluster

    DOE PAGES

    Gastaldello, Fabio; Wik, Daniel R.; Molendi, S.; ...

    2015-02-20

    We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10 –12 erg cm –2 s –1 in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observationsmore » of Coma will further address this issue. In addition, the temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less

  5. Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Dai, Liang; Miralda-Escudé, Jordi

    2017-11-01

    Recent observations of lensed galaxies at cosmological distances have detected individual stars that are extremely magnified when crossing the caustics of lensing clusters. In idealized cluster lenses with smooth mass distributions, two images of a star of radius R approaching a caustic brighten as {t}-1/2 and reach a peak magnification ˜ {10}6{(10{R}⊙ /R)}1/2 before merging on the critical curve. We show that a mass fraction ({κ }\\star ≳ {10}-4.5) in microlenses inevitably disrupts the smooth caustic into a network of corrugated microcaustics and produces light curves with numerous peaks. Using analytical calculations and numerical simulations, we derive the characteristic width of the network, caustic-crossing frequencies, and peak magnifications. For the lens parameters of a recent detection and a population of intracluster stars with {κ }\\star ˜ 0.01, we find a source-plane width of ˜ 20 {pc} for the caustic network, which spans 0.2 {arcsec} on the image plane. A source star takes ˜ 2× {10}4 years to cross this width, with a total of ˜ 6× {10}4 crossings, each one lasting for ˜ 5 {hr} (R/10 {R}⊙ ) with typical peak magnifications of ˜ {10}4 {(R/10{R}⊙ )}-1/2. The exquisite sensitivity of caustic-crossing events to the granularity of the lens-mass distribution makes them ideal probes of dark matter components, such as compact halo objects and ultralight axion dark matter.

  6. Star formation history of the galaxy merger Mrk848 with SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Shen, Shiyin; Hao, Lei; Fernandez, Maria Argudo

    2017-03-01

    With the 3D data of SDSS-IV MaNGA (Bundy et al. 2015) spectra and multi-wavelength SED modeling, we expect to have a better understanding of the distribution of dust, gas and star formation of galaxy mergers. For a case study of the merging galaxy Mrk848, we use both UV-to-IR broadband SED and the MaNGA integral field spectroscopy to obtain its star formation histories at the tail and core regions. From the SED fitting and full spectral fitting, we find that the star formation in the tail regions are affected by the interaction earlier than the core regions. The core regions show apparently two times of star formation and a strong burst within 500Myr, indicating the recent star formation is triggered by the interaction. The star formation histories derived from these two methods are basically consistent.

  7. Zooming in on the Starburst at the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2011-10-01

    In a recently published letter to Nature, we report the discovery of the most X-ray luminous galaxy cluster in the known Universe, within which the intracluster medium is cooling at an unprecedented rate. In the core of this cluster, the brightest cluster galaxy is forming stars at an unmatched rate of 740 Msun/yr, which is highly unusual for this class of galaxy which are typically referred to as "red and dead". We suspect that the extreme cooling and star formation rates are intimately linked: the cooling intracluster gas is most likely providing fuel for the starburst. We request 2 orbits of near-UV and optical broadband WFC3-UVIS imaging in order to morphologically classify this starburst as a result of i} cooling, infalling gas {filamentary UV emission}; ii} a recent merger {tidal tails with both UV and optical emission}; or iii} a starburst- or AGN-driven wind {wide opening angle}. These data will also allow us to determine the stellar populations of both the starburst and the underlying, older stellar populations, and will provide a much sharper view of the central AGN, allowing us to more carefully extract the contribution to the extended UV emission from young stars. Our early results have already received substantial attention from the international press, and we expect that a dramatically improved picture of the heart of this cluster would stir up as much, if not more, interest from the public.

  8. The Evaporation and Survival of Cluster Galaxies’ Coronae. II. The Effectiveness of Anisotropic Thermal Conduction and Survival of Stripped Galactic Tails

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-10-01

    We simulate anisotropic thermal conduction between the intracluster medium (ICM) and the hot coronal interstellar medium (ISM) gas in cluster galaxies. In Paper I, we simulated the evaporation of the hot ISM due to isotropic (possibly saturated) conduction between the ISM and ICM. We found that hot coronae evaporate on ˜ {10}2 {Myr} timescales, significantly shorter than the ˜ {10}3 {Myr} gas loss times due to ram pressure stripping. No tails of stripped gas are formed. This is in tension with the observed ubiquity and implied longevity of compact X-ray coronae and stripped ISM tails, and requires the suppression of evaporation, possibly due to magnetic fields and anisotropic conduction. We perform a series of wind tunnel simulations similar to that in Paper I, now including ISM and ICM magnetic fields. We simulate the effect of anisotropic conduction for a range of extreme magnetic field configurations: parallel and perpendicular to the ICM wind, and continuous and completely disjointed between the ISM and ICM. We find that when conduction is anisotropic, gas loss due to evaporation is severely reduced; the overall gas loss rates with and without anisotropic conduction do not differ by more than 10%-20%. Magnetic fields also prevent stripped tails from evaporating in the ICM by shielding, and providing few pathways for heat transport between the ICM and ISM. The morphology of stripped tails and magnetic fields in the tails and wakes of galaxies are sensitive to the initial magnetic field configuration.

  9. A Real Shooting Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of A Real Shooting Star

    This artist's animation illustrates a star flying through our galaxy at supersonic speeds, leaving a 13-light-year-long trail of glowing material in its wake. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' sheds material that will be recycled into new stars, planets and possibly even life. NASA's Galaxy Evolution Explorer discovered the long trail of material behind Mira during its survey of the entire sky in ultraviolet light.

    The animation begins by showing a close-up of Mira -- a red-giant star near the end of its life. Red giants are red in color and extremely bloated; for example, if a red giant were to replace our sun, it would engulf everything out to the orbit of Mars. They constantly blow off gas and dust in the form of stellar winds, supplying the galaxy with molecules, such as oxygen and carbon, that will make their way into new solar systems. Our sun will mature into a red giant in about 5 billion years.

    As the animation pulls out, we can see the enormous trail of material deposited behind Mira as it hurls along between the stars. Like a boat traveling through water, a bow shock, or build up of gas, forms ahead of the star in the direction of its motion. Gas in the bow shock is heated and then mixes with the cool hydrogen gas in the wind that is blowing off Mira. This heated hydrogen gas then flows around behind the star, forming a turbulent wake.

    Why does the trailing hydrogen gas glow in ultraviolet light? When it is heated, it transitions into a higher-energy state, which then loses energy by emitting ultraviolet light - a process known as fluorescence.

    Finally, the artist's rendering gives way to the actual ultraviolet image taken by the Galaxy Evolution Explorer

    Mira is located 350 light-years from Earth in the constellation Cetus, otherwise known as the whale. Coincidentally, Mira

  10. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  11. SZ observations to study the physics of the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Pointecouteau, E.

    2017-10-01

    Recent Sunyaev-Zeldovich surveys have delivered new catalogues of galaxy clusters over the whole sky and out to distant redshifts. The new generation of SZ facilities (NIKA, MUSTANG, ALMA) now focuses on high angular resolution and high sensitivity. I will discuss the current status of SZ observations and the perspective with the future instruments for the measurement of physical properties of galaxy clusters, and their relevance to the study of the ICM physics. I will also discuss the natural synergy between the SZ signal and the X-ray emission from the hot intra-cluster medium.

  12. Rescuing the intracluster medium of NGC 5813

    NASA Astrophysics Data System (ADS)

    Soker, Noam; Hillel, Shlomi; Sternberg, Assaf

    2016-06-01

    We use recent X-ray observations of the intracluster medium (ICM) of the galaxy group NGC 5813 to confront theoretical studies of ICM thermal evolution with the newly derived ICM properties. We argue that the ICM of the cooling flow in the galaxy group NGC 5813 is more likely to be heated by mixing of post-shock gas from jets residing in hot bubbles with the ICM, than by shocks or turbulent-heating. Shocks thermalize only a small fraction of their energy in the inner regions of the cooling flow; in order to adequately heat the inner part of the ICM, they would overheat the outer regions by a large factor, leading to its ejection from the group. Heating by mixing, which was found to be much more efficient than turbulent-heating and shocks-heating, hence, rescues the outer ICM of NGC 5813 from its predestined fate according to cooling flow feedback scenarios that are based on heating by shocks.

  13. A NuSTAR OBSERVATION OF THE CENTER OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastaldello, Fabio; Molendi, S.; Wik, Daniel R.

    2015-02-20

    We present the results of a 55 ks NuSTAR observation of the core of the Coma Cluster. The global spectrum can be explained by thermal gas emission, with a conservative 90% upper limit to non-thermal inverse Compton (IC) emission of 5.1 × 10{sup –12} erg cm{sup –2} s{sup –1} in a 12' × 12' field of view. The brightness of the thermal component in this central region does not allow more stringent upper limits on the IC component when compared with non-imaging instruments with much larger fields of view where claims of detections have been made. Future mosaic NuSTAR observations ofmore » Coma will further address this issue. The temperature map shows a relatively uniform temperature distribution with a gradient from the hot northwest side to the cooler southeast, in agreement with previous measurements. The temperature determination is robust given the flat effective area and low background in the 3-20 keV band, making NuSTAR an ideal instrument to measure high temperatures in the intracluster medium.« less

  14. An Alternative Origin for Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Abadi, Mario G.; Navarro, Julio F.; Steinmetz, Matthias

    2009-02-01

    Halo stars with unusually high radial velocity (hypervelocity stars, or HVS) are thought to be stars unbound to the Milky Way that originate from the gravitational interaction of stellar systems with the supermassive black hole at the Galactic center. We examine the latest HVS compilation and find peculiarities that are unexpected in this black hole ejection scenario. For example, a large fraction of HVS cluster around the constellation of Leo and share a common travel time of ~100-200 Myr. Furthermore, their velocities are not really extreme if, as suggested by recent galaxy formation models, the Milky Way is embedded within a 2.5 × 1012 h -1 M sun dark halo with virial velocity of ~220 km s-1. In this case, the escape velocity at ~50 kpc would be ~600 km s-1, and very few HVS would be truly unbound. We use numerical simulations to show that disrupting dwarf galaxies may contribute halo stars with velocities up to and sometimes exceeding the nominal escape speed of the system. These stars are arranged in a thinly collimated outgoing "tidal tail" stripped from the dwarf during its latest pericentric passage. We speculate that some HVS may, therefore, be tidal debris from a dwarf recently disrupted near the center of the Galaxy. In this interpretation, the angular clustering of HVS results because, from our perspective, the tail is seen nearly "end on," whereas the common travel time simply reflects the fact that these stars were stripped simultaneously from the dwarf during a single pericentric passage. This proposal is eminently falsifiable, since it makes a number of predictions which are distinct from the black hole ejection mechanism and which should be testable with improved HVS datasets.

  15. Metallicity Gradients in the Intracluster Gas of Abell 496

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; White, Raymond E., III

    2000-07-01

    Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found in a joint analysis of spectra from Ginga Large Area Counter and Einstein solid state spectrometer. Simultaneous analysis of spectra from all ASCA instruments (SIS+GIS) shows that the iron abundance is 0.36+/-0.03 solar 3'-12' from the center of the cluster and rises ~50% to 0.53+/-0.04 solar within the central 2'. The F-test shows that this abundance gradient is significant at the more than 99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II) to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SNe Ia increases toward the cluster center, with SNe Ia accounting for ~50% of the iron mass 3'-12' from the center and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SNe Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.

  16. Magnetized Neutron Stars in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Toropina, O. D.; Romanova, M. M.; Lovelace, R. V. E.

    2014-09-01

    We investigate the propagation of magnetized, isolated old neutron stars through the interstellar medium. We performed axisymmetric, non-relativistic magnetohydrodynamic simulations of the supersonic motion of neutron star with dipole magnetic field aligned with its velocity through the interstellar medium (ISM). We consider two cases: (1) where the accretion radius is larger than Alfvén radius, i.e. Racc>>RA and gravitational focusing is important; and (2) where Racc<star interacts with the ISM as a “georotator”, without significant gravitational focusing. In the first case we observe Bondi-Hoyle accretion onto an isolated magnetized neutron star. In the second case magnetic field lines are stretched downwind from the star and form a hollow elongated magnetotail. Reconnection of the magnetic field is observed in the tail which may lead to acceleration of particles.

  17. PSR J0357+3205: THE TAIL OF THE TURTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelli, M.; De Luca, A.; Salvetti, D.

    2013-03-01

    Using a new XMM-Newton observation, we have characterized the X-ray properties of the middle-aged radio-quiet {gamma}-ray pulsar J0357+3205 (named Morla) and its tail. The X-ray emission from the pulsar is consistent with a magnetospheric non-thermal origin plus a thermal emission from a hot spot (or hot spots). The lack of a thermal component from the whole surface makes Morla the coldest neutron star in its age range. We found marginal evidence for a double-peaked modulation of the X-ray emission. The study of the 9' long tail confirmed the lack of extended emission near the pulsar itself. The tail shows amore » very asymmetric brightness profile and its spectrum lacks any spatial variation. We found the nebular emission to be inconsistent with a classical bow shock, ram-pressure-dominated pulsar wind nebula. We propose thermal bremsstrahlung as an alternative mechanism for Morla's tail emission. In this scenario, the tail emission comes from the shocked interstellar medium (ISM) material heated up to X-ray temperatures. This can fully explain the peculiar features of the tail, assuming a hot, moderately dense ISM around the pulsar. For a bremsstrahlung-emitting tail, we can estimate the pulsar distance to be between 300 and 900 pc. A pulsar velocity of {approx}1900 km s{sup -1} is required, which would make Morla the pulsar with the largest velocity, and high inclination angles (>70 Degree-Sign ) are preferred. We propose Morla's nebula as the first example of a new 'turtle's tail' class of thermally emitting nebulae associated with high-velocity pulsars.« less

  18. Formation, Heating And Chemical Enrichment Of The Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Eckert, Dominique

    2017-07-01

    The intracluster medium (ICM) contains the majority of the baryons (80-90%) of galaxy clusters and groups. It has been progressively heated up by gravitational and non-gravitational processes since the cluster formation epoch (z 2-3) until it reaches the very high temperatures we see today, i.e. between 10 and 100 million degrees. The global properties of the ICM follow tight scaling laws with halo mass which are shaped both by gravitational and non-gravitational effects (in particular gas cooling and AGN feedback). Finally, we also know that the ICM is enriched in metals which have been ejected from cluster galaxies throughout the cluster formation history. I will give a review of what is currently known about the formation and evolution of the ICM, focusing on the heating processes (shocks, turbulence) and the metal enrichment history of the gas.

  19. ROSAT observations of clusters with wide-angle tailed radio sources

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1993-01-01

    The goal of these ROSAT PSPC pointed observations was to understand the nature of X-ray emission associated clusters that contain luminous wide-angle tailed (WAT) radio sources identified with the centrally dominant cluster galaxies. These 500 kpc diameter radio sources are strongly affected by confinement and interaction with the intracluster medium. So, a complete picture of the origin and evolution of these radio sources is not possible without detailed X-ray observations which sample the distribution and temperature of the surrounding hot gas. Two WAT clusters have been observed with the ROSAT PSPC to date. The first is Abell 2634 which contains the WAT 3C 465 and was approved for observations in AO-1. Unfortunately, these observations were broken into two widely separated pieces in time. The first data set containing about 9000 sec of integration arrived in mid-March, 1992. The second data set containing about 10,500 sec arrived just recently in early April (after a first tape was destroyed in the mail). The second cluster is 1919+479 which was approved for observations in AO-2. These ROSAT data arrived in October 1992.

  20. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, In Sung; Lee, Myung Gyoon, E-mail: isjang@astro.snu.ac.kr, E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch withmore » isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.« less

  1. MHD-waves in the geomagnetic tail: A review

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil

    2015-03-01

    This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.

  2. Turbulence in the Intracluster Medium: XMM-Newton legacy

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Fabian, A.; Sanders, J.; De Plaa, J.

    2017-10-01

    The kinematics structure of the Intracluster Medium (ICM) in clusters of galaxies is heir of their past evolution. AGN feedback, sloshing of gas within the potential well, and galaxy mergers are thought to generate turbulence of several hundred km/s into the ICM. Accurate measurements of velocity widths provide the means to understand the effects of these energetic phenomena onto the evolution of the clusters. In this talk I will review our recent measurements of turbulence using the high-resolution grating and microcalorimeter spectrometers on board XMM-Newton and Hitomi, respectively. Most recently, we have produced the largest XMM-Newton/RGS grating catalogue totalling about a hundred objects, which merge the recent CHEERS campaign and the efforts of the last decade as well as the newest observations of clusters and groups of galaxies. This catalogue includes all high-quality grating spectra publicly available by January 2017 and provides the XMM-Newton legacy for the future work. In this talk, I will discuss the first results with particular focus on the measurements of velocity broadening and the new constraints on turbulence.

  3. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data. tail>

  4. Formation of Globular Clusters with Internal Abundance Spreads in r-Process Elements: Strong Evidence for Prolonged Star Formation

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Tsujimoto, Takuji

    2017-07-01

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r-process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r-process elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r-process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (I) why r-process elements can be trapped within GCs and (II) why GCs with internal abundance spreads in r-process elements do not show [Fe/H] spreads. Our model shows (I) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (II) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r-process elements in GCs provide strong evidence for prolonged star formation (˜108 yr).

  5. Light-curve analysis of KOI 2700b: the second extrasolar planet with a comet-like tail

    NASA Astrophysics Data System (ADS)

    Garai, Z.

    2018-03-01

    Context. The Kepler object KOI 2700b (KIC 8639908b) was discovered recently as the second exoplanet with a comet-like tail. It exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents and reminiscent of KIC 12557548b, the first exoplanet with a comet-like tail. Aim. The scientific goal of this work is to verify the disintegrating-planet scenario of KOI 2700b by modeling its light curve and to put constraints on various tail and planet properties, as was done in the case of KIC 12557548b. Methods: We obtained the phase-folded and binned transit light curve of KOI 2700b, which we subsequently iteratively modeled using the radiative-transfer code SHELLSPEC. We modeled the comet-like tail as part of a ring around the parent star and we also included the solid body of the planet in the model. During the modeling we applied selected species and dust particle sizes. Results: We confirmed the disintegrating-planet scenario of KOI 2700b. Furthermore, via modeling, we derived some interesting features of KOI 2700b and its comet-like tail. It turns out that the orbital plane of the planet and its tail are not edge-on, but the orbital inclination angle is from the interval [85.1, 88.6] deg. In comparison with KIC 12557548b, KOI 2700b exhibits a relatively low dust density decreasing in its tail. We also derived the dust density at the beginning of the ring and the highest optical depth through the tail in front of the star, based on a tail-model with a cross-section of 0.05 × 0.05 R⊙ at the beginning and 0.09 × 0.09 R⊙ at its end. Our results show that the dimension of the planet is Rp/Rs ≤ 0.014 (Rp ≤ 0.871 R⊕, or ≤5551 km). We also estimated the mass-loss rate from KOI 2700b, and we obtained Ṁ values from the interval [5.05 × 107, 4.41 × 1015] g s-1. On the other hand, we could not draw any satisfactory conclusions about the typical grain size in the dust tail.

  6. Are star formation rates of galaxies bimodal?

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  7. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  8. Hertzsprung-Russell diagram and mass distribution of barium stars

    NASA Astrophysics Data System (ADS)

    Escorza, A.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.; Siess, L.; Van Winckel, H.; Karinkuzhi, D.; Shetye, S.; Pourbaix, D.

    2017-12-01

    With the availability of parallaxes provided by the Tycho-Gaia Astrometric Solution, it is possible to construct the Hertzsprung-Russell diagram (HRD) of barium and related stars with unprecedented accuracy. A direct result from the derived HRD is that subgiant CH stars occupy the same region as barium dwarfs, contrary to what their designations imply. By comparing the position of barium stars in the HRD with STAREVOL evolutionary tracks, it is possible to evaluate their masses, provided the metallicity is known. We used an average metallicity [Fe/H] = -0.25 and derived the mass distribution of barium giants. The distribution peaks around 2.5 M⊙ with a tail at higher masses up to 4.5 M⊙. This peak is also seen in the mass distribution of a sample of normal K and M giants used for comparison and is associated with stars located in the red clump. When we compare these mass distributions, we see a deficit of low-mass (1 - 2 M⊙) barium giants. This is probably because low-mass stars reach large radii at the tip of the red giant branch, which may have resulted in an early binary interaction. Among barium giants, the high-mass tail is however dominated by stars with barium indices of less than unity, based on a visual inspection of the barium spectral line; that is, these stars have a very moderate barium line strength. We believe that these stars are not genuine barium giants, but rather bright giants, or supergiants, where the barium lines are strengthened because of a positive luminosity effect. Moreover, contrary to previous claims, we do not see differences between the mass distributions of mild and strong barium giants. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A100

  9. THE INTRAGROUP VERSUS THE INTRACLUSTER MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaliere, A.; Fusco-Femiano, R.; Lapi, A., E-mail: roberto.fuscofemiano@iaps.inaf.it

    2016-06-20

    Galaxy groups differ from clusters primarily by way of their lower masses, M ∼ 10{sup 14} M {sub ⊙} versus M ∼ 10{sup 15} M {sub ⊙}. We discuss how mass affects the thermal state of the intracluster or the intragroup medium, specifically as to their entropy levels and radial profiles. We show that entropy is produced in both cases by the continuing inflow of intergalactic gas across the system boundary into the gravitational potential well. The inflow is highly supersonic in clusters, but weakly so in groups. The former condition implies strong accretion shocks with substantial conversion of amore » large bulk kinetic into thermal energy, whereas the latter condition implies less effective conversion of lower energies. These features produce a conspicuous difference in entropy deposition at the current boundary. Thereafter, adiabatic compression of the hot gas into the potential well converts such time histories into radial profiles throughout a cluster or a group. In addition, in both cases, a location of the system at low z in the accelerating universe or in a poor environment will starve out the inflow and the entropy production and produce flattening or even bending down of the outer profile. We analyze, in detail, the sharp evidence provided by the two groups ESO 3060170 and RXJ1159+5531 that have been recently observed in X-rays out to their virial radii and find a close and detailed match with our expectations.« less

  10. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  11. Formation of Globular Clusters with Internal Abundance Spreads in r -Process Elements: Strong Evidence for Prolonged Star Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekki, Kenji; Tsujimoto, Takuji

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r -process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r -processmore » elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r -process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (i) why r -process elements can be trapped within GCs and (ii) why GCs with internal abundance spreads in r -process elements do not show [Fe/H] spreads. Our model shows (i) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (ii) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r -process elements in GCs provide strong evidence for prolonged star formation (∼10{sup 8} yr).« less

  12. On the mass function of stars growing in a flocculent medium

    NASA Astrophysics Data System (ADS)

    Maschberger, Th.

    2013-12-01

    Stars form in regions of very inhomogeneous densities and may have chaotic orbital motions. This leads to a time variation of the accretion rate, which will spread the masses over some mass range. We investigate the mass distribution functions that arise from fluctuating accretion rates in non-linear accretion, ṁ ∝ mα. The distribution functions evolve in time and develop a power-law tail attached to a lognormal body, like in numerical simulations of star formation. Small fluctuations may be modelled by a Gaussian and develop a power-law tail ∝ m-α at the high-mass side for α > 1 and at the low-mass side for α < 1. Large fluctuations require that their distribution is strictly positive, for example, lognormal. For positive fluctuations the mass distribution function develops the power-law tail always at the high-mass hand side, independent of α larger or smaller than unity. Furthermore, we discuss Bondi-Hoyle accretion in a supersonically turbulent medium, the range of parameters for which non-linear stochastic growth could shape the stellar initial mass function, as well as the effects of a distribution of initial masses and growth times.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M., E-mail: mulchaey@obs.carnegiescience.edu

    X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves frommore » 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.« less

  14. Formation and evolution of substructures in tidal tails: spherical dark matter haloes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Fellhauer, M.; Véjar, R.

    2018-05-01

    Recently a theory about the formation of overdensities of stars along tidal tails of globular clusters has been presented. This theory predicts the position and the time of the formation of such overdensities and was successfully tested with N-body simulations of globular clusters in a point-mass galactic potential. In this work, we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter haloes to study the effects of a cored and a cuspy halo on the formation and the evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading arm and the trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to the first overdensity and its size as well. We establish a relation between the distance to the first overdensity and the size of this overdensity.

  15. Suppression of Electron Thermal Conduction in the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.

    2017-08-01

    The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.

  16. FLARES ON A-TYPE STARS: EVIDENCE FOR HEATING OF SOLAR CORONA BY NANOFLARES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Švanda, Michal; Karlický, Marian, E-mail: michal@astronomie.cz

    We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler . We found that the histogram of occurrence frequencies of stellar flares is systematically shifted toward a high-energy tail for A-type stars compared to stars of cooler spectral types. We extrapolated the fitted power laws toward flares with smaller energies (nanoflares) and made estimates for total energy flux to stellar atmospheres by flares. We found that, for A-type stars, the total energy flux density was at least four-times smaller than for G stars. We speculate that this deficit in energymore » supply may explain the lack of hot coronae on A-type stars. Our results indicate the importance of nanoflares for heating and formation of the solar corona.« less

  17. Velocity Gradients in the Intracluster Gas of the Perseus Cluster

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Bregman, Joel N.

    2001-02-01

    We report the results of spatially resolved X-ray spectroscopy of eight different ASCA pointings distributed symmetrically around the center of the Perseus Cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~6-7 keV and metal abundance ~0.3 solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis at a position angle of ~135°, which is ~45° discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1 Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 and 3 indicate that the velocity gradient is significant at the 95% confidence level, and the F-test rules out constant velocities at the 99% level. Intrinsic short- and long-term variations of gain are unlikely (P<0.03) to explain the velocity discrepancies.

  18. Current star formation in S0 galaxies: NGC 4710

    NASA Technical Reports Server (NTRS)

    Wrobel, J. M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.

  19. A spatial characterization of the Sagittarius dwarf galaxy tidal tails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Matthew; Cole, Nathan; Newberg, Heidi Jo

    2013-06-01

    We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading Sgr stream's position, direction, and width for 15 stripes in the north Galactic cap, and three stripes in the south Galactic cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (north) tidal tail is consistent with recent triaxial andmore » axisymmetric halo model simulations. The density along the stream is roughly consistent with common disruption models in the north, but possibly not in the south. We explore the possibility that one or more of the dominant Sgr streams has been misidentified, and that one or more of the ''bifurcated'' pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and ''bifurcated'' tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant southern stream and the ''bifurcated'' stream in the north. In the north Galactic cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r {sub 0} = 6.73. The southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the north, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous MilkyWay@home volunteer computing platform.« less

  20. HST Imaging of Dust Structures and Stars in the Ram Pressure Stripped Virgo Spirals NGC 4402 and NGC 4522: Stripped from the Outside In with Dense Cloud Decoupling

    NASA Astrophysics Data System (ADS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-08-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H I, Hα, and radio continuum images. With a spatial resolution of ˜10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM-ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ˜2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that magnetic

  1. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, A.; Kenney, J.; Crowl, H.

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation andmore » evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose

  2. The devil is in the tails: the role of globular cluster mass evolution on stream properties

    NASA Astrophysics Data System (ADS)

    Balbinot, Eduardo; Gieles, Mark

    2018-02-01

    We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.

  3. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the

  4. Near-tail reconnection as the cause of cometary tail disconnections

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Saunders, M. A.; Phillips, J. L.; Fedder, J. A.

    1986-01-01

    In a cometary tail disconnection event the plasma tail appears to separate from the coma and to accelerate away from it. As this occurs a new tail begins to form. It is proposed that these disconnections arise in a manner analogous to geomagnetic substorms, i.e., by the formation of a strongly reconnecting region in the near tail that forms a magnetic island in the coma and ejects the plasma tail by strengthening the magnetic 'slingshot' within the tail. This reconnection process may be triggered by several different processes, such as interplanetary shocks or variations in the Alfven Mach number.

  5. Crazy heart: kinematics of the "star pile" in Abell 545

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Richtler, T.; West, M. J.; Romanowsky, A. J.; Lloyd-Davies, E.; Schuberth, Y.

    2011-04-01

    We study the structure and internal kinematics of the "star pile" in Abell 545 - a low surface brightness structure lying in the center of the cluster. We have obtained deep long-slit spectroscopy of the star pile using VLT/FORS2 and Gemini/GMOS, which is analyzed in conjunction with deep multiband CFHT/MEGACAM imaging. As presented in a previous study the star pile has a flat luminosity profile and its color is consistent with the outer parts of elliptical galaxies. Its velocity map is irregular, with parts being seemingly associated with an embedded nucleus, and others which have significant velocity offsets to the cluster systemic velocity with no clear kinematical connection to any of the surrounding galaxies. This would make the star pile a dynamically defined stellar intra-cluster component. The complicated pattern in velocity and velocity dispersions casts doubts on the adequacy of using the whole star pile as a dynamical test for the innermost dark matter profile of the cluster. This status is fulfilled only by the nucleus and its nearest surroundings which lie at the center of the cluster velocity distribution. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under programme ID 080.B-0529. Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina); and on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National

  6. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  7. Metal distributions out to 0.5 r {sub 180} in the intracluster medium of four galaxy groups observed with Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Toru; Matsushita, Kyoko; Sato, Kosuke, E-mail: j1213703@ed.tus.ac.jp, E-mail: matusita@rs.kagu.tus.ac.jp

    2014-01-20

    We studied the distributions of metal abundances and metal-mass-to-light ratios in the intracluster medium (ICM) of four galaxy groups, MKW 4, HCG 62, the NGC 1550 group, and the NGC 5044 group, out to ∼0.5 r {sub 180} observed with Suzaku. The iron abundance decreases with radius and is about 0.2-0.4 solar beyond 0.1 r {sub 180}. At a given radius in units of r {sub 180}, the iron abundance in the ICM of the four galaxy groups was consistent with or smaller than those of clusters of galaxies. The Mg/Fe and Si/Fe ratios in the ICM are nearly constantmore » at the solar ratio out to 0.5 r {sub 180}. We also studied systematic uncertainties in the derived metal abundances, comparing the results from two versions of atomic data for astrophysicists (ATOMDB) and single- and two-temperature model fits. Since the metals have been synthesized in galaxies, we collected K-band luminosities of galaxies from the Two Micron All Sky Survey catalog and calculated the integrated iron-mass-to-light-ratios (IMLR), or the ratios of the iron mass in the ICM to light from stars in galaxies. The groups with smaller gas-mass-to-light ratios have smaller IMLR values and the IMLR is inversely correlated with the entropy excess. Based on these abundance features, we discussed the past history of metal enrichment processes in groups of galaxies.« less

  8. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing starmore » formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.« less

  9. Absolute spectrophotometry of Wolf-Rayet stars from 1200 to 7000 A - A cautionary tale

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.; Massey, P.

    1984-01-01

    It is demonstrated that absolute spectrophotometry of the continua of Wolf-Rayet stars may be obtained over the wavelength range 1200-7000 A using IUE and optical measurements. It is shown that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. Additional UV extinction is apparently necessary and may well be circumstellar in origin. In such hot stars, the long-wavelength 'tail' of the emergent stellar continuum are measured. The inadequacy of previous attempts to determine intrinsic continua and effective temperatures of Wolf-Rayet stars is pointed out.

  10. Calcium abundances in giant stars of the globular clusters M3, M13, M15, and M92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suntzeff, N.B.

    The average calcium II H and K line strengths of giant stars in M3, M13, M15, and M92 are found to be closely correlated with the (Fe/H) of the cluster. Simple physical arguments are provided to show the observed average line strengths reproduce the difference in (Fe/H) between the clusters. The observed dispersion in H and K line strengths yields an upper limit of 0.15 dex for M15 and M92, and 0.11 dex for M3+M13 for the average intracluster variation of (Ca/H), provided (Ca/H)=Fe/H). The dispersions drop to half these values if the calcium abundance varies independently of the ironmore » peak abundances.« less

  11. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  12. Telling tails: selective pressures acting on investment in lizard tails.

    PubMed

    Fleming, Patricia A; Valentine, Leonie E; Bateman, Philip W

    2013-01-01

    Caudal autotomy is a common defense mechanism in lizards, where the animal may lose part or all of its tail to escape entrapment. Lizards show an immense variety in the degree of investment in a tail (i.e., length) across species, with tails of some species up to three or four times body length (snout-vent length [SVL]). Additionally, body size and form also vary dramatically, including variation in leg development and robustness and length of the body and tail. Autotomy is therefore likely to have fundamentally different effects on the overall body form and function in different species, which may be reflected directly in the incidence of lost/regenerating tails within populations or, over a longer period, in terms of relative tail length for different species. We recorded data (literature, museum specimens, field data) for relative tail length (n=350 species) and the incidence of lost/regenerating tails (n=246 species). We compared these (taking phylogeny into account) with intrinsic factors that have been proposed to influence selective pressures acting on caudal autotomy, including body form (robustness, body length, leg development, and tail specialization) and ecology (foraging behavior, physical and temporal niches), in an attempt to identify patterns that might reflect adaptive responses to these different factors. More gracile species have relatively longer tails (all 350 spp., P < 0.001; also significant for five of the six families tested separately), as do longer (all species, P < 0.001; Iguanidae, P < 0.05; Lacertidae, P < 0.001; Scindidae, P < 0.001), climbing (all species, P < 0.05), and diurnal (all species, P < 0.01; Pygopodidae, P < 0.01) species; geckos without specialized tails (P < 0.05); or active-foraging skinks (P < 0.05). We also found some relationships with the data for caudal autotomy, with more lost/regenerating tails for nocturnal lizards (all 246 spp., P < 0.01; Scindidae, P < 0.05), larger skinks (P < 0.05), climbing geckos (P < 0

  13. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.

    2016-11-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (I.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (I.e. the effect of

  14. Resolved magnetic dynamo action in the simulated intracluster medium

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brunetti, G.; Brüggen, M.; Bonafede, A.

    2018-02-01

    Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for the presence of magnetic fields extending over ˜ Mpc scales. However, the origin of these fields remains elusive. With new high-resolution grid simulations, we studied the growth of magnetic fields in a massive galaxy cluster that in several aspects is similar to the Coma cluster. We investigated models in which magnetic fields originate from primordial seed fields with comoving strengths of 0.1 nG at redshift z = 30. The simulations show evidence of significant magnetic field amplification. At the best spatial resolution (3.95 kpc), we are able to resolve the scale where magnetic tension balances the bending of magnetic lines by turbulence. This allows us to observe the final growth stage of the small-scale dynamo. To our knowledge, this is the first time that this is seen in cosmological simulations of the intracluster medium. Our mock observations of Faraday rotation provide a good match to observations of the Coma cluster. However, the distribution of magnetic fields shows strong departures from a simple Maxwellian distribution, suggesting that the three-dimensional structure of magnetic fields in real clusters may be significantly different than what is usually assumed when inferring magnetic field values from rotation measure observations.

  15. Star Formation in Hi Tails: HCG 92, HCG 100 and 6 Interacting Systems

    NASA Technical Reports Server (NTRS)

    deMello, D. F.; Urrutia-Viscarra, F.; MendesdeOliveira, C.; Torres-Flores, S.; Carrasco, E. R.; Cypriano, E.

    2012-01-01

    We present new Gemini spectra of 14 new objects found within the HI tails of Hickson Compact Groups 92 and 100. Nine of them are GALEX Far-UV (FUV) and Near-UV (NUV) sources. The spectra confirm that these objects are members of the compact groups and have metallicities close to solar, with an average value of 12+log(O/H)approx.8.5. They have average FUV luminosities 7 x 10(exp 40) erg/s, very young ages (< 100 Myr) and two of them resemble tidal dwarf galaxies (TDGs) candidates. We suggest that they were created within gas clouds that were ejected during galaxy-galaxy interactions into the intergalactic medium, which would explain the high metallicities of the objects, inherited from the parent galaxies from which the gas originated. We conduct a search for similar objects in 6 interacting systems with extended HI tails, NGC 2623, NGC 3079, NGC 3359, NGC 3627, NGC 3718, NGC 4656. We found 35 UV sources with ages < 100 Myr, however most of them are on average less luminous/massive than the UV sources found around HCG 92 and 100. We speculate that this might be an environmental effect and that compact groups of galaxies are more favorable to TDG formation than other interacting systems.

  16. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  17. A Two-Temperature Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Takizawa, Motokazu

    1998-12-01

    We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.

  18. Relativistic hydrodynamic jets in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    2017-08-01

    We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.

  19. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  20. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  1. Comparing pymorph and SDSS photometry - II. The differences are more than semantics and are not dominated by intracluster light

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Fischer, J.-L.; Sheth, R. K.; Meert, A.; Huertas-Company, M.; Shankar, F.; Vikram, V.

    2017-07-01

    The Sloan Digital Sky Survey (SDSS) pipeline photometry underestimates the brightnesses of the most luminous galaxies. This is mainly because (I) the SDSS overestimates the sky background, and (II) single-component or two-component Sérsic-based models better fit the surface brightness profile of galaxies, especially at high luminosities, than the de Vaucouleurs model used by the SDSS pipeline. We use the pymorph photometric reductions to isolate effect (II) and show that it is the same in the full sample as in small group environments, and for satellites in the most massive clusters as well. None of these are expected to be significantly affected by intracluster light (ICL). We only see an additional effect for centrals in the most massive haloes, but we argue that even this is not dominated by ICL. Hence, for the vast majority of galaxies, the differences between pymorph and SDSS pipeline photometry cannot be ascribed to the semantics of whether or not one includes the ICL when describing the stellar mass of massive galaxies. Rather, they likely reflect differences in star formation or assembly histories. Failure to account for the SDSS underestimate has significantly biased most previous estimates of the SDSS luminosity and stellar mass functions, and therefore halo model estimates of the z ˜ 0.1 relation between the mass of a halo and that of the galaxy at its centre. We also show that when one studies correlations, at fixed group mass, with a quantity that was not used to define the groups, then selection effects appear. We show why such effects arise and should not be mistaken for physical effects.

  2. Metallicities and Nucleosynthesis Patterns in Early Generation Halo Stars

    NASA Astrophysics Data System (ADS)

    Beers, T.

    2004-05-01

    I review our present knowledge of the Metallicity Distribution Function of stars in the low-metallicity tail of the halo population of the Galaxy, and the variety of observed elemental signatures that might be associated with particular astrophysical origins in the early Universe. Such signatures include stars that exhibit (a) highly and mildly enhanced r-process element ratios, as compared to the solar ratios, (b) highly s-process enriched stars, (c) stars showing large enrichments of both the r- and and s-process elements, and (d) stars that are greatly enhanced in the light element species, such as CNO, and (in some cases) the alpha elements. Because the stars in which these characteristics are observed all have metallicity [Fe/H] ≤ -2.5, they are inferred to have formed no more than 0.5-1 Gyrs after the Big Bang, prior to the final assemblage of the Milky Way. As such, they provide our best available probes of the nature of early element producers, such as Type II SN and hypernovae, as well as binaries that included (now deceased) stars of intermediate (1.5 - 3 Mo) masses. I outline ongoing and future plans for dramatically accelerating the pace of discovery of these rare, but clearly important, objects. Partial support for this work has been received from NSF grants AST 00-98508 and AST 00-98549, and from JINA, the Joint Institute for Nuclear Astrophysics, an NSF Physics Frontier Center.

  3. Star-Formation in Free-Floating Evaporating Gaseous Globules

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2017-08-01

    We propose to study the stellar embryos in select members of a newly recognized class of Free-floating Evaporating Gaseous Globules (frEGGS) embedded in HII regions and having head-tail shapes. We discovered two of these in the Cygnus massive star-forming region (MSFR) with HST, including one of the most prominent members of this class (IRAS20324). Subsequent archival searches of Spitzer imaging of MSFRs has allowed us to build a statistical sample of frEGGs. Our molecular-line observations show the presence of dense molecular cores with total gas masses of (0.5-few) Msun in these objects, and our radio continuum images and Halpha images (from the IPHAS survey) reveal bright photo-ionized peripheries around these objects. We hypothesize that frEGGs are density concentrations originating in giant molecular clouds, that, when subject to the sculpting and compression by strong winds and UV radiation from massive stars, become active star-forming cores. For the 4 frEGGs with HST or near-IR AO images showing young stars and bipolar cavities produced by their jets or collimated outflows, the symmetry axis points roughly toward the external ionizing star or star cluster - exciting new evidence for our overpressure-induced star formation hypothesis. We propose to test this hypothesis by imaging 24 frEGGs in two nearby MSFRs that represent different radiation-dominated environments. Using ACS imaging with filters F606W, F814W, & F658N (Ha+[NII]), we will search for jets and outflow-excavated cavities, investigate the stellar nurseries inside frEGGs, and determine whether the globules are generally forming multiple star systems or small clusters, as in IRAS20324.

  4. A simulation of the intracluster medium with feedback from cluster galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Christopher A.; Evrard, August E.

    1994-01-01

    We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta

  5. “Native Skywatchers - Earth Sky Mirroring, Kapemni Pairs - Ojibwe and D(L)akota Sacred Star Sites “

    NASA Astrophysics Data System (ADS)

    Lee, Annette S.; Gawboy, Carl; Rock, Jim; Wilson, William; Tibbetts, Jeff; O'Rourke, Charleen

    2015-08-01

    Late in February, deep in the heart of the northern hemisphere winter, Ojibwe people know to look to the east a few hours after sunset and offer tobacco to Mizhi Bizhiw -Curly Tail, the Great Spirit Cat in the night sky. There are many beautiful and layered teachings about Mizhi Bizhiw - Curly Tail relating to the coming of spring, respect for the water, sugar bush camp, but most important; knowing the stars meant survival.Painted high on the granite rock cliffs above the glacial waters in red ochre is the Mizhi Bizhiw - Curly Tail constellation. Along with the Ojibwe lion are two neighboring seasonal constellations: Mooz (Pegasus) and Biboonkionini -Wintermaker (Orion+). On Lake Hegman in the Boundary Waters Canoe Area located near Ely, Minnesota, a sacred reflection, an earth-sky mirroring is illustrated. It is here that tangible and intangible star knowledge meet.In D(L)akota star knowledge one of the most important teachings is kapemni. Wrapped up in this one word are layers of meaning that can be thought of as ‘As it is above; it is below.’ Imagine two tipis stacked vertically. The top triangle is inverted so that the pair meets at the apex. It is understood that the top realm represents the sky above, the stars or the spirit world. The bottom tipi represents the Earth, the material or the physical world.On Summer Solstice each year the Sun can be found in the Mato Tipila - Bear’s Lodge D(L)akota constellation (Gemini). The day when this astronomical alignment happens is known as the ‘Wacipi - Sundance Ceremony in the Stars’. At this time traditionally D(L)akota people would meet at Mato Tipila Paha - Grey Horn Butte (Devil’s Tower) in northeast Wyoming and participate in the earthly Wacipi - Sun Dance ceremony. This is a beautiful example of a kapemni pair or an earth-sky mirroring.Presented here are just two examples of sacred star sites found in our region: Minnesota, North & South Dakota, US. These are examples of cultural heritage that is

  6. Metal-poor Stars Observed with the Magellan Telescope. II. Discovery of Four Stars with [Fe/H] <= -3.5

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Christlieb, Norbert; Lee, Young Sun; Kennedy, Catherine R.; Rossi, Silvia; Santucci, Rafael M.

    2014-01-01

    We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H] <= -3.0), with four having [Fe/H] <= -3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R ~ 35,000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H] <= -3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects. Based on observations gathered with: The 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the Southern Astrophysical Research (SOAR) telescope (SO2011B-002), which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  7. STAR CLUSTERS BORN IN THE WRECKAGE OF COSMIC COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of Stephan's Quintet, a group of five galaxies, reveals a string of bright star clusters that sparkles like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers. The NASA Hubble Space Telescope photo showcases three regions of star birth: the long, sweeping tail and spiral arms of NGC 7319 [near center]; the gaseous debris of two galaxies, NGC 7318B and NGC 7318A [top right]; and the area north of those galaxies, dubbed the northern starburst region [top left]. The clusters' bluish color indicates that they're relatively young. Their ages span from about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm (about 30,000 light-years long) and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right. Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its close neighbor. The partial galaxy on the far right is NGC 7320, a foreground galaxy not physically bound to the other galaxies in the picture. About 20 to 50 of the clusters in the northern starburst region reside far from the coziness of galaxies. The clusters were born about 150,000 light-years from the nearest galaxy. A galaxy that is no longer part of the group triggered another collision that wreaked havoc. NGC 7320C [not in the photo] plowed through the quintet several hundred million years ago, pulling out the 100,000 light-year-long tail of gaseous debris from NGC 7319. The clusters in NGC 7319's streaming tail are 10 million to 500 million years old and may have formed at the time of the violent collision. The faint bluish object at

  8. Galactic star formation enhanced and quenched by ram pressure in groups and clusters

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2014-02-01

    We investigate how ram pressure of intragroup and intracluster medium can influence the spatial and temporal variations of star formation (SF) of disc galaxies with halo masses (Mh) ranging from 1010 to 1012 M⊙ (i.e. from dwarf irregular to Milky Way-type) in groups and clusters with 1013 ≤ Mh/M⊙ ≤ 1015 by using numerical simulations with a new model for time-varying ram pressure. The long-term evolution of SF rates and Hα morphologies corresponding to the distributions of star-forming regions are particularly investigated for different model parameters. The principal results are as follows. Whether ram pressure can enhance or reduce SF depends on Mh of disc galaxies and inclination angles of gas discs with respect to their orbital directions for a given orbit and a given environment. For example, SF can be moderately enhanced in disc galaxies with Mh = 1012 M⊙ at the pericentre passages in a cluster with Mh = 1014 M⊙ whereas it can be completely shut down (`quenching') for low-mass discs with Mh = 1010 M⊙. Ram pressure can reduce the Hα-to-optical-disc-size ratios of discs and the level of the reduction depends on Mh and orbits of disc galaxies for a given environment. Disc galaxies under strong ram pressure show characteristic Hα morphologies such as ring-like, one-sided and crescent-like distributions.

  9. Star Formation in Dwarf-Dwarf Mergers: Fueling Hierarchical Assembly

    NASA Astrophysics Data System (ADS)

    Stierwalt, Sabrina; Johnson, K. E.; Kallivayalil, N.; Patton, D. R.; Putman, M. E.; Besla, G.; Geha, M. C.

    2014-01-01

    We present early results from the first systematic study a sample of isolated interacting dwarf pairs and the mechanisms governing their star formation. Low mass dwarf galaxies are ubiquitous in the local universe, yet the efficiency of gas removal and the enhancement of star formation in dwarfs via pre-processing (i.e. dwarf-dwarf interactions occurring before the accretion by a massive host) are currently unconstrained. Studies of Local Group dwarfs credit stochastic internal processes for their complicated star formation histories, but a few intriguing examples suggest interactions among dwarfs may produce enhanced star formation. We combine archival UV imaging from GALEX with deep optical broad- and narrow-band (Halpha) imaging taken with the pre- One Degree Imager (pODI) on the WIYN 3.5-m telescope and with the 2.3-m Bok telescope at Steward Observatory to confirm the presence of stellar bridges and tidal tails and to determine whether dwarf-dwarf interactions alone can trigger significant levels of star formation. We investigate star formation rates and global galaxy colors as a function of dwarf pair separation (i.e. the dwarf merger sequence) and dwarf-dwarf mass ratio. This project is a precursor to an ongoing effort to obtain high spatial resolution HI imaging to assess the importance of sequential triggering caused by dwarf-dwarf interactions and the subsequent affect on the more massive hosts that later accrete the low mass systems.

  10. Quenching of the Star Formation Activity of Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Boselli, A.

    2017-12-01

    The nearby Universe is an ideal laboratory to study the effects of the environments on galaxy evolution. We have analysed the multifrequency properties of galaxies in the nearby clusters Virgo, Coma, and A1367. We have shown that the HI gas content and the activity of star formation of the late-type galaxies start to gradually decrease inwards ˜ one virial radius. We have also shown that late-type galaxies in these clusters have truncated HI, H_2, dust, and star forming discs once the HI gas content is removed by the harsh environment. Some of these galaxies also exibit spectacular tails of atomic neutral, ionised, or hot gas without any counterpart in the stellar component. All this evidence favors ram pressure stripping as the dominant mechanism responsible for the gas removal from the disc, and for the following quenching of the star formation activity.

  11. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    Aims: We present a spectroscopic study of a sample of 287 planetary nebulas (PNs) around the brightest cluster galaxy (BCG) M 87 in Virgo A, of which 211 are located between 40 kpc and 150 kpc from the galaxy centre. With these data we can distinguish the stellar halo from the co-spatial intracluster light (ICL) and study both components separately. Methods: We obtained PN velocities with a high resolution FLAMES/VLT survey targeting eight fields in a total area of ~0.4 deg2. We identified PNs from their narrow and symmetric redshifted λ5007 Å [OIII] emission line, the presence of the second λ4959 Å [OIII] emission line, and the absence of significant continuum. We implement a robust technique to measure the halo velocity dispersion from the projected phase-space to identify PNs associated with the M 87 halo and ICL. Using photometric magnitudes, we construct PN luminosity functions (PNLFs), which are complete down to m5007 = 28.8. Results: The velocity distribution of the spectroscopically confirmed PNs is bimodal, containing a narrow component centred on the systemic velocity of the BCG and an off-centred broader component, which we identify as halo and ICL, respectively. We find that 243 PNs are part of the velocity distribution of the M 87 halo, while the remaining subsample of 44 PNs are intracluster PNs (ICPNs). Halo and ICPNs have different spatial distributions: the number density of halo PNs follow the galaxy's surface brightness profile, whereas the ICPNs are characterised by a shallower power-law profile, IICL ∝ Rγ with γ in the range [-0.34, -0.04 ]. No evidence is found for an asymmetry in the halo and ICPN density distributions when the NW and SE fields are studied separately. A study of the composite PN number density profile confirms the superposition of different PN populations associated with the M 87 halo and the ICL, characterised by different PN specific numbers α. We derive αhalo = 1.06 × 10-8NPN L⊙,bol-1 and αICL = 2.72 × 10

  12. BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Matthew W.; Stone, James M.; Bogdanovic, Tamara

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-coremore » clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.« less

  13. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  14. Interpretation of light scattering and turbidity measurements in aggregated systems: effect of intra-cluster multiple-light scattering.

    PubMed

    Soos, Miroslav; Lattuada, Marco; Sefcik, Jan

    2009-11-12

    In this work we studied the effect of intracluster multiple-light scattering on the scattering properties of a population of fractal aggregates. To do so, experimental data of diffusion-limited aggregation for three polystyrene latexes with similar surface properties but different primary particle diameters (equal to 118, 420, and 810 nm) were obtained by static light scattering and by means of a spectrophotometer. In parallel, a population balance equation (PBE) model, which takes into account the effect of intracluster multiple-light scattering by solving the T-matrix and the mean-field version of T-matrix, was formulated and validated against time evolution of the root mean radius of gyration, , of the zero angle intensity of scattered light, I(0), and of the turbidity, tau. It was found that the mean-field version of the T-matrix theory is able to correctly predict the time evolution of all measured light scattering quantities for all sizes of primary particles without any adjustable parameter. The structure of the aggregates, characterized by fractal dimension, d(f), was independent of the primary particle size and equal to 1.7, which is in agreement with values found in literature. Since the mean-field version of the T-matrix theory used is rather complicated and requires advanced knowledge of cluster structure (i.e., the particle-particle correlation function), a simplified version of the light scattering model was proposed and tested. It was found that within the range of operating conditions investigated, the simplified version of the light scattering model was able to describe with reasonable accuracy the time evolution of all measured light scattering quantities of the cluster mass distribution (CMD) for all three sizes of primary particles and two values of the laser wavelength.

  15. Quasi-Likelihood Techniques in a Logistic Regression Equation for Identifying Simulium damnosum s.l. Larval Habitats Intra-cluster Covariates in Togo.

    PubMed

    Jacob, Benjamin G; Novak, Robert J; Toe, Laurent; Sanfo, Moussa S; Afriyie, Abena N; Ibrahim, Mohammed A; Griffith, Daniel A; Unnasch, Thomas R

    2012-01-01

    The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter

  16. Wind-tunnel Investigation of End-plate Effects of Horizontal Tails on a Vertical Tail Compared with Available Theory

    NASA Technical Reports Server (NTRS)

    Murray, Harry E

    1946-01-01

    A vertical-tail model with stub fuselage was tested in combination with various simulated horizontal tails to determine the effect of horizontal-tail span and location on the aerodynamic characteristics of the vertical tail. Available theoretical data on end-plate effects were collected and presented in the form most suitable for design purposes. Reasonable agreement was obtained between the measured and theoretical end-plate effects of horizontal tails on vertical tails, and the data indicated that the end-plate effect was determined more by the location of the horizontal tail than by the span of the horizontal tail. The horizontal tail gave most end-plate effect when located near either tip of the vertical tail and, when located near the base of the vertical tail, the end-plate effect was increased by moving the horizontal tail rearward.

  17. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  18. Destruction of a Magnetized Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    completely.Amplifying EncountersFor stars that survive their encounter with the black hole, Guillochon and McCourt find that the process of partial disruption and re-accretion can amplify the magnetic field of the star by up to a factor of 20. Repeated encounters of the star with the black hole could amplify the field even more.The authors suggest an interesting implication of this idea: a population of highly magnetized stars may have formed in our own galactic center, resulting from their encounters with the supermassive black hole Sgr A*.A turbulent magnetic field forms after a partial stellar disruption and re-accretion of the tidal tails. [Adapted from Guillochon McCourt 2017]Effects in DestructionFor stars that are completely shredded and form a tidal stream after their encounter with the black hole, the authors find that the magnetic field geometry straightens within the stream of debris. There, the pressure of the magnetic field eventually dominates over the gas pressure and self-gravity.Guillochon and McCourt find that the fields new configuration isnt ideal for powering jets from the black hole but it is strong enough to influence how the stream interacts with itself and its surrounding environment, likely affecting what we can expect to see from these short-lived events.These simulations have clearly demonstrated the need to further explore the role of magnetic fields in the disruptions of stars by black holes.BonusCheck out the full (brief) video from one of the simulations by Guillochon and McCourt (be sure to watch it in high-res!). It reveals the evolution of a stars magnetic field configuration as the star is partially disrupted by the forces of a supermassive black hole and then re-accretes.CitationJames Guillochon and Michael McCourt 2017 ApJL 834 L19. doi:10.3847/2041-8213/834/2/L19

  19. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1998-01-01

    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  20. NuSTAR observations of the powerful radio-galaxy Cygnus A

    DOE PAGES

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.; ...

    2015-07-29

    Here, we present NuSTAR observations of the powerful radio galaxy Cygnus A, focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN and intracluster medium components. NuSTAR gives a source-dominated spectrum of the AGN out tomore » $$\\gt 70$$ keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law ($${\\rm{\\Gamma }}\\sim 1.6-1.7$$) absorbed by a neutral column density of $${N}_{{\\rm{H}}}\\sim 1.6\\times {10}^{23}\\;\\;{\\mathrm{cm}}^{-2}$$. However, we also detect curvature in the hard ($$\\gt 10$$ keV) spectrum resulting from reflection by Compton-thick matter out of our line of sight to the X-ray source. Compton reflection, possibly from the outer accretion disk or obscuring torus, is required even permitting a high-energy cut off in the continuum source; the limit on the cut-off energy is $${E}_{\\mathrm{cut}}\\gt 111$$ keV(90% confidence). Interestingly, the absorbed power law plus reflection model leaves residuals suggesting the absorption/emission from a fast ($$15,000-26,000\\;\\;\\mathrm{km}\\;\\;{{\\rm{s}}}^{-1}\\;$$), high column-density ($${N}_{W}\\gt 3\\times {10}^{23}\\;\\;{\\mathrm{cm}}^{-2}$$), highly ionized ($$\\xi \\sim 2500\\;\\mathrm{erg}\\;\\mathrm{cm}\\;{{\\rm{s}}}^{-1}$$) wind. A second, even faster ionized wind component is also suggested by these data. We show that the ionized wind likely carries a significant mass and momentum flux, and may carry sufficient kinetic energy to exercise feedback on the host galaxy. If confirmed, the simultaneous presence of a strong wind and powerful jets in Cygnus A demonstrates that feedback from radio-jets and sub-relativistic winds are not mutually exclusive phases of AGN activity but can occur simultaneously.« less

  1. The Virgo Cluster of Galaxies in the Making

    NASA Astrophysics Data System (ADS)

    2004-10-01

    VLT Observations of Planetary Nebulae Confirm the Dynamical Youth of Virgo [1] Summary An international team of astronomers [2] has succeeded in measuring with high precision the velocities of a large number of planetary nebulae [3] in the intergalactic space within the Virgo Cluster of galaxies. For this they used the highly efficient FLAMES spectrograph [4] on the ESO Very Large Telescope at the Paranal Observatory (Chile). These planetary nebulae stars free floating in the otherwise seemingly empty space between the galaxies of large clusters can be used as "probes" of the gravitational forces acting within these clusters. They trace the masses, visible as well as invisible, within these regions. This, in turn, allows astronomers to study the formation history of these large bound structures in the universe. The accurate velocity measurements of 40 of these stars confirm the view that Virgo is a highly non-uniform galaxy cluster, consisting of several subunits that have not yet had time to come to equilibrium. These new data clearly show that the Virgo Cluster of galaxies is still in its making. They also prove for the first time that one of the bright galaxies in the region scrutinized, Messier 87, has a very extended halo of stars, reaching out to at least 65 kpc. This is more than twice the size of our own galaxy, the Milky Way. PR Photo 29a/04: Velocity Measurements of Forty Intracluster Planetary Nebulae (FLAMES/VLT) PR Photo 29b/04: Intracluster Planetary Nebulae in the SUC field in the Virgo Cluster (Digital Sky Survey) A young cluster At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the zodiacal constellation Virgo (The Virgin) and contains many hundreds of galaxies, ranging from giant and massive elliptical galaxies and spirals like our own Milky Way, to dwarf galaxies, hundreds of times smaller than their big brethren. French astronomer Charles Messier entered 16 members of the

  2. Peculiarities in velocity dispersion and surface density profiles of star clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.

    2010-10-01

    Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other

  3. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak

    PubMed Central

    Jack, Mhairi; Futro, Agnieszka; Talbot, Darren; Zhu, Qiming; Barclay, David; Baxter, Emma M.

    2018-01-01

    Tail biting is a major welfare and economic problem for indoor pig producers worldwide. Low tail posture is an early warning sign which could reduce tail biting unpredictability. Taking a precision livestock farming approach, we used Time-of-flight 3D cameras, processing data with machine vision algorithms, to automate the measurement of pig tail posture. Validation of the 3D algorithm found an accuracy of 73.9% at detecting low vs. not low tails (Sensitivity 88.4%, Specificity 66.8%). Twenty-three groups of 29 pigs per group were reared with intact (not docked) tails under typical commercial conditions over 8 batches. 15 groups had tail biting outbreaks, following which enrichment was added to pens and biters and/or victims were removed and treated. 3D data from outbreak groups showed the proportion of low tail detections increased pre-outbreak and declined post-outbreak. Pre-outbreak, the increase in low tails occurred at an increasing rate over time, and the proportion of low tails was higher one week pre-outbreak (-1) than 2 weeks pre-outbreak (-2). Within each batch, an outbreak and a non-outbreak control group were identified. Outbreak groups had more 3D low tail detections in weeks -1, +1 and +2 than their matched controls. Comparing 3D tail posture and tail injury scoring data, a greater proportion of low tails was associated with more injured pigs. Low tails might indicate more than just tail biting as tail posture varied between groups and over time and the proportion of low tails increased when pigs were moved to a new pen. Our findings demonstrate the potential for a 3D machine vision system to automate tail posture detection and provide early warning of tail biting on farm. PMID:29617403

  4. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.

    2016-01-20

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Itsmore » variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.« less

  5. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  6. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul

    2010-09-01

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's lowmore » surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.« less

  7. Intracluster light at the Frontier - II. The Frontier Fields Clusters

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Trujillo, Ignacio

    2018-02-01

    Multiwavelength deep observations are a key tool to understand the origin of the diffuse light in clusters of galaxies: the intracluster light (ICL). For this reason, we take advantage of the Hubble Frontier Fields (HFF) survey to investigate the properties of the stellar populations of the ICL of its six massive intermediate redshift (0.3 < z < 0.6) clusters. We carry on this analysis down to a radial distance of ˜120 kpc from the brightest cluster galaxy. We found that the average metallicity of the ICL is [Fe/H]ICL ˜ -0.5, compatible with the value of the outskirts of the Milky Way. The mean stellar ages of the ICL are between 2 and 6 Gyr younger than the most massive galaxies of the clusters. Those results suggest that the ICL of these massive (>1015 M⊙) clusters is formed by the stripping of MW-like objects that have been accreted at z < 1, in agreement with current simulations. We do not find any significant increase in the fraction of light of the ICL with cosmic time, although the redshift range explored is narrow to derive any strong conclusion. When exploring the slope of the stellar mass density profile, we found that the ICL of the HFF clusters follows the shape of their underlying dark matter haloes, in agreement with the idea that the ICL is the result of the stripping of galaxies at recent times.

  8. The Case of the Tail Wagging the Dog: HD 189733 - Evidence of Hot Jupiter Exoplanets Spinning-up Their Host Stars

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2013-06-01

    (Abstract only) HD 189733A is an eighth mag K1.5V star that has attracted much attention because it hosts a short period, transiting, hot-Jupiter planet. This planet, HD 189733b, has one of the shortest known orbital periods (P = 2.22 days) and is only 0.031 AU from its host star. Because the system undergoes eclipses and is bright, HD 189733 has been extensively studied. The planet's atmosphere has been found to contain water vapor, methane, CO2, and sodium and possible haze. Spitzer IR observations indicate planet temperature, varying ~970 K to ~1,200 K over its surface (Tinetti (2007). Based on measurements of the K-star's P(rot) from starspot modulations of ~11.95 d, strong coronal X-ray emission and chromospheric Ca II-HK emission indicate a young age of ~0.7 Gyr. But this apparent young age is discrepant with a much older age (> 4 Gyr) inferred from the star's very low Lithium abundance. However, the age of the HD 189733 system can be independently determined by the presence of a faint dM4 companion (HD 189733B) some 12" away. Our Age-Activity relations for this star (no detectable coronal X-ray emission and no H-alpha emission) indicate an age > 4 Gyr (and < 8 Gyr from kinematics and metallicity). This age should apply to its K star companion and its planet. The fast rotation and resultant high activity levels of the K star can best be explained from the increase in its (rotation) angular momentum (AM) from the orbital AM of the planet. This AM transfer occurs from tidal and magnetic interactions of the K star with its planet. Determining the possible decrease in the planet's orbital period is possible from studying the planet eclipse times (which can be done by AAVSO members with CCD photometry). We also discuss the properties of other related short-period exoplanet systems found by the Kepler Mission that show similar behavior - in that close-in hot Jupiter size planets appear to be physically interacting with their host stars. This work is supported by

  9. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  10. Trail of Black Holes and Neutron Stars Points to Ancient Collision

    NASA Astrophysics Data System (ADS)

    2003-12-01

    An image of an elliptical galaxy by NASA's Chandra X-ray Observatory has revealed a trail of black holes and neutron stars stretching more than fifty thousand light years across space. The trail of intense X-ray sources is evidence that this apparently sedate galaxy collided with another galaxy a few billion years ago. "This discovery shows that X-ray observations may be the best way to identify the ancient remains of mergers between galaxies," said Lars Hernquist of the Harvard-Smithsonian Center for Astrophysics in Cambridge (CfA), Massachusetts, and a coauthor on an article on the galaxy NGC 4261 in an upcoming issue of The Astrophysical Journal Letters. "It could be a significant tool for probing the origin of elliptical galaxies." "From the optical and radio images, we knew something unusual was going on in the nucleus of this galaxy, but the real surprise turned out to be on the outer edges of the galaxy," said Andreas Zezas, also of CfA, and lead-author of the paper on NGC 4261. "Dozens of black holes and neutron stars were strung out across space like beads on a necklace." The spectacular structure is thought to represent the aftermath of the destruction of a smaller galaxy that was pulled apart by gravitational tidal forces as it fell into NGC 4261. As the doomed galaxy fell into the larger one, large streams of gas were pulled out into long tidal tails. Shock waves generated as these tidal tails fell into the larger galaxy triggered the formation of large numbers of massive stars which over the course of a few million years evolved into neutron stars or black holes. A few of these extremely compact objects had companion stars, and became bright X-ray sources as gas from the companions was captured by the intense gravitational fields of the neutron stars and black holes. The origin of elliptical galaxies has long been a subject of intense debate among astronomers. The currently favored view is that they are produced by collisions between spiral galaxies

  11. Research on Long Tail Recommendation Algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Xuezhi; Zhang, Chuang; Wu, Ming; Zeng, Yang

    2017-10-01

    Most recommendation systems in the major electronic commerce platforms are influenced by the long tail effect more or less. There are sufficient researches of how to assess recommendation effect while no criteria to evaluate long tail recommendation rate. In this study, we first discussed the existing problems of recommending long tail products through specific experiments. Then we proposed a long tail evaluation criteria and compared the performance in long tail recommendation between different models.

  12. A Tale of Tails: Dissecting the Enhancing Effect of Tailed Primers in Real-Time PCR

    PubMed Central

    Vandenbussche, Frank; Mathijs, Elisabeth; Lefebvre, David; De Clercq, Kris; Van Borm, Steven

    2016-01-01

    Non-specific tail sequences are often added to the 5’-terminus of primers to improve the robustness and overall performance of diagnostic assays. Despite the widespread use of tailed primers, the underlying working mechanism is not well understood. To address this problem, we conducted a detailed in vitro and in silico analysis of the enhancing effect of primer tailing on 2 well-established foot-and-mouth disease virus (FMDV) RT-qPCR assays using an FMDV reference panel. Tailing of the panFMDV-5UTR primers mainly affected the shape of the amplification curves. Modelling of the raw fluorescence data suggested a reduction of the amplification efficiency due to the accumulation of inhibitors. In depth analysis of PCR products indeed revealed the rapid accumulation of forward-primer derived artefacts. More importantly, tailing of the forward primer delayed artefacts formation and concomitantly restored the sigmoidal shape of the amplification curves. Our analysis also showed that primer tailing can alter utilisation patterns of degenerate primers and increase the number of primer variants that are able to participate in the reaction. The impact of tailed primers was less pronounced in the panFMDV-3D assay with only 5 out of 50 isolates showing a clear shift in Cq values. Sequence analysis of the target region of these 5 isolates revealed several mutations in the inter-primer region that extend an existing hairpin structure immediately downstream of the forward primer binding site. Stabilisation of the forward primer with either a tail sequence or cationic spermine units restored the sensitivity of the assay, which suggests that the enhancing effect in the panFMDV-3D assay is due to a more efficient extension of the forward primer. ur results show that primer tailing can alter amplification through various mechanisms that are determined by both the assay and target region. These findings expand our understanding of primer tailing and should enable a more targeted and

  13. LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, C. P.; Pereira, M. J.; Egami, E.

    2013-10-01

    We present an analysis of the levels and evolution of star formation activity in a representative sample of 30 massive galaxy clusters at 0.15 < z < 0.30 from the Local Cluster Substructure Survey, combining wide-field Spitzer/MIPS 24 μm data with extensive spectroscopy of cluster members. The specific SFRs of massive (M > or approx. 10{sup 10} M{sub ☉}) star-forming cluster galaxies within r{sub 200} are found to be systematically ∼28% lower than their counterparts in the field at fixed stellar mass and redshift, a difference significant at the 8.7σ level. This is the unambiguous signature of star formation inmore » most (and possibly all) massive star-forming galaxies being slowly quenched upon accretion into massive clusters, their star formation rates (SFRs) declining exponentially on quenching timescales in the range 0.7-2.0 Gyr. We measure the mid-infrared Butcher-Oemler effect over the redshift range 0.0-0.4, finding rapid evolution in the fraction (f{sub SF}) of massive (M{sub K} < – 23.1) cluster galaxies within r{sub 200} with SFRs > 3 M{sub ☉} yr{sup –1}, of the form f{sub SF}∝(1 + z){sup 7.6±1.1}. We dissect the origins of the Butcher-Oemler effect, revealing it to be due to the combination of a ∼3 × decline in the mean specific SFRs of star-forming cluster galaxies since z ∼ 0.3 with a ∼1.5 × decrease in number density. Two-thirds of this reduction in the specific SFRs of star-forming cluster galaxies is due to the steady cosmic decline in the specific SFRs among those field galaxies accreted into the clusters. The remaining one-third reflects an accelerated decline in the star formation activity of galaxies within clusters. The slow quenching of star formation in cluster galaxies is consistent with a gradual shut down of star formation in infalling spiral galaxies as they interact with the intracluster medium via ram-pressure stripping or starvation mechanisms. The observed sharp decline in star formation activity among

  14. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  15. Botanical compound p-anisaldehyde repels larval lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae), and halts reproduction by gravid adults

    USDA-ARS?s Scientific Manuscript database

    The lone star tick, Amblyomma americanum (L.), widely distributed across eastern, southeastern, and midwestern regions of the United States and south into Mexico, is an obligate blood feeder that attaches to three hosts during the larval, nymphal, and adult stages. White-tailed deer and wild turkey ...

  16. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.

    PubMed

    Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S

    2016-01-29

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Comparison of Intra-cluster and M87 Halo Orphan Globular Clusters in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Louie, Tiffany Kaye; Tuan, Jin Zong; Martellini, Adhara; Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric; Longobardi, Alessia; Lim, Sungsoon

    2018-01-01

    We present a study of “orphan” globular clusters (GCs) — GCs with no identifiable nearby host galaxy — discovered in NGVS, a 104 deg2 CFHT/MegaCam imaging survey. At the distance of the Virgo cluster, GCs are bright enough to make good spectroscopic targets and many are barely resolved in good ground-based seeing. Our orphan GC sample is derived from a subset of NGVS-selected GC candidates that were followed up with Keck/DEIMOS spectroscopy. While our primary spectroscopic targets were candidate GC satellites of Virgo dwarf elliptical and ultra-diffuse galaxies, many objects turned out to be non-satellites based on a radial velocity mismatch with the Virgo galaxy they are projected close to. Using a combination of spectral characteristics (e.g., absorption vs. emission), Gaussian mixture modeling of radial velocity and positions, and extreme deconvolution analysis of ugrizk photometry and image morphology, these non-satellites were classified into: (1) intra-cluster GCs (ICGCs) in the Virgo cluster, (2) GCs in the outer halo of M87, (3) foreground Milky Way stars, and (4) background galaxies. The statistical distinction between ICGCs and M87 halo GCs is based on velocity distributions (mean of 1100 vs. 1300 km/s and dispersions of 700 vs. 400 km/s, respectively) and radial distribution (diffuse vs. centrally concentrated, respectively). We used coaddition to increase the spectral SNR for the two classes of orphan GCs and measured the equivalent widths (EWs) of the Mg b and H-beta absorption lines. These EWs were compared to single stellar population models to obtain mean age and metallicity estimates. The ICGCs and M87 halo GCs have <[Fe/H> = –0.6+/–0.3 and –0.4+/–0.3 dex, respectively, and mean ages of >~ 5 and >~ 10 Gyr, respectively. This suggests the M87 halo GCs formed in relatively high-mass galaxies that avoided being tidally disrupted by M87 until they were close to the cluster center, while IGCCs formed in relatively low-mass galaxies that

  18. A Census of Baryons in Galaxy Clusters and Groups

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony H.; Zaritsky, Dennis; Zabludoff, Ann I.

    2007-09-01

    We determine the contribution of stars in galaxies, intracluster stars, and the intracluster medium to the total baryon budget in nearby galaxy clusters and groups. We find that the baryon mass fraction (fb≡Ωb/Ωm) within r500 is constant for systems with M500 between 6×1013 and 1×1015 Msolar. Although fb is lower than the WMAP value, the shortfall is on the order of both the observational systematic uncertainties and the depletion of baryons within r500 that is predicted by simulations. The data therefore provide no compelling evidence for undetected baryonic components, particularly any that would be expected to vary in importance with cluster mass. A unique feature of the current analysis is direct inclusion of the contribution of intracluster light (ICL) in the baryon budget. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases for systems with 145 km s-1<=σ<=1026 km s-1, suggesting that the BCG+ICL component, and in particular the dominant ICL component, grows less efficiently in higher mass environments. The degree to which this behavior arises from our sample selection, which favored systems with central, giant elliptical galaxies, remains unclear. A more robust result is the identification of low-mass groups with large BCG+ICL components, demonstrating that the creation of ``intracluster'' stars does not require a massive cluster environment. Within r500 and r200, the BCG+ICL contributes on average 40% and 33% of

  19. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Marinacci, Federico; Torrey, Paul; Genel, Shy; Springel, Volker; Weinberger, Rainer; Pakmor, Rüdiger; Hernquist, Lars; Naiman, Jill; Pillepich, Annalisa; Nelson, Dylan

    2018-02-01

    The distribution of metals in the intra-cluster medium (ICM) encodes important information about the enrichment history and formation of galaxy clusters. Here, we explore the metal content of clusters in IllustrisTNG - a new suite of galaxy formation simulations building on the Illustris project. Our cluster sample contains 20 objects in TNG100 - a ˜(100 Mpc)3 volume simulation with 2 × 18203 resolution elements, and 370 objects in TNG300 - a ˜(300 Mpc)3 volume simulation with 2 × 25003 resolution elements. The z = 0 metallicity profiles agree with observations, and the enrichment history is consistent with observational data going beyond z ˜ 1, showing nearly no metallicity evolution. The abundance profiles vary only minimally within the cluster samples, especially in the outskirts with a relative scatter of ˜ 15 per cent. The average metallicity profile flattens towards the centre, where we find a logarithmic slope of -0.1 compared to -0.5 in the outskirts. Cool core clusters have more centrally peaked metallicity profiles (˜0.8 solar) compared to non-cool core systems (˜0.5 solar), similar to observational trends. Si/Fe and O/Fe radial profiles follow positive gradients. The outer abundance profiles do not evolve below z ˜ 2, whereas the inner profiles flatten towards z = 0. More than ˜ 80 per cent of the metals in the ICM have been accreted from the proto-cluster environment, which has been enriched to ˜0.1 solar already at z ˜ 2. We conclude that the intra-cluster metal distribution is uniform among our cluster sample, nearly time-invariant in the outskirts for more than 10 Gyr, and forms through a universal enrichment history.

  20. Effects of two commercial neem-based insecticides on lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae): deterrence, mortality, and reproduction

    USDA-ARS?s Scientific Manuscript database

    The lone star tick, Amblyomma americanum (L.), is a widely distributed three-host obligate blood-feeding parasite in the United States and Mexico. It mostly attaches to white-tailed deer, Odocoilus virginianus (Zimmerman) and wild turkey, Meleagris gallopavo L., as well as a wide variety of other do...

  1. The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium

    NASA Astrophysics Data System (ADS)

    Brunetti, Gianfranco

    2016-01-01

    Acceleration of cosmic-ray electrons (CRe) in the intra-cluster medium (ICM) is probed by radio observations that detect diffuse, megaparsec-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence, driven during massive cluster-cluster mergers, reaccelerates CRe at several giga-electron volts. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean free path (mfp) of CRe, are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are, however, poorly known, and we show that calculations of turbulent acceleration are also sensitive to these uncertainties. On the other hand this fact implies that the non-thermal properties of galaxy clusters probe the complex microphysics and the weakly collisional nature of the ICM.

  2. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J. S.; Zhang, Y.-Y.; Akamatsu, H.; Gu, L.; Kosec, P.; Mao, J.; Pinto, C.; Reiprich, T. H.; Sanders, J. S.; Simionescu, A.; Werner, N.

    2017-07-01

    The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z ≃ 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to 0.9 r500 and 0.6 r500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least 0.5 r500. As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals

  3. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  4. An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu

    2018-06-01

    Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

  5. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  6. Star formation and ISM morphology in tidally induced spiral structures

    NASA Astrophysics Data System (ADS)

    Pettitt, Alex R.; Tasker, Elizabeth J.; Wadsley, James W.; Keller, Ben W.; Benincasa, Samantha M.

    2017-07-01

    Tidal encounters are believed to be one of the key drivers of galactic spiral structure in the Universe. Such spirals are expected to produce different morphological and kinematic features compared to density wave and dynamic spiral arms. In this work, we present high-resolution simulations of a tidal encounter of a small mass companion with a disc galaxy. Included are the effects of gas cooling and heating, star formation and stellar feedback. The structure of the perturbed disc differs greatly from the isolated galaxy, showing clear spiral features that act as sites of new star formation, and displaying interarm spurs. The two arms of the galaxy, the bridge and tail, appear to behave differently; with different star formation histories and structure. Specific attention is focused on offsets between gas and stellar spiral features which can be directly compared to observations. We find that some offsets do exist between different media, with gaseous arms appearing mostly on the convex side of the stellar arms, though the exact locations appear highly time dependent. These results further highlight the differences between tidal spirals and other theories of arm structure.

  7. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα

    PubMed Central

    Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.

    2016-01-01

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945

  8. GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204

    NASA Astrophysics Data System (ADS)

    Gullieuszik, Marco; Poggianti, Bianca M.; Moretti, Alessia; Fritz, Jacopo; Jaffé, Yara L.; Hau, George; Bischko, Jan C.; Bellhouse, Callum; Bettoni, Daniela; Fasano, Giovanni; Vulcani, Benedetta; D’Onofrio, Mauro; Biviano, Andrea

    2017-09-01

    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4× {10}14 {M}ȯ . This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas-stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200 km s‑1 out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial-velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas-stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure-stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.

  9. Star-triangle and star-star relations in statistical mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.J.

    1997-01-20

    The homogeneous three-layer Zamolodchikov model is equivalent to a four-state model on the checkerboard lattice which closely resembles the four-state critical Potts model, but with some of its Boltzmann weights negated. Here the author shows that it satisfies a star-to-reverse-star (or simply star-star) relation, even though they know of no star-triangle relation for this model. For any nearest-neighbor checkerboard model, they show that this star-star relation is sufficient to ensure that the decimated model (where half the spins have been summed over) satisfies a twisted Yang-Baxter relation. This ensures that the transfer matrices of the original model commute in pairs,more » which is an adequate condition for solvability.« less

  10. Using the morphology and magnetic fields of tailed radio galaxies as environmental probes

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, M.; Dehghan, S.; Pratley, L.

    2015-03-01

    Bent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called `corkscrew' galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.

  11. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Relationship between the Elemental Abundances and the Kinematics of Galactic-Field RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval, V. V.

    2018-01-01

    Data of our compiled catalog containing the positions, velocities, and metallicities of 415 RR Lyrae variable stars and the relative abundances [el/Fe] of 12 elements for 101 RR Lyrae stars, including four α elements (Mg, Ca, Si, and Ti), are used to study the relationships between the chemical and spatial-kinematic properties of these stars. In general, the dependences of the relative abundances of α elements on metallicity and velocity for the RR Lyrae stars are approximately the same as those for field dwarfs. Despite the usual claim that these stars are old, among them are representatives of the thin disk, which is the youngest subsystem of the Galaxy. Attention is called to the problem of lowmetallicity RR Lyrae stars. Most RR Lyrae stars that have the kinematic properties of thick disk stars have metallicities [Fe/H] < -1.0 and high ratios [α/Fe] ≈ 0.4, whereas only about 10% of field dwarfs belonging to the so-called "low-metallicity tail" have this chemical composition. At the same time, there is a sharp change in [α/Fe] in RR Lyrae stars belonging just to the thick disk, providing evidence for a long period of formation of this subsystem. The chemical compositions of SDSS J1707+58, V455 Oph, MACHO176.18833.411, V456 Ser, and BPSCS 30339-046 do not correspond to their kinematics.While the first three of these stars belong to the halo, according to their kinematics, the last two belong to the thick disk. It is proposed that they are all most likely extragalactic, but the possible appearance of some of them in the solar neighborhood as a result of the gravitational action of the bar on field stars cannot be ruled out.

  13. Detection With Rhessi of High Frequency X-ray Oscillations in the Tail of the 2004 Hyperflare From SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.

    2005-01-01

    The recent discovery of high frequency oscillations in giant flares from SGR 1806-20 and SGR 1900+14 may be the first direct detection of vibrations in a neutron star crust. If this interpretation is correct it offers a novel means of testing the neutron star equation of state, crustal breaking strain, and magnetic field configuration. Using timing data from RHESSI, we have confirmed the detection of a 92.5 Hz Quasi-Periodic Oscillation (QPO) in the tail of the SGR 1806-20 giant flare. We also find another, stronger, QPO at higher energies, at 626.5 Hz. Both QPOs are visible only at particular (but different) rotational phases, implying an association with a specific area of the neutron star surface or magnetosphere. At lower frequencies we confirm the detection of an 18 Hz QPO, at the same rotational phase as the 92.5 Hz QPO, and report the additional presence of a broad 26 Hz QPO. We are however unable to make a robust confirmation of the presence of a 30 Hz QPO, despite higher count rates. We discuss our results in the light of neutron star vibration models.

  14. Exploring Mercury Tail

    NASA Image and Video Library

    2008-08-26

    As the MESSENGER spacecraft approached Mercury, the UVVS field of view was scanned across the planet's exospheric "tail," which is produced by the solar wind pushing Mercury's exosphere (the planet's extremely thin atmosphere) outward. This figure, recently published in Science magazine, shows a map of the distribution of sodium atoms as they stream away from the planet (see PIA10396); red and yellow colors represent a higher abundance of sodium than darker shades of blue and purple, as shown in the colored scale bar, which gives the brightness intensity in units of kiloRayleighs. The escaping atoms eventually form a comet-like tail that extends in the direction opposite that of the Sun for many planetary radii. The small squares outlined in black correspond to individual measurements that were used to create the full map. These measurements are the highest-spatial-resolution observations ever made of Mercury's tail. In less than six weeks, on October 6, 2008, similar measurements will be made during MESSENGER's second flyby of Mercury. Comparing the measurements from the two flybys will provide an unprecedented look at how Mercury's dynamic exosphere and tail vary with time. Date Acquired: January 14, 2008. http://photojournal.jpl.nasa.gov/catalog/PIA11076

  15. Star formation, structure, and formation mechanism of cometary globules: near-infrared observations of CG 1 and CG 2

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.

    2013-02-01

    Context. Cometary globule (CG) 1 and CG 2 are "classic" cometary globules in the Gum Nebula. They have compact heads and long dusty tails that point away from the centre of the Gum Nebula. Aims: We study the structure of CG 1 and CG 2 and the star formation in them to find clues to the CG formation mechanism. The two possible CG formation mechanisms, radiation-driven implosion (RDI) and a supernova blast wave, produce a characteristic mass distribution where the major part of the mass is situated in either the head (RDI) or the tail (supernova blast). Methods: CG 1 and CG 2 were imaged in the near infrared (NIR) JsHKs bands. NIR photometry was used to locate NIR excess objects and to create visual extinction maps of the CGs. The AV maps allow us to analyse the large-scale structure of CG 1 and CG 2. Archival images from the WISE and Spitzer satellites and HIRES-processed IRAS images were used to study the globule's small-scale structure. Fits were made to the spectral energy distribution plots of the NIR-excess stars to estimate their age and mass. Results: In addition to the previously known CG 1 IRS 1 we discovered three new NIR-excess objects in IR imaging, two in CG 1 and one in CG 2. CG 2 IRS 1 is the first detection of star formation in CG 2. The objects are young low-mass stars. CG 1 IRS 1 is probably a class I protostar in the head of CG 1. CG 1 IRS 1 drives a bipolar outflow, which is very weak in CO, but the cavity walls are seen in reflected light in our NIR and in the Spitzer 3.6 and 4.5 μm images. Strong emission from excited polycyclic aromatic hydrocarbon particles and very small grains were detected in the CG 1 tail. The total mass of CG 1 in the observed area is 41.9 M⊙ of which 16.8 M⊙ lies in the head. For CG 2 these values are 31.0 M⊙ total and 19.1 M⊙ in the head. The observed mass distribution does not offer a firm conclusion for the formation mechanism of the two CGs: CG 1 is in too evolved a state, and in CG 2 part of the globule

  16. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~<1 year for cluster transverse velocities of v_T<~1000 km/s.Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3-30 lensing clusters to AB<29 mag over a decade (see Windhorst et al. 2018, ApJS, 234, 41; astro-ph/1801.03584).This work was supported by NASA JWST Interdisciplinary Scientist grants NAG5-12460, NX14AN10G, and 80NSSC18K0200, NASA Theoretical and Computational Astrophysics Networks grant NNX14AB53G, NSF Software Infrastructure for Sustained Innovation grant 1339600, NSF Physics Frontier Center JINA-CEE grant PHY-1430152, Australian Research Council projects AYA2015-64508-P, AYA2012-39475-C02-01, and Ministerio de Economia y Competitividad of Spain Consolider

  17. Deep Chandra , HST-COS, and megacam observations of the Phoenix cluster: Extreme star formation and AGN feedback on hundred kiloparsec scales

    DOE PAGES

    McDonald, Michael; McNamara, Brian R.; Perimeter Institute for Theoretical Physics, Waterloo; ...

    2015-09-28

    In this study, we present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ~50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr –1. We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yrmore » –1) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2 – 7 × 10 45 erg s –1. We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode," and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended "ghost" cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R 500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments.« less

  18. Tail-scope: Using friends to estimate heavy tails of degree distributions in large-scale complex networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jo, Hang-Hyun

    2015-05-01

    Many complex networks in natural and social phenomena have often been characterized by heavy-tailed degree distributions. However, due to rapidly growing size of network data and concerns on privacy issues about using these data, it becomes more difficult to analyze complete data sets. Thus, it is crucial to devise effective and efficient estimation methods for heavy tails of degree distributions in large-scale networks only using local information of a small fraction of sampled nodes. Here we propose a tail-scope method based on local observational bias of the friendship paradox. We show that the tail-scope method outperforms the uniform node sampling for estimating heavy tails of degree distributions, while the opposite tendency is observed in the range of small degrees. In order to take advantages of both sampling methods, we devise the hybrid method that successfully recovers the whole range of degree distributions. Our tail-scope method shows how structural heterogeneities of large-scale complex networks can be used to effectively reveal the network structure only with limited local information.

  19. Does climate have heavy tails?

    NASA Astrophysics Data System (ADS)

    Bermejo, Miguel; Mudelsee, Manfred

    2013-04-01

    When we speak about a distribution with heavy tails, we are referring to the probability of the existence of extreme values will be relatively large. Several heavy-tail models are constructed from Poisson processes, which are the most tractable models. Among such processes, one of the most important are the Lévy processes, which are those process with independent, stationary increments and stochastic continuity. If the random component of a climate process that generates the data exhibits a heavy-tail distribution, and if that fact is ignored by assuming a finite-variance distribution, then there would be serious consequences (in the form, e.g., of bias) for the analysis of extreme values. Yet, it appears that it is an open question to what extent and degree climate data exhibit heavy-tail phenomena. We present a study about the statistical inference in the presence of heavy-tail distribution. In particular, we explore (1) the estimation of tail index of the marginal distribution using several estimation techniques (e.g., Hill estimator, Pickands estimator) and (2) the power of hypothesis tests. The performance of the different methods are compared using artificial time-series by means of Monte Carlo experiments. We systematically apply the heavy tail inference to observed climate data, in particular we focus on time series data. We study several proxy and directly observed climate variables from the instrumental period, the Holocene and the Pleistocene. This work receives financial support from the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme).

  20. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  1. Chemical Abundances of Metal-poor RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Haschke, Raoul; Grebel, Eva K.; Frebel, Anna; Duffau, Sonia; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ~ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible. This paper includes data gathered with the 6.5 meter Magellan

  2. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  3. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.

  4. MUSE sneaks a peek at extreme ram-pressure events. III. Tomography of UGC 6697, a massive galaxy falling into Abell 1367

    NASA Astrophysics Data System (ADS)

    Consolandi, G.; Gavazzi, G.; Fossati, M.; Fumagalli, M.; Boselli, A.; Yagi, M.; Yoshida, M.

    2017-10-01

    We present the MUSE observations of UGC 6697, a giant (M∗ ≈ 1010M⊙) spiral galaxy infalling in the nearby cluster Abell 1367. During its high-velocity transit through the intracluster medium (ICM), the hydrodynamical interactions with the ICM produce a ≈ 100 kpc tail of ionized gas that we map with a mosaic of five MUSE pointings up to 60 kpc from the galaxy. CGCG 97087N, a small companion that lies at few arcminutes in projection from UGC 6697, is also showing signs of the hydrodynamic action of the ICM of the cluster. Along the whole extent of the tail, we detect diffuse Hα emission, and to a lesser extent, Hβ, [OIII]λ5007, and [OI]λ6300. By comparing the kinematics and distribution of gas and stars (as traced by the CaII triplet) for both galaxies, we separate the ionized gas, as traced by the Hα line, into a component that is still bound to the galaxy and a component that is stripped. We find that the bound component shows a low-velocity dispersion and line ratios consistent with photoionization by hot stars. The stripped gas is more turbulent, with velocity dispersions up to ≳100 km s-1, and is excited by shocks, as traced by high values of [OI]/Hα and [NII]/Hα ratio. In the tail of UGC 6697, we identify numerous bright compact knots with line ratios typical of HII regions. These are distributed along the only streams of stripped gas that retain low-velocity dispersions (≲35 km s-1). Despite being in the stripped gas, their physical properties are not different from normal HII regions in galactic disks. We find evidence of a past fast encounter between the two galaxies in the form of a double tail emerging from CGCG 97087N that connects with UGC 6697. This encounter might have increased the efficiency of the stripping process, leaving the stellar distribution and kinematics unaltered. The composite data cube is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  5. Active tails enhance arboreal acrobatics in geckos

    PubMed Central

    Jusufi, Ardian; Goldman, Daniel I.; Revzen, Shai; Full, Robert J.

    2008-01-01

    Geckos are nature's elite climbers. Their remarkable climbing feats have been attributed to specialized feet with hairy toes that uncurl and peel in milliseconds. Here, we report that the secret to the gecko's arboreal acrobatics includes an active tail. We examine the tail's role during rapid climbing, aerial descent, and gliding. We show that a gecko's tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle's kickstand. Should a gecko fall with its back to the ground, a swing of its tail induces the most rapid, zero-angular momentum air-righting response yet measured. Once righted to a sprawled gliding posture, circular tail movements control yaw and pitch as the gecko descends. Our results suggest that large, active tails can function as effective control appendages. These results have provided biological inspiration for the design of an active tail on a climbing robot, and we anticipate their use in small, unmanned gliding vehicles and multisegment spacecraft. PMID:18347344

  6. Radio jet propagation and wide-angle tailed radio sources in merging galaxy cluster environments

    NASA Technical Reports Server (NTRS)

    Loken, Chris; Roettiger, Kurt; Burns, Jack O.; Norman, Michael

    1995-01-01

    The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and

  7. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-07-01

    Despite the huge amount of photometric and spectroscopic efforts targeting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 per cent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 per cent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 per cent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit, implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  8. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    NASA Astrophysics Data System (ADS)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  9. Observing RAM Pressure Stripping and Morphological Transformation in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, Michael; West, Michael

    2017-07-01

    The two largest spirals in the Coma cluster, NGC4911 and NGC4921, are being vigorously ram-pressure stripped by the hot intracluster medium. Our HST ACS and WFC3 images have revealed galactic scale shock fronts, giant "Pillars of Creation", rivulets of dust, and spatially coherent star formation in these grand design spirals. We have now obtained HST WFC3 imaging of five additional large Coma spirals to search for and investigate the effects of ram pressure stripping across the wider cluster environment. The results are equally spectacular as the first two examples. The geometry of the interactions in some cases allows an estimation of the various time scales involved, including gas flows out of the disk leading to creation of the ICM, and the attendant triggered star formation in the galaxy disks. The global star formation patterns yield insights into the spatial and temporal ISM-ICM interactions driving cluster galaxy evolution and ultimately transforming morphologies from spiral to S0. These processes were much more common in the early Universe when the intergalactic and intracluster components were initially created from stripping and destruction of member galaxies.

  10. Star formation in H I tails: HCG 92, HCG 100 and six interacting systems

    NASA Astrophysics Data System (ADS)

    de Mello, D. F.; Urrutia-Viscarra, F.; Mendes de Oliveira, C.; Torres-Flores, S.; Carrasco, E. R.; Cypriano, E.

    2012-11-01

    We present new Gemini spectra of 14 new objects found within the H I tails of Hickson Compact Groups (HCGs) 92 and 100. Nine of them are Galaxy Evolution Explorer (GALEX) far-ultraviolet (FUV) and near-ultraviolet (NUV) sources. The spectra confirm that these objects are members of the compact groups and have metallicities close to solar, with an average value of 12+log(O/H) ˜ 8.5. They have average FUV luminosities 7 × 1040 erg s-1 and very young ages (<100 Myr), and two of them resemble tidal dwarf galaxy (TDG) candidates. We suggest that they were created within gas clouds that were ejected during galaxy-galaxy interactions into the intergalactic medium, which would explain the high metallicities of the objects, inherited from the parent galaxies from which the gas originated. We conduct a search for similar objects in six interacting systems with extended H I tails: NGC 2623, NGC 3079, NGC 3359, NGC 3627, NGC 3718 and NGC 4656. We found 35 ultraviolet (UV) sources with ages < 100 Myr; however, most of them are on average less luminous/massive than the UV sources found around HCG 92 and HCG 100. We speculate that this might be an environmental effect and that compact groups of galaxies are more favourable to TDG formation than other interacting systems. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina) - Observing run ID: GN-2003A-Q-53 and GN-2007B-Q-87.

  11. Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Smith, Beverly J.; Rosado, Margarita; Beckman, John E.; Bitsakis, Theodoros; Camps-Fariña, Artemi; Font, Joan; Cox, Isaiah S.

    2018-02-01

    We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.

  12. Star formation properties of Hickson Compact Groups based on deep Hα imaging

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Ploeckinger, Sylvia; Verdugo, Miguel; Ziegler, Bodo

    2015-08-01

    We present deep Hα imaging of seven Hickson Compact Groups (HCGs) using the 4.1-m Southern Astrophysics Research (SOAR) Telescope. The high spatial resolution of the observations allows us to study both the integrated star formation properties of the main galaxies as well as the 2D distribution of star-forming knots in the faint tidal arms that form during interactions between the individual galaxies. We derive star formation rates and stellar masses for group members and discuss their position relative to the main sequence of star-forming galaxies. Despite the existence of tidal features within the galaxy groups, we do not find any indication for enhanced star formation in the selected sample of HCGs. We study azimuthally averaged Hα profiles of the galaxy discs and compare them with the g' and r' surface brightness profiles. We do not find any truncated galaxy discs but reveal that more massive galaxies show a higher light concentration in Hα than less massive ones. We also see that galaxies that show a high light concentration in r', show a systematic higher light concentration in Hα. Tidal dwarf galaxy (TDG) candidates have been previously detected in R-band images for two groups in our sample but we find that most of them are likely background objects as they do not show any emission in Hα. We present a new TDG candidate at the tip of the tidal tail in HCG 91.

  13. Comparison of the breeding biology of sympatric red-tailed Hawks, White-tailed Hawks, and Crested Caracaras in south Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2009-01-01

    We compared the breeding biology of sympatric nesting Red-tailed Hawks (Buteo jamaicensis), White-tailed Hawks (Buteo albicaudatus), and Crested Caracaras (Caracara cheriway) in south Texas during 2003 and 2004. We monitored 46 breeding attempts by Red-tailed Hawks, 56 by White-tailed Hawks, and 27 by Crested Caracaras. Observed nesting success was similar for Red-tailed Hawks (62%) and Crested Caracaras (61%), but lower for White-tailed Hawks (51%). Daily survival rates (0.99) were the same for all three species. Red-tailed Hawks and White-tailed Hawks both fledged 1.13 young per nesting pair and Crested Caracaras fledged 1.39 young per nesting pair. All three species nested earlier in 2004 than in 2003; in addition, the overall nesting density of these three species almost doubled from 2003 (1.45 pairs/km2) to 2004 (2.71 pairs/km2). Estimated productivity of all three species was within the ranges reported from other studies. Given extensive and progressive habitat alteration in some areas of south Texas, and the limited distributions of White-tailed Hawks and Crested Caracaras, the presence of large ranches managed for free-range cattle production and hunting leases likely provides important habitat and may be key areas for conservation of these two species. ?? 2009 The Raptor Research Foundation, Inc.

  14. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  15. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.

    PubMed

    Maboeta, M S; Oladipo, O G; Botha, S M

    2018-05-01

    Earthworms are bioindicators of soil pollution. The ecotoxicity of tailings from selected gold mines in South Africa was investigated utilizing Eisenia andrei bioassays and biomarkers. Samples were obtained from unrehabilitated, rehabilitated and naturally vegetated sites. Biomass, neutral red retention time (NRRT), survival and reproduction were assessed using standardized protocols. Earthworm biomass, NRRT and reproductive success in rehabilitated tailings (comparable to naturally vegetated site) were significantly higher (p < 0.05) than in unrehabilitated tailings. In addition, significantly lower (p < 0.05) body tissue concentrations of As, Cd, Co, Cu and Ni contents were found in the rehabilitated tailings compared to the unrehabilitated. Further, significantly lower (p < 0.05) soil Mn and Zn concentrations were obtained in unrehabilitated tailings than the rehabilitated and naturally vegetated sites. Overall, reduced ecotoxicity effects were confirmed in rehabilitated compared to unrehabilitated tailings. This suggests that rehabilitation as a post-mining restorative strategy has strong positive influence on mine tailings.

  16. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S. E.; Dufton, P. L.; Gräfener, G.; Evans, C. J.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2013-12-01

    Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims: Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods: We measured projected rotational velocities, νesini, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(νe), of the equatorial rotational velocity, νe. Results: The distribution of νesini shows a two-component structure: a peak around 80 kms-1 and a high-velocity tail extending up to ~600 kms-1. This structure is also present in the inferred distribution P(νe) with around 80% of the sample having 0 < νe ≤ 300 kms-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions: Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an

  17. What Happens in the Atmospheres of Hot Horizontal Branch Stars Near 20, 000K?

    NASA Astrophysics Data System (ADS)

    Brown, Thomas

    2016-10-01

    In the color-magnitude diagrams (CMDs) of many globular clusters, the horizontal branch (HB) exhibits a long blue tail extending to high effective temperatures. In such clusters, two discontinuities appear within the HB locus. The first discontinuity occurs at 12,000K, and was discovered by Grundahl et al. (1998). It is associated with the radiative levitation of metals and the gravitational settling of helium in the atmospheres of HB stars hotter than 12,000K. The hot subdwarf stars of the Galactic field population exhibit the same phenomenon. The second discontinuity occurs at 20,000K, and was discovered by Momany et al. (2002). Its origin is unknown, but it appears at the same effective temperature in all globular clusters hosting HB stars near 20,000K, regardless of cluster properties (age, chemical composition, mass, etc.). We propose STIS long-slit spectroscopy of 6 HB stars that straddle this feature in the HB distribution of omega Cen, the nearest globular cluster where the feature is well populated. With this approach, we can efficiently obtain high-quality UV and blue spectra that span the full wavelength range of the photometric bands where this CMD feature is most prominent - a range this is only accessible by HST. The resulting spectra will unambiguously reveal the nature of this phenomenon - one that is universal in the atmospheres of hot evolved stars - and will yield new insight into the role of diffusion and radiative levitation in these stars.

  18. Assessing Risks of Mine Tailing Dam Failures

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  19. Active Tails Enhance Arboreal Acrobatics in Geckos

    DTIC Science & Technology

    2008-03-18

    the secret to the gecko s arboreal acrobatics includes an active tail. We examine the tail s role during rapid climbing, aerial descent, and gliding. We show that a gecko s tail functions as an emergency fifth leg to prevent falling during rapid climbing. A response initiated by slipping causes the tail tip to push against the vertical surface, thereby preventing pitch-back of the head and upper body. When pitch-back cannot be prevented, geckos avoid falling by placing their tail in a posture similar to a bicycle s kickstand. Should a gecko fall with its back to the

  20. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation.

    PubMed

    Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi

    2016-06-01

    Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. © 2016 Federation of European Biochemical Societies.

  1. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    NASA Astrophysics Data System (ADS)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  2. Theoretical study on the optical response behavior to hydrogen chloride gas of a series of Schiff-base-based star-shaped structures.

    PubMed

    Wang, Fei; Qi, Tianhong; Su, Zhongmin; Xie, Yuzhong

    2018-02-17

    Schiff-base compounds have many applications in the field of optoelectronic materials and chemical sensing because of their appealing coordination ability, and simple and easily accessible use in structural modification. Herein, five kinds of star-shaped Schiff-base compounds were designed and their optical response behavior to hydrogen chloride (HCl) gas was studied using dependent/time-dependent density functional theory (DFT/TDDFT). Moreover, the relationship between structures and properties was investigated upon changing the benzene group into N atom or triazine group at the core-position and introducing a methoxyl (-OCH 3 ) or nitro (-NO 2 ) group into the star-shaped Schiff-bases at the tail of the branches. The results show that all five Schiff-bases could be candidates for HCl gas sensing materials. Furthermore, introducing an electron-donating group at either the core or the tail forms a charge transfer channel with the electron deficient H-bonded imino group, which is convenient for charge transfer and subsequently promotes a red-shift in absorption spectra and fluorescence quenching.

  3. A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars

    NASA Astrophysics Data System (ADS)

    Henry, Todd J.; Soderblom, David R.; Donahue, Robert A.; Baliunas, Sallie L.

    1996-01-01

    More than 800 southern stars within 50 pc have been observed for chromospheric emission in the cores of the Ca II H and K lines. Most of the sample targets were chosen to be G dwarfs on the basis of colors and spectral types. The bimodal distribution in stellar activity first noted in a sample of northern stars by Vaughan and Preston in 1980 is confirmed, and the percentage of active stars, about 30%, is remarkably consistent between the northern and southern surveys. This is especially compelling given that we have used an entirely different instrumental setup and stellar sample than used in the previous study. Comparisons to the Sun, a relatively inactive star, show that most nearby solar-type stars have a similar activity level, and presumably a similar age. We identify two additional subsamples of stars -- a very active group, and a very inactive group. The very active group may be made up of young stars near the Sun, accounting for only a few percent of the sample, and appears to be less than ~0.1 Gyr old. Included in this high-activity tail of the distribution, however, is a subset of very close binaries of the RS CVn or W UMa types. The remaining members of this population may be undetected close binaries or very young single stars. The very inactive group of stars, contributting ~5%--10% to the total sample, may be those caught in a Maunder Minimum type phase. If the observations of the survey stars are considered to be a sequence of snapshots of the Sun during its life, we might expect that the Sun will spend about 10% of the remainder of its main sequence life in a Maunder Minimum phase.

  4. Star Streams and the Assembly History of the Galaxy

    NASA Astrophysics Data System (ADS)

    Carlberg, Raymond G.

    2017-03-01

    Thin halo star streams originate from the evaporation of globular clusters and therefore provide information about the early epoch globular cluster population. The observed tidal tails from halo globular clusters in the Milky Way are much shorter than expected from a star cluster orbiting for 10 Gyr. The discrepancy is likely the result of the assumptions that nearly nonevolving clusters have been orbiting in a nonevolving galactic halo for a Hubble time. As a first step toward more realistic stream histories, a toy model that combines an idealized merger model with a simplified model of the internal collisional relaxation of individual star clusters is developed. On average, the resulting stream velocity dispersion increases with distance, causing the density of the stream to decline with distance. The accretion time sets an upper limit to the length of the readily visible stream, with the internal evolution of the cluster usually playing the dominant role in limiting the sky visibility of the older parts of streams. Nevertheless, the high surface density segment of the stellar streams created from the evaporation of the more massive globular clusters should all be visible in low-obscuration parts of the sky if closer than about 30 kpc. The Pan-STARRS1 halo volume is used to compare the numbers of halo streams and globular clusters.

  5. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  6. The spatial extent and distribution of star formation in 3D-HST mergers at z ˜ 1.5

    NASA Astrophysics Data System (ADS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; van Dokkum, Pieter; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-06-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z > 1. Our sample, drawn from the 3D-HST survey, is flux limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multiwavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Hα or [O III] emission line maps as proxies for star formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58 per cent) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z ˜ 1.5 mergers typically occur between galaxies whose gas fractions, masses and/or star formation rates are distinctly different from one another.

  7. The rise and fall of star formation in z ~ 0.2 merging galaxy clusters

    DOE PAGES

    Stroe, Andra; Sobral, David; Dawson, William; ...

    2015-04-20

    CIZA J2242.8+5301 (‘Sausage’) and 1RXS J0603.3+4213 (‘Toothbrush’) are two low-redshift (z ~ 0.2), massive (~2 × 10 15 M ⊙), post-core passage merging clusters, which host-shock waves traced by diffuse radio emission. To study their star formation properties, we uniformly survey the ‘Sausage’ and ‘Toothbrush’ clusters in broad- and narrow-band filters and select a sample of 201 and 463 line emitters, down to a rest-frame equivalent width (13 Å). Here, we robustly separate between Hα and higher redshift emitters using a combination of optical multiband (B, g, V, r, i, z) and spectroscopic data. We build Hα luminosity functions formore » the entire cluster region, near the shock fronts, and away from the shock fronts and find striking differences between the two clusters. In the dynamically younger, 1 Gyr old ‘Sausage’ cluster we find numerous (59) Hα emitters above a star formation rate (SFR) of 0.17 M ⊙ yr -1 surprisingly located in close proximity to the shock fronts, embedded in very hot intracluster medium plasma. The SFR density for the cluster population is at least at the level of typical galaxies at z ~ 2. Down to the same SFR, the possibly dynamically more evolved ‘Toothbrush’ cluster has only nine Hα galaxies. The cluster Hα galaxies fall on the SFR–stellar mass relation z ~ 0.2 for the field. However, the ‘Sausage’ cluster has an Hα emitter density >20 times that of blank fields. If the shock passes through gas-rich cluster galaxies, the compressed gas could collapse into dense clouds and excite star formation for a few 100 Myr. Finally, this process ultimately leads to a rapid consumption of the molecular gas, accelerating the transformation of gas-rich field spirals into cluster S0s or ellipticals.« less

  8. Hubble Watches Planetary Nurseries Being Torched by Radiation from Hot Star

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Planet formation is a hazardous process. These four snapshots, taken by NASA's Hubble Space Telescope, show dust disks around embryonic stars in the Orion Nebula being 'blowtorched' by a blistering flood of ultraviolet radiation from the region's brightest star. Within these disks are the seeds of planets. The doomed systems look like hapless comets, with wayward tails of gas boiling off the withering, pancake-shaped disks. The Frisbee-shaped disks, called protoplanetary disks, are wider than our solar system and reside in the centers of the cocoons of gas. These cocoons were formed from material evaporating off the surface of the disks. Evidence from Hubble's Wide Field and Planetary Camera 2 suggests that dust grains in the disk are already forming larger particles, which range in size from snowflakes to gravel. But these particles may not have time to grow into full-fledged planets because of the relentless 'hurricane' of radiation from the nebula's hottest star, called Theta 1 Orionis C. In the picture at top left, the disk is the green-colored oval near the center. Radiation from the hot star is heating up the disk, causing matter to dissipate, like steam evaporating from the surface of boiling water. A strong 'stellar wind,' a stream of particles moving at 4,500 to 8,900 miles per hour (7,200 to 14,400 kilometers per hour), is propelling the material away from the disk. The material is glowing because it is being energized by radiation from the hot star. Located 1,500 light-years away, the Orion Nebula is the nearest 'star factory' to Earth. The Hubble pictures were taken Feb. 26, 1998 and Jan. 11, 1999. Credits: NASA, J. Bally (University of Colorado, Boulder, CO), H. Throop (Southwest Research Institute, Boulder, CO), C.R. O'Dell (Vanderbilt University, Nashville, TN)

  9. The X-ray Crystal Structure of the Phage Tail Terminator Protein Reveals the Biologically Relevant Hexameric Rang Structure and Demonstrates a Conserved mechanism of Tail Termination among Divrse Long Tailed Phages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pell, L.; Liu, A; Edmonds, L

    The tail terminator protein (TrP) plays an essential role in phage tail assembly by capping the rapidly polymerizing tail once it has reached its requisite length and serving as the interaction surface for phage heads. Here, we present the 2.7-A crystal structure of a hexameric ring of gpU, the TrP of phage ?. Using sequence alignment analysis and site-directed mutagenesis, we have shown that this multimeric structure is biologically relevant and we have delineated its functional surfaces. Comparison of the hexameric crystal structure with the solution structure of gpU that we previously solved using NMR spectroscopy shows large structural changesmore » occurring upon multimerization and suggests a mechanism that allows gpU to remain monomeric at high concentrations on its own, yet polymerize readily upon contact with an assembled tail tube. The gpU hexamer displays several flexible loops that play key roles in head and tail binding, implying a role for disorder-to-order transitions in controlling assembly as has been observed with other ? morphogenetic proteins. Finally, we have found that the hexameric structure of gpU is very similar to the structure of a putative TrP from a contractile phage tail even though it displays no detectable sequence similarity. This finding coupled with further bioinformatic investigations has led us to conclude that the TrPs of non-contractile-tailed phages, such as ?, are evolutionarily related to those of contractile-tailed phages, such as P2 and Mu, and that all long-tailed phages may utilize a conserved mechanism for tail termination.« less

  10. Detection of Intracluster Gas Bulk Velocities in the Perseus and Centaurus Clusters

    NASA Astrophysics Data System (ADS)

    Dupke, Renato A.; Bregman, Joel N.

    We report the results of spatially resolved X-ray spectroscopy of 8 different ASCApointings distributed symmetrically around the center of the Perseus cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~ 6-7 keV, and metal abundance ~ 0.3 Solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis highly discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 & 3 indicate that two symmetrically opposed regions have different radial velocities at the 95% confidence level and the F-test rules out constant velocities for these regions at the 99% level. Intrinsic short and long term variations of gain are unlikely (P < 0.03) to explain the velocity discrepancies. We also report the preliminary results of a similar analysis carried out for the Centaurus cluster, where long-exposure SIS data is available. We also find a significant velocity gradient near the central regions (3'-8' of Centaurus. If attributed to bulk rotation the correspondent circular velocity is ~1500±150 km s-1 (at 90% confidence). The line of maximum velocity gradient in Centaurus is near-perpendicular to the infalling galaxy group associated with NGC 4709.

  11. The Role of Large-Scale Structure and Assembly in the Quenching of Star Formation in Cluster Galaxies at z 0.2

    NASA Astrophysics Data System (ADS)

    Moran, Sean; Smith, G.; Haines, C.; Egami, E.; Hardegree-Ullman, E.; Heckman, T.

    2010-01-01

    We present results from LoCuSS, the Local Cluster Substructure Survey, on the distribution and abundance of cluster galaxies showing signatures of recently quenched star formation, within a sample of 15 z 0.2 clusters. Combining LoCuSS' wide-field UV through NIR photometry with weak-lensing derived mass maps for these clusters, we identify passive galaxies that have undergone recent quenching via both rapid (100Myr) and slow (1Gyr) mechanisms. By studying their abundance in a statistically significant sample of z 0.2 clusters, we explore how the effectiveness of environmental quenching of star formation varies as a function of the level of cluster substructure, in addition to global cluster characteristics such as mass or X-ray luminosity and temperature, with the aim of understanding the role that pre-processing of galaxies within groups and filaments plays in the overall buildup of the morphology-density and SFR-density relations. We find that clusters with large levels of substructure indicative of recent assembly or cluster-cluster mergers host a higher fraction of galaxies with signs of recent ram-pressure stripping by the hot intra-cluster gas. In addition, we find that the fraction of post-starburst galaxies increases with cluster mass (M500), but fractions of optically-selected AGN and GALEX-defined "Green Valley" galaxies show the opposite trend, being most abundant in rather low-mass clusters. These trends suggest a picture where quenching of star formation occurs most vigorously in actively assembling structures, with comparatively little activity in the most massive structures where most of the nearby large-scale structure has already been accreted and Virialized into the main cluster body.

  12. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  13. EAR AND TAIL LESIONS ON CAPTIVE WHITE-TAILED DEER FAWNS (ODOCOILEUS VIRGINIANUS): A CASE STUDY.

    PubMed

    Ferguson, Treena L; Demarais, Stephen; Cooley, Jim; Fleming, Sherrill; Michel, Eric S; Flinn, Emily

    2016-06-01

    During the 2008-2011 time period, undiagnosed lesions were observed in 21 of 150 white-tailed deer fawns (Odocoileus virginianus) that were part of a captive deer herd at Mississippi State University. Clinical findings in healthy and diseased fawns from 0 to 90 days of age included bite and scratch marks followed by moderate to severe ear and tail necrosis. Gross necropsy findings of necrotizing ulcerative dermatitis correlated with histopathologic findings that included focally severe multifocal vasculitis, vascular necrosis, and thrombosis. This article is a clinical description of these previously unreported lesions associated with tissue necrosis in young captive white-tailed deer.

  14. On the average configuration of the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1978-01-01

    Over 3000 hours of IMP-6 magnetic field data obtained between 20 and 33 R sub E in the geomagnetic tail have been used in a statistical study of the tail configuration. A distribution of 2.5 minute averages of B sub Z as a function of position across the tail reveals that more flux crosses the equatorial plane near the dawn and dusk flanks than near midnight. The tail field projected in the solar magnetospheric equatorial plane deviates from the X axis due to flaring and solar wind aberration by an angle alpha = -0.9 y sub SM - 1.7 where Y sub SM is in earth radii and alpha is in degrees. After removing these effects the Y component of the tail field is found to depend on interplanetary sector structure. During an away sector the B sub Y component of the tail field is on average 0.5 gamma greater than that during a toward sector, a result that is true in both tail lobes and is independent of location across the tail.

  15. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  16. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    NASA Technical Reports Server (NTRS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; hide

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  17. Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon; Besla, Gurtina; Bromm, Volker

    2017-10-01

    We investigate the star formation history (SFH) and chemical evolution of isolated analogs of Local Group (LG) ultrafaint dwarf galaxies (UFDs; stellar mass range of {10}2 {M}⊙ < {M}* < {10}5 {M}⊙ ) and gas-rich, low-mass dwarfs (Leo P analogs; stellar mass range of {10}5 {M}⊙ < {M}* < {10}6 {M}⊙ ). We perform a suite of cosmological hydrodynamic zoom-in simulations to follow their evolution from the era of the first generation of stars down to z = 0. We confirm that reionization, combined with supernova (SN) feedback, is primarily responsible for the truncated star formation in UFDs. Specifically, halos with a virial mass of {M}{vir}≲ 2× {10}9 {M}⊙ form ≳ 90 % of stars prior to reionization. Our work further demonstrates the importance of Population III stars, with their intrinsically high [{{C}}/{Fe}] yields and the associated external metal enrichment, in producing low-metallicity stars ([{Fe}/{{H}}]≲ -4) and carbon-enhanced metal-poor (CEMP) stars. We find that UFDs are composite systems, assembled from multiple progenitor halos, some of which hosted only Population II stars formed in environments externally enriched by SNe in neighboring halos, naturally producing extremely low metallicity Population II stars. We illustrate how the simulated chemical enrichment may be used to constrain the SFHs of true observed UFDs. We find that Leo P analogs can form in halos with {M}{vir}˜ 4× {10}9 {M}⊙ (z = 0). Such systems are less affected by reionization and continue to form stars until z = 0, causing higher-metallicity tails. Finally, we predict the existence of extremely low metallicity stars in LG UFD galaxies that preserve the pure chemical signatures of Population III nucleosynthesis.

  18. Combinations of 148 navigation stars and the star tracker

    NASA Technical Reports Server (NTRS)

    Duncan, R.

    1980-01-01

    The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.

  19. ON HELIUM MIXING IN QUASI-GLOBAL SIMULATIONS OF THE INTRACLUSTER MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlok, Thomas; Pessah, Martin E., E-mail: berlok@nbi.dk, E-mail: mpessah@nbi.dk

    The assumption of a spatially uniform helium distribution in the intracluster medium (ICM) can lead to biases in the estimates of key cluster parameters if composition gradients are present. The helium concentration profile in galaxy clusters is unfortunately not directly observable. Current models addressing the putative sedimentation are one-dimensional and parametrize the presence of magnetic fields in a crude way, ignoring the weakly collisional, magnetized nature of the medium. When these effects are considered, a wide variety of instabilities can play an important role in the plasma dynamics. In a series of recent papers, we have developed the local, linearmore » theory of these instabilities and addressed their nonlinear development with a modified version of Athena. Here, we extend our study by developing a quasi-global approach that we use to simulate the mixing of helium as induced by generalizations of the heat-flux-driven buoyancy instability (HBI) and the magnetothermal instability, which feed off thermal and composition gradients. In the inner region of the ICM, mixing can occur over a few gigayears, after which the average magnetic field inclination angle is ∼30°–50°, resulting in an averaged Spitzer parameter higher by about 20% than the value obtained in homogeneous simulations. In the cluster outskirts the instabilities are rather inefficient, due to the shallow gradients. This suggests that composition gradients in cluster cores might be shallower than one-dimensional models predict. More quantitative statements demand more refined models that can incorporate the physics driving the sedimentation process and simultaneously account for the weakly collisional nature of the plasma.« less

  20. How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.-Y. Karen; Reynolds, Christopher S.

    2016-10-01

    Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.

  1. Tail Shape Design of Boat Wind Turbines

    NASA Astrophysics Data System (ADS)

    Singamsitty, Venkatesh

    Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.

  2. Quasi-steady state aerodynamics of the cheetah tail

    PubMed Central

    Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-01-01

    ABSTRACT During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. PMID:27412267

  3. Wing-Fuselage Interference, Tail Buffeting, and Air Flow About the Tail of a Low-Wing Monoplane

    NASA Technical Reports Server (NTRS)

    White, James A; Hood, Manley J

    1935-01-01

    This report presents the results of wind tunnel tests on a Mcdonnell Douglas airplane to determine the wing-fuselage interference of a low-wing monoplane. The tests included a study of tail buffeting and the air flow in the region of the tail. The airplane was tested with and without the propeller slipstream, both in the original condition and with several devices designed to reduce or eliminate tail buffeting. The devices used were wing-fuselage fillets, a NACA cowling, reflexed trailing edge of the wing, and stub auxiliary airfoils.

  4. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  5. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  6. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  7. Some Effects of Horizontal-Tail Position on the Vertical-Tail Pressure Distributions of a Complete Model in Sideslip at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Alford, William J., Jr.

    1958-01-01

    An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with

  8. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims: To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to

  9. High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra

    2018-02-01

    We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.

  10. A robust star identification algorithm with star shortlisting

    NASA Astrophysics Data System (ADS)

    Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon

    2018-05-01

    A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.

  11. Detection of Mercury's Potassium Tail

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Leblanc, Francois; Moore, Luke; Bida, Thomas A.

    2017-10-01

    Ground-based observations of Mercury's exosphere bridge the gap between the MESSENGER and BepiColombo missions and provide a broad counterpart to their in situ measurements. Here we report the first detection of Mercury's potassium tail in both emission lines of the D doublet. The sodium to potassium abundance ratio at 5 planetary radii down-tail is approximately 95, near the mid-point of a wide range of values that have been quoted over the planet's disk. This is several times the Na/K present in atmospheres of the Galilean satellites and more than an order of magnitude above Mercury's usual analogue, the Moon. The observations confirm that Mercury's anomalously high Na/K ratios cannot be explained by differences in neutral loss rates. The width and structure of the Na and K tails is comparable and both exhibit a persistent enhancement in their northern lobe. We interpret this as a signature of Mercury's offset magnetosphere; the exosphere's source rates are locally enhanced at the southern surface, and sloshing from radiation pressure and gravity guides this population into the northern region of the tail.

  12. Black-tailed and white-tailed jackrabbits in the American West: History, ecology, ecological significance, and survey methods

    USGS Publications Warehouse

    Simes, Matthew; Longshore, Kathleen M.; Nussear, Kenneth E.; Beatty, Greg L.; Brown, David E.; Esque, Todd C.

    2015-01-01

    Across the western United States, Leporidae are the most important prey item in the diet of Golden Eagles (Aquila chrysaetos). Leporids inhabiting the western United States include black-tailed (Lepus californicus) and white-tailed jackrabbits (Lepus townsendii) and various species of cottontail rabbit (Sylvilagus spp.). Jackrabbits (Lepus spp.) are particularly important components of the ecological and economic landscape of western North America because their abundance influences the reproductive success and population trends of predators such as coyotes (Canis latrans), bobcats (Lynx rufus), and a number of raptor species. Here, we review literature pertaining to black-tailed and white-tailed jackrabbits comprising over 170 published journal articles, notes, technical reports, conference proceedings, academic theses and dissertations, and other sources dating from the late 19th century to the present. Our goal is to present information to assist those in research and management, particularly with regard to protected raptor species (e.g., Golden Eagles), mammalian predators, and ecological monitoring. We classified literature sources as (1) general information on jackrabbit species, (2) black-tailed or (3) white-tailed jackrabbit ecology and natural history, or (4) survey methods. These categories, especially 2, 3, and 4, were further subdivided as appropriate. The review also produced several tables on population trends, food habits, densities within various habitats, and jackrabbit growth and development. Black-tailed and white-tailed jackrabbits are ecologically similar in general behaviors, use of forms, parasites, and food habits, and they are prey to similar predators; but they differ in their preferred habitats. While the black-tailed jackrabbit inhabits agricultural land, deserts, and shrublands, the white-tailed jackrabbit is associated with prairies, alpine tundra, and sagebrush-steppe. Frequently considered abundant, jackrabbit numbers in western North

  13. CAUGHT IN THE ACT: STRONG, ACTIVE RAM PRESSURE STRIPPING IN VIRGO CLUSTER SPIRAL NGC 4330

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, Anne; Kenney, Jeffrey D. P.; Crowl, Hugh H.

    We present a multi-wavelength study of NGC 4330, a highly inclined spiral galaxy in the Virgo Cluster which is a clear example of strong, ongoing intracluster medium-interstellar medium (ICM-ISM) ram pressure stripping. The H I has been removed from well within the undisturbed old stellar disk, to 50%-65% of R{sub 25}. Multi-wavelength data (WIYN BVR-H{alpha}, Very Large Array 21 cm H I and radio continuum, and Galaxy Evolution Explorer NUV and FUV) reveal several one-sided extraplanar features likely caused by ram pressure at an intermediate disk-wind angle. At the leading edge of the interaction, the H{alpha} and dust extinction curvemore » sharply out of the disk in a remarkable and distinctive 'upturn' feature that may be generally useful as a diagnostic indicator of active ram pressure. On the trailing side, the ISM is stretched out in a long tail which contains 10% of the galaxy's total H I emission, 6%-9% of its NUV-FUV emission, but only 2% of the H{alpha}. The centroid of the H I tail is downwind of the UV/H{alpha} tail, suggesting that the ICM wind has shifted most of the ISM downwind over the course of the past 10-300 Myr. Along the major axis, the disk is highly asymmetric in the UV, but more symmetric in H{alpha} and H I, also implying recent changes in the distributions of gas and star formation. The UV-optical colors indicate very different star formation histories for the leading and trailing sides of the galaxy. On the leading side, a strong gradient in the UV-optical colors of the gas-stripped disk suggests that it has taken 200-400 Myr to strip the gas from a radius of >8 to 5 kpc, but on the trailing side there is no age gradient. All our data suggest a scenario in which NGC 4330 is falling into the cluster center for the first time and has experienced a significant increase in ram pressure over the last 200-400 Myr. Many of the UV-bright stars that form outside the thin disk due to ram pressure will ultimately produce stellar thick disk and

  14. Heavy Tail Behavior of Rainfall Extremes across Germany

    NASA Astrophysics Data System (ADS)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  15. Quasi-steady state aerodynamics of the cheetah tail.

    PubMed

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  16. Stars and gas in the Medusa merger

    NASA Astrophysics Data System (ADS)

    Manthey, E.; Hüttemeister, S.; Aalto, S.; Horellou, C.; Bjerkeli, P.

    2008-11-01

    The Medusa (NGC 4194) is a well-studied nearby galaxy with the disturbed appearance of a merger and evidence for ongoing star formation. In order to test whether it could be the result of an interaction between a gas-rich disk-like galaxy and a larger elliptical, we have carried out optical and radio observations of the stars and the gas in the Medusa, and performed N-body numerical simulations of the evolution of such a system. We used the Nordic Optical Telescope to obtain a deep V-band image and the Westerbork Radio Synthesis Telescope to map the large-scale distribution and kinematics of atomic hydrogen. A single Hi tail was found to the South of the Medusa with a projected length of ~56 kpc (~5') and a gas mass of 7 × 10^8~M⊙, thus harbouring about one third of the total Hi mass of the system. Hi was also detected in absorption toward the continuum in the center. Hi was detected in a small nearby galaxy to the North-West of the Medusa at a projected distance of 91 kpc. It is, however, unlikely that this galaxy has had a significant influence on the evolution of the Medusa. The simulations of the slightly prograde infall of a gas-rich disk galaxy on an larger, four time more massive elliptical (spherical) galaxy reproduce most of the observed features of the Medusa. Thus, the Medusa is an ideal object to study the merger-induced star formation contribution from the small galaxy of a minor merger. Movies are only available in electronic form at http://www.aanda.org

  17. The Sodium Tail of the Moon

    NASA Technical Reports Server (NTRS)

    Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.

    2009-01-01

    During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.

  18. Physical space and long-tail markets

    NASA Astrophysics Data System (ADS)

    Bentley, R. Alexander; Madsen, Mark E.; Ormerod, Paul

    2009-03-01

    The Internet is known to have had a powerful impact on on-line retailer strategies in markets characterised by long-tail distribution of sales [C. Anderson, Long Tail: Why the Future of Business is Selling Less of More, Hyperion, New York, 2006]. Such retailers can exploit the long tail of the market, since they are effectively without physical limit on the number of choices on offer. Here we examine two extensions of this phenomenon. First, we introduce turnover into the long-tail distribution of sales. Although over any given period such as a week or a month, the distribution is right-skewed and often power law distributed, over time there is considerable turnover in the rankings of sales of individual products. Second, we establish some initial results on the implications for shelf-space and physical retailers in such markets.

  19. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  20. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical

  2. Peculiar spectral statistics of ensembles of trees and star-like graphs

    NASA Astrophysics Data System (ADS)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.

    2017-07-01

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.

  3. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  4. A study of the gas-star formation relation over cosmic time

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Gracia-Carpio, J.; Sternberg, A.; Cooper, M. C.; Shapiro, K.; Bolatto, A.; Bouché, N.; Bournaud, F.; Burkert, A.; Combes, F.; Comerford, J.; Cox, P.; Davis, M.; Schreiber, N. M. Förster; Garcia-Burillo, S.; Lutz, D.; Naab, T.; Neri, R.; Omont, A.; Shapley, A.; Weiner, B.

    2010-10-01

    We use the first systematic data sets of CO molecular line emission in z ~ 1-3 normal star-forming galaxies (SFGs) for a comparison of the dependence of galaxy-averaged star formation rates on molecular gas masses at low and high redshifts, and in different galactic environments. Although the current high-z samples are still small and biased towards the luminous and massive tail of the actively star-forming `main-sequence', a fairly clear picture is emerging. Independent of whether galaxy-integrated quantities or surface densities are considered, low- and high-z SFG populations appear to follow similar molecular gas-star formation relations with slopes 1.1 to 1.2, over three orders of magnitude in gas mass or surface density. The gas-depletion time-scale in these SFGs grows from 0.5 Gyr at z ~ 2 to 1.5 Gyr at z ~ 0. The average corresponds to a fairly low star formation efficiency of 2 per cent per dynamical time. Because star formation depletion times are significantly smaller than the Hubble time at all redshifts sampled, star formation rates and gas fractions are set by the balance between gas accretion from the halo and stellar feedback. In contrast, very luminous and ultraluminous, gas-rich major mergers at both low and high z produce on average four to 10 times more far-infrared luminosity per unit gas mass. We show that only some fraction of this difference can be explained by uncertainties in gas mass or luminosity estimators; much of it must be intrinsic. A possible explanation is a top-heavy stellar mass function in the merging systems but the most likely interpretation is that the star formation relation is driven by global dynamical effects. For a given mass, the more compact merger systems produce stars more rapidly because their gas clouds are more compressed with shorter dynamical times, so that they churn more quickly through the available gas reservoir than the typical normal disc galaxies. When the dependence on galactic dynamical time-scale is

  5. Theory of wide-angle photometry from standard stars

    NASA Technical Reports Server (NTRS)

    Usher, Peter D.

    1989-01-01

    Wide angle celestial structures, such as bright comet tails and nearby galaxies and clusters of galaxies, rely on photographic methods for quantified morphology and photometry, primarily because electronic devices with comparable resolution and sky coverage are beyond current technological capability. The problem of the photometry of extended structures and of how this problem may be overcome through calibration by photometric standard stars is examined. The perfect properties of the ideal field of view are stated in the guise of a radiometric paraxial approximation, in the hope that fields of view of actual telescopes will conform. Fundamental radiometric concepts are worked through before the issue of atmospheric attenuation is addressed. The independence of observed atmospheric extinction and surface brightness leads off the quest for formal solutions to the problem of surface photometry. Methods and problems of solution are discussed. The spectre is confronted in the spirit of standard stars and shown to be chimerical in that light, provided certain rituals are adopted. After a brief discussion of Baker-Sampson polynomials and the vexing issue of saturation, a pursuit is made of actual numbers to be expected in real cases. While the numbers crunched are gathered ex nihilo, they demonstrate the feasibility of Newton's method in the solution of this overdetermined, nonlinear, least square, multiparametric, photometric problem.

  6. HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karen Yang, H.-Y.; Reynolds, Christopher S., E-mail: hsyang@astro.umd.edu

    Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession)more » where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.« less

  7. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators-Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1997-01-01

    Buffet is an aeroelastic phenomenon associated with high performance aircraft especially those with twin vertical tails. In particular, for the F/A-18 aircraft at high angles of attack, vortices emanating from wing/fuselage leading edge extensions burst, immersing the vertical tails in their wake. The resulting buffet loads on the vertical tails are a concern from fatigue and inspection points of view. Recently, a 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) Program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at Mach 0.10. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. The results herein illustrate that buffet alleviation of vertical tails can be accomplished using simple active control of the rudder or piezoelectric actuators. In fact, as demonstrated herein, a fixed gain single input single output control law that commands piezoelectric actuators may be active throughout the high angle-of-attack maneuver without requiring any changes during the maneuver. Future tests are mentioned for accentuating the international interest in this area of research.

  8. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  9. A Transient Transit Signature Associated with the Young Star RIK-210

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is alwaysmore » shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.« less

  10. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  11. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  12. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  13. A proactive approach to sustainable management of mine tailings

    NASA Astrophysics Data System (ADS)

    Edraki, Mansour; Baumgartl, Thomas

    2015-04-01

    The reactive strategies to manage mine tailings i.e. containment of slurries of tailings in tailings storage facilities (TSF's) and remediation of tailings solids or tailings seepage water after the decommissioning of those facilities, can be technically inefficient to eliminate environmental risks (e.g. prevent dispersion of contaminants and catastrophic dam wall failures), pose a long term economic burden for companies, governments and society after mine closure, and often fail to meet community expectations. Most preventive environmental management practices promote proactive integrated approaches to waste management whereby the source of environmental issues are identified to help make a more informed decisions. They often use life cycle assessment to find the "hot spots" of environmental burdens. This kind of approach is often based on generic data and has rarely been used for tailings. Besides, life cycle assessments are less useful for designing operations or simulating changes in the process and consequent environmental outcomes. It is evident that an integrated approach for tailings research linked to better processing options is needed. A literature review revealed that there are only few examples of integrated approaches. The aim of this project is to develop new tailings management models by streamlining orebody characterization, process optimization and rehabilitation. The approach is based on continuous fingerprinting of geochemical processes from orebody to tailings storage facility, and benchmark the success of such proactive initiatives by evidence of no impacts and no future projected impacts on receiving environments. We present an approach for developing such a framework and preliminary results from a case study where combined grinding and flotation models developed using geometallurgical data from the orebody were constructed to predict the properties of tailings produced under various processing scenarios. The modelling scenarios based on the

  14. 14 CFR 23.481 - Tail down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail down landing conditions. 23.481 Section 23.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Ground Loads § 23.481 Tail down landing conditions. (a) For a tail down landing, the airplane is assumed...

  15. How anomalous is the interstellar extinction in NGC 3372, the Carina Nebula?

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Roth, M.; Marraco, H.; Ruiz, M. T.

    Near-infrared JHKL photometry of more than 200 stars in the open clusters Tr 14, Tr 15, Tr 16, Cr 228, and Cr 232 in the Carina Nebula is presented. By comparing these results with the available visual photometry and spectroscopy, it is found that the intracluster reddening is characterized, except in Tr 15, by a 'normal' extinction law for lambda greater than 0.5 micron, but is highly anomalous and variable in the U and B bands. Provisional two-color visual polarimetry suggests that the wavelength of maximum polarization is similar to that in the general interstellar medium. This behavior may be explained by the presence of intracluster interstellar grains 'processed' by the passage of shock waves, presumably associated with the violent history of Eta Carinae.

  16. On the estimation of intracluster correlation for time-to-event outcomes in cluster randomized trials.

    PubMed

    Kalia, Sumeet; Klar, Neil; Donner, Allan

    2016-12-30

    Cluster randomized trials (CRTs) involve the random assignment of intact social units rather than independent subjects to intervention groups. Time-to-event outcomes often are endpoints in CRTs. Analyses of such data need to account for the correlation among cluster members. The intracluster correlation coefficient (ICC) is used to assess the similarity among binary and continuous outcomes that belong to the same cluster. However, estimating the ICC in CRTs with time-to-event outcomes is a challenge because of the presence of censored observations. The literature suggests that the ICC may be estimated using either censoring indicators or observed event times. A simulation study explores the effect of administrative censoring on estimating the ICC. Results show that ICC estimators derived from censoring indicators or observed event times are negatively biased. Analytic work further supports these results. Observed event times are preferred to estimate the ICC under minimum frequency of administrative censoring. To our knowledge, the existing literature provides no practical guidance on the estimation of ICC when substantial amount of administrative censoring is present. The results from this study corroborate the need for further methodological research on estimating the ICC for correlated time-to-event outcomes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  18. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  19. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  20. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  1. Toward the first stars: hints from the CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Choplin, A.

    2017-12-01

    CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.

  2. Flexible histone tails in a new mesoscopic oligonucleosome model.

    PubMed

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  3. From dinosaurs to birds: a tail of evolution

    PubMed Central

    2014-01-01

    A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events. PMID:25621146

  4. Unconventional tail configurations for transport aircraft

    NASA Astrophysics Data System (ADS)

    Sánchez-Carmona, A.; Cuerno-Rejado, C.; García-Hernández, L.

    2017-06-01

    This article presents the bases of a methodology in order to size unconventional tail configurations for transport aircraft. The case study of this paper is a V-tail con¦guration. Firstly, an aerodynamic study is developed for determining stability derivatives and aerodynamic forces. The objective is to size a tail such as it develops at least the same static stability derivatives than a conventional reference aircraft. The optimum is obtained minimizing its weight. The weight is estimated through two methods: adapted Farrar£s method and a statistical method. The solution reached is heavier than the reference, but it reduces the wetted area.

  5. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  6. Exploring Stellar Populations in the Tidal Tails of NGC3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Konstantopoulos, Iraklis; Charlton, Jane C.

    2015-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. With this in mind, we have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC3256's Western and Eastern tidal tails serve as a case study for this new technique. Our results show median color values of u - g = 1.12 and r - i = 0.09 for the Western tail, and u - g = 1.29 and r - i = 0.21 for the Eastern tail, corresponding to ages of approximately 450 Myr and 900 Myr for the tails, respectively. A u - g color gradient is seen in the Western tail as well, running from 1.32 to 1.08 (~2000 Myr to 400 Myr), suggesting ages inside tidal tails can have significant variations.

  7. Sirenomelia apus with vestigial tail.

    PubMed

    Parikh, Tushar B; Nanavati, Ruchi N; Udani, Rekha H

    2005-04-01

    Sirenomelia is an exceptionally rare congenital malformation characterized by complete or near complete fusion of lower limbs. A newborn with clinical features of sirenomelia including fused lower limbs in medial position, absent fibula, anal atresia, complete absence of urogenital system (bilateral renal agenesis, absent ureters, urinary bladder, absent internal and external genitalia), a single umbilical artery and a vestigial tail is reported. Association of vestigial tail with sirenomelia is not described in the literature.

  8. The collaborative effect of ram pressure and merging on star formation and stripping fraction

    NASA Astrophysics Data System (ADS)

    Bischko, J. C.; Steinhauser, D.; Schindler, S.

    2015-04-01

    Aims: We investigate the effect of ram pressure stripping (RPS) on several simulations of merging pairs of gas-rich spiral galaxies. We are concerned with the changes in stripping efficiency and the time evolution of the star formation rate. Our goal is to provide an estimate of the combined effect of merging and RPS compared to the influence of the individual processes. Methods: We make use of the combined N-body/hydrodynamic code GADGET-2. The code features a threshold-based statistical recipe for star formation, as well as radiative cooling and modeling of galactic winds. In our simulations, we vary mass ratios between 1:4 and 1:8 in a binary merger. We sample different geometric configurations of the merging systems (edge-on and face-on mergers, different impact parameters). Furthermore, we vary the properties of the intracluster medium (ICM) in rough steps: the speed of the merging system relative to the ICM between 500 and 1000 km s-1, the ICM density between 10-29 and 10-27 g cm-3, and the ICM direction relative to the mergers' orbital plane. Ram pressure is kept constant within a simulation time period, as is the ICM temperature of 107 K. Each simulation in the ICM is compared to simulations of the merger in vacuum and the non-merging galaxies with acting ram pressure. Results: Averaged over the simulation time (1 Gyr) the merging pairs show a negligible 5% enhancement in SFR, when compared to single galaxies under the same environmental conditions. The SFRs peak at the time of the galaxies first fly-through. There, our simulations show SFRs of up to 20 M⊙ yr-1 (compared to 3 M⊙ yr-1 of the non-merging galaxies in vacuum). In the most extreme case, this constitutes a short-term (<50 Myr) SFR increase of 50 % over the non-merging galaxies experiencing ram pressure. The wake of merging galaxies in the ICM typically has a third to half the star mass seen in the non-merging galaxies and 5% to 10% less gas mass. The joint effect of RPS and merging, according

  9. BIOMECHANICS. Why the seahorse tail is square.

    PubMed

    Porter, Michael M; Adriaens, Dominique; Hatton, Ross L; Meyers, Marc A; McKittrick, Joanna

    2015-07-03

    Whereas the predominant shapes of most animal tails are cylindrical, seahorse tails are square prisms. Seahorses use their tails as flexible grasping appendages, in spite of a rigid bony armor that fully encases their bodies. We explore the mechanics of two three-dimensional-printed models that mimic either the natural (square prism) or hypothetical (cylindrical) architecture of a seahorse tail to uncover whether or not the square geometry provides any functional advantages. Our results show that the square prism is more resilient when crushed and provides a mechanism for preserving articulatory organization upon extensive bending and twisting, as compared with its cylindrical counterpart. Thus, the square architecture is better than the circular one in the context of two integrated functions: grasping ability and crushing resistance. Copyright © 2015, American Association for the Advancement of Science.

  10. Star centroiding error compensation for intensified star sensors.

    PubMed

    Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun

    2016-12-26

    A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.

  11. Design and application of star map simulation system for star sensors

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  12. Experiments on a Tail-wheel Shimmy

    NASA Technical Reports Server (NTRS)

    Harling, R; Dietz, O

    1954-01-01

    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  13. Dark Matter under the Microscope: Constraining Compact Dark Matter with Caustic Crossing Events

    NASA Astrophysics Data System (ADS)

    Diego, Jose M.; Kaiser, Nick; Broadhurst, Tom; Kelly, Patrick L.; Rodney, Steve; Morishita, Takahiro; Oguri, Masamune; Ross, Timothy W.; Zitrin, Adi; Jauzac, Mathilde; Richard, Johan; Williams, Liliya; Vega-Ferrero, Jesus; Frye, Brenda; Filippenko, Alexei V.

    2018-04-01

    A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope magnifying the imperfections of the lens. The diverging magnification of lensing caustics enhances the microlensing effect of substructure present within the lensing mass. Fine-scale structure can be accessed as a moving background source brightens and disappears when crossing these caustics. The recent discovery of a distant lensed star near the Einstein radius of the galaxy cluster MACSJ1149.5+2223 allows a rare opportunity to reach subsolar-mass microlensing through a supercritical column of cluster matter. Here we compare these observations with high-resolution ray-tracing simulations that include stellar microlensing set by the observed intracluster starlight and also primordial black holes that may be responsible for the recently observed LIGO events. We explore different scenarios with microlenses from the intracluster medium and black holes, including primordial ones, and examine strategies to exploit these unique alignments. We find that the best constraints on the fraction of compact dark matter (DM) in the small-mass regime can be obtained in regions of the cluster where the intracluster medium plays a negligible role. This new lensing phenomenon should be widespread and can be detected within modest-redshift lensed galaxies so that the luminosity distance is not prohibitive for detecting individual magnified stars. High-cadence Hubble Space Telescope monitoring of several such optimal arcs will be rewarded by an unprecedented mass spectrum of compact objects that can contribute to uncovering the nature of DM.

  14. Tail loss and thermoregulation in the common lizard Zootoca vivipara

    NASA Astrophysics Data System (ADS)

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability—which in turn are expected to influence thermal balance—there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  15. Tail loss and thermoregulation in the common lizard Zootoca vivipara.

    PubMed

    Herczeg, Gábor; Kovács, Tibor; Tóth, Tamás; Török, János; Korsós, Zoltán; Merilä, Juha

    2004-10-01

    Tail autotomy in lizards is an adaptive strategy that has evolved to reduce the risk of predation. Since tail loss reduces body mass and moving ability-which in turn are expected to influence thermal balance-there is potential for a trade-off between tail autotomy and thermoregulation. To test this hypothesis, we studied a common lizard (Zootoca vivipara) population at high latitude, inhabiting a high-cost thermal environment. Z. vivipara is a small, non-territorial lizard known as a very accurate thermoregulator. We made two predictions: (1) the reduced body weight due to tail loss results in faster heating rate (a benefit), and (2) the reduction in locomotor ability after tail loss induces a shift to the use of thermally poorer microhabitats (a cost), thus decreasing the field body temperatures of active lizards. We did not find any effect of tail loss on heating rate in laboratory experiments conducted under different thermal conditions. Likewise, no significant relationship between tail condition and field body temperatures, or between tail condition and thermal microhabitat use, were detected. Thus, our results suggest that tail autotomy does not influence the accuracy of thermoregulation in small-bodied lizards.

  16. Far-infrared properties of flare stars and dM stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.; Backman, D. E.

    1989-01-01

    Results are reported from a search of the IRAS data base for flare stars and for a control sample of dM stars. At 12 microns, 70-80 percent of both samples have been detected. The K-12 colors of flare stars are significantly different from those of dM stars: for a given K magnitude, a flare star is about 70 percent brighter at 12 microns than a dM star. At 100 microns, 27 percent of the flare stars which are sources at 12 microns have been detected, while none of the comparable dM stars has been detected. Implications for microflaring are discussed.

  17. On the folding phenomenon of comet tail rays

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.

    1982-01-01

    It is shown that the folding phenomenon of the comet tail rays is compatible with the Ferraro isorotation law if the comet tail magnetic field has no azimuthal component, that is, Bphi (the polar angle) equals zero. Considering electric drift due to convectional electric fields, a formula is obtained for the angular rate of a ray closure which reduces to that of Ness and Donn (1966) if the velocity profile across the tail is linear. The magnetic field B of approximately 20-40 gammas in the coma and less than about 10 gammas in the distant tail is estimated under typical solar wind conditions at 1 AU.

  18. A note on trans-Planckian tail effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graef, L.L.; Brandenberger, R., E-mail: leilagraef@usp.br, E-mail: rhb@physics.mcgill.ca

    2015-09-01

    We study the proposal by Mersini et al. [1] that the observed dark energy might be explained by the back-reaction of the set of tail modes in a theory with a dispersion relation in which the mode frequency decays exponentially in the trans-Planckian regime. The matter tail modes are frozen out, however they induce metric fluctuations. The energy-momentum tensor with which the tail modes effect the background geometry obtains contributions from both metric and matter fluctuations. We calculate the equation of state induced by the tail modes taking into account the gravitational contribution. We find that, in contrast to themore » case of frozen super-Hubble cosmological fluctuations, in this case the matter perturbations dominate, and they yield an equation of state which to leading order takes the form of a positive cosmological constant.« less

  19. Tail mean and related robust solution concepts

    NASA Astrophysics Data System (ADS)

    Ogryczak, Włodzimierz

    2014-01-01

    Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.

  20. Cluster membership probability: polarimetric approach

    NASA Astrophysics Data System (ADS)

    Medhi, Biman J.; Tamura, Motohide

    2013-04-01

    Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.

  1. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  2. Adaptive Suction and Blowing for Twin-Tail Buffet Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Yang, Zhi

    1999-01-01

    Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.

  3. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  4. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all ofmore » these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.« less

  5. Development in helicopter tail boom strake applications in the US

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.

    1988-01-01

    The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.

  6. I-Love relations for incompressible stars and realistic stars

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Chan, AtMa P. O.; Leung, P. T.

    2015-02-01

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science 341, 365 (2013), 10.1126/science.1236462], which relate the moment of inertia, tidal Love number (deformability), and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so-obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  7. PROPLYDS AROUND A B1 STAR: 42 ORIONIS IN NGC 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinyoung Serena; Fang, Min; Clarke, Cathie J.

    2016-07-20

    We present the discovery of seven new proplyds (i.e., sources surrounded by cometary H α emission characteristic of offset ionization fronts (IFs)) in NGC 1977, located about 30′ north of the Orion Nebula Cluster (ONC) at a distance of ∼400 pc. Each of these proplyds is situated at projected distances 0.04–0.27 pc from the B1V star 42 Orionis ( c Ori), which is the main source of UV photons in the region. In all cases the IFs of the proplyds are clearly pointing toward the common ionizing source, 42 Ori, and six of the seven proplyds clearly show tails pointingmore » away from it. These are the first proplyds to be found around a B star, with previously known examples instead being located around O stars, including those in the ONC around θ {sup 1} Ori C. The radii of the offset IFs in our proplyds are between ∼200 and 550 au; two objects also contain clearly resolved central sources that we associate with disks of radii 50–70 au. The estimated strength of the FUV radiation field impinging on the proplyds is around 10–30 times less than that incident on the classic proplyds in the ONC. We show that the observed proplyd sizes are however consistent with recent models for FUV photoevaporation in relatively weak FUV radiation fields.« less

  8. Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Brügmann, Bernd

    2015-06-01

    We study equal- and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass M =2.7 M⊙, mass ratios q =1 and q =1.16 , four different equations of state (EOSs) and one configuration with a stiff EOS, M =2.5 M⊙ and q =1.5 , which is one of the largest mass ratios simulated in numerical relativity to date. We focus on the postmerger dynamics and study the merger remnant, the dynamical ejecta, and the postmerger gravitational wave spectrum. Although most of the merger remnants are a hypermassive neutron star collapsing to a black hole+disk system on dynamical time scales, stiff EOSs can eventually produce a stable massive neutron star. During the merger process and on very short time scales, about ˜10-3- 10-2M⊙ of material become unbound with kinetic energies ˜1050 erg . Ejecta are mostly emitted around the orbital plane and favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by the nonaxisymmetric oscillations of the remnant neutron star. The stiff EOS configuration consisting of a 1.5 M⊙ and a 1.0 M⊙ neutron star, simulated here for the first time, shows a rather peculiar dynamics. During merger the companion star is very deformed; about ˜0.03 M⊙ of the rest mass becomes unbound from the tidal tail due to the torque generated by the two-core inner structure. The merger remnant is a stable neutron star surrounded by a massive accretion disk of rest mass ˜0.3 M⊙. This and similar configurations might be particularly interesting for electromagnetic counterparts. Comparing results obtained with and without the conservative mesh refinement algorithm, we find that postmerger simulations can be affected by systematic errors if mass conservation is not enforced in the

  9. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  10. A note on trans-Planckian tail effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graef, L.L.; Instituto de Física, Universidade de São Paulo, Rua do Matão travessa R, São Paulo, SP, 05508-090; Brandenberger, R.

    2015-09-09

    We study the proposal by Mersini et al. http://dx.doi.org/10.1103/PhysRevD.64.043508 that the observed dark energy might be explained by the back-reaction of the set of tail modes in a theory with a dispersion relation in which the mode frequency decays exponentially in the trans-Planckian regime. The matter tail modes are frozen out, however they induce metric fluctuations. The energy-momentum tensor with which the tail modes effect the background geometry obtains contributions from both metric and matter fluctuations. We calculate the equation of state induced by the tail modes taking into account the gravitational contribution. We find that, in contrast to themore » case of frozen super-Hubble cosmological fluctuations, in this case the matter perturbations dominate, and they yield an equation of state which to leading order takes the form of a positive cosmological constant.« less

  11. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  12. Indirect Solar Wind Measurements Using Archival Cometary Tail Observations

    NASA Astrophysics Data System (ADS)

    Zolotova, Nadezhda; Sizonenko, Yuriy; Vokhmyanin, Mikhail; Veselovsky, Igor

    2018-05-01

    This paper addresses the problem of the solar wind behaviour during the Maunder minimum. Records on plasma tails of comets can shed light on the physical parameters of the solar wind in the past. We analyse descriptions and drawings of comets between the eleventh and eighteenth century. To distinguish between dust and plasma tails, we address their colour, shape, and orientation. Based on the calculations made by F.A. Bredikhin, we found that cometary tails deviate from the antisolar direction on average by more than 10°, which is typical for dust tails. We also examined the catalogues of Hevelius and Lubieniecki. The first indication of a plasma tail was revealed only for the great comet C/1769 P1.

  13. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE PAGES

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...

    2017-07-11

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  14. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  15. Radio continuum survey of the Coma/A1367 supercluster. I - 610 MHz observations of CGCG galaxies in four groups

    NASA Astrophysics Data System (ADS)

    Jaffe, W.; Gavazzi, G.; Valentijn, E.

    1986-02-01

    Radio continuum observations obtained with the Westerbork Radio Synthesis Telescope at 0.6 GHz of four groups of galaxies in the Coma/A1367 supercluster area are presented. Ninety-nine CGCG galaxies were surveyed, yielding the detection of 21 objects. A wide-angle-tail radio galaxy, NGC 4061, is found in the NGC 4065 group. Analysis of this source suggests a relatively low value (neT ≡ 1000 cm-3K) for the intracluster gas pressure in this group.

  16. Bursting star formation and the overabundance of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bodigfee, G.; Deloore, C.

    1985-01-01

    The ratio of the number of WR-stars to their OB progenitors appears to be significantly higher in some extragalactic systems than in our Galaxy. This overabundance of Wolf-Rayet-stars can be explained as a consequence of a recent burst of star formation. It is suggested that this burst is the manifestation of a long period nonlinear oscillation in the star formation process, produced by positive feedback effects between young stars and the interstellar medium. Star burst galaxies with large numbers of WR-stars must generate gamma - fluxes but due to the distance, all of them are beyond the reach of present-day ray detectors, except probably 30 Dor.

  17. UVIT view of ram-pressure stripping in action: Star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85

    NASA Astrophysics Data System (ADS)

    George, K.; Poggianti, B. M.; Gullieuszik, M.; Fasano, G.; Bellhouse, C.; Postma, J.; Moretti, A.; Jaffé, Y.; Vulcani, B.; Bettoni, D.; Fritz, J.; Côté, P.; Ghosh, S. K.; Hutchings, J. B.; Mohan, R.; Sreekumar, P.; Stalin, C. S.; Subramaniam, A.; Tandon, S. N.

    2018-06-01

    Jellyfish are cluster galaxies that experience strong ram-pressure effects that strip their gas. Their Hα images reveal ionized gas tails up to 100 kpc, which could be hosting ongoing star formation. Here we report the ultraviolet (UV) imaging observation of the jellyfish galaxy JO201 obtained at a spatial resolution ˜ 1.3 kpc. The intense burst of star formation happening in the tentacles is the focus of the present study. JO201 is the "UV-brightest cluster galaxy" in Abell 85 (z ˜ 0.056) with knots and streams of star formation in the ultraviolet. We identify star forming knots both in the stripped gas and in the galaxy disk and compare the UV features with the ones traced by Hα emission. Overall, the two emissions remarkably correlate, both in the main body and along the tentacles. Similarly, also the star formation rates of individual knots derived from the extinction-corrected FUV emission agree with those derived from the Hα emission and range from ˜ 0.01 -to- 2.07 M⊙ yr-1. The integrated star formation rate from FUV flux is ˜ 15 M⊙ yr-1. The unprecedented deep UV imaging study of the jellyfish galaxy JO201 shows clear signs of extraplanar star-formation activity due to a recent/ongoing gas stripping event.

  18. 14 CFR 23.497 - Supplementary conditions for tail wheels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...

  19. 14 CFR 23.497 - Supplementary conditions for tail wheels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Structure Ground Loads § 23.497 Supplementary conditions for tail wheels. In determining the ground loads on the tail wheel and affected supporting structures, the following apply: (a) For the obstruction load, the limit ground reaction obtained in the tail down landing condition is assumed to act up and aft...

  20. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  1. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  2. 14 CFR 27.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 27.411 Section 27.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 27.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  3. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  4. Thresher sharks use tail-slaps as a hunting strategy.

    PubMed

    Oliver, Simon P; Turner, John R; Gann, Klemens; Silvosa, Medel; D'Urban Jackson, Tim

    2013-01-01

    The hunting strategies of pelagic thresher sharks (Alopias pelagicus) were investigated at Pescador Island in the Philippines. It has long been suspected that thresher sharks hunt with their scythe-like tails but the kinematics associated with the behaviour in the wild are poorly understood. From 61 observations recorded by handheld underwater video camera between June and October 2010, 25 thresher shark shunting events were analysed. Thresher sharks employed tail-slaps to debilitate sardines at all times of day. Hunting events comprised preparation, strike, wind-down recovery and prey item collection phases, which occurred sequentially. Preparation phases were significantly longer than the others, presumably to enable a shark to windup a tail-slap. Tail-slaps were initiated by an adduction of the pectoral fins, a manoeuvre that changed a thresher shark's pitch promoting its posterior region to lift rapidly, and stall its approach. Tail-slaps occurred with such force that they may have caused dissolved gas to diffuse out of the water column forming bubbles. Thresher sharks were able to consume more than one sardine at a time, suggesting that tail-slapping is an effective foraging strategy for hunting schooling prey. Pelagic thresher sharks appear to pursue sardines opportunistically by day and night, which may make them vulnerable to fisheries. Alopiids possess specialist pectoral and caudal fins that are likely to have evolved, at least in part, for tail-slapping. The evidence is now clear; thresher sharks really do hunt with their tails.

  5. Thresher Sharks Use Tail-Slaps as a Hunting Strategy

    PubMed Central

    Oliver, Simon P.; Turner, John R.; Gann, Klemens; Silvosa, Medel; D'Urban Jackson, Tim

    2013-01-01

    The hunting strategies of pelagic thresher sharks (Alopias pelagicus) were investigated at Pescador Island in the Philippines. It has long been suspected that thresher sharks hunt with their scythe-like tails but the kinematics associated with the behaviour in the wild are poorly understood. From 61 observations recorded by handheld underwater video camera between June and October 2010, 25 thresher shark shunting events were analysed. Thresher sharks employed tail-slaps to debilitate sardines at all times of day. Hunting events comprised preparation, strike, wind-down recovery and prey item collection phases, which occurred sequentially. Preparation phases were significantly longer than the others, presumably to enable a shark to windup a tail-slap. Tail-slaps were initiated by an adduction of the pectoral fins, a manoeuvre that changed a thresher shark's pitch promoting its posterior region to lift rapidly, and stall its approach. Tail-slaps occurred with such force that they may have caused dissolved gas to diffuse out of the water column forming bubbles. Thresher sharks were able to consume more than one sardine at a time, suggesting that tail-slapping is an effective foraging strategy for hunting schooling prey. Pelagic thresher sharks appear to pursue sardines opportunistically by day and night, which may make them vulnerable to fisheries. Alopiids possess specialist pectoral and caudal fins that are likely to have evolved, at least in part, for tail-slapping. The evidence is now clear; thresher sharks really do hunt with their tails. PMID:23874415

  6. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  7. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  8. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  9. A Tale of Two Tails: Not Just Skin Deep

    PubMed Central

    Dutta, Abhijit; Ghosh, Sudip Kumar; Mandal, Asok Kumar

    2015-01-01

    The dorsal cutaneous appendage or the so called human tail is a rare congenital anomaly protruding from the lumbo-sacro-coccygeal area. These caudal appendages are divided into true-tails and pseudo-tails. We report here two cases of congenital pseudo-tail with underlying spina bifida and lipo-meningocele. In this article we seek to emphasize that, as the skin and nervous systems are intimately linked by their similar ectodermal origin, a dorsal appendage may be regarded as a cutaneous marker of the underlying spinal dysraphism. PMID:26288414

  10. A potential role for bat tail membranes in flight control.

    PubMed

    Gardiner, James D; Dimitriadis, Grigorios; Codd, Jonathan R; Nudds, Robert L

    2011-03-30

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control.

  11. A Potential Role for Bat Tail Membranes in Flight Control

    PubMed Central

    Gardiner, James D.; Dimitriadis, Grigorios; Codd, Jonathan R.; Nudds, Robert L.

    2011-01-01

    Wind tunnel tests conducted on a model based on the long-eared bat Plecotus auritus indicated that the positioning of the tail membrane (uropatagium) can significantly influence flight control. Adjusting tail position by increasing the angle of the legs ventrally relative to the body has a two-fold effect; increasing leg-induced wing camber (i.e., locally increased camber of the inner wing surface) and increasing the angle of attack of the tail membrane. We also used our model to examine the effects of flying with and without a tail membrane. For the bat model with a tail membrane increasing leg angle increased the lift, drag and pitching moment (nose-down) produced. However, removing the tail membrane significantly reduced the change in pitching moment with increasing leg angle, but it had no significant effect on the level of lift produced. The drag on the model also significantly increased with the removal of the tail membrane. The tail membrane, therefore, is potentially important for controlling the level of pitching moment produced by bats and an aid to flight control, specifically improving agility and manoeuvrability. Although the tail of bats is different from that of birds, in that it is only divided from the wings by the legs, it nonetheless, may, in addition to its prey capturing function, fulfil a similar role in aiding flight control. PMID:21479137

  12. A New View of the Dwarf Spheroidal Satellites of the Milky Way From VLT/FLAMES: Where are the Very Metal Poor Stars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmi, Amina; Irwin, M.J.; Tolstoy, E.

    As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems hadmore » been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.« less

  13. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  14. Identification of stars in a J1744.0 star catalogue Yixiangkaocheng

    NASA Astrophysics Data System (ADS)

    Ahn, S.-H.

    2012-05-01

    The stars in the Chinese star catalogue, Yixiangkaocheng, which were edited by the Jesuit astronomer Kögler in AD 1744 and published in AD 1756, are identified with their counterparts in the Hipparcos catalogue. The equinox of the catalogue is confirmed to be J1744.0. By considering the precession of equinox, proper motions and nutation, the star closest to the location of each star in Yixiangkaocheng, having a proper magnitude, is selected as the corresponding identified star. I identified 2848 stars and 13 nebulosities out of 3083 objects in Yixiangkaocheng, and so the identification rate reached 92.80 per cent. I find that the magnitude classification system in Yixiangkaocheng agrees with the modern magnitude system. The catalogue includes dim stars, whose visual magnitudes are larger than 7, but most of these stars have Flamsteed designations. I find that the stars whose declination is lower than -30° have relatively larger offsets and different systematic behaviour from other stars. This indicates that there might be two different sources of stars in Yixiangkaocheng. In particular, I find that μ1 Sco and γ1 Sgr approximately mark the boundary between two different source catalogues. The observer's location, as estimated from these facts, agrees with the latitude of Greenwich where Flamsteed made his observations. The positional offsets between the Yixiangkaocheng stars and the Hipparcos stars are 0.6 arcmin, which implies that the source catalogue of stars with δ > -30° must have come from telescopic observations. Nebulosities in Yixiangkaocheng are identified with a few double stars, o Cet (the variable star, Mira), the Andromeda galaxy, ω Cen and NGC6231. These entities are associated with listings in Halley's Catalogue of the Southern Stars of AD 1679 as well as Flamsteed's catalogue of AD 1690.

  15. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  16. A new family of magnetic stars: the Am stars

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Petit, P.; Lignières, F.

    2016-12-01

    We presented the discovery of an ultra-weak field in three Am stars, β UMa, θ Leo, and Alhena, thanks to ultra-deep spectropolarimetric observations. Two of the three stars of this study shown peculiar magnetic signatures with prominent positive lobes like the one of Sirius A that are not expected in the standard theory of the Zeeman effect. Alhena, contrary to Sirius A, β UMa and θ Leo, show normal signatures. These detections of ultra-weak fields in Am stars suggest the existence of a new family of magnetic intermediate-mass stars: the Am stars. However the various shapes of the signatures required further observation to identify the physical processes at work in these stars. A preliminary explanation is based on microturbulence.

  17. Vertical Tail Buffeting Alleviation Using Piezoelectric Actuators: Some Results of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) Program

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1997-01-01

    A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the actuators, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Buffeting alleviation results when using the rudder are presented for comparison. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.

  18. Radon emanation from backfilled mill tailings in underground uranium mine.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of Configuration Pitching Motion on Twin Tail Buffet Response

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.

    1998-01-01

    The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.

  20. Worm-stars and half-worms: Novel dangers and novel defense.

    PubMed

    Hodgkin, Jonathan; Clark, Laura C; Gravato-Nobre, Maria J

    2014-01-01

    In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of "worm-star" aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.

  1. Tail regeneration affects the digestive performance of a Mediterranean lizard

    NASA Astrophysics Data System (ADS)

    Sagonas, Kostas; Karambotsi, Niki; Bletsa, Aristoula; Reppa, Aikaterini; Pafilis, Panayiotis; Valakos, Efstratios D.

    2017-04-01

    In caudal autotomy, lizards shed their tail to escape from an attacking predator. Since the tail serves multiple functions, caudal regeneration is of pivotal importance. However, it is a demanding procedure that requires substantial energy and nutrients. Therefore, lizards have to increase energy income to fuel the extraordinary requirements of the regenerating tail. We presumed that autotomized lizards would adjust their digestion to acquire this additional energy. To clarify the effects of tail regeneration on digestion, we compared the digestive performance before autotomy, during regeneration, and after its completion. Tail regeneration indeed increased gut passage time but did not affect digestive performance in a uniform pattern: though protein income was maximized, lipid and sugar acquisition remained stable. This divergence in proteins may be attributed to their particular role in tail reconstruction, as they are the main building blocks for tissue formation.

  2. Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.

    Overview: Induced Star Formation and Interactions Introduction Historical Background: First Hints Systematic Studies: Starbursts Interactions and Nuclear activity IRAS and Ultralumious starburst Galaxies The 1990's: HST, Supercomputers, and the Distant Universe Key Questions and Issues Organization of Lectures Star Formation Properties of Normal Galaxies Observational Techniques Results: Star Formation in Normal Galaxies Interpretation: Star Formation Histories Global Star Formation in interacting Galaxies A Gallery of Interactions and Mergers Star Formation Statistics: Guilt By Association Tests SFRs in Interacting vs Noninteracting Galaxies Kinematic Properties and Regulation of SFRs Induced Nuclear Activity and Star Formation Background: Nuclear Spectra and Classification Nuclear Star Formation and Starbursts Nuclear Star Formation and Interactions Induced AGN Activity: Statistics of Seyfert Galaxies Environments of Quasars Kinematic Clues to the Triggering of AGNs Infrared Luminous Galaxies and Starbursts Background: IR Luminous Galaxies and IRAS Infrared Luminosity Function and Spectra Infrared Structure and Morphology Interstellar Gas X-Ray Emission and Superwinds Optical, UV, and Near-Infrared Spectra Radio Continuum Emission Evidence for Interactions and Mergers The Power Source: Starbursts or Dusty AGNs? Spectral Diagnostics of Starbursts Evolutionary Synthesis Models Applications: Integrated Colors of Interacting Galaxies Applications: Hα Emission, Colors, and SFRs Applications: Spectral Modelling of Evolved Starbursts Infrared Starbursts and the IMF in starbursts Triggering and Regulation of Star Formation: The Problem Introduction: Star Formation as a Nonlinear Process The schmidt Law in Normal Galaxies Star Formation Regimes in Interacting Galaxies Summary Triggering and Regulation of Starbusts: Theoretical Ideas Gravitational Star Formation Thresholds Cloud Collision Models Radial Transport of Gas: Clues from Barred Galaxies Simulations of Starbursts

  3. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  4. Cell lineage tracing during Xenopus tail regeneration.

    PubMed

    Gargioli, Cesare; Slack, Jonathan M W

    2004-06-01

    The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promoter driving GFP (Green Fluorescent Protein) ubiquitously throughout the embryo. Single tissues were then specifically labelled by making grafts at the neurula stage from transgenic donors to unlabelled hosts. When the hosts have developed to tadpoles, they carry a region of the appropriate tissue labelled with GFP. These tails were amputated through the labelled region and the distribution of labelled cells in the regenerate was followed. We also labelled myofibres using the Cre-lox method. The results show that the spinal cord and the notochord regenerate from the same tissue type in the stump, with no labelling of other tissues. In the case of the muscle, we show that the myofibres of the regenerate arise from satellite cells and not from the pre-existing myofibres. This shows that metaplasia between differentiated cell types does not occur, and that the process of Xenopus tail regeneration is more akin to tissue renewal in mammals than to urodele tail regeneration.

  5. Predicting arsenic concentrations in porewaters of buried uranium mill tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langmuir, D.; Mahoney, J.; MacDonald, A.

    The proposed JEB Tailings Management Facility (TMF) to be emplaced below the groundwater table in northern Saskatchewan, Canada, will contain uranium mill tailings from McClean Lake, Midwest and Cigar Lake ore bodies, which are high in arsenic (up to 10%) and nickel (up to 5%). A serious concern is the possibility that high arsenic and nickel concentrations may be released from the buried tailings, contaminating adjacent groundwaters and a nearby lake. Laboratory tests and geochemical modeling were performed to examine ways to reduce the arsenic and nickel concentrations in TMF porewaters so as to minimize such contamination from tailings buriedmore » for 50 years and longer. The tests were designed to mimic conditions in the mill neutralization circuit (3 hr tests at 25 C), and in the TMF after burial (5--49 day aging tests). The aging tests were run at 50, 25 and 4 C (the temperature in the TMF). In order to optimize the removal of arsenic by adsorption and precipitation, ferric sulfate was added to tailings raffinates having Fe/As ratios of less than 3--5. The acid raffinates were then neutralized by addition of slaked lime to nominal pH values of 7, 8, or 9. Analysis and modeling of the test results showed that with slaked lime addition to acid tailings raffinates, relatively amorphous scorodite (ferric arsenate) precipitates near pH 1, and is the dominant form of arsenate in slake limed tailings solids except those high in Ni and As and low in Fe, in which cabrerite-annabergite (Ni, Mg, Fe(II) arsenate) may also precipitate near pH 5--6. In addition to the arsenate precipitates, smaller amounts of arsenate are also adsorbed onto tailings solids. The aging tests showed that after burial of the tailings, arsenic concentrations may increase with time from the breakdown of the arsenate phases (chiefly scorodite). However, the tests indicate that the rate of change decreases and approaches zero after 72 hrs at 25 C, and may equal zero at all times in the TMF at 4

  6. ULX spectra revisited: Accreting, highly magnetized neutron stars as the engines of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios; Godet, Olivier; Bachetti, Matteo; Webb, Natalie A.; Barret, Didier

    2017-12-01

    Aims: In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods: We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results: We confirm the previously noted presence of the low-energy (≲6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" (≳1 keV) and a "cool" (≲0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B ≳ 1012 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy (≳15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T r-0.75. Conclusions: We have offered a new and robust physical interpretation for

  7. Meeting the Challenge of Webb - Spectroscopic Simulations of Star-Forming Regions and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ferland, Gary

    Understanding the chemical evolution of the universe, together with closely related questions concerning the formation of cosmic structure, is a major theme running across current astrophysics. The James Webb Space Telescope (JWST) will offer a unique perspective on this activity, with its high sensitivity and superb resolution. Basic questions include the role of feedback in the formation and evolution of galaxies, interactions between the AGN and the surrounding intracluster medium, and their effects on the metagalactic background. The central theme in this proposal is the development of the theoretical tools needed to realize the diagnostic potential of the 0.6 to 5 micron NIRSpec and 5 to 28 micron MIRI spectroscopic windows offered by JWST, with correspondingly shorter wavelengths at higher redshift. The particular regimes to be addressed include ionic and molecular emission in an evolving environment with a mix of star formation and AGN activity, the physics of dust emission in gas-rich surroundings, in environments that are optically thick to portions of the radiation field. The gas and dust are far from equilibrium, so their spectra depend on detailed atomic and molecular physics. This is a complication, but is also why quantitative spectroscopy reveals so much about the emitting environment. This project supports the development and application of the spectral synthesis code Cloudy. Cloudy is designed to solve the coupled plasma, chemistry, radiation transport, and dynamics problems simultaneously and self consistently, building from a foundation of ab initio atomic and molecular cross sections and rate coefficients. By treating the microphysics without compromise, the macrophysics, including the observed spectrum, will be correct. This makes the code suitable for application to a very wide range of astronomical problems, ranging from the intracluster medium in cool-core clusters, to the innermost regions of an AGN, including the accretion disk and

  8. Stars and gas in the very large interacting galaxy NGC 6872

    NASA Astrophysics Data System (ADS)

    Horellou, C.; Koribalski, B.

    2007-03-01

    The dynamical evolution of the large (>100 kpc), barred spiral galaxy NGC 6872 and its small companion IC 4970 in the southern group Pavo is investigated. We present N-body simulations with stars and gas and 21 cm Hi observations carried out with the Australia Telescope Compact Array of the large-scale distribution and kinematics of atomic gas. Hi is detected toward the companion, corresponding to a gas mass of ~ 1.3× 10^9~ M_⊙. NGC 6872 contains ˜ 1.4× 1010~ M_⊙ of Hi gas, distributed in an extended rotating disk. Massive concentrations of gas (˜ 10^9~ M_⊙) are found at the tip of both tidal tails and towards the break seen in the optical northern arm near the companion. We detect no Hi counterpart to the X-ray trail between NGC 6872 and NGC 6876, the dominant elliptical galaxy in the Pavo group located ˜ 8' to the southeast. At the sensitivity and the resolution of the observations, there is no sign in the overall Hi distribution that NGC 6876 has affected the evolution of NGC 6872. There is no evidence of ram pressure stripping either. The X-ray trail could be due to gravitational focusing of the hot gas in the Pavo group behind NGC 6872 as the galaxy moves supersonically through the hot medium. The simulations of a gravitational interaction with a small nearby companion on a low-inclination prograde passage are able to reproduce most of the observed features of NGC 6872, including the general morphology of the galaxy, the inner bar, the extent of the tidal tails and the thinness of the southern tail.

  9. The Star Formation History and Morphological Evolution of the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Aparicio, Antonio; Carrera, Ricardo; Martínez-Delgado, David

    2001-11-01

    The photometric and morphological properties, as well as the star formation history, of the Draco dwarf spheroidal galaxy are analyzed on the basis of wide-field CCD photometry of the resolved stars covering about 1 deg2. Draco is at a distance of d=80+/-7 kpc and has a metallicity, [Fe/H], of -1.8+/-0.2. No metallicity gradient is detected. The star surface density distribution can be fitted by a single exponential law of scale length α=5.0‧+/-0.1‧. The central surface magnitude is μ''V''=24.4+/-0.5, and the core radius is rc=7.5‧+/-0.3‧ (equivalent to rc=175+/-7 pc). Within errors, the same scale lengths are found for the density profiles along the semimajor and semiminor axes (rescaled to semimajor-axis units, using the ellipticity of the galaxy) of Draco. There are hence no evidences of a tidal tail associated with Draco. The tidal radius of the galaxy is found to be rt~=42' (~=1 kpc). The possibility that the large mass-to-light relation in Draco could be accounted for by a convenient spatial orientation is tested. An upper limit to Draco's size along the line of sight is ~14 kpc. This is too small to account for the velocity dispersion of Draco if it were due to projection effects only, and it implies that other mechanisms (e.g., dark matter) are required. The stellar population of Draco is mainly old. Although some intermediate-age population is present in Draco, most of the star formation (up to 90%) took place before ~10 Gyr ago. No significant star formation activity is detected in the last ~2 Gyr. Two methods (partial model and subgiant) have been used to investigate the star formation history of Draco, both producing results in good qualitative agreement. No difference is found between the scale lengths of the distributions of old (>~9 Gyr) and young (~2-3 Gyr) stars, indicating either that both populations were formed under the same kinematic conditions, or that any initial difference was afterward erased.

  10. The tails of the satellite auroral footprints at Jupiter

    NASA Astrophysics Data System (ADS)

    Bonfond, B.; Saur, J.; Grodent, D.; Badman, S. V.; Bisikalo, D.; Shematovich, V.; Gérard, J.-C.; Radioti, A.

    2017-08-01

    The electromagnetic interaction between Io, Europa, and Ganymede and the rotating plasma that surrounds Jupiter has a signature in the aurora of the planet. This signature, called the satellite footprint, takes the form of a series of spots located slightly downstream of the feet of the field lines passing through the moon under consideration. In the case of Io, these spots are also followed by an extended tail in the downstream direction relative to the plasma flow encountering the moon. A few examples of a tail for the Europa footprint have also been reported in the northern hemisphere. Here we present a simplified Alfvénic model for footprint tails and simulations of vertical brightness profiles for various electron distributions, which favor such a model over quasi-static models. We also report here additional cases of Europa footprint tails, in both hemispheres, even though such detections are rare and difficult. Furthermore, we show that the Ganymede footprint can also be followed by a similar tail. Finally, we present a case of a 320° long Io footprint tail, while other cases in similar configurations do not display such a length.

  11. Hydrodynamic Characteristics of a Low-drag, Planing-tail Flying-boat Hull

    NASA Technical Reports Server (NTRS)

    Suydam, Henry B

    1948-01-01

    The hydrodynamic characteristics of a flying-boat incorporating a low-drag, planing-tail hull were determined from model tests made in Langley tank number 2 and compared with tests of the same flying boat incorporating a conventional-type hull. The planing-tail model, with which stable take-offs were possible for a large range of elevator positions at all center-of-gravity locations tested, had more take-off stability than the conventional model. No upper-limit porpoising was encountered by the planing-tail model. The maximum changes in rise during landings were lower for the planing-tail model than for the conventional model at most contact trims, an indication of improved landing stability for the planing-tail model. The hydrodynamic resistance of the planing-tail hull was lower than the conventional hull at all speeds, and the load-resistance ratio was higher for the planing-tail hull, being especially high at the hump. The static trim of the planing-tail hull was much higher than the conventional hull, but the variation of trim with speed during take-off was smaller.

  12. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria.

    PubMed

    Antunes, Camila Azevedo; Clark, Laura; Wanuske, Marie-Therès; Hacker, Elena; Ott, Lisa; Simpson-Louredo, Liliane; de Luna, Maria das Gracas; Hirata, Raphael; Mattos-Guaraldi, Ana Luíza; Hodgkin, Jonathan; Burkovski, Andreas

    2016-01-01

    Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans.

  13. X-rays across the galaxy population - I. Tracing the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Aird, J.; Coil, A. L.; Georgakakis, A.

    2017-03-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

  14. Heavy-tailed fractional Pearson diffusions.

    PubMed

    Leonenko, N N; Papić, I; Sikorskii, A; Šuvak, N

    2017-11-01

    We define heavy-tailed fractional reciprocal gamma and Fisher-Snedecor diffusions by a non-Markovian time change in the corresponding Pearson diffusions. Pearson diffusions are governed by the backward Kolmogorov equations with space-varying polynomial coefficients and are widely used in applications. The corresponding fractional reciprocal gamma and Fisher-Snedecor diffusions are governed by the fractional backward Kolmogorov equations and have heavy-tailed marginal distributions in the steady state. We derive the explicit expressions for the transition densities of the fractional reciprocal gamma and Fisher-Snedecor diffusions and strong solutions of the associated Cauchy problems for the fractional backward Kolmogorov equation.

  15. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  16. Hydrogen-bond rich ionic liquids with hydroxyl cationic tails

    NASA Astrophysics Data System (ADS)

    Deng, Li; Shi, Rui; Wang, Yanting; Ou-Yang, Zhong-Can

    2013-02-01

    To investigate if the amphiphilic feature exhibited in ionic liquids (ILs) with nonpolar cationic tails still exists in ILs with polar tails, by performing molecular dynamics simulations for 1-(8-hydroxyoctyl)-3-methyl-imidazolium nitrate (COH) and 1-octyl-3-methyl-imidazolium nitrate (C8), we found that, in COH, cationic tail groups can no longer aggregate to form separated nonpolar tail domains, instead hydroxyl groups form a rich number of hydrogen bonds with other groups, indicating that the hydroxyl substituent changes the IL system from an amphiphilic liquid to a polar liquid. Due to the large amount of hydrogen bonds, COH has slower dynamics than C8.

  17. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    DOE PAGES

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-09-05

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. Furthermore, when detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infraredmore » emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. And while somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head–tail morphologies which point towards the sources of ionizing radiation. Our images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.« less

  18. Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi

    1998-01-01

    Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.

  19. Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Abbott, David C.; Conti, Peter S.

    1987-01-01

    The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.

  20. Can tail damage outbreaks in the pig be predicted by behavioural change?

    PubMed

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-03-01

    Tail biting, resulting in outbreaks of tail damage in pigs, is a multifactorial welfare and economic problem which is usually partly prevented through tail docking. According to European Union legislation, tail docking is not allowed on a routine basis; thus there is a need for alternative preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Star-disk interaction in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Speights, Christa Marie

    2012-09-01

    The question of the mechanism of certain types of stars is important. Classical T Tauri (CTTS) stars accrete magnetospherically, and Herbig Ae/Be stars (higher-mass analogs to CTTS) are thought to also accrete magnetospherically, but the source of a kG magnetic field is unknown, since these stars have radiative interiors. For magnetospheric accretion, an equation has been derived (Hartmann, 2001) which relates the truncation radius, stellar radius, stellar mass, mass accretion rate and magnetic field strength. Currently the magnetic field of Herbig stars is known to be somewhere between 0.1 kG and 10 kG. One goal of this research is to further constrain the magnetic field. In order to do that, I use the magnetospheric accretion equation. For CTTS, all of the variables used in the equation can be measured, so I gather this data from the literature and test the equation and find that it is consistent. Then I apply the equation to Herbig Ae stars and find that the error introduced from using random inclinations is too large to lower the current upper limit of the magnetic field range. If Herbig Ae stars are higher-mass analogs to CTTS, then they should have a similar magnetic field distribution. I compare the calculated Herbig Ae magnetic field distribution to several typical magnetic field distributions using the Kolmogorov-Smirnov test, and find that the data distribution does not match any of the distributions used. This means that Herbig Ae stars do not have well ordered kG fields like CTTS.

  2. Dead Star Warps Light of Red Star Artist Animation

    NASA Image and Video Library

    2013-04-04

    This artist concept depicts an ultra-dense dead star, called a white dwarf, passing in front of a small red star. NASA planet-hunting Kepler was able to detect gravitational lensing by measuring a strangely subtle dip in the star brightness.

  3. The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment

    NASA Astrophysics Data System (ADS)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; Simionescu, Aurora; Urban, Ondrej; Werner, Norbert; Zhuravleva, Irina

    2017-12-01

    We use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev-Zel'dovich (SZ) effect surveys, spanning redshifts 0 < z < 1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature and surface brightness 'peakiness' (a proxy for gas cooling efficiency in cluster centres). The data at large radii (0.5-1 r500) are consistent with a constant metallicity, while at intermediate radii (0.1-0.5 r500) we see a late-time increase in enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centres, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centres, as the stellar populations of the central galaxies evolve.

  4. Curved tails in polymerization-based bacterial motility

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Grant, Martin

    2001-08-01

    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.

  5. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  6. Mine tailings composition in a historic site: implications for ecological restoration.

    PubMed

    Courtney, R

    2013-02-01

    Ecological restoration, using tolerant plant species and nutrient additions, is a low-cost option to decrease environmental risks associated with mine tailings. An attempt was previously made to establish such a vegetation cover on an abandoned tailings facility in Southern Ireland. Historically, the tailings site has been prone to dusting and is a potential source of contamination to the surrounding environment. The site was examined to determine the success of the previous restoration plan used to revegetate the site and to determine its suitability for further restoration. Three distinct floristic areas were identified (grassland, poor grassland and bare area) based on herbage compositions and elemental analysis. Surface and subsurface samples were taken to characterise tailings from within these areas of the tailings site. The pH of bare surface tailings (pH, 2.7) was significantly more acidic (p < 0.5) than in other areas. Additionally, negligible net neutralising potential resulted in the tailings being hostile to plant growth. Total metal concentrations in tailings were high (c. 10,000 mg kg(-1) for Pb and up to 20,000 mg kg(-1) for Zn). DTPA-extractable Zn and Pb were 16 and 11 % of the total amount, respectively. Metal content in grasses growing on some areas of the tailings were elevated and demonstrated the inability of the tailings to support sustainable plant growth. Due to the inherently hostile characteristics of these areas, future restoration work will employ capping with a barrier layer.

  7. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    PubMed

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  9. [Assessment of anti-tremorogenic drugs--nicotine-induced tail-tremor model].

    PubMed

    Suemaru, K; Kawasaki, H; Gomita, Y

    1997-06-01

    The repeated administration of nicotine at small doses, which do not produce whole body tremor or convulsion, causes tremor only in the tail (tail-tremor) of rats. The tremor is accompanied by locomotor hyperactivity without rigidity and immobility of the whole body, suggesting that the nicotine-induced tail-tremor model is useful for studying the mechanism underlying tremor associated with movement. The tail-tremor induced by nicotine was suppressed by mecamylamine, a nicotinic antagonist, but not by atropine or scopolamine, muscalinic antagonists. Moreover, the tail-tremor was suppressed by the beta-blockers propranolol and pindolol, as well as the benzodiazepines diazepam and clonazepam. Tremor at rest is observed only in Parkinson's disease, which is improved with anti-muscalinic drugs. Essential tremor is one of the typical tremors connected with movement (postural and kinetic tremor) and is improved with beta-blocker. These findings and results suggest that nicotine-induced tail-tremor is useful for the study of essential tremor in animal models.

  10. Modeling of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1999-01-01

    Aerodynamic equations for the longitudinal motion of an aircraft with a horizontal tail were developed. In this development emphasis was given on obtaining model structure suitable for model identification from experimental data. The resulting aerodynamic models included unsteady effects in the form of linear indicial functions. These functions represented responses in the lift on the wing and tail alone, and interference between those two lifting surfaces. The effect of the wing on the tail was formulated for two different expressions concerning the downwash angle at the tail. The first expression used the Cowley-Glauert approximation known-as "lag-in-downwash," the second took into account growth of the wing circulation and delay in the development of the lift on the tail. Both approaches were demonstrated in two examples using the geometry of a fighter aircraft and a large transport. It was shown that the differences in the two downwash formulations would increase for an aircraft with long tail arm performing low-speed, rapid maneuvers.

  11. Stars For Citizens With Urban Star Parks and Lighting Specialists

    NASA Astrophysics Data System (ADS)

    Grigore, Valentin

    2015-08-01

    General contextOne hundred years ago, almost nobody imagine a life without stars every night even in the urban areas. Now, to see a starry sky is a special event for urban citizens.It is possible to see the stars even inside cities? Yes, but for that we need star parks and lighting specialists as partners.Educational aspectThe citizens must be able to identify the planets, constellations and other celestial objects in their urban residence. This is part of a basic education. The number of the people living in the urban area who never see the main constellations or important stars increase every year. We must do something for our urban community.What is an urban star park?An urban public park where we can see the main constellations can be considered an urban star park. There can be organized a lot of activities as practical lessons of astronomy, star parties, etc.Classification of the urban star parksA proposal for classification of the urban star parks taking in consideration the quality of the sky and the number of the city inhabitants:Two categories:- city star parks for cities with < 100.000 inhabitants- metropolis star parks for cities with > 100.000 inhabitantsFive levels of quality:- 1* level = can see stars of at least 1 magnitude with the naked eyes- 2* level = at least 2 mag- 3* level = at least 3 mag- 4* level= at least 4 mag- 5* level = at least 5 magThe urban star urban park structure and lighting systemA possible structure of a urban star park and sky-friend lighting including non-electric illumination are descripted.The International Commission on IlluminationA description of this structure which has as members national commissions from all over the world.Dark-sky activists - lighting specialistsNational Commissions on Illumination organize courses of lighting specialist. Dark-sky activists can become lighting specialists. The author shows his experience in this aspect as a recent lighting specialist and his cooperation with the Romanian National

  12. StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion

    PubMed Central

    HANNA, SAMER; KHALIL, BASSEM; NASRALLAH, ANITA; SAYKALI, BECHARA A.; SOBH, RANIA; NASSER, SELIM; EL-SIBAI, MIRVAT

    2014-01-01

    Breast cancer is one of the most commonly diagnosed cancers in women around the world. In general, the more aggressive the tumor, the more rapidly it grows and the more likely it metastasizes. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in breast cancer cell motility and metastasis. The switch between active GTP-bound and inactive GDP-bound state is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). We studied the role of StarD13, a recently identified Rho-GAP that specifically inhibits the function of RhoA and Cdc42. We aimed to investigate its role in breast cancer proliferation and metastasis. The levels of expression of this Rho-GAP in tumor tissues of different grades were assayed using immunohistochemistry. We observed that, while the level of StarD13 expression decreases in cancer tissues compared to normal tissues, it increases as the grade of the tumor increased. This was consistent with the fact that although StarD13 was indeed a tumor suppressor in our breast cancer cells, as seen by its effect on cell proliferation, it was needed for cancer cell motility. In fact, StarD13 knockdown resulted in an inhibition of cell motility and cells were not able to detach their tail and move forward. Our study describes, for the first time, a tumor suppressor that plays a positive role in cancer motility. PMID:24627003

  13. Turbovelocity Stars: Kicks Resulting from the Tidal Disruption of Solitary Stars

    NASA Astrophysics Data System (ADS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-07-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that {\\mathord {\\sim }} 10^5 stars, {\\mathord {\\sim }} 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these "turbovelocity" stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  14. Managing 'tail liability'.

    PubMed

    Frese, Richard C; Weber, Ryan J

    2013-11-01

    To reduce and control their level of tail liability, hospitals should: Utilize a self-insurance vehicle; Consider combined limits between the hospital and physicians; Communicate any program changes to the actuary, underwriter, and auditor; Continue risk management and safety practices; Ensure credit is given to the organization's own medical malpractice program.

  15. Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus).

    PubMed

    Wilson, Kaitlin; Zanella, Ricardo; Ventura, Carlos; Johansen, Hanne Lind; Framstad, Tore; Janczak, Andrew; Zanella, Adroaldo J; Neibergs, Holly Louise

    2012-11-01

    The objective of this study was to identify loci associated with tail biting or being a victim of tail biting in Norwegian crossbred pigs using a genome-wide association study with PLINK case-control analysis. DNA was extracted from hair or blood samples collected from 98 trios of crossbred pigs located across Norway. Each trio came from the same pen and consisted of one pig observed to initiate tail biting, one pig which was the victim of tail biting and a control pig which was not involved in either behaviour. DNA was genotyped using the Illumina PorcineSNP60 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. After quality assurance filtering, 53,952 SNPs remained comprising 74 animals (37 pairs) for the tail biter versus control comparison and 53,419 SNPs remained comprising 80 animals (40 pairs) for the victim of tail biting versus control comparison. An association with being a tail biter was observed on Sus scrofa chromosome 16 (SSC16; p = 1.6 × 10(-5)) and an unassigned chromosome (p = 3.9 × 10(-5)). An association with being the victim of tail biting was observed on Sus scrofa chromosomes 1 (SSC1; p = 4.7 × 10(-5)), 9 (SSC9; p = 3.9 × 10(-5)), 18 (SSC18; p = 7 × 10(-5) for 9,602,511 bp, p = 3.4 × 10(-5) for 9,653,881 bp and p = 5.3 × 10(-5) for 29,577,783 bp) and an unassigned chromosome (p = 6.1 × 10(-5)). An r(2) = 0.96 and a D' = 1 between the two SNPs at 9 Mb on SSC18 indicated extremely high linkage disequilibrium, suggesting that these two markers represent a single locus. These results provide evidence of a moderate genetic association between the propensity to participate in tail-biting behaviour and the likelihood of becoming a victim of this behaviour.

  16. Galaxy Interactions, Tidal Debris, and the Origin of Intracluster Light in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    1999-07-01

    We propose to obtain deep WFPC2 and parallel STIS images of low surface brightness tidal debris that we have recently discovered in the Coma cluster; the material is being stripped from its parent galaxy and added to the general cluster background. These images will enable direct study of the brightest blue and red supergiants, globular clusters, and star forming regions which may be present, or will place strong limits on the numbers of such objects and any recent star formation. We also propose similar observations of the parent spiral, NGC4911, in the core of Coma; it is losing its ISM to the hot cluster gas and as well as the low surface brightness tidal debris. By imaging this galaxy, we will get a high resolution look at the interaction between the galaxy and interstellar medium, as well as any ram-pressure induced star formation. The tidal features in Coma appear to be adding material to the background light and cD galaxy envelopes at a significant rate; determining the nature of the added stellar population and the interactions which produce it are critical to understanding the formation and evolution of cD galaxies and clusters.

  17. A review on in situ phytoremediation of mine tailings.

    PubMed

    Wang, Li; Ji, Bin; Hu, Yuehua; Liu, Runqing; Sun, Wei

    2017-10-01

    Mine tailings are detrimental to natural plant growth due to their physicochemical characteristics, such as high pH, high salinity, low water retention capacity, high heavy metal concentrations, and deficiencies in soil organic matter and fertility. Thus, the remediation of mine tailings has become a key issue in environmental science and engineering. Phytoremediation, an in situ cost-effective technology, is emerging as the most promising remediation method for mine tailings by introducing tolerant plant species. It is particularly effective in dealing with large-area mine tailings with shallow contamination of organic, nutrient and metal pollutants. In this review, the background, concepts and applications of phytoremediation are comprehensively discussed. Furthermore, proper amendments used to improve the physical, chemical and biological properties of mine tailings are systematically reviewed and compared. Emphasis is placed on the types and characteristics of tolerant plants and their role in phytoremediation. Moreover, the role of microorganisms and their mechanism in phytoremediation are also discussed in-depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  19. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate.

    PubMed

    Murshed, Mohamed; Rockstraw, David A; Hanson, Adrian T; Johnson, Michael

    2003-01-01

    The chemistry of sulfide mine tailings treated with potassium ferrate (K2FeO4) in aqueous slurry has been investigated. The reaction system is believed to parallel a geochemical oxidation in which ferrate ion replaces oxygen. This chemical system utilized in a pipeline (as a plug flow reactor) may have application eliminating the potential for tailings to leach acid while recovering the metal from the tailings. Elemental analyses were performed using an ICP spectrometer for the aqueous phase extract of the treated tailings; and an SEM-EDX for the tailing solids. Solids were analyzed before and after treatments were applied. ICP shows that as the mass ratio of ferrate ion to tailings increases, the concentration of metals in the extract solution increases; while EDX indicates a corresponding decrease in sulfur content of the tailing solids. The extraction of metal and reduction in sulfide content is significant. The kinetic timeframe is on the order of minutes.

  20. Tailings dam-break flow - Analysis of sediment transport

    NASA Astrophysics Data System (ADS)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  1. A hybrid method for accurate star tracking using star sensor and gyros.

    PubMed

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  2. Effective star tracking method based on optical flow analysis for star trackers.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; Li, Jin; Wei, Minsong; You, Zheng

    2016-12-20

    Benefiting from rapid development of imaging sensor technology, modern optical technology, and a high-speed computing chip, the star tracker's accuracy, dynamic performance, and update rate have been greatly improved with low power consumption and miniature size. The star tracker is currently one of the most competitive attitude measurement sensors. However, due to restrictions of the optical imaging system, difficulties still exist in moving star spot detection and star tracking when in special motion conditions. An effective star tracking method based on optical flow analysis for star trackers is proposed in this paper. Spot-based optical flow, based on a gray gradient between two adjacent star images, is analyzed to distinguish the star spot region and obtain an accurate star spot position so that the star tracking can keep continuous under high dynamic conditions. The obtained star vectors and extended Kalman filter (EKF) are then combined to conduct an angular velocity estimation to ensure region prediction of the star spot; this can be combined with the optical flow analysis result. Experiment results show that the method proposed in this paper has advantages in conditions of large angular velocity and large angular acceleration, despite the presence of noise. Higher functional density and better performance can be achieved; thus, the star tracker can be more widely applied in small satellites, remote sensing, and other complex space missions.

  3. Neutrino flavor evolution in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  4. A tail like no other. The RPC-MAG view of Rosetta's tail excursion at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Goetz, Charlotte; Richter, Ingo; Delva, Magda; Ostaszewski, Katharina; Schwingenschuh, Konrad; Glassmeier, Karl-Heinz

    2018-06-01

    Context. The Rosetta Plasma Consortium (RPC) magnetometer (MAG) data during the tail excursion in March-April 2016 are used to investigate the magnetic structure of and activity in the tail region of the weakly outgassing comet 67P/Churyumov-Gerasimenko (67P). Aims: The goal of this study is to compare the large scale (near) tail structure with that of earlier missions to strong outgassing comets, and the small scale turbulent energy cascade (un)related to the singing comet phenomenon. Methods: The usual methods of space plasma physics are used to analyse the magnetometer data, such as minimum variance analysis, spectral analysis, and power law fitting. Also the cone angle and clock angle of the magnetic field are calculated to interpret the data. Results: It is found that comet 67P does not have a classical draped magnetic field and no bi-lobal tail structure at this late stage of the mission when the comet is already at 2.7 AU distance from the Sun. The main magnetic field direction seems to be more across the tail direction, which may implicate an asymmetric pick-up cloud. During periods of singing comet activity the propagation direction of the waves is at large angles with respect to the magnetic field and to the radial direction towards the comet. Turbulent cascade of magnetic energy from large to small scales is different in the presence of singing as without it.

  5. Tracing ram-pressure stripping with warm molecular hydrogen emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H., E-mail: sivanandam@dunlap.utoronto.ca

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ∼ 115-160 K) and a hot (T ∼ 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup –2} with masses of 10{sup 6} to 10{sup 8} M {sub ☉}. The warm H{sub 2} is anomalously bright compared with normal star-formingmore » galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 μm is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The Hα and 24 μm luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.« less

  6. Remote control canard missile with a free-rolling tail brake torque system

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1981-01-01

    An experimental wind-tunnel investigation has been conducted at supersonic Mach numbers to determine the static aerodynamic characteristics of a cruciform canard-controlled missile with fixed and free-rolling tail-fin afterbodies. Mechanical coupling effects of the free-rolling tail afterbody were investigated using an electronic/electromagnetic brake system that provides arbitrary tail-fin brake torques with continuous measurements of tail-to-mainframe torque and tail-roll rate. Results are summarized to show the effects of fixed and free-rolling tail-fin afterbodies that include simulated measured bearing friction torques on the longitudinal and lateral-directional aerodynamic characteristics.

  7. Managing the star performer.

    PubMed

    Hills, Laura

    2013-01-01

    Our culture seems to be endlessly fascinated with its stars in entertainment, athletics, politics, and business, and holds fast to the idea that extraordinary talent accounts for an individual's extraordinary performance. At first glance, managing a star performer in your medical practice may seem like it would be an easy task. However, there's much more to managing a star performer than many practice managers realize. The concern is how to keep the star performer happy and functioning at a high level without detriment to the rest of the medical practice team. This article offers tips for practice managers who manage star performers. It explores ways to keep the star performer motivated, while at the same time helping the star performer to meld into the existing medical practice team. This article suggests strategies for redefining the star performer's role, for holding the star performer accountable for his or her behavior, and for coaching the star performer. Finally, this article offers practical tips for keeping the star performer during trying times, for identifying and cultivating new star performers, and for managing medical practice prima donnas.

  8. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  9. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  10. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  11. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    PubMed

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. R package to estimate intracluster correlation coefficient with confidence interval for binary data.

    PubMed

    Chakraborty, Hrishikesh; Hossain, Akhtar

    2018-03-01

    The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The different growth pathways of Brightest Cluster Galaxies and the Intra-Cluster Light

    NASA Astrophysics Data System (ADS)

    Contini, E.; Yi, S. K.; Kang, X.

    2018-06-01

    We study the growth pathways of Brightest Central Galaxies (BCGs) and Intra-Cluster Light (ICL) by means of a semi-analytic model. We assume that the ICL forms by stellar stripping of satellite galaxies and violent processes during mergers, and implement two independent models: (1) one considers both mergers and stellar stripping (named STANDARD model), and one considers only mergers (named MERGERS model). We find that BCGs and ICL form, grow and overall evolve at different times and with different timescales, but they show a clear co-evolution after redshift z ˜ 0.7 - 0.8. Around 90% of the ICL from stellar stripping is built-up in the innermost 150 Kpc from the halo centre and the dominant contribution comes from disk-like galaxies (B/T<0.4) through a large number of small/intermediate stripping events (Mstrip/Msat < 0.3). The fractions of stellar mass in BCGs and in ICL over the total stellar mass within the virial radius of the halo evolve differently with time. At high redshift, the BCG accounts for the bulk of the mass, but its contribution gradually decreases with time and stays constant after z ˜ 0.4 - 0.5. The ICL, instead, grows very fast and its contribution keeps increasing down to the present time. The STANDARD and the MERGERS models make very similar predictions in most of the cases, but predict different amounts of ICL associated to other galaxies within the virial radius of the group/cluster other than the BCG, at z = 0. We then suggest that this quantity is a valid observable that can shed light on the relative importance of mergers and stellar stripping for the formation of the ICL.

  14. Merging strangeon stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin

    2018-02-01

    The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.

  15. White-tailed deer

    Treesearch

    Paul E. Johns; John C. Kilgo

    2005-01-01

    from a public relations standpoint, the white-tailed deer (Odocileus virginiamus) is probably the most important wildlife species occurring on the Savannah River Site (SRS). The SRS deer herd has been the subject of more scientific investigations than any comparable deer population in the world, resulting in more than 125 published papers. Each year...

  16. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  17. Giant Metrewave Radio Telescope Observations of Head–Tail Radio Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, Biny; Lal, Dharam V.; Rao, A. Pramesh, E-mail: biny@ncra.tifr.res.in

    We present results from a study of seven large known head–tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spectral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of multiple bends and wiggles in several head–tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailingmore » equipartition magnetic field also decreases along the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ∼10{sup 8} yr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.« less

  18. Plasma currents and anisotropy in the tail-dipole transition region

    NASA Astrophysics Data System (ADS)

    Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.

    2017-12-01

    Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (<2), ions are transversely anisotropic near Earth but isotropic in the tail, whereas electrons are isotropic closer to Earth but field-aligned in tail. For large Kp (>4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.

  19. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  20. False star detection and isolation during star tracking based on improved chi-square tests.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Yang, Yanqiang; Su, Guohua

    2017-08-01

    The star sensor is a precise attitude measurement device for a spacecraft. Star tracking is the main and key working mode for a star sensor. However, during star tracking, false stars become an inevitable interference for star sensor applications, which may result in declined measurement accuracy. A false star detection and isolation algorithm in star tracking based on improved chi-square tests is proposed in this paper. Two estimations are established based on a Kalman filter and a priori information, respectively. The false star detection is operated through adopting the global state chi-square test in a Kalman filter. The false star isolation is achieved using a local state chi-square test. Semi-physical experiments under different trajectories with various false stars are designed for verification. Experiment results show that various false stars can be detected and isolated from navigation stars during star tracking, and the attitude measurement accuracy is hardly influenced by false stars. The proposed algorithm is proved to have an excellent performance in terms of speed, stability, and robustness.

  1. 14 CFR 29.481 - Tail-down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail-down landing conditions. 29.481 Section 29.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Tail-down landing conditions. (a) The rotorcraft is assumed to be in the maximum nose-up attitude...

  2. 14 CFR 27.481 - Tail-down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail-down landing conditions. 27.481 Section 27.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Tail-down landing conditions. (a) The rotorcraft is assumed to be in the maximum nose-up attitude...

  3. On the Hydrodynamics of Anomalocaris Tail Fins.

    PubMed

    Sheppard, K A; Rival, D E; Caron, J-B

    2018-04-25

    Anomalocaris canadensis, a soft-bodied stem-group arthropod from the Burgess Shale, is considered the largest predator of the Cambrian period. Thanks to a series of lateral flexible lobes along its dorso-ventrally compressed body, it is generally regarded as an efficient swimmer, well-adapted to its predatory lifestyle. Previous theoretical hydrodynamic simulations have suggested a possible optimum in swimming performance when the lateral lobes performed as a single undulatory lateral fin, comparable to the pectoral fins in skates and rays. However, the role of the unusual fan-like tail of Anomalocaris has not been previously explored. Swimming efficiency and maneuverability deduced from direct hydrodynamic analysis are here studied in a towing tank facility using a three-vane physical model designed as an abstraction of the tail fin. Through direct force measurements, it was found that the model exhibited a region of steady-state lift and drag enhancement at angles of attack greater than 25° when compared to a triangular-shaped reference model. This would suggest that the resultant normal force on the tail fin of Anomalocaris made it well-suited for turning maneuvers, giving it the ability to turn quickly and through small radii of curvature. These results are consistent with an active predatory lifestyle, although detailed kinematic studies integrating the full organism, including the lateral lobes, would be required to test the effect of the tail fin on overall swimming performance. This study also highlights a possible example of evolutionary convergence between the tails of Anomalocaris and birds, which, in both cases, are well-adapted to efficient turning maneuvers.

  4. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less

  5. Egyptian "Star Clocks"

    NASA Astrophysics Data System (ADS)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  6. Ponderable soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  7. Approximate universal relations for neutron stars and quark stars

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2017-04-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.

  8. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi

    NASA Astrophysics Data System (ADS)

    Pafilis, Panayiotis; Pérez-Mellado, Valentín; Valakos, Efstratios

    2008-03-01

    Caudal autotomy is an effective antipredator strategy widespread among lizards. The shed tail thrashes vigorously for long periods to distract the predator and facilitate the lizard’s escape. This movement is maintained by energy supplied by the anaerobic conversion of glycogen into lactate. It has been suggested that lactate accumulation serves as an index for the vigor of tail thrashing. We made three predictions: (1) tail loss frequency should be higher under heavier predation regime, (2) the duration of postautotomy tail movement should be extended in populations under heavy predation pressure as an adaptation to the higher risk and the increased need for defense, and (3) as result, lactate in these tail tissues should be concentrated at higher levels. To eliminate the impact of phylogeny and environmental factors on the interpretation of our result, we focused exclusively on one species, the Balearic lizard ( Podarcis lilfordi). We studied three populations under different predation pressure but sharing the same climatic conditions. We found no differences among the studied populations either in postautotomy duration of tail movement or in levels of final lactate accumulation while autotomy frequency was higher where predation pressure was more intense. Τail loss effectiveness is directly influenced by the level of predation, while secondary features of the trait appear to remain independent from the impact of environment.

  9. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    PubMed

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  10. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  11. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  13. Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dubois, Ami

    2017-10-01

    Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the MST RFP, discrete MR events release large amounts of energy from the equilibrium magnetic field, a large fraction of which is transferred to the ions in a non-collisional process. Key features are anisotropic heating, mass and charge dependence, and energetic ion tail formation. Unlike the ions, the thermal electron temperature decreases at MR events, which is consistent with enhanced electron heat transport due to increased magnetic stochasticity. However, new high-speed x-ray spectrum measurements reveal transient formation of a non-Maxwellian energetic electron tail during MR. The energetic tail is characterized by a power-law, E-γ, with the spectral index (γ) decreasing from 4.2 to 2.2 at MR, and then increasing rapidly to 6.8 due to increased stochastic transport. The x-ray emission peaks in a radial view and is symmetric in the toroidal direction, indicating an anisotropic electron tail is generated. The toroidal symmetry of the electron tail implies runaway acceleration is not a dominant process, consistent with the net emf, ηJll, being smaller than the Dreicer field. Modeling of bremsstrahlung emission shows that a power-law electron tail distribution that is localized near the magnetic axis will yield strong perpendicular anisotropy, consistent with x-ray measurements in the radial and toroidal views. A strong correlation between high energy x-ray flux and tearing mode dynamics suggests a turbulent mechanism is active. This implies that the electron tail formation most likely results from a turbulent wave-particle interaction. This work is supported by the US DOE and NSF.

  14. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  15. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  16. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress

    PubMed Central

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-01-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision—but not tail tip amputation—increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing. PMID:28535866

  17. Comparing Phlebotomy by Tail Tip Amputation, Facial Vein Puncture, and Tail Vein Incision in C57BL/6 Mice by Using Physiologic and Behavioral Metrics of Pain and Distress.

    PubMed

    Moore, Elizabeth S; Cleland, Thomas A; Williams, Wendy O; Peterson, Christine M; Singh, Bhupinder; Southard, Teresa L; Pasch, Bret; Labitt, Rachael N; Daugherity, Erin K

    2017-05-01

    Tail tip amputation with minimal restraint is not widely used for mouse phlebotomy. In part, this infrequency may reflect policies influenced by tail tip amputation procedures for genotyping, which involve greater handling and tissue removal. To assess tail tip amputation with minimal restraint as a phlebotomy technique, we compared it with 2 more common methods: scruffing with facial vein puncture and lateral tail vein incision with minimal restraint. Blood glucose levels, audible and ultrasonic vocalizations, postphlebotomy activity and grooming behavior, open field and elevated plus maze behaviors, nest-building scores, and histologic changes at the phlebotomy site were evaluated. Mice in the facial vein phlebotomy group produced more audible vocalizations, exhibited lower postphlebotomy activity in the open field, and had more severe histologic changes than did mice in the tail incision and tail tip amputation groups. Facial vein phlebotomy did not affect grooming behavior relative to sham groups, whereas tail vein incision-but not tail tip amputation-increased tail grooming compared with that in control mice. Blood glucose levels, nest-building scores, and elevated plus maze behavior did not differ between groups, and no mice in any group produced ultrasonic vocalizations. Tail tip amputation mice did not perform differently than sham mice in any metric analyzed, indicating that this technique is a potentially superior method of blood collection in mice in terms of animal wellbeing.

  18. Assessment of Phytostabilization Success in Metalliferous Acid Mine Tailings

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Root, R. A.; Hammond, C.; Amistadi, M. K.; Maier, R. M.; Chorover, J.

    2014-12-01

    Legacy mine tailings are a significant source of metal(loid)s due to wind and water erosion, especially in the arid southwest, and exposure to fugative dusts presents a health risk to surrounding populations. Compost assisted phytostabilization has been implemented to reduce off site emissions at the Iron King Mine U.S. Superfund Site in central Arizona, concurrent with a greenhouse mesocosm study for detailed study of subsurface mechanisms. Quantification of plant available toxic metal(loid)s in the amended tailings was accessed with a targeted single extraction of diethylenetriaminepentaactic acid (DTPA). Greenhouse mesocosms (1m dia, 0.4 m deep), run in triplicate, mimicked field treatments with: i) tailings only control (TO), ii) tailings plus 15 wt% compost (TC), iii) TC + quailbush seeds (TCA), and iv) TC + buffalo grass seeds (TCB). Core samples collected at 3-month intervals for 1 year were dissected by depth (10 cm each) for analysis. DTPA results indicated that compost treated samples decreased plant availability of Al, As, Cd, Cu, Fe, and Pb but increased Mn and Zn compared with TO. TCB decreased plant available metal(loid)s at all depths, whereas TCA plant available Al, As, Cd, Cu, Fe, Mn and Zn increased in the deeper 20-30cm and 30-40 cm relative to TCB. Samples from the greenhouse were compared to tailings from both the field site and tailings impacted soils used to grow vegetables. Mineral transformations and metal complexation, in the pre- and post-extracted tailings were analyzed by synchrotron transmission XRD and FTIR spectroscopy. The temporal change in plant available metal(loid)s in response to phytostabilization indicates mineralogical alteration that improves soil quality by reducing plant available metal(loid)s. These results will aid in the understanding and efficacy of phytostabilization as a means of remediating and reducing toxicity on mine tailings as well as providing information on health risk management in the region.

  19. Understand B-type stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When observations of B stars made from space are added to observations made from the ground and the total body of observational information is confronted with theoretical expectations about B stars, it is clear that nonthermal phenomena occur in the atmospheres of B stars. The nature of these phenomena and what they imply about the physical state of a B star and how a B star evolves are examined using knowledge of the spectrum of a B star as a key to obtaining an understanding of what a B star is like. Three approaches to modeling stellar structure (atmospheres) are considered, the characteristic properties of a mantle, and B stars and evolution are discussed.

  20. Effects of submarine mine tailings on macrobenthic community structure and ecosystem processes.

    PubMed

    Trannum, Hilde C; Gundersen, Hege; Escudero-Oñate, Carlos; Johansen, Joachim T; Schaanning, Morten T

    2018-07-15

    A mesocosm experiment with intact benthic communities was conducted to evaluate the effects of mine tailings on benthic community structure and biogeochemical processes. Two types of tailings were supplied from process plants using flotation and flocculation chemicals, while a third type was absent of added chemicals. All tailings impacted the sediment community at thin layers, and through more mechanisms than merely hypersedimentation. In general, the strongest impact was observed in a very fine-grained tailings containing flotation chemicals. The second strongest occurred in tailings with no process chemicals. The tailings with flocculation chemicals initiated the weakest response. Fluxes of oxygen, nitrate and ammonium provided some indications on biodegradation of organic phases. Release of phosphate and silicate decreased with increasing layer thickness of all three tailings. A threshold level of 2cm was identified both for faunal responses and for fluxes of phosphate and silicate. The particular impact mechanisms should receive more attention in future studies in order to minimize the environmental risk associated with tailings disposal. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Dense Axion Stars.

    PubMed

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-16

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10^{-14}M_{⊙} if the axion mass is 10^{-4}  eV. We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10^{-20}M_{⊙} to about M_{⊙}. If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  2. Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544

    NASA Astrophysics Data System (ADS)

    Contreras Ramos, R.; Zoccali, M.; Rojas, F.; Rojas-Arriagada, A.; Gárate, M.; Huijse, P.; Gran, F.; Soto, M.; Valcarce, A. A. R.; Estévez, P. A.; Minniti, D.

    2017-12-01

    Context. In the last six years, the VISTA Variable in the Vía Láctea (VVV) survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes 36 globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims: The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods: This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results: PSF-fitting photometry over the six years baseline of the survey allowed us to obtain a mean precision of 0.51 mas yr-1, in each PM coordinate, for stars with Ks< 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of 11-13 Gyr, and metallicity [Fe/H] =-1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Conclusions: Kinematical techniques are a fundamental step toward disentangling different stellar populations that overlap in a studied field. Our results show

  3. Formation and evolution of dwarf elliptical galaxies - II. Spatially resolved star formation histories

    NASA Astrophysics Data System (ADS)

    Koleva, Mina; de Rijcke, Sven; Prugniel, Philippe; Zeilinger, Werner W.; Michielsen, Dolf

    2009-07-01

    We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ULYSS and STECKMAP of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1-5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the

  4. By Draconis Stars

    NASA Astrophysics Data System (ADS)

    Bopp, Bernard W.

    An optical spectroscopic survey of dK-M stars has resulted in the discovery of several new H-alpha emission objects. Available optical data suggest these stars have a level of chromospheric activity midway between active BY Dra stars and quiet dM's. These "marginal" BY Dra stars are single objects that have rotation velocities slightly higher than that of quiet field stars but below that of active flare/BY Dra objects. The marginal BY Dra stars provide us with a class of objects rotating very near a "trigger velocity" (believed to be 5 km/s) which appears to divide active flare/BY Dra stars from quiet dM's. UV data on Mg II emission fluxes and strength of transition region features such as C IV will serve to fix activity levels in the marginal objects and determine chromosphere and transition-region heating rates. Simultaneous optical magnetic field measures will be used to explore the connection between fieldstrength/filling-factor and atmospheric heating. Comparison of these data with published information on active and quiet dM stars will yield information on the character of the stellar dynamo as it makes a transition from "low" to "high" activity.

  5. The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment

    DOE PAGES

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...

    2017-08-26

    Here, we use Chandra X-ray data to measure the metallicity of the intracluster medium (ICM) in 245 massive galaxy clusters selected from X-ray and Sunyaev–Zel'dovich (SZ) effect surveys, spanning redshifts 0 < z < 1.2. Metallicities were measured in three different radial ranges, spanning cluster cores through their outskirts. We explore trends in these measurements as a function of cluster redshift, temperature and surface brightness ‘peakiness’ (a proxy for gas cooling efficiency in cluster centres). The data at large radii (0.5–1 r500) are consistent with a constant metallicity, while at intermediate radii (0.1–0.5 r500) we see a late-time increase inmore » enrichment, consistent with the expected production and mixing of metals in cluster cores. In cluster centres, there are strong trends of metallicity with temperature and peakiness, reflecting enhanced metal production in the lowest entropy gas. Within the cool-core/sharply peaked cluster population, there is a large intrinsic scatter in central metallicity and no overall evolution, indicating significant astrophysical variations in the efficiency of enrichment. The central metallicity in clusters with flat surface brightness profiles is lower, with a smaller intrinsic scatter, but increases towards lower redshifts. Our results are consistent with other recent measurements of ICM metallicity as a function of redshift. They reinforce the picture implied by observations of uniform metal distributions in the outskirts of nearby clusters, in which most of the enrichment of the ICM takes place before cluster formation, with significant later enrichment taking place only in cluster centres, as the stellar populations of the central galaxies evolve.« less

  6. HUBBLE PROVIDES 'ONE-TWO PUNCH' TO SEE BIRTH OF STARS IN GALACTIC WRECKAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies. The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars. The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies. ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions. IRAS 19297-0406 is producing about 200 new Sun-like stars every year -- about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation. The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust. The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years. Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region. IRAS 19297-0406 may be

  7. Evaluation of metal mobility from copper mine tailings in northern Chile.

    PubMed

    Lam, Elizabeth J; Gálvez, M E; Cánovas, M; Montofré, I L; Rivero, D; Faz, A

    2016-06-01

    This work shows the results obtained on a copper mine tailing in the Antofagasta Region, Chile. The tailing was classified as saline-sodic with high concentrations of metals, especially Cu and Fe, with pH 8.4. Our objectives were to (1) compare the physicochemical properties of the tailing with surrounding soils of the mine under study, and (2) evaluate the effect of two amendments (CaCO3 and compost) and their mixtures on Cu(2+), Mn, Fe, Zn, Mg(2+), and K(+) and Ca(2+), SO4 (2-), NO3 (-), and PO4 (3-) leaching. The data obtained were submitted to variance and covariance analysis. The results from the comparison between both substrates showed that in general, the tailing presented greater content of metals. Regarding tailing leaching, pH, electrical conductivity (EC), and concentration of the elements of interest were measured. The statistical analysis showed that Cu(2+) leaching and immobilization of Fe occurred to the greatest extent with compost. The EC decreased throughout the experiment with irrigation and increased upon treatment with compost. The major interactions found among the chemical parameters were (1) tailings without treatment, Cu(2+)/Fe and NO3 (-)/SO4 (2-); (2) tailings treated with CaCO3, Cu(2+)/K(+); (3) tailings treated with compost, NO3 (-)/SO4 (-2) and EC/Cu(2+); and (4) tailings treated with both amendments, EC/Fe and Cu(2+)/Fe. The ANOVA showed that the number of irrigations and the amendments statistically significantly affected the copper mobility and the organic amendment significantly influenced the iron mobility.

  8. Atoms, Stars, and Nebulae

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1991-09-01

    1. Introducing stars and nebulae; 2. Stellar rainbows; 3. Atoms and molecules; 4. The climate in a stellar atmosphere; 5. Analysing the stars; 6. Dwarfs, giants, and supergiants; 7. What makes a star shine?; 8. The youth and middle age of a common star; 9. Wind, dust and pulsations; 10. A star's last hurray?; 11. The interstellar medium and gaseous nebulae; 12. Uncommon stars and their sometimes violent behaviour; 13. High energy astronomy.

  9. The Star Formation History of SHADES Sources

    NASA Astrophysics Data System (ADS)

    Aretxaga, Itziar; SHADES Consortium; AzTEC Team

    2006-12-01

    We present the redshift distribution of the SHADES 850um selected galaxy population based on the rest-frame radio-mm-FIR colours of 120 robustly detected sources in the Lockman Hole East (LH) and Subaru XMM-Newton Deep Field (SXDF). The redshift of sources constrained with at least two photometric bands peaks at z 2.4 and has a near-Gaussian distribution. The inclusion of sources detected only at 850um, for which only very weak redshift constraints are available, leads to the possibility of a high-redshit tail. We find a small difference between the redshift distributions in the two fields; the SXDF peaking at a slightly lower redshift than the LH, which we mainly attribute to the noise properties of the photometry used. We discuss the impact of the AzTEC data on the further precission of these results. Finally we present a brief comparison with sub-mm galaxy formation models and their predicted and assumed redshift distributions and derive the contribution of these sources to the star formation rate density at different epochs.

  10. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  11. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  12. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  13. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  14. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  15. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    PubMed

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Progress in our understanding of cometary dust tails

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    Various analytical techniques are employed to analyze observations on the character, composition, and size distribution of solid particles in cometary dust tails. Emphasized is the mechanical theory that includes solar gravitational attraction and solar radiation pressure to explain dust particle motions in cometary tails, as well as interactions between dust and plasma.

  17. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  18. Triggering active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.

    2018-03-01

    We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.

  19. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates?

    PubMed

    Nishimura, Abigail C; Russo, Gabrielle A

    2017-04-01

    The external morphology of the sacrum is demonstrably informative regarding tail type (i.e., tail presence/absence, length, and prehensility) in living and extinct primates. However, little research has focused on the relationship between tail type and internal sacral morphology, a potentially important source of functional information when fossil sacra are incomplete. Here, we determine if cortical bone cross-sectional thickness of the last sacral vertebral body differs among tail types in extant primates and can be used to reconstruct tail types in extinct primates. Cortical bone cross-sectional thickness in the last sacral vertebral body was measured from high-resolution CT scans belonging to 20 extant primate species (N = 72) assigned to tail type categories ("tailless," "nonprehensile short-tailed," "nonprehensile long-tailed," and "prehensile-tailed"). The extant dataset was then used to reconstruct the tail types for four extinct primate species. Tailless primates had significantly thinner cortical bone than tail-bearing primates. Nonprehensile short-tailed primates had significantly thinner cortical bone than nonprehensile long-tailed primates. Cortical bone cross-sectional thickness did not distinguish between prehensile-tailed and nonprehensile long-tailed taxa. Results are strongly influenced by phylogeny. Corroborating previous studies, Epipliopithecus vindobonensis was reconstructed as tailless, Archaeolemur edwardsi as long-tailed, Megaladapis grandidieri as nonprehensile short-tailed, and Palaeopropithecus kelyus as nonprehensile short-tailed or tailless. Results indicate that, in the context of phylogenetic clade, measures of cortical bone cross-sectional thickness can be used to allocate extinct primate species to tail type categories. © 2017 Wiley Periodicals, Inc.

  20. Detection of a repeated transit signature in the light curve of the enigma star KIC 8462852: A possible 928-day period

    NASA Astrophysics Data System (ADS)

    Kiefer, F.; Lecavelier des Étangs, A.; Vidal-Madjar, A.; Hébrard, G.; Bourrier, V.; Wilson, P. A.

    2017-12-01

    As revealed by its peculiar Kepler light curve, the enigmatic star KIC 8462852 undergoes short and deep flux dimmings at a priori unrelated epochs. This star presents nonetheless all other characteristics of a quiet 1 Gyr old F3V star. These dimmings resemble the absorption features expected for the transit of dust cometary tails. The exocomet scenario is therefore most commonly advocated. We reanalysed the Kepler data and extracted a new high-quality light curve to allow for the search of shallow signatures of single or a few exocomets. We discovered that among the 22 flux dimming events that we identified, two events present a striking similarity. These events occurred 928.25 days apart and lasted for 4.4 days with a drop in the star brightness by 1000 ppm. We show that the light curve of these events is well explained by the occultation of the star by a giant ring system or by the transit of a string of half a dozen exocomets with a typical dust production rate of 105-106 kg s-1. Assuming that these two similar events are related to the transit of the same object, we derive a period of 928.25 days. The following transit was expected in March 2017 but bad weather prohibited us from detecting it from ground-based spectroscopy. We predict that the next event will occur between 3-8 October 2019.

  1. Gone with the Wind: Watching Galaxy Transformation in Abell 2125

    NASA Astrophysics Data System (ADS)

    Keel, W.; Owen, F.; Ledlow, M.; Wang, D.

    2003-12-01

    Dense environments clearly foster the transformation of galaxies, but it has proven difficult to untangle the roles of various processes in cluster environments. We have found a uniquely strong case for ongoing stripping of gas from the galaxy C153 in Abell 2125. The cluster, at z=0.25, includes merging subsystems with a relative line-of-sight velocity near 2000 km/s. C153, identified using the VLA as a strong radio source powered by star formation, is the brightest cluster member with activity of this kind, and part of the less populous blueshifted grouping. Several lines of evidence indicate that it is being swept by a stripping event. (1) A tail of ionized gas is seen in [O II] emission, which extends at least 70 kpc toward the cluster core, coinciding with a soft X-ray feature seen in the Chandra observations reported by Wang et al. (2) HST WFPC2 images reveal disturbed and clumpy morphology, including luminous star-forming complexes and chaotic dust features. (3) The spectral energy distribution and Gemini GMOS absorption-line spectrum indicate a massive burst of star formation ≈ 108 years ago superimposed on an older and much fainter population. (4) The stellar and gas kinematics are decoupled, with multiple gas velocity systems including counter-rotating components. The large velocity difference between the galaxy and (most of the) intracluster medium may contribute to the signatures being more prominent than hitherto seen. The starburst age is consistent with estimates of the time since the closest encounter of the major subsystems during the cluster-level merger. We continue to explore whether a starburst outflow or tidal damage has added to the role of stripping by the ICM, and how star formation has proceeded in the gas after leaving the galaxy disk. This work was supported by NASA through HST grant GO-07279.01-96A, and by the NSF through facilities at NRAO, Kitt Peak, and Gemini-North.

  2. Pulsating Stars in the ASAS-3 Database. I. beta Cephei Stars

    NASA Astrophysics Data System (ADS)

    Pigulski, A.

    2005-06-01

    We present results of an analysis of the ASAS-3 data for short-period variables from the recently published catalog of over 38000 stars. Using the data available in the literature we verify the results of the automatic classification related to \\beta Cep pulsators. In particular, we find that 14 stars in the catalog can be classified unambiguously as new beta Cep stars. By means of periodogram analysis we derive the frequencies and amplitudes of the excited modes. The main modes in the new beta Cep stars have large semi-amplitudes, between 35 and 80 mmag. Up to four modes were found in some stars. Two (maybe three) new beta Cep stars are members of southern young open clusters: ASAS 164409-4719.1 belongs to NGC 6200, ASAS 164630-4701.2 is a member of Hogg 22, and ASAS 164939-4431.7 could be a member of NGC 6216. We also analyze the photometry of four known beta Cep stars in the ASAS-3 catalog, namely IL Vel, NSV 24078, V1449 Aql and SY Equ. Finally, we discuss the distribution of beta Cep stars in the Galaxy.

  3. New binaries among UV-selected, hot subdwarf stars and population properties

    NASA Astrophysics Data System (ADS)

    Kawka, A.; Vennes, S.; O'Toole, S.; Németh, P.; Burton, D.; Kotze, E.; Buckley, D. A. H.

    2015-07-01

    We have measured the orbital parameters of seven close binaries, including six new objects, in a radial velocity survey of 38 objects comprising a hot subdwarf star with orbital periods ranging from ˜0.17 to 3 d. One new system, GALEX J2205-3141, shows reflection on an M dwarf companion. Three other objects show significant short-period variations, but their orbital parameters could not be constrained. Two systems comprising a hot subdwarf paired with a bright main-sequence/giant companion display short-period photometric variations possibly due to irradiation or stellar activity and are also short-period candidates. All except two candidates were drawn from a selection of subluminous stars in the Galaxy Evolution Explorer ultraviolet sky survey. Our new identifications also include a low-mass subdwarf B star and likely progenitor of a low-mass white dwarf (GALEX J0805-1058) paired with an unseen, possibly substellar, companion. The mass functions of the newly identified binaries imply minimum secondary masses ranging from 0.03 to 0.39 M⊙. Photometric time series suggest that, apart from GALEX J0805-1058 and J2205-3141, the companions are most likely white dwarfs. We update the binary population statistics: close to 40 per cent of hot subdwarfs have a companion. Also, we found that the secondary mass distribution shows a low-mass peak attributed to late-type dwarfs, and a higher mass peak and tail distribution attributed to white dwarfs and a few spectroscopic composites. Also, we found that the population kinematics imply an old age and include a few likely halo population members.

  4. Turbulence-driven anisotropic electron tail generation during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.

    2018-05-01

    Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.

  5. Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.

    2017-11-01

    Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.

  6. The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Stone, James

    2014-11-01

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.

  7. The ties that bind? Galactic magnetic fields and ram pressure stripping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu

    One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially acceleratemore » stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.« less

  8. Age-Defying Star

    NASA Image and Video Library

    2016-08-29

    An age-defying star called IRAS 19312+1950 exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA's Spitzer Space Telescope. IRAS 19312+1950 is the bright red star in the center of this image. A NASA-led team of scientists thinks the star -- which is about 10 times as massive as our sun and emits about 20,000 times as much energy -- is a newly forming protostar. That was a big surprise, because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. http://photojournal.jpl.nasa.gov/catalog/PIA20914

  9. Comprehensive Evaluation of Soil Near Uranium Tailings, Beishan City, China.

    PubMed

    Xun, Yan; Zhang, Xinjia; Chaoliang, Chen; Luo, Xuegang; Zhang, Yu

    2018-06-01

    To evaluate the impact of uranium tailings on soil composition and soil microbial, six soil samples at different distance from the uranium tailings (Beishan City, China) were collected for further analysis. Concentrations of radionuclides ( 238 U and 232 Th), heavy metals (Mn, Cd, Cr, Ni, Zn, and Pb) and organochlorine pesticide were determined by ICP-MS and GC, they were significantly higher than those of the control. And the Average Well Color Development as well as the Shannon, the Evenness, and the Simpson index were calculated to evaluate the soil microbial diversity. The carbon utilization model of soil microbial community was also analyzed by Biolog-eco. All results indicated that uranium tailings leaded to excessive radionuclides and heavy metals, and decreased the diversity of the soil microbial community. Our study will provide a valuable basis for soil quality evaluation around uranium tailing repositories and lay a foundation for the management and recovery of uranium tailings.

  10. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Orion Nebula Cluster as a Paradigm of Star Formation

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo

    2014-10-01

    We propose a 52-orbit Treasury Program to investigate two fundamental questions of star formation: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. We target the Orion Nebula Cluster (ONC) using WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and Ic broad-band. Our main objectives are: 1) to discover and classify ~500 brown dwarfs and planetary-mass objects in the field, extending the IMF down to lowest masses formed by gravitational collapse. Using the latest generation of high contrast image processing we will also search for faint companions, reaching down to sub-arcsecond separations and 1E-4 flux ratios. 2) to derive high precision (~0.2km/s) relative proper motions of low-mass stars and substellar objects (about 1000 sources total), leveraging on first epoch data obtained by our previous HST Treasury Program about 10 years ago. These data will unveil the cluster dynamics: velocity dispersion vs. mass, substructures, and the fraction of escaping sources. Only HST can access the IR H2O absorption feature sensitive to the effective temperature of substellar objects, while providing the exceptionally stable PSF needed for the detection of faint companions, and the identical ACS platform for our second epoch proper-motion survey. This program will provide the definitive HST legacy dataset on the ONC. Our High-Level Science Products will be mined by the community, both statistically to constrain competing theories of star formation, and to study in depth the multitude of exotic sources harboured by the cluster.

  12. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for

  13. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.

    PubMed

    Beverly, Michael; Hagen, Caitlin; Slack, Olga

    2018-02-01

    The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.

  14. 14 CFR 25.481 - Tail-down landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail-down landing conditions. 25.481... landing conditions. (a) In the tail-down attitude, the airplane is assumed to contact the ground at... prescribed in § 25.473 with— (1) V L 1 equal to V S 0 (TAS) at the appropriate landing weight and in standard...

  15. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2018-04-01

    We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.

  16. WR and LBV stars

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sophie; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    Evolutionary scenarios of massive stars were revised in recent decades, after finding "unusual", blue progenitor of SN 1987A and after detecting the more massive stars than the accepted 120 M ⊙ maximum limit of stellar masses. A very important relation exists between WR and LBV stars. They represent the earlier, pre-SN evolutionary states of massive stars. WR and LBV stars and "classic" evolutionary scheme of the relation between the different type massive stars are discussed in this article. There also exist the newest evolutionary scenarios for low metallicity massive stars, which give us a different picture of their post main-sequence evolution. There is a rather good tradition of observations and investigations of massive stars at Abastumani Astrophysical Observatory. The authors discuss the new findings on the fate of P Cygni, the LBV star. These results on the reddening of the star and about its next possible outburst in the near future were obtained on the basis of UBV long-term electrophotometric observations of P Cygni by Eugene Kharadze and Nino Magalashvili. The observations were held in 1951-1983 at Abastumani Observatory using 33-cm and 48-cm reflectors.

  17. Star Clusters within FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Moreno, Jorge; Naiman, Jill; Ramirez-Ruiz, Enrico; Hopkins, Philip F.

    2017-01-01

    In this work, we analyze the environments surrounding star clusters of simulated merging galaxies. Our framework employs Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high resolution cosmological simulation that resolves star forming regions and incorporates stellar feedback in a physically realistic way. The project focuses on analyzing the properties of the star clusters formed in merging galaxies. The locations of these star clusters are identified with astrodendro.py, a publicly available dendrogram algorithm. Once star cluster properties are extracted, they will be used to create a sub-grid (smaller than the resolution scale of FIRE) of gas confinement in these clusters. Then, we can examine how the star clusters interact with these available gas reservoirs (either by accreting this mass or blowing it out via feedback), which will determine many properties of the cluster (star formation history, compact object accretion, etc). These simulations will further our understanding of star formation within stellar clusters during galaxy evolution. In the future, we aim to enhance sub-grid prescriptions for feedback specific to processes within star clusters; such as, interaction with stellar winds and gas accretion onto black holes and neutron stars.

  18. Prehensile and non-prehensile tails among syngnathid fishes: what's the difference?

    PubMed

    Neutens, Céline; de Dobbelaer, Bart; Claes, Peter; Adriaens, Dominique

    2017-02-01

    All syngnathid fishes are characterized by a tail with a vertebral column that is surrounded by dermal Plates - four per vertebra. Seahorses and pipehorses have prehensile tails, a unique characteristic among teleosts that allows them to grasp and hold onto substrates. Pipefishes, in contrast, possess a more rigid tail. Previous research (Neutens et al., 2014) showed a wide range of variation within the skeletal morphology of different members in the syngnathid family. The goal of this study is to explore whether the diversity in the three-dimensional (3D) shape of different tail types reflects grasping performance, and to what degree grasping tails occupy a different and more constrained diversity. For this, a 3D morphometrical analysis based on surfaces was performed. Four different analyses were performed on the tail skeleton of nine species exhibiting different levels of tail grasping capacities (four pipehorse, three seahorse, one pipefish and one seadragon species) to examine the intra-individual variation across the anteroposterior and dorso-ventral axis. In the two interspecific analyses, all vertebrae and all dermal plates were mutually compared. Overall, intra-individual variation was larger in species with a prehensile tail. The analysis on the vertebrae showed differences in the length and orientation of the hemal spine as well as the inclination angle between the anterior and posterior surface of the vertebral body. This was observed at an intra-individual level across the anteroposterior axis in prehensile species and at an inter-individual level between prehensile and non-prehensile species. Across the anteroposterior axis in prehensile tails, the overall shape of the plates changes from rectangular at the anterior end to square at the posterior end. Across the dorso-ventral axis, the ventral dermal plates carry a significantly longer caudal spine than the dorsal ones in all prehensile-tailed species. It can therefore be concluded that prehensile

  19. Spectrophotometry of Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  20. Radiation data input for the design of dry or semi-dry U tailings disposal.

    PubMed

    Kvasnicka, J

    1986-09-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m-2 s-1 and the Rn flux for Ranger is 10 Bq m-2 s-1. The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg-1 h-1 and 0.28 microC kg-1 h-1, respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m-3 for workers and 0.034 Bq m-3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m-3 for QML tailings and 2.2 mg m-3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m-3 for QML tailings and 0.064 mg m-3 for RUM tailings.

  1. Identifying Young, Nearby Stars

    NASA Technical Reports Server (NTRS)

    Webb, Rich; Song, Inseok; Zuckerman, Ben; Bessell, Mike

    2001-01-01

    Young stars have certain characteristics, e.g., high atmospheric abundance of lithium and chromospheric activity, fast rotation, distinctive space motion and strong X-ray flux compared to that of older main sequence stars. We have selected a list of candidate young (<100Myr) and nearby (<60pc) stars based on their space motion and/or strong X-ray flux. To determine space motion of a star, one needs to know its coordinates (RA, DEC), proper motion, distance, and radial velocity. The Hipparcos and Tycho catalogues provide all this information except radial velocities. We anticipate eventually searching approx. 1000 nearby stars for signs of extreme youth. Future studies of the young stars so identified will help clarify the formation of planetary systems for times between 10 and 100 million years. Certainly, the final output of this study will be a very useful resource, especially for adaptive optics and space based searches for Jupiter-mass planets and dusty proto-planetary disks. We have begun spectroscopic observations in January, 2001 with the 2.3 m telescope at Siding Spring Observatory (SSO) in New South Wales, Australia. These spectra will be used to determine radial velocities and other youth indicators such as Li 6708A absorption strength and Hydrogen Balmer line intensity. Additional observations of southern hemisphere stars from SSO are scheduled in April and northern hemisphere observations will take place in May and July at the Lick Observatory of the University of California. AT SSO, to date, we have observed about 100 stars with a high resolution spectrometer (echelle) and about 50 stars with a medium spectral resolution spectrometer (the "DBS"). About 20% of these stars turn out to be young stars. Among these, two especially noteworthy stars appear to be the closest T-Tauri stars ever identified. Interestingly, these stars share the same space motions as that of a very famous star with a dusty circumstellar disk--beta Pictoris. This new finding better

  2. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.

    PubMed

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.

  3. Stars and Flowers, Flowers and Stars

    NASA Astrophysics Data System (ADS)

    Minti, Hari

    2012-12-01

    The author, a graduated from the Bucharest University (1964), actually living and working in Israel, concerns his book to variable stars and flowers, two domains of his interest. The analogies includes double stars, eclipsing double stars, eclipses, Big Bang. The book contains 34 chapters, each of which concerns various relations between astronomy and other sciences and pseudosciences such as Psychology, Religion, Geology, Computers and Astrology (to which the author is not an adherent). A special part of the book is dedicated to archeoastronomy and ethnoastronomy, as well as to history of astronomy. Between the main points of interest of these parts: ancient sanctuaries in Sarmizegetusa (Dacia), Stone Henge(UK) and other. The last chapter of the book is dedicated to flowers. The book is richly illustrated. It is designed for a wide circle of readers.

  4. A Star Close Encounter

    NASA Image and Video Library

    2006-10-03

    The potential planet-forming disk (or "protoplanetary disk") of a sun-like star is being violently ripped away by the powerful winds of a nearby hot O-type star in this image from NASA's Spitzer Space Telescope. At up to 100 times the mass of sun-like stars, O stars are the most massive and energetic stars in the universe. The O star can be seen to the right of the image, as the large orange spot with the white center. To the left, the comet-like structure is actually a neighboring solar system that is being destroyed by the O star's powerful winds and intense ultraviolet light. In a process called "photoevaporation," immense output from the O star heats up the nearby protoplanetary disk so much that gas and dust boil off, and the disk can no longer hold together. Photon (or light) blasts from the O star then strip the potential planet-forming disk off its neighbor star by blowing away evaporated material. This effect is illustrated in the smaller system's comet-like structure. The system is located about 2,450 light-years away in the star-forming cloud IC 1396. The image was taken with Spitzer's multiband imaging photometer instrument at 24 microns. The picture is a pseudo-color stretch representing intensity. Yellow and white represent hot areas, whereas purple and blue represent relatively cooler, fainter regions.

  5. Study on the Influence of Elevation of Tailing Dam on Stability

    NASA Astrophysics Data System (ADS)

    Wan, Shuai; Wang, Kun; Kong, Songtao; Zhao, Runan; Lan, Ying; Zhang, Run

    2017-12-01

    This paper takes Yunnan as the object of a tailing, by theoretical analysis and numerical calculation method of the effect of seismic load effect of elevation on the stability of the tailing, to analyse the stability of two point driven safety factor and liquefaction area. The Bishop method is adopted to simplify the calculation of dynamic safety factor and liquefaction area analysis using comparison method of shear stress to analyse liquefaction, so we obtained the influence of elevation on the stability of the tailing. Under the earthquake, with the elevation increased, the safety coefficient of dam body decreases, shallow tailing are susceptible to liquefy. Liquefaction area mainly concentrated in the bank below the water surface, to improve the scientific basis for the design and safety management of the tailing.

  6. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy

    NASA Astrophysics Data System (ADS)

    Case, S.

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets.

  7. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    PubMed

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  9. Evaluation of pyritic mine tailings as a plant growth substrate.

    PubMed

    Roseby, Stuart J; Kopittke, Peter M; Mulligan, David R; Menzies, Neal W

    2017-10-01

    At the Kidston gold mine, Australia, the direct establishment of vegetation on tailings was considered as an alternative to the use of a waste rock cover. The tailings acid/base account was used to predict plant growth limitation by acidity, and thus methods capable of identifying tailings that would acidify to pH 4.5 or lower were sought. Total S was found to be poorly correlated with acid-generating sulfide, and total C was poorly correlated with acid-neutralizing carbonate, precluding the use of readily determined total S and C as predictors of net acid generation. Therefore, the selected approach used assessment of sulfide content as a predictor of acid generation, and carbonate content as a measure of the acid-neutralizing capacity available at pH 5 and above. Using this approach, the majority of tailings (67%) were found to be non-acid generating. However, areas of potentially acid-generating tailings were randomly distributed across the dam, and could only be located by intensive sampling. The limitations imposed by the large sample numbers, and costly analysis of sulfide and carbonate, make it impractical to identify and ameliorate acid-generating areas prior to vegetation establishment. However, as only a small proportion of the tailings will acidify, a strategy of re-treating acid areas following oxidation is suggested. The findings of the present study will assist in the selection of appropriate methods for the prediction of net acid generation, particularly where more conservative measurements are required to allow vegetation to be established directly in tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less

  11. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  12. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  13. Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.

    PubMed

    Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R

    2013-10-01

    The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.

  14. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Loverde, Sharon M.

    2017-08-01

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  15. Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.

    PubMed

    Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno

    2013-10-15

    The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over

  16. Descendants of the first stars: the distinct chemical signature of second generation stars

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Yoshida, Naoki; Magg, Mattis; Frebel, Anna; Glover, Simon C. O.; Gómez, Facundo A.; Griffen, Brendan; Ishigaki, Miho N.; Ji, Alexander P.; Klessen, Ralf S.; O'Shea, Brian W.; Tominaga, Nozomu

    2018-05-01

    Extremely metal-poor (EMP) stars in the Milky Way (MW) allow us to infer the properties of their progenitors by comparing their chemical composition to the metal yields of the first supernovae. This method is most powerful when applied to mono-enriched stars, i.e. stars that formed from gas that was enriched by only one previous supernova. We present a novel diagnostic to identify this subclass of EMP stars. We model the first generations of star formation semi-analytically, based on dark matter halo merger trees that yield MW-like halos at the present day. Radiative and chemical feedback are included self-consistently and we trace all elements up to zinc. Mono-enriched stars account for only ˜1% of second generation stars in our fiducial model and we provide an analytical formula for this probability. We also present a novel analytical diagnostic to identify mono-enriched stars, based on the metal yields of the first supernovae. This new diagnostic allows us to derive our main results independently from the specific assumptions made regarding Pop III star formation, and we apply it to a set of observed EMP stars to demonstrate its strengths and limitations. Our results may provide selection criteria for current and future surveys and therefore contribute to a deeper understanding of EMP stars and their progenitors.

  17. Band tailing and efficiency limitation in kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Gokmen, Tayfun; Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2013-09-01

    We demonstrate that a fundamental performance bottleneck for hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells with efficiencies reaching above 11% can be the formation of band-edge tail states, which quantum efficiency and photoluminescence data indicate is roughly twice as severe as in higher-performing Cu(In,Ga)(S,Se)2 devices. Low temperature time-resolved photoluminescence data suggest that the enhanced tailing arises primarily from electrostatic potential fluctuations induced by strong compensation and facilitated by a lower CZTSSe dielectric constant. We discuss the implications of the band tails for the voltage deficit in these devices.

  18. On the mechanism of ray closure in comet tails

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.

    The folding phenomenon of comet tail rays is explained by means of an electric drift due to convectional electric fields. This mechanism results in an angular rate of closure which reduces to that obtained by Ness and Donn (1966) if the velocity profile across the tail is linear and the plasma conductivity is ideal. Observations of both the ray closure and the disconnection events point to the phenomenon of anomalous resistivity. Magnetic fields of about 30-40 gammas in the coma and of 10 gammas in the distant tail (at 1 AU) are estimated from the MHD momentum equation.

  19. Engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $30/lb U/sub 3/O/sub 8/ by either heap leach or conventional plant processes.« less

  20. The microbiology of oil sands tailings: past, present, future.

    PubMed

    Foght, Julia M; Gieg, Lisa M; Siddique, Tariq

    2017-05-01

    Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings samplemore » previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.« less

  2. Transformation of a Virgo Cluster dwarf irregular galaxy by ram pressure stripping: IC3418 and its fireballs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Jeffrey D. P.; Geha, Marla; Jáchym, Pavel

    We present optical imaging and spectroscopy and H I imaging of the Virgo Cluster galaxy IC 3418, which is likely a 'smoking gun' example of the transformation of a dwarf irregular into a dwarf elliptical galaxy by ram pressure stripping. IC 3418 has a spectacular 17 kpc length UV-bright tail comprised of knots, head-tail, and linear stellar features. The only Hα emission arises from a few H II regions in the tail, the brightest of which are at the heads of head-tail UV sources whose tails point toward the galaxy ('fireballs'). Several of the elongated tail sources have Hα peaksmore » outwardly offset by ∼80-150 pc from the UV peaks, suggesting that gas clumps continue to accelerate through ram pressure, leaving behind streams of newly formed stars which have decoupled from the gas. Absorption line strengths, measured from Keck DEIMOS spectra, together with UV colors, show star formation stopped 300 ± 100 Myr ago in the main body, and a strong starburst occurred prior to quenching. While neither Hα nor H I emission are detected in the main body of the galaxy, we have detected 4 × 10{sup 7} M {sub ☉} of H I from the tail with the Very Large Array. The velocities of tail H II regions, measured from Keck LRIS spectra, extend only a small fraction of the way to the cluster velocity, suggesting that star formation does not happen in more distant parts of the tail. Stars in the outer tail have velocities exceeding the escape speed, but some in the inner tail should fall back into the galaxy, forming halo streams.« less

  3. Lifestyles of the Stars.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  4. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Tail dependence and information flow: Evidence from international equity markets

    NASA Astrophysics Data System (ADS)

    Al Rahahleh, Naseem; Bhatti, M. Ishaq; Adeinat, Iman

    2017-05-01

    Bhatti and Nguyen (2012) used the copula approach to measure the tail dependence between a number of international markets. They observed that some country pairs exhibit only left-tail dependence whereas others show only right-tail. However, the flow of information from uni-dimensional (one-tail) to bi-dimensional (two-tails) between various markets was not accounted for. In this study, we address the flow of information of this nature by using the dynamic conditional correlation (DCC-GARCH) model. More specifically, we use various versions of the DCC models to explain the nexus between the information flow of international equity and to explain the stochastic forward vs. backward dynamics of financial markets based on data for a 15-year period comprising 3,782 observations. We observed that the information flow between the US and Hong Kong markets and between the US and Australian markets are bi-directional. We also observed that the DCC model captures a wider co-movement structure and inter-connectedness compared to the symmetric Joe-Clayton copula.

  6. Introduction to neutron stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    2015-02-01

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  7. Introduction to neutron stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattimer, James M.

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less

  8. Bacterial and chemical oxidation of pyritic mine tailings at low temperatures

    NASA Astrophysics Data System (ADS)

    Elberling, Bo; Schippers, Axel; Sand, Wolfgang

    2000-02-01

    Microbial and chemical sulfide oxidation activity and oxygen consumption was investigated in the active layer of pyritic mine tailings at Nanisivik Mine, located in a permafrost area on Baffin Island in northern Canada. Samples of tailings were collected up to a depth of 60 cm in mid-August 1998 at 4 sites, for which the metabolic activity of sulfur- and iron-oxidizing leaching bacteria besides the chemical pyrite oxidation activity were measured on 39 tailings samples and 7 samples from a natural pyritic site by calorimetry. The tailings of varying age and water content were deposited under alkaline conditions. In situ oxygen uptake rates were measured at the tailings surface every third day, prior to sampling. In addition, cell counts of iron(II), sulfur, and thiosulfate oxidizing, lithotrophic bacteria and chemoorganotrophic microorganisms were determined quantitatively by the most-probable-number technique or by agar-plating. Results show consistent pyrite oxidation rates based on in situ oxygen uptake rates, and laboratory heat output measurements. Litho- and organotrophic bacteria were found in the tailings. Calorimetric measurements revealed that the present bacterial activity is responsible for approximately one third of the ongoing oxidation. Although leaching bacteria have previously been found in the Arctic, this study is the first to prove the significance of bacterial activity in the overall pollution resulting from tailings deposited in the Arctic.

  9. Element flows associated with marine shore mine tailings deposits.

    PubMed

    Dold, Bernhard

    2006-02-01

    From 1938 until 1975, flotation tailings from the Potrerillos--El Salvador mining district (porphyry copper deposits) were discharged into the El Salado valley and transported in suspension to the sea at Chaliaral Bay, Atacama Desert, northern Chile. Over 220 Mt of tailings, averaging 0.8 +/- 0.25 wt % of pyrite, were deposited into the bay, resulting in over a 1 kilometer seaward displacement of the shoreline and an estimated 10-15 m thick tailings accumulation covering a approximately 4 km2 surface area. The Chaniaral case was classified by the United Nations Environmental Programme (UNEP) in 1983 as one of the most serious cases of marine contamination in the Pacific area. Since 1975, the tailings have been exposed to oxidation, resulting in a 70-188 cm thick low-pH (2.6-4) oxidation zone at the top with liberation of divalent metal cations, such as Cu2+, Ni2+, and Zn2+ (up to 2265 mg/L, 18.1 mg/L, and 20.3 mg/ L, respectively). Evaporation-induced transport capillarity led to metal enrichment atthe tailings surface (e.g. up to 2.4% Cu) in the form of secondary chlorides and/or sulfates (dominated by eriochalcite [CuCl.H2O] and halite). These, mainly water-soluble, secondary minerals were exposed to eolian transport in the direction of the Village of Chañaral by the predominant W-SW winds. Two element-flow directions (toward the tailings surface, via capillarity, and toward the sea) and two element groups with different geochemical behaviors (cations such as Cu, Zn, Ni, and oxyanions such as As and Mo) could be distinguished. It can be postulated, that the sea is mainly affected by the following: As, Mo, Cu, and Zn contamination, which were liberated from the oxidation zone from the tailings and mobilized through the tidal cycle, and by Cu and Zn from the subsurface waters flowing in the El Salado valley (up to 19 mg/L and 12 mg/L Zn, respectively), transported as chloro complexes at neutral pH.

  10. Magnetized anisotropic stars

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian; Dariescu, Marina-Aura; Dariescu, Ciprian

    2018-05-01

    We extend a known solution-generating technique for isotropic fluids in order to construct more general models of anisotropic stars with poloidal magnetic fields. In particular, we discuss the magnetized versions of some well-known exact solutions describing anisotropic stars and dark energy stars, and we describe some of their properties.

  11. Computational Investigation and Validation of Twin-Tail Buffet Response Including Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Multidisciplinary tools for prediction of single rectangular-tail buffet are extended to single swept-back-tail buffet in transonic-speed flow, and multidisciplinary tools for prediction and control of twin-tail buffet are developed and presented. The configuration model consists of a sharp-edged delta wing with single or twin tails that are oriented normal to the wing surface. The tails are treated as cantilevered beams fixed at the root and allowed to oscillate in both bending and torsion. This complex multidisciplinary problem is solved sequentially using three sets of equations on a dynamic single or multi-block grid structure. The first set is the unsteady, compressible, Reynolds-averaged Navier-Stokes equations which are used for obtaining the flow field vector and the aerodynamic loads on the tails. The Navier-Stokes equations are solved accurately in time using the implicit, upwind, flux-difference splitting, finite volume scheme. The second set is the coupled bending and torsion aeroelastic equations of cantilevered beams which are used for obtaining the bending and torsion deflections of the tails. The aeroelastic equations'are solved accurately in time using, a fifth-order-accurate Runge-Kutta scheme. The third set is the grid-displacement equations and the rigid-body dynamics equations, which are used for updating the grid coordinates due to the tail deflections and rigid-body motions. The tail-buffet phenomenon is predicted for highly-swept, single vertical tail placed at the plane of geometric symmetry, and for highly-swept, vertical twin tails placed at three different spanwise separation distances. The investigation demonstrates the effects of structural inertial coupling and uncoupling of the bending and torsion modes of vibration, spanwise positions of the twin-tail, angle of attack, and pitching and rolling dynamic motions of the configuration model on the tail buffet loading and response. The fundamental issue of twin-tail buffet alleviation is

  12. The Drifting Star

    NASA Astrophysics Data System (ADS)

    2008-04-01

    By studying in great detail the 'ringing' of a planet-harbouring star, a team of astronomers using ESO's 3.6-m telescope have shown that it must have drifted away from the metal-rich Hyades cluster. This discovery has implications for theories of star and planet formation, and for the dynamics of our Milky Way. ESO PR Photo 09a/08 ESO PR Photo 09a/08 Iota Horologii The yellow-orange star Iota Horologii, located 56 light-years away towards the southern Horologium ("The Clock") constellation, belongs to the so-called "Hyades stream", a large number of stars that move in the same direction. Previously, astronomers using an ESO telescope had shown that the star harbours a planet, more than 2 times as large as Jupiter and orbiting in 320 days (ESO 12/99). But until now, all studies were unable to pinpoint the exact characteristics of the star, and hence to understand its origin. A team of astronomers, led by Sylvie Vauclair from the University of Toulouse, France, therefore decided to use the technique of 'asteroseismology' to unlock the star's secrets. "In the same way as geologists monitor how seismic waves generated by earthquakes propagate through the Earth and learn about the inner structure of our planet, it is possible to study sound waves running through a star, which forms a sort of large, spherical bell," says Vauclair. The 'ringing' from this giant musical instrument provides astronomers with plenty of information about the physical conditions in the star's interior. And to 'listen to the music', the astronomers used one of the best instruments available. The observations were conducted in November 2006 during 8 consecutive nights with the state-of-the-art HARPS spectrograph mounted on the ESO 3.6-m telescope at La Silla. Up to 25 'notes' could be identified in the unique dataset, most of them corresponding to waves having a period of about 6.5 minutes. These observations allowed the astronomers to obtain a very precise portrait of Iota Horologii: its

  13. The fecundity of fork-tailed threadfin bream (Nemipterus furcosus) in Bangka, Bangka Belitung

    NASA Astrophysics Data System (ADS)

    Utami, E.; Safitriyani, E.; Gatra Persada, Leo

    2018-04-01

    Fork-tailed threadfin bream (Nemipterus furcosus) is one of important economic fishes in Bangka. The sustainability of fork-tailed threadfin bream is threatened by degradation of natural habitat. Information of reproductive is needed for further management. The objective of this study was to examine fecundity of fork-tailed threadfin bream. The mean values of temperature was 28.83 ± 0,37°C, respectively. Sex ratio during sampling showed that female fork-tailed threadfin bream greater than male population. Berried female fork-tailed threadfin bream found from March until November. The greatest number of berried female fork-tailed threadfin bream showed in July with berried female value of 25. Fork-tailed threadfin bream fecundity was 19951 and 66628, respectively. The fecundity data can be used to access the reproductive potential of fish stock and also as an assessment on stock size of their natural population.

  14. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  15. Characteristics of the tail of Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1986-01-01

    The physical structure and characteristics of the Comet Giacobini-Zinner tail are described. Variations in the vector B-field configuration, the electron distribution function, the energetic ion population, and the electromagnetic and electrostatic plasma wave spectra are analyzed. The ICE detected a two-lobe magnetic field configuration and a narrow central plasma sheet. Additional analyses proposed for the Giacobini-Zinner tail data are discussed.

  16. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.

    PubMed

    Wang, Peng; Liu, Yunjia; Menzies, Neal W; Wehr, J Bernhard; de Jonge, Martin D; Howard, Daryl L; Kopittke, Peter M; Huang, Longbin

    2016-11-01

    Arsenic (As) is commonly associated with Cu ore minerals, with the resultant risk that As can be released offsite from mine tailings. We used synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide in situ, laterally-resolved speciation of As within tailings which differed in magnetite content (5-12%) and organic matter content (0-5%). Although the total As content was lower in tailings with low magnetite (LM), the soluble (pore water) As was actually 7-times higher in LM tailings than in high magnetite (HM) tailings. Additionally, amendment with 5% sugarcane mulch residues (SMR) (for revegetation) further increased soluble As due to the dissolution and oxidation of arsenopyrite or orpiment. Indeed, in HM tailings, arsenopyrite and orpiment initially accounted for 88% of the total As, which decreased to 48% upon the addition of SMR - this being associated with an increase in As V -ferrihydrite from 12% to 52%. In LM tailings, the pattern of As distribution and speciation was similar, with As as As V -ferrihydrite increasing from 57% to 75% upon the addition of SMR. These findings indicate that changes in ore processing technology, such as the recovery of magnetite could have significant environmental consequences regarding the As mobilisation and transformation in mine tailings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  18. The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project

    NASA Astrophysics Data System (ADS)

    Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration

    2013-06-01

    The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.

  19. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  20. Tail regeneration in Urodela: old model and new perspectives in studies

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.; Mitashov, V.

    For better understanding of micro-"g" effect on nervous tissue regeneration we have chosen the regeneration of the Urodele tail, because it utilizes many developmental processes and represents the most convenient model for experiments in Space. The special interesting aspect lies in the ability of regenerates to differentiate the spinal cord (SC) and this, in turn, has a potential of practical application. Meanwhile there are conclusive evidences suggesting the production by SC cells the neurotrophic factors promoting cell proliferation and differentiation in growing tail regenerate. Previously our studies on tail regeneration in the adult newt showed that the force of gravity clearly inf luences the events underlying the regeneration. We reported the significant increase of tail regeneration rate and tissue volume of tail regenerates in the newts exposed to real and simulated low "g". In Bion 11 mission animals that were exposed 14 days in microgravity and whose tails were operated two and four weeks before launch demonstrated the regenerates achieved 1.5 - 2 times the volume of those in 1"g" control. Results of this experiment indicated also that the regeneration of central and peripheral neurons and nerve fibers was carrying out faster under low "g" conditions than in 1 "g" control. Similar data were obtained in several experiments remodeling physiological weightlessness by mean of the clinostat. It led us to the hypothesis that the stimulation of tail regeneration is linked with an over activation of neurotrophic factors produced by quickly growing SC neurons. Now we've completed the experiment on tail regeneration in the newts Tr. alpestris subjected to 5 day long clinorotation after 6 days post tail amputation. The rate of primary- and secondary regeneration was evaluated at different time points after treatment. Cell proliferation, differentiation and expression of neurotrophic proteins in SC and other major tissue-type of regenerate were investigated by