Sample records for taiyo denchi ni

  1. Becoming a Lunari or Taiyo expert: learned attention to parts drives holistic processing of faces.

    PubMed

    Chua, Kao-Wei; Richler, Jennifer J; Gauthier, Isabel

    2014-06-01

    Faces are processed holistically, but the locus of holistic processing remains unclear. We created two novel races of faces (Lunaris and Taiyos) to study how experience with face parts influences holistic processing. In Experiment 1, subjects individuated Lunaris wherein the top, bottom, or both face halves contained diagnostic information. Subjects who learned to attend to face parts exhibited no holistic processing. This suggests that individuation only leads to holistic processing when the whole face is attended. In Experiment 2, subjects individuated both Lunaris and Taiyos, with diagnostic information in complementary face halves of the two races. Holistic processing was measured with composites made of either diagnostic or nondiagnostic face parts. Holistic processing was only observed for composites made from diagnostic face parts, demonstrating that holistic processing can occur for diagnostic face parts that were never seen together. These results suggest that holistic processing is an expression of learned attention to diagnostic face parts. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  3. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  4. First principles exploration of NiO and its ions NiO+ and NiO-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2013-02-01

    We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.

  5. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  6. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5Mn 1.5O 4 Electrodes

    DOE PAGES

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...

    2015-11-11

    The LiNi 0.5Mn 1.5O 4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li +). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi 0.5Mn 1.5O 4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi 0.5Mnmore » 1.5O 4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni 2+ and Mn 2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi 0.5Mn 1.5O 4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less

  7. Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.

    2018-06-01

    The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

  8. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-08-08

    Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less

  9. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System

    DOE PAGES

    Sun, C.; Martinez, E.; Aguiar, J. A.; ...

    2015-05-20

    Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasingmore » the probability of precipitation.« less

  10. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  11. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  13. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  14. The Effect of Metal Composition on Fe-Ni Partition Behavior between Olivine and FeNi-Metal, FeNi-Carbide, FeNi-Sulfide at Elevated Pressure

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2005-01-01

    Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.

  15. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  16. Nickel (Ni) allergic patients with complications to Ni containing joint replacement show preferential IL-17 type reactivity to Ni.

    PubMed

    Summer, Burkhard; Paul, Carina; Mazoochian, Farhad; Rau, Christoph; Thomsen, Marc; Banke, Ingo; Gollwitzer, Hans; Dietrich, Karin-Almut; Mayer-Wagner, Susanne; Ruzicka, Thomas; Thomas, Peter

    2010-07-01

    Some nickel (Ni) allergic patients develop complications following Ni-containing arthroplasty. In the peri-implant tissue of such patients, we had observed lymphocyte dominated inflammation together with IFN-gamma and IL-17 expression. To determine whether Ni stimulation of peripheral blood mononuclear cells (PBMCs) of such patients would lead to a different cytokine pattern as compared to Ni-allergic patients with symptom-free arthroplasty. Based on history and patch testing in 15 Ni-allergic patients (five without implant, five with symptom-free arthroplasty, five with complicated arthroplasty) and five non-allergic individuals, lymphocyte transformation test (LTT) was performed using PBMC. In parallel in vitro cytokine response to Ni was assessed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). All 15 Ni-allergic individuals showed enhanced LTT reactivity to Ni (mean SI = 8.42 +/- 1.8) compared to the non-allergic control group. Predominant IFN-gamma expression to Ni was found both in the five allergic patients without arthroplasty and also in the five allergic, symptom-free arthroplasty patients. In contrast, in the five Ni-allergic patients with arthroplasty-linked complications a predominant, significant IL-17 expression to Ni was seen but not in patients with symptom-free arthroplasty. The predominant IL-17 type response to Ni may characterize a subgroup of Ni-allergic patients prone to develop lymphocytic peri-implant hyper-reactivity.

  17. The Ni-rich part of the Al–Ge–Ni phase diagram

    PubMed Central

    Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.

    2013-01-01

    The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754

  18. Kinetics of Ni2Si growth from pure Ni and Ni(V) films on (111) and (100) Si

    NASA Astrophysics Data System (ADS)

    Harith, M. A.; Zhang, J. P.; Campisano, S. U.; Klaar, H.-J.

    1987-01-01

    The kinetics of Ni2Si growth from pure Ni and from Ni0.93V0.07 films on (111) and (100) silicon has been studied by the combination of He+ backscattering, x-ray diffraction, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) techniques. The activation energies are 1.5 and 1.0 eV for pure Ni and Ni(V) films, respectively while the pre-exponential factors in Ni(V) are 4 5 orders of magnitude smaller than in the pure Ni case. The variations in the measured rates are related to the different grain size of the growing suicide layers. The vanadium is rejected from the silicide layer and piles up at the metalsilicide interface.

  19. Tuning Ni-catalyzed CO 2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation

    DOE PAGES

    Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...

    2017-10-16

    CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less

  20. Walker Circulation, El Niño and La Niña

    NASA Astrophysics Data System (ADS)

    Halpern, D.

    2014-12-01

    Ocean surface wind vector is likely the critical variable to predict onset, maintenance and dissipation of El Niño and La Niña. Analyses of SeaWinds and ASCAT 10-m height (called "surface") vector winds in the Atlantic, Indian and Pacific Oceans from 1°S-1°N during March 2000 - June 2011 revealed the longitudinal distribution of the surface zonal wind component associated with the Walker Circulation. In the Pacific Ocean east of 140°E and west of 85°W, the mean wind direction was westward towards the maritime continent with maximum mean zonal wind speed (- 6.5 m s-1) at 150°W; east of 85°W the mean direction was toward the convection zone over South America. Four El Niños and five La Niñas occurred from March 2000 - June 2011. In the Pacific from 150°E to 160°W, the average El Niño (La Niña) westward wind speed was 2 m s-1 (1 m s-1) smaller (larger) than normal. In the west Pacific, the variation in westward wind speeds in El Niño and La Niña conditions relative to normal conditions would be expected to substantially uplift the thermocline during El Niño compared to La Niña, which is consistent with conventional wisdom. In the east Pacific from 130°W - 100°W, average El Niño westward wind speeds were less than normal and La Niña conditions by 0.5 m s-1 and 1 m s-1, respectively. The "central" Pacific nature of the El Niños may have influenced the smaller difference between El Niño and La Niña westward wind speeds in the east Pacific compared to the west Pacific. Analyses of longitudinal distributions of thermocline depths will be discussed. Surface zonal wind speeds in the Atlantic and Indian Oceans showed no evidence of El Niño and La Niña; surface meridional winds showed an apparent response in the Indian and Pacific Oceans but not in the Atlantic Ocean. At 700-m height, the MISR zonal wind component in the Atlantic, Indian and Pacific Oceans had similar features as those at the surface, except in the east Pacific where the westward

  1. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    PubMed

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  2. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    PubMed

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  4. Synthesis and synchrotron X-ray characterization of two 2D Hoffman related compounds [Ni(p-Xylylenediamine)nNi(CN)4] and [Ni(p-tetrafluoroxylylenediamine)nNi(CN)4

    NASA Astrophysics Data System (ADS)

    Wong-Ng, W.; Culp, J. T.; Siderius, D. W.; Chen, Y. S.

    2018-07-01

    Synchrotron X-ray single crystal structure determination of two 2D Hofmann-related compounds, [Ni(p-Xylyenediamine)n-tetracyanonickelate] (abbreviated as Ni-pXdam) and [Ni(tetrafluoro-p-Xylyenediamine)n-tetracyanonickelate] (abbreviated as Ni-pXdamF4), have been conducted. Both the pXdam and pXdamF4 ligands contain two short chains of -CH2NH2 at the para-positions of a phenyl ring. These flexible chains link the 6-fold coordinated Ni2 sites throughout the network. In Ni-pXdam, the closed-2D network of [Ni-(CN-Ni1/4-)4]∞ is broken into 1D chains, leaving the C≡N groups at the trans-positions of the Ni(CN)4 moiety unbridged. The resulting 1D chains [(trans-)-NC-Ni(CN)2-CN-Ni-]∞ runs along the [010] direction of the unit cell. The pXdam ligands bridge in pair between the Ni atoms of the adjacent chains. The catenation structure of [Ni{(pXdam)}]∞ could be referred to as double -1D. In Ni-pXdamF4, the -CH2NH2 ligands connect the neighboring chains via the 6-fold Ni2 site. Surrounding the 4-fold Ni1 site, the two trans terminal C≡N groups were replaced by the Lewis base NH3 during the synthesis process, therefore preventing the propagation of the 2D net to form a 3D network. Computed pore volume of both compounds indicated that there is not sufficient space in the structure to accommodate gas molecules. In both compounds, hydrogen bonds were found, and solvent of crystallization was absent due to the limited free space in the structure.

  5. On the similarity of the bonding in NiS and NiO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The bonding in NiS is found to be quite similar to that in NiO, having an ionic contribution arising from the donation of the Ni 4s electron to the S atom and a covalent component arising from bonds between the Ni 3d and the S 3p. The one-electron d bonds are found to be of equal strength for NiO and NiS, but the two-electron d bonds are weaker for NiS.

  6. Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; He, Ming; Ruan, Xiangdong; Xu, Yongning; Shen, Hongtao; Du, Liang; Xiao, Caijin; Dong, Kejun; Jiang, Shan; Yang, Xuran; Lan, Xiaoxi; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The long lived isotopes 59Ni and 63Ni can be used in many areas such as radioactive waste management, neutron dosimetry, cosmic radiation study, and so on. Based on the large accelerator and a big Q3D magnetic spectrometer, the measurement method for 59Ni and 63Ni is under development at the AMS facility at China Institute of Atomic Energy (CIAE). By using the ΔE-Q3D technique with the Q3D magnetic spectrometer, the isobaric interferences were greatly reduced in the measurements of 59Ni and 63Ni. A four anode gas ionization chamber was then used to further identify isobars. With these techniques, the abundance sensitivities of 59Ni and 63Ni measurements are determined as 59Ni/Ni = 1 × 10-13 and 63Ni/Ni = 2 × 10-12, respectively.

  7. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  8. Predictability of the Ningaloo Niño/Niña

    PubMed Central

    Doi, Takeshi; Behera, Swadhin K.; Yamagata, Toshio

    2013-01-01

    The seasonal prediction of the coastal oceanic warm event off West Australia, recently named the Ningaloo Niño, is explored by use of a state-of-the-art ocean-atmosphere coupled general circulation model. The Ningaloo Niño/Niña, which generally matures in austral summer, is found to be predictable two seasons ahead. In particular, the unprecedented extreme warm event in February 2011 was successfully predicted 9 months in advance. The successful prediction of the Ningaloo Niño is mainly due to the high prediction skill of La Niña in the Pacific. However, the model deficiency to underestimate its early evolution and peak amplitude needs to be improved. Since the Ningaloo Niño/Niña has potential impacts on regional societies and industries through extreme events, the present success of its prediction may encourage development of its early warning system. PMID:24100593

  9. Charge ordering in Ni 1 + / Ni 2 + nickelates: La 4 Ni 3 O 8 and La 3 Ni 2 O 6

    DOE PAGES

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.; ...

    2016-08-09

    Ab initio calculations allow us to establish a close connection between the Ruddlesden-Popper layered nickelates and cuprates not only in terms of filling of d levels (close to d 9) but also because they show Ni 1+(S = 1/2)/Ni 2+(S = 0) stripe ordering. We obtained the insulating charge-ordered ground state from a combination of structural distortions and magnetic order. The Ni 2+ ions are in a low-spin configuration (S = 0) yielding an antiferromagnetic arrangement of Ni 1+ S = 1/2 ions like the long-sought spin-1/2 antiferromagnetic insulator analog of the cuprate parent materials. Furthermore, the analogy extends further with the main contribution to the bands near the Fermi energy coming from hybridized Ni d more » $$_x$$ 2- $$_y$$ 2 and O $p$ states.« less

  10. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  11. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    PubMed

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication of ordered Fe–Ni nitride film with equiatomic Fe/Ni ratio

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Ito, Keita; Suemasu, Takashi

    2018-05-01

    We successfully grew a single-phase tetragonal FeNiN film with an equiatomic ratio of Fe, Ni, and N on a MgO(001) substrate by molecular beam epitaxy. We then demonstrated the formation of Fe2Ni2N films by extracting N atoms from the FeNiN film. These results suggested that Fe and Ni atoms in the Fe2Ni2N film were L10-ordered along the film plane direction because of the a-axis orientation growth of the FeNiN film on the MgO(001) substrate.

  13. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  14. Asymmetrical interfacial reactions of Ni/SAC101(NiIn)/Ni solder joint induced by current stressing

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Yi; Chiu, Tsung-Chieh; Lin, Kwang-Lung

    2018-03-01

    An electric current can asymmetrically trigger either atomic migration or interfacial reactions between a cathode and an anode. The present study investigated the dissolution of metallization and formation of an interfacial intermetallic compound (IMC) in the Cu/Ni/Sn1.0Ag0.1Cu0.02Ni0.05In/Ni/Cu solder joint at various current densities in the order of 103 A/cm2 at temperatures ranging from 100 °C to 150 °C. The polarization behavior of Ni dissolution and IMC formation under current stressing were systematically investigated. The asymmetrical interfacial reactions of the solder joint were found to be greatly influenced by ambient temperature. The dissolution of Ni and its effect on interfacial IMC formation were also discussed.

  15. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  16. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  17. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Viscosities of Fe Ni, Fe Co and Ni Co binary melts

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu

    2005-02-01

    Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.

  19. Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.

    2018-05-01

    Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.

  20. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  1. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  2. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen

    2017-02-13

    In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less

  3. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  4. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  5. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  6. Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting.

    PubMed

    Xi, Wenguang; Yan, Gang; Tan, Huaqiao; Xiao, Liguang; Cheng, Sihang; Khan, Shifa Ullah; Wang, Yonghui; Li, Yangguang

    2018-06-19

    Transition metal (TM) oxides and hydroxides are one of the important candidates for the development of durable and low-cost electrocatalysts towards water splitting. The key issue is exploring effective methods to improve their electrocatalytic activity. Herein, we report a new type of P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet array (abbr. P-Ni(OH)2/NiMoO4) grown on Ni foam (NF), which can act as a highly efficient electrocatalyst towards overall water splitting. Such a composite was obtained by a three-step preparation process. In the first two hydrothermal reactions, the crystalline Ni(OH)2 hierarchical nanosheet arrays were grown on NF and then the low crystallinity NiMoO4 was grafted on the Ni(OH)2 nanosheets. In the third phosphorization step, P element was doped into the composite Ni(OH)2/NiMoO4. Electrocatalytic experiments show that P-Ni(OH)2/NiMoO4 possesses a smaller overpotential (60 mV) and lower Tafel slope (130 mV dec-1) toward HER in 1 M KOH. When it was employed as an integrated water splitting catalyst, only a potential of 1.55 V was required to achieve a current density of 10 mA cm-2. This catalytic activity is even better than those of electrolyzers constructed with noble metals Pt/C∥IrO2. The superior electrocatalytic performance of P-Ni(OH)2/NiMoO4 can be attributed to the high quality of crystalline Ni(OH)2 nanosheet arrays grown on NF, which dramatically improve the conductivity. Furthermore, the hierarchical structure not only increases the surface area and exposes more catalytically active sites, but also provides a superaerophobic surface, which helps to accelerate the release of generated bubbles. Moreover, the synergistic effects between P-Ni(OH)2 and P-NiMoO4 efficiently promote the HER and OER processes also. This work may suggest new a way to explore TM oxide/hydroxide-based durable electrocatalysts with highly efficient electrocatalytic activities towards overall water splitting.

  7. Ni-Co laterite deposits

    USGS Publications Warehouse

    Marsh, Erin E.; Anderson, Eric D.

    2011-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.

  8. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE PAGES

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-17

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  9. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  10. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  11. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces.

    PubMed

    Khan, Shams Tabrez; Ahamed, Maqusood; Alhadlaq, Hisham A; Musarrat, Javed; Al-Khedhairy, Abdulaziz

    2013-12-01

    Oral ailments are often treated with antibiotics, which are rendered ineffective as bacteria continue to develop resistance against them. It has been suggested that the nanoparticles (NPs) approach may provide a safer and viable alternative to traditional antibacterial agents. Therefore, nickel (Ni)- and nickel oxide (NiO)-NPs were synthesized, characterized and assessed for their efficacy in reducing oral bacterial load in vitro. Also, the effects of bulk compound NiCl2 (Ni ions), along with the Ni- and NiO-NPs on bacterial exopolysaccharide (EPS) production and biofilm formation on the surface of artificial teeth, and acrylic dentures, were investigated. Total bacteria from a healthy male were collected and adjusted to 4×109cells/ml for all the tests. Effect of the NPs on growth, biofilm formation, EPS production and acid production from glucose was tested using standard protocols. Data revealed that the Ni-NPs (average size 41.23nm) exhibited an IC50 value of 73.37μg/ml against total oral bacteria. While, NiO-NPs (average size 35.67nm) were found less effective with much higher IC50 value of 197.18μg/ml. Indeed, the Ni ions exhibited greater biocidal activity with an IC50 value of 70μg/ml. Similar results were obtained with biofilm inhibition on the surfaces of dental prostheses. The results explicitly suggested the effectiveness of tested Ni compounds on the growth of oral bacteria and biofilm formation in the order as NiCl2>Ni-NPs>NiO-NPs. The results elucidated that Ni-NPs could serve as effective nanoantibiotics against oral bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Growth of Ni-Al alloys on Ni(1 1 1), from Al deposits of various thicknesses: (II) Formation of NiAl over a Ni 3Al interfacial layer

    NASA Astrophysics Data System (ADS)

    Le Pévédic, S.; Schmaus, D.; Cohen, C.

    2007-01-01

    This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the

  13. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  14. Heteromorphic NiCo2S4/Ni3S2/Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution.

    PubMed

    Liu, Hui; Ma, Xiao; Rao, Yuan; Liu, Yang; Liu, Jialiang; Wang, Luyang; Wu, Mingbo

    2018-04-04

    Considerable works have been devoted on developing high-efficiency nonplatinum electrocatalysts for hydrogen evolution reaction (HER). Herein, 3D heteromorphic NiCo 2 S 4 /Ni 3 S 2 nanosheets network has been constructed on Ni foam (denoted as NiCo 2 S 4 /Ni 3 S 2 /NF) serving as a self-standing electrocatalyst through directly thermal sulfurization of a single-source NiCo-layered double hydroxide precursor. The resultant NiCo 2 S 4 /Ni 3 S 2 /NF electrode exhibits outstanding electrocatalytic HER performance with an extremely low onset overpotential of 15 mV and long-term durability in alkaline solution. Such enhanced HER performance can be credited to (1) the massive exposed active sites provided by mixed transition metal chalcogenides (NiCo 2 S 4 and Ni 3 S 2 ), (2) the strong interfacial interaction at NiCo 2 S 4 /Ni 3 S 2 heterojunction interfaces with the strengthened H binding, and (3) the porous highly conductive Ni foam substrate with accelerated electron transfer. This work opens up a new direction to fabricate effective and non-noble-metal electrodes for water splitting and hydrogen generation.

  15. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  16. Preparation and properties of TiC-Ni cermets using Ni-plated TiC

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-04-01

    TiC powders were coated with Ni by a chemical plating technique and the pressed compacts sintered at 1623K. The density of the sintered bodies was 98-99%. Compared with mechanically-mixed powder, Ni-plated TiC powders gave a more uniform microstructure in which TiC particles were well dispersed in the Ni matrix. The cermets exhibited ductile fracture for TiC-70 vol.% Ni and brittle fracture for TiC-30 vol.% Ni. The flexural strength was improved by the homogeneous dispersion of TiC. The thermal expansion coefficient increased with a decrease in Ni content, following a nearly linear law of mixtures on the basis of volume fractions of pure TiC and Ni.

  17. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    PubMed

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.

    PubMed

    Koga, Kenji; Hirasawa, Makoto

    2013-09-20

    NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.

  19. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  20. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  1. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

    PubMed Central

    Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  2. Single-Layer graphene growth on crystalline Ni(111) and Ni(110) and the fate of Carbon on crystalline Ni(100).

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Reina, Alfonso; Shin, Young Cheol; Kim, Ki Kang; Dresselhaus, Mildred; Kong, Jing

    The growth of large area single-layer graphene (1-LG) is studied using ambient pressure CVD on single crystal Ni(111), Ni(110) and Ni(100). By varying both the furnace temperature in the range of 700 - 1100oC and the gas flow through the growth chamber, a uniform growth of high-quality 1-LG is obtained for Ni(111) and Ni(110), but only multilayer graphene (M-LG) growth could be obtained for Ni(100). The experimental results are interpreted to obtain the optimum combination of temperature and gas flow, and the results reported in this manuscript are interpreted through different thermodynamic mechanisms, such as diffusion, segregation and adsorption, which dictate the formation of different carbon structures over the different crystallographic directions of Ni. Characterization with optical microscopy, Raman spectroscopy and optical transmission accordingly support the experimental findings. DOE Award Number DE-SC0001088, College of Arts and Sciences at the University of Alabama, NRF Award Number 2015R1C1A1A02037083 and NSF-DMR 1507806.

  3. The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform.

    PubMed

    Jin, Xin; Li, Qun; Yang, Qi

    2018-05-16

    The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH 4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH 4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na 2 S, Na 2 S 2 O 4 ) was significant than common ions and sulfite.

  4. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  5. Latest status of El Niño and La Niña

    Science.gov Websites

    Simplified Chinese El Niño and La Niña Latest status (May 2018) In the past month or so, the warming trend returned to normal in April 2018, indicating that the La Niña event had come to an end. Based on the ±o, La Niña, ENSO? The impact of El Niño and La Niña on the climate of Hong Kong Seasonal and

  6. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  7. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  8. SmNiO3/NdNiO3 thin film multilayers

    NASA Astrophysics Data System (ADS)

    Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.

    2011-06-01

    Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.

  9. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    PubMed

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  10. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  11. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  12. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  13. Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation

    NASA Astrophysics Data System (ADS)

    Ikarashi, Nobuyuki; Masuzaki, Koji

    2011-03-01

    Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.

  14. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  15. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2015-09-09

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  16. Influence of annealing temperature on the microstructure and magnetic properties of Ni/NiO core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Xiang, Wenfeng; Liu, Yuan; Yao, Jiangfeng; Sun, Rui

    2018-03-01

    Ni/NiO core-shell nanowires (NWs) were synthesized by thermal annealing of Ni NWs and variations in the microstructure, surface morphology, and magnetic properties of the NWs as a function of annealing temperature were investigated. The results showed that the grain size and crystal quality of NiO increased with an increasing annealing temperature. Specially, the effect of annealing temperature was much greater than annealing time for the formation of Ni/NiO NWs during the oxidization process. The total weight gain of the Ni/NiO NWs continuously increased when the annealing temperature was lower than 400 °C and the annealing time was more than 2 h; however, the weight gain of the Ni/NiO NWs was almost constant after annealing for 40 min when the annealing temperature was higher than 500 °C. The thorns on the surface of the Ni/NiO NWs gradually passivated and magnetic properties declined when the annealing temperature was increased from 300 °C to 400 °C. Smooth Ni/NiO NWs with no magnetic properties were prepared when the annealing temperature was over 500 °C. The detail study regarding the formation and evolution of Ni/NiO NWs is of considerable value and may provide useful information regarding the choice of post-treatment parameters for different applications of Ni/NiO NWs.

  17. Tuning the porosity of mesoporous NiO through calcining isostructural Ni-MOFs toward supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Hou, Xiang-Yang; Yan, Xiao-Li; Wang, Xiao; Zhai, Quan-Guo

    2018-07-01

    NiO has an unusually high theoretical specific capacitance and possess relatively high electrical conductivity compared to other metal oxides. However, the reported specific capacitance of the NiO-based electrodes is far below the theoretical value up to now. In this paper, three porous NiO materials with different specific surface area were synthesized simply by calcining iso-structural Ni-based MOFs templates. The formation mechanism of NiO was discussed by taking into account the thermal behavior and intrinsic structural features of the Ni-MOFs. Taking advantages of the Ni-MOFs precursors, all prepared NiO compounds are mesoporous and their porosity can be tuned by the structure of MOFs. Specially, due to the high porosity, three NiO exhibited an improved electrochemical performance and the specific discharge capacitances are of 102, 105, and 116 F g-1 at the current density of 1 A g-1, respectively. The specific capacitance of 1-NiO-450 is approximately 93.2% of its maximum value after 3000 cycles, which obviously superior to most of the previously reported NiO electrode materials and suggests their promising applications in supercapacitors.

  18. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; ...

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  19. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  20. Comparative study of the dissociation energies of Ni2 and Ni2(+)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Computations at the internally contracted averaged coupled-pair-functional level of theory yield a dissociation energy (Do) for Ni2(+) that is 0.17 eV larger than that of Ni2. This finding is consistent with the collision-induced dissociation experiments of Lian, Su, and Armentrout, but rules out the results from the resonant two-photon dissociation experiments of Lessen and Brucat, which predict that the Do value of Ni2(+) is about 1 eV larger than that of Ni2.

  1. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  2. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  3. Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Deng, Chuang; Pal, Snehanshu

    2018-01-01

    In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.

  4. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  5. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 μm. Encouragingly, the length scale covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaka, V.V., E-mail: romakav@lp.edu.ua; Romaka, L.; Horyn, A.

    The phase equilibria in the Gd–Ni–Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd–Ni–Sb system results the formation of five ternary compounds at investigated temperature: Gd{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), Gd{sub 5}NiSb{sub 2} (Yb{sub 5}Sb{sub 3}-type), GdNiSb (MgAgAs-type), Gd{sub 3}Ni{sub 6}Sb{sub 5} (Y{sub 3}Ni{sub 6}Sb{sub 5}-type), and GdNi{sub 0.72}Sb{sub 2} (HfCuSi{sub 2}-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), and Lu{sub 5}Ni{sub 0.56}Sb{sub 2.44} (Yb{sub 5}Sb{sub 3}-type)more » compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies. - Graphical abstract: Crystal structure model and electron localization function of Lu{sub 5}Ni{sub 2}Sb. Display Omitted - Highlights: • Gd-Ni-Sb and Lu-Ni-Sb phase diagrams were constructed at 873 K. • GdNiSb and LuNiSb are characterized by disordered crystal structure. • Crystal structure optimization with DFT calculations confirmed crystal structure disorder in GdNiSb and LuNiSb.« less

  7. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  8. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Ni, Yonghong; Zhai, Muheng

    2018-01-01

    Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.

  9. Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite

    NASA Astrophysics Data System (ADS)

    Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz

    2018-05-01

    High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.

  10. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGES

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.

  11. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface

    NASA Astrophysics Data System (ADS)

    Liu, L. Y.; Xing, Y. T.; Merino, I. L. C.; Micklitz, H.; Franceschini, D. F.; Baggio-Saitovitch, E.; Bell, D. C.; Solórzano, I. G.

    2018-01-01

    Bi/Ni bilayers with varying Bi and Ni layer thicknesses have been prepared by (a) pulsed-laser deposition (PLD) at 300 K and (b) thermal evaporation at 4.2 K. A two-step superconducting transition appears on the electrical transport measurements in the samples prepared by PLD. High-resolution transmission and scanning transmission electron microscopy, supported by energy-dispersive x-ray spectroscopy (EDXS) analysis, reveal that two superconducting intermetallic alloys, namely NiBi and NiBi3, are formed by interdiffusion, if the bilayers are prepared at 300 K. The Tc of the two phases behaves very differently in an external magnetic field and the upper critical magnetic fields at zero temperature [Bc 2(0 ) ] were estimated as 1.1 and 7.4 T, respectively. The lower value corresponds to the Bc 2(0) of NiBi3 phase and the higher one is supposed to be of NiBi. These alloys are responsible for the superconductivity and the two-step transition appearing in the Bi/Ni bilayer system. Surprisingly, the Bi-rich phase (NiBi3) is formed near the Ni layer, while the Ni-rich phase (NiBi) is formed far from the Ni layer. The EDXS analysis at nanometer scale clearly shows an unusual increase of Ni concentration near the interface of Bi/substrate. The limited thickness of Bi layer in the interdiffusion process results in an unexpected distribution of Ni concentration. Samples prepared at 4.2 K after annealing at 300 K do not show any superconductivity, which indicates that a nonepitaxial Bi/Ni interface does not induce superconductivity in the case interdiffusion does not occur. These results offer a deeper understanding of the superconductivity in the Bi/Ni bilayer system.

  12. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

    NASA Astrophysics Data System (ADS)

    Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.

    2017-12-01

    Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

  13. He behavior in Ni and Ni-based equiatomic solid solution alloy

    NASA Astrophysics Data System (ADS)

    Yan, Zhanfeng; Liu, Shaoshuai; Xia, Songqin; Zhang, Yong; Wang, Yugang; Yang, Tengfei

    2018-07-01

    In the current work, pure nickel (99.99 wt.%) and Ni-containing single phase equiatomic solid solution alloy Fe-Co-Cr-Ni were irradiated with 190 keV He ions at room temperature with different fluences and He behavior in both materials are compared. At 1 × 1017 cm-2, TEM observation reveals that only isolated and small He bubbles (1-2 nm) are formed in Fe-Co-Cr-Ni alloy while many small suspected "string"-like He bubbles are observed in nickel at the concentration peak region (5.5 at.%). When the fluence is increased to 5 × 1017 cm-2, average bubble size in nickel increases to ∼8 nm which is almost equal to that in Fe-Co-Cr-Ni, but a higher bubble density is observed in nickel. At the highest dose of 1 × 1018 cm-2, numerous surface blisters and exfoliations occur in nickel which are consistent with TEM observation, while the Fe-Co-Cr-Ni alloy only shows a slight surface blister. Bubble coarsening upon annealing at 500 °C (2 h) is observed at 5 × 1017 cm-2 in both alloys, but a significant larger bubble growth is observed in nickel, suggesting a relatively better resistance to He bubble growth for Fe-Co-Cr-Ni alloy.

  14. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  15. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  16. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  17. Electrodeposition of Ni and CeO₂/Ni Nanotubes for Hydrogen Evolution Reaction Electrode.

    PubMed

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2018-07-01

    Ni NTs and CeO2-Ni nanotubes (NTs) have been prepared by galvanostatic electrodeposition in anodic aluminum oxide (AAO) Templates. Scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopic (EDS) and X-ray Diffraction (XRD) are used to characterize the prepared NTs. The results showed that the preparation process of CeO2-Ni NTs was accompanied by the formation of many new phases CeNix (x = 1, 2, 3.5 or 5) and preferential orientation crystal face of Ni in CeO2-Ni NTs is 〈111〉, which is different from that Ni 〈200〉 in Ni NTs. Then linear scan voltammetry (LSV) is applied to test the electrocatalytic activity for hydrogen revolution reaction (HER) of the two electrodes in 1 M NaCl aqueous solution and find that both of the two materials exhibited good performance. Finally, the kinetics analyses from the HER process showed that Tafel slope b was mainly dependent on phase composition and electric conductivity of the electrode, while j0 was mainly dependent on its real specific surface area.

  18. A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    NASA Astrophysics Data System (ADS)

    Driver, S. M.; Toomes, R. L.; Woodruff, D. P.

    2016-04-01

    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.

  19. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    PubMed

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants.

  20. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    PubMed Central

    Dong, Zhenbiao; Ning, Congqin

    2017-01-01

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys. PMID:29088083

  1. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    PubMed

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  2. Adios El Niño, Hello La Niña?

    NASA Image and Video Library

    2010-06-22

    This image from NASA European Ocean Surface Topography Mission/Jason-2 shows that the moderate El Niño of the past year has officially bowed out, leaving his cool sibling, La Niña, poised to potentially take the equatorial stage.

  3. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn.

    PubMed

    Barczak, Sonia A; Buckman, Jim; Smith, Ronald I; Baker, Annabelle R; Don, Eric; Forbes, Ian; Bos, Jan-Willem G

    2018-03-30

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi 1+y Sn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5-3 mW m -1 K -2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m -1 K -1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  4. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    PubMed Central

    Barczak, Sonia A.; Smith, Ronald I.; Baker, Annabelle R.; Don, Eric; Forbes, Ian

    2018-01-01

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn. PMID:29601547

  5. Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Darolia, R.

    1996-01-01

    Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.

  6. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Suzuki, Masayuki; Higuchi, Yoshiki; Hirota, Shun

    2014-12-08

    [NiFe] hydrogenase catalyzes the reversible cleavage of H2. The electrons produced by the H2 cleavage pass through three Fe-S clusters in [NiFe] hydrogenase to its redox partner. It has been reported that the Ni-SI(a), Ni-C, and Ni-R states of [NiFe] hydrogenase are involved in the catalytic cycle, although the mechanism and regulation of the transition between the Ni-C and Ni-SI(a) states remain unrevealed. In this study, the FT-IR spectra under light irradiation at 138-198 K show that the Ni-L state of [NiFe] hydrogenase is an intermediate between the transition of the Ni-C and Ni-SI(a) states. The transition of the Ni-C state to the Ni-SI(a) state occurred when the proximal [Fe4S4]p(2+/+) cluster was oxidized, but not when it was reduced. These results show that the catalytic cycle of [NiFe] hydrogenase is controlled by the redox state of its [Fe4S4]p(2+/+) cluster, which may function as a gate for the electron flow from the NiFe active site to the redox partner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  8. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  9. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  10. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192; Shomura, Yasuhito

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenasemore » from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.« less

  11. Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.; Jin, E.; Wu, J.

    Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy inmore » Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.« less

  12. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  13. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  14. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  15. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES

    NASA Astrophysics Data System (ADS)

    Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C.

    2018-06-01

    Ultramafic (UM) rocks are known to be nickel (Ni) rich and to weather quickly, which makes them a good candidate to look at the Ni isotope systematics during weathering processes at the Earth's surface. The present study aims at identifying the Ni solid speciation and discussing the weathering processes that produce Ni isotope fractionation in two deep laterite profiles under tropical conditions (Barro Alto, Goiás State, Brazil). While phyllosilicates and to a lower extent goethite are the main Ni-bearing phases in the saprolitic part of the profile, iron (Fe) oxides dominate the Ni budget in the lateritic unit. Nickel isotopic composition (δ60Ni values) has been measured in each unit of the regolith, i.e., rock, saprock, saprolite and laterite (n = 52). δ60Ni varies widely within the two laterite profiles, from -0.10 ± 0.05‰ to 1.43 ± 0.05‰, showing that significant Ni isotope fractionation occurs during the weathering of UM rocks. Overall, our results show that during weathering, the solid phase is depleted in heavy Ni isotopes due to the preferential sorption and incorporation of light Ni isotopes into Fe oxides; the same mechanisms likely apply to the incorporation of Ni into phyllosilicates (type 2:1). However, an isotopically heavy Ni pool is observed in the solid phase at the bottom of the saprolitic unit. This feature can be explained by two hypotheses that are not mutually exclusive: (i) a depletion in light Ni isotopes during the first stage of weathering due to the preferential dissolution of light Ni-containing minerals, and (ii) the sorption or incorporation of isotopically heavy Ni carried by percolating waters (groundwater samples have δ60Ni of 2.20 and 2.27‰), that were enriched in heavy Ni isotopes due to successive weathering processes in the overlying soil and laterite units.

  16. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Yasin, Nasim Ahmad; Ahmad, Sajid Rashid; Ali, Aamir; Ahmed, Shakil; Ahmad, Aqeel

    2017-05-04

    In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg -1 ) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg -1 ) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.

  17. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  18. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, J.; George, Easo P; Dlouhy, A.

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalizedmore » on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.« less

  19. Microstructure and wear properties of laser clad Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Tang, H. B.; Cai, L. X.; Cao, F.; Zhang, L. Y.; Yu, R. L.

    2005-05-01

    Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti.

  20. Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Emami, Hoda; Cuevas, Fermin; Latroche, Michel

    2014-11-01

    The effect of Ni by Cu substitution on the structural, solid-gas and electrochemical hydrogenation properties of TiNi has been investigated. Pseudo-binary TiNi1-xCux (x ≤ 0.5) compounds have been synthesized by induction melting. They crystallize in B2 structure above 350 K and either in B19‧ (x < 0.1) or B19 (0.2 ≤ x ≤ 0.5) at room temperature (RT). For all compounds, Pressure-Composition Isotherms at 423 K exhibit a single slopping plateau pressure within the range 10-3-1 MPa of hydrogen pressure revealing a metal to hydride transformation. Both the hydrogenation capacity and the hydride stability decrease with Cu-content. The hydrided pseudobinary compounds crystallize in the tetragonal S.G. I4/mmm structure as for TiNi hydride. The electrochemical discharge capacity increases with Cu content from 150 mAh g-1 for TiNi up to 300 mAh g-1 for TiNi0.8Cu0.2 and then decreases again for larger Cu amounts. Electrochemical isotherms and in-situ neutron diffraction measurements at RT demonstrate that such a capacity increase results from a metal to hydride phase transformation in which the hydride phase is destabilized by Cu substitution. The TiNi0.8Cu0.2 compound exhibits interesting cycling stability for 30 cycles and good high-rate capability at D/2 rate. This compound has promising electrochemical properties as compared to commercial LaNi5-type alloys with the advantage of being rare-earth metal free.

  1. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    NASA Astrophysics Data System (ADS)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  2. Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...

    2017-01-19

    Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less

  3. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  4. Hybrid Energy Storage of Ni(OH)2-coated N-doped Graphene Aerogel//N-doped Graphene Aerogel for the Replacement of NiCd and NiMH Batteries.

    PubMed

    Sirisinudomkit, Pichamon; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Pettong, Tanut; Dittanet, Peerapan; Sawangphruk, Montree

    2017-04-25

    Although Nickel-Cadmium (NiCd) and Nickel-metal hydride (NiMH) batteries have been widely used, their drawbacks including toxic Cd and expensive La alloy at the negative electrodes, low energy density (40-60 Wh/kg for NiCd and 140-300 Wh/L for NiMH), low power density (150 W/kg for NiCd and 1000 W/kg for NiMH), and low working potential (1.2 V) limit their applications. In this work, Cd and La alloy were replaced with N-doped reduced graphene oxide aerogel (N-rGO ae ) providing a hybrid energy storage (HES) having the battery and supercapacitor effects. The HES of Ni(OH) 2 -coated N-rGO ae //N-rGO ae provides 1.5 V, a specific energy of 146 Wh/kg, a maximum specific power of 7705 W/kg, and high capacity retention over 84.6% after 5000 cycles. The mass change at the positive electrode during charging/discharging is 8.5 µg cm -2 owing to the insertion/desertion of solvated OH - into the α-Ni(OH) 2 -coated N-rGO ae . At the negative electrode, the mass change of the solvated K + , physically adsorbed/desorbed to the N-rGO ae , is 7.5 μg cm -2 . In situ X-ray absorption spectroscopy (XAS) shows highly reversible redox reaction of α-Ni(OH) 2 . The as-fabricated device without using toxic Cd and expensive La alloy has a potential as a candidate of NiCd and NiMH.

  5. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  6. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  7. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  8. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  9. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode

    PubMed Central

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-01-01

    We propose a ‘weaving’ evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based ‘microflowers’ which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO ‘microflower’ is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g−1, and an energy density of 15.9 Wh kg−1 at a current density of 0.5 A g−1. This research not only contributes to understanding the formation mechanism of such ‘microflower’ structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability. PMID:26165386

  10. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  11. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  12. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  13. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  14. NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Zhao, Huilin; Zhou, JingKuo; Xue, Ruinan; Gao, Jianping

    2016-10-01

    Many NiCoO2 flowers with an average diameter of about 4 μm were grown on the NiCoO2 flakes coated Ni foam (denoted as NiCoO2/Ni foam) through a simple hydrothermal method and confirmed by scanning and transmission electron microscopies, X-ray diffraction and X-ray photoelectron spectrum measurements. The NiCoO2/Ni foam with high specific area and porosity was directly used as the working electrode without any binders. The measured specific capacitance of NiCoO2 grown on Ni foam is 756 F/g at 0.75 A/g using a three-electrode setup in 1 M KOH. Considering the high capacity of NiCoO2 and the good stability of rGO, the NiCoO2/Ni foam//rGO hybrid supercapacitor combining NiCoO2/Ni foam and rGO shows very good properties, such as high specific capacitance (82 F/g at 2 A/g based on the total mass of active materials), high energy density (25.7 Wh/kg at 1500 W/kg based on the total mass of active materials), good stability (about 90% capacitance retention after 2000-cycle at 100 mV/s), and low charge ion transfer resistance.

  15. Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  16. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    NASA Astrophysics Data System (ADS)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  17. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  18. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-08-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  19. Study on the formation of graphene by ion implantation on Cu, Ni and CuNi alloy

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Kim, Hong-Yeol; Jeon, Jeong Heum; An, Sungjoo; Hong, Jongwon; Kim, Jihyun

    2018-09-01

    This study identifies the details for direct synthesis of graphene by carbon ion implantation on Cu, Ni and CuNi alloy. Firstly, diffusion and concentration of carbon atoms in Cu and Ni are estimated separately. The concentrations of carbon atoms near the surfaces of Cu and Ni after carbon ion implantation and subsequent thermal annealing were correlated with the number of atoms and with the coverage or thickness of graphene. Systematic experiments showed that the Cu has higher carbon diffusivity and graphene coverage than Ni but higher temperatures and longer annealing times are required to synthesize graphene, similar to those in chemical vapor deposition method. The CuNi system shows better graphene coverage and quality than that on a single metal catalyst even after a short annealing time, as it has larger carbon diffusivity and lower carbon solubility than Ni and shows lower activation energy than Cu.

  20. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors.

    PubMed

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  1. NiSe-Ni0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Chen, Yajie; Ren, Zhiyu; Fu, Huiying; Zhang, Xin; Tian, Guohui; Fu, Honggang

    2018-06-01

    Fabricating cost-effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni 0.85 Se/CP, and NiSe-Ni 0.85 Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe-Ni 0.85 Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single-phase NiSe/CP and Ni 0.85 Se/CP. A current density of 10 mA cm -2 at 1.62 V and a high stability can be obtained by using NiSe-Ni 0.85 Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH - can be more easily adsorbed on NiSe-Ni 0.85 Se than on NiSe and Ni 0.85 Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE PAGES

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...

    2018-03-31

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  3. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  4. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    PubMed

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  5. Transformation characteristics of TiNi/TiNi alloys synthesized by explosive welding

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Zheng, Yanjun; Cui, Lishan

    2007-10-01

    Effects of severe deformation and heat treatment on the transformation behaviors of explosively welded duplex TiNi/TiNi shape memory alloys (SMAs) were investigated by the differential scanning calorimeter (DSC). The explosively welded duplex TiNi/TiNi plate of 0.7 mm in thickness was cold-rolled at room temperature to the extent of 60% reduction in thickness and then annealed at different temperatures (573-973 K) for different time (15 min-10 h). Low temperature (623-723 K) heat treatment led to amorphous crystallization. At higher temperature (873 K), the re-crystallization took place in the specimens. Analysis showed that the change of internal stresses is just the root cause of the change of transformation temperature. The relationships between the transformation behaviors and the heat treatment were discussed in the present report.

  6. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.

    PubMed

    Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M

    2012-04-01

    Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. © SBIC 2012

  7. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.

    PubMed

    Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki

    2009-03-16

    A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.

  8. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  10. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  11. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099

  12. Climate Prediction Center - El Niño/La Niña Home

    Science.gov Websites

    Composites Cold and Warm episodes (by season) U.S. La Niña Precipitation & Temperature Impacts U.S. El Niño Precipitation & Temperature Impacts U.S. El Niño State Seasonal Precipitation & ; Temperature Impacts Expert Assessment Current Diagnostic Discussion Monitoring & Data Weekly UpdateFigures

  13. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  14. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  15. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  16. Constitution of the Sr-Ni-O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkevich, M.

    2005-09-15

    The constitution of the Sr-Ni-O system was studied experimentally for the first time. Samples were prepared either from SrCO{sub 3} and NiO or from Sr(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}.6H{sub 2}O and characterized by high-temperature X-ray powder diffraction, scanning electron microscopy, thermogravimetric and differential thermal analyses. In the SrO-NiO quasibinary system an eutectic reaction: liquid-bar SrO+NiO was found to occur at 1396+/-5{sup o}C, while the homogeneity range of terminal solid solutions is negligible. Thermodynamic calculations using the regular solution model for the liquid and rocksalt-type phases were employed to predict liquidus and solidus curves. Three ternary compounds, SrNiO{sub 2.5},more » Sr{sub 5}Ni{sub 4}O{sub 11}, and Sr{sub 9}Ni{sub 7}O{sub 21} were observed in the samples prepared from nitrate solutions, but only Sr{sub 9}Ni{sub 7}O{sub 21} was proved to be thermodynamically stable in air up to 1030+/-6{sup o}C. When heating in air, SrNiO{sub 2.5} and Sr{sub 5}Ni{sub 4}O{sub 11} were found to transform irreversibly into a mixture of Sr{sub 9}Ni{sub 7}O{sub 21} and NiO. Isothermal section of the SrO-NiO-O subsystem, which represents phase equilibria at 950-1030{sup o}C as well as an isobaric section of the Sr-Ni-O system in air were constructed.« less

  17. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peng, E-mail: huangp07@lzu.edu.cn; Department of Physics, Lanzhou University, Lanzhou 730000; Zhang, Xin

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. Themore » electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.« less

  18. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.

  19. Synthesis, characterization and some properties of mononuclear Ni and trinuclear NiFe2 complexes related to the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Sun, Xiao-Jing; Zhao, Pei-Hua; Li, Jia-Peng; Song, Hai-Bin

    2012-08-07

    The [N(2)S(2)]-type ligand 1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4) (L) is prepared in 84% yield by a new method and its structure has been confirmed by X-ray crystallography. The new synthetic method involves sequential reaction of 1,2-phenylenedithiol with EtONa followed by treatment of the resulting disodium salt of 1,2-phenylenedithiol with in situ generated 2-(chloromethyl)pyridine from its HCl salt. Further treatment of ligand L with NiCl(2)·6H(2)O or NiI(2) affords the expected new mononuclear Ni complexes Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]Cl(2) (1) and Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]I(2) (3) in 87-88% yields, whereas reaction of L with NiBr(2) under similar conditions results in formation of the expected new mononuclear complex Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]Br(2) (2) and one unexpected new mononuclear complex Ni[1-(2-C(5)H(4)NCH(2)S)-2-(2-C(5)H(4)NCH(2)SC(6)H(4)S)C(6)H(4)]Br(2) (2*) in 82% and 5% yields, respectively. More interestingly, the ligand L-containing novel trinuclear NiFe(2) complex Ni{[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)}Fe(2)(CO)(6)(μ(3)-S)(2) (4) is found to be prepared by sequential reaction of (μ-S(2))Fe(2)(CO)(6) with Et(3)BHLi, followed by treatment of the resulting (μ-LiS)(2)Fe(2)(CO)(6) with mononuclear complex 1, 2, or 3 in 12-20% yields. The new complexes 1-4 and 2* are fully characterized by elemental analysis and various spectroscopies, and the crystal structures of 1, 2* and 3 as well as some electrochemical properties of 1-4 are also reported.

  20. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  1. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  2. Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-ming; Chen, Sinn-wen

    2001-08-01

    This study investigates the effect of electromigration upon the interfacial reactions between the promising lead-free solders, Sn-Cu and Sn-Ag, with Ni substrate. Sandwich-type reaction couples, Sn-0.7 wt% Cu/Ni/Sn-0.7 wt% Cu and Sn-3.5 wt% Ag/Ni/Sn-3.5 wt% Ag, were reacted at 160, 180, and 200 °C for various lengths of time with and without the passage of electric currents. Without passage of electric currents through the couples, only one intermetallic compound Ni3Sn4 with ˜7 at. % Cu solubility was found at both interfaces of the Sn-0.7 wt% Cu/Ni couples. With the passage of an electric current of 500 A/cm2 density, the Cu6Sn5 phase was formed at the solder/Ni interface besides the Ni3Sn4 phase. Similar to those without the passage of electric currents, only the Ni3Sn4 phase was found at the Ni/solder interface. Directions of movement of electrons, Sn, and Cu atoms are the same at the solder/Ni interface, and the growth rates of the intermetallic layers were enhanced. At the Ni/solder interface, the electrons flow in the opposite direction of the Sn and Cu movement, and the growth rates of the intermetallic layers were retarded. Only the Ni3Sn4 phase was formed from the Sn-3.5 wt% Ag/Ni interfacial reaction with and without the passage of electric currents. Similar to the Sn-0.7 wt% Cu/Ni system, the movement of electrons enhances or retards the growth rates of the intermetallic layers at the solder/Ni and Ni/solder interfaces, respectively. Calculation results show the apparent effective charge za* decreases in magnitude with raising temperatures, which indicates the electromigration effect becomes insignificant at higher temperatures.

  3. 3D Computer Models of T- x- y Diagrams, Forming the Fe-Ni-Co-FeS-NiS-CoS Subsystem

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Vorob'eva, V. P.

    2017-12-01

    3D computer models of Fe-Ni-Co, Fe-Ni-FeS-NiS, Fe-Co-FeS-CoS, Ni-Co-NiS-CoS T- x- y diagrams have been designed. The geometric structure (35 surfaces, two-phase surface of the reaction type change, 17 phase regions) of the Fe-Ni-FeS-NiS T- x- y diagram is investigated in detail. The liquidus hypersurfaces prediction of the Fe-Ni-Co-FeS-NiS-CoS subsystem is represented.

  4. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO 2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO 3 ) 2 and organic template-occluded mesoporous SiO 2 . For comparison, supported Ni catalysts on mesoporous SiO 2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N 2 adsorption, X-ray photoelectron spectroscopy, H 2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO 3 ) 2 with template-occluded mesoporous SiO 2 , strong coordination between Ni 2+ and dodecylamine was identified in the Ni(NO 3 ) 2 -HMS system. Additionally, the results of H 2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO 2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H 2 -reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous Si

  5. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  6. The crystal structures of Ni{sub 3+x}Sn{sub 4}Zn and Ni{sub 6+x}Sn{sub 8}Zn and their structural relations to Ni{sub 3+x}Sn{sub 4}, NiSn and Ni{sub 5−δ}ZnSn{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmetterer, Clemens, E-mail: clemens.schmetterer@univie.ac.at; Effenberger, Herta Silvia; Rajamohan, Divakar

    2016-06-15

    The crystal structures of two new compounds were determined from single-crystal X-ray diffraction measurements: Ni{sub 3+x}Sn{sub 4}Zn, (x~1.35, a=7.110(2) Å, b=4.123(1) Å, c=10.346(3) Å, β=90.23(2)°, space group I2/m, Z=2. R1=0.025, wR2=0.059 for 748 unique reflections, 35 variable parameters) and Ni{sub 6+x}Sn{sub 8}Zn, x~1.35 (a=12.379(3) Å, b=4.095(1) Å, c=12.155(3) Å, β=116.25(3)°, space group C2/m, Z=2. R1=0.026, wR2=0.052 for 1346 unique reflections, 60 variable parameters). In addition, a structural refinement was performed for Ni{sub 3+x}Sn{sub 4}, x~0.13 (a=12.264(3) Å, b=4.066(1) Å, c=5.223(2) Å, β=104.85(3)°, space group C2/m, Z=2. R1=0.019, wR2=0.046 for 617 unique reflections, 29 variable parameters). The three compounds show pronouncedmore » similarities among each other as well as to the crystal structures of surrounding binary Ni–Sn and ternary Ni–Sn–Zn compounds. In particular, the two new compounds form a homologous series with Ni{sub 3+x}Sn{sub 4}, x~0.13. They contain “Ni{sub 4}Sn{sub 4}” and “Ni{sub 2}Sn{sub 4}” building blocks which by different interconnection build up the distinct structures. Topological relations with NiSn and Ni{sub 5−δ}Sn{sub 4}Zn, δ~0.25 are evident. - Graphical abstract: Projection of the structure of Ni{sub 6+x}ZnSn{sub 8}, x~1.35 and constituent building blocks. Display Omitted - Highlights: • The crystal structures of Ni{sub 6+x}Sn{sub 8}Zn and Ni{sub 3+x}Sn{sub 4}Zn were determined using single crystal XRD. • Topological relations to Ni–Sn and Ni–Sn–Zn compounds were established and discussed. • Common structural units were identified and their interconnection patterns described.« less

  7. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  8. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  9. Rationally-designed configuration of directly-coated Ni 3S 2/Ni electrode by RGO providing superior sodium storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaosheng; Li, Xifei; Bai, Zhimin

    Designing nanocomposite materials is an effective approach for enhancing the performance of sodium-ion batteries (SIBs), and understanding the synergy among components is critically important for new, better materials design. Here in this paper, a directly reduced graphene oxide (RGO) decorated anode electrode was designed and tested for SIBs, in which uniform RGO coating onto the Ni 3S 2/Ni electrode was realized using facile hydrothermal reactions. The results indicate that the RGO/Ni 3S 2/Ni electrode delivers a high reversible specific capacity of 448.6 mAh g -1, high capacity retention of 96.5% after 100 cycles, and excellent rate capability of 263.1 mAhmore » g -1 at 800 mA g -1. Compared with the Ni 3S 2/Ni electrode, the improved performance of the RGO/Ni 3S 2/Ni electrode benefits from RGO-promoted displacement reaction of Ni 3S 2 with sodium. DFT calculations reveal that the RGO layer can significantly improve the electron mobility of the RGO/Ni 3S 2 + Na structure, and the hybrid interaction between the extraneous p orbits of C and indigenous p and d orbits of Ni, as well as p orbits of S is the major reason for why RGO can improve the electrical transport properties.« less

  10. Rationally-designed configuration of directly-coated Ni 3S 2/Ni electrode by RGO providing superior sodium storage

    DOE PAGES

    Song, Xiaosheng; Li, Xifei; Bai, Zhimin; ...

    2018-02-28

    Designing nanocomposite materials is an effective approach for enhancing the performance of sodium-ion batteries (SIBs), and understanding the synergy among components is critically important for new, better materials design. Here in this paper, a directly reduced graphene oxide (RGO) decorated anode electrode was designed and tested for SIBs, in which uniform RGO coating onto the Ni 3S 2/Ni electrode was realized using facile hydrothermal reactions. The results indicate that the RGO/Ni 3S 2/Ni electrode delivers a high reversible specific capacity of 448.6 mAh g -1, high capacity retention of 96.5% after 100 cycles, and excellent rate capability of 263.1 mAhmore » g -1 at 800 mA g -1. Compared with the Ni 3S 2/Ni electrode, the improved performance of the RGO/Ni 3S 2/Ni electrode benefits from RGO-promoted displacement reaction of Ni 3S 2 with sodium. DFT calculations reveal that the RGO layer can significantly improve the electron mobility of the RGO/Ni 3S 2 + Na structure, and the hybrid interaction between the extraneous p orbits of C and indigenous p and d orbits of Ni, as well as p orbits of S is the major reason for why RGO can improve the electrical transport properties.« less

  11. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.

    PubMed

    Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit

    2011-04-01

    A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso programmore » package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.« less

  13. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  14. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  15. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  16. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  17. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    NASA Astrophysics Data System (ADS)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  18. Thermal modeling of NiH2 batteries

    NASA Technical Reports Server (NTRS)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  19. Who is El Niño?

    NASA Astrophysics Data System (ADS)

    Philander, S. George

    It is a curious story, about a phenomenon we first welcomed as a blessing but now view with dismay, if not horror [Philander, 1998]. We named it El Niño for the child Jesus, provided it with relatives—La Niña and ENSO—and are devoting innumerable studies to the description and idealization of this family. These scriptures provide such a broad spectrum of historical, cultural, and scientific perspectives that there is now confusion about the identity of El Niño. Trenberth [1997] summarizes the situation as follows.The atmospheric component tied to El Niño is termed the “Southern Oscillation.” Scientists often call the phenomenon where the atmosphere and ocean collaborate ENSO, short for El Niño-Southern Oscillation. El Niño then corresponds to the warm phase of ENSO. The opposite “La Niña” (“the girl” in Spanish) phase consists of a basinwide cooling of the tropical Pacific and thus the cold phase of ENSO. However, for the public, the term for the whole phenomenon is “El Niño.”

  20. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  1. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  2. The influence of Si in Ni on the interface modification and the band alignment between Ni and alumina

    NASA Astrophysics Data System (ADS)

    Yoshitake, Michiko; Nemšák, Slavomír; Skála, Tomáš; Tsud, Nataliya; Matolín, Vladimír; Prince, Kevin C.

    2018-06-01

    The influence of a small amount of Si in a Ni single crystal on the interface formation between aluminum oxide and Ni has been investigated. The interface was formed by in-situ growth of the oxide by simultaneous supply of Al and oxygen onto Ni(1 1 1) in an ultrahigh vacuum chamber equipped with XPS apparatus. The oxide growth and the interface formation were compared between Si-containing Ni(1 1 1) and pure Ni(1 1 1). It was revealed that Si segregated on the surface of Ni and oxidized, forming an epitaxial thin alumino-silicate film. Valence band spectra demonstrated that the band offset between the oxide and Ni (energy level difference between the valence band top and the Fermi level) is different due to the oxidized Si segregation at the interface.

  3. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  4. Impact of La Niña and La Niña Modoki on Indonesia rainfall variability

    NASA Astrophysics Data System (ADS)

    Hidayat, R.; Juniarti, MD; Ma’rufah, U.

    2018-05-01

    La Niña events are indicated by cooling SST in central and eastern equatorial Pacific. While La Niña Modoki occurrences are indicated by cooling SST in central Pacific and warming SST in western and eastern equatorial Pacific. These two events are influencing rainfall variability in several regions including Indonesia. The objective of this study is to analyse the impact of La Niña and La Niña Modoki on Indonesian rainfall variability. We found the Nino 3.4 index is highly correlated (r = -0.95) with Indonesian rainfall. Positive rainfall anomalies up to 200 mm/month occurred mostly in Indonesian region during La Niña events, but in DJF several areas of Sumatera, Kalimantan and eastern Indonesia tend to have negative rainfall. During La Niña Modoki events, positive rainfall anomaly (up to 50 mm/month) occurred in Sumatera Island, Kalimantan, Java and eastern Indonesia in DJF and up to 175 mm/month occurred only in Java Island in MAM season. La Niña events have strong cooling SST in central and eastern equatorial Pacific (-1.5°C) in DJF. While La Niña Modoki events warming SST occurred in western and eastern equatorial Pacific (0.75°C) and cooling SST in central Pacific (- 0.75°C) in DJF and MAM. Walker circulation in La Niña Modoki events (on DJF and MAM) showed strong convergence in eastern Pacific, and weak convergence in western Pacific (Indonesia).

  5. [Ni III(OMe)]-mediated reductive activation of CO 2 affording a Ni(κ 1-OCO) complex

    DOE PAGES

    Chiou, Tzung -Wen; Tseng, Yen -Ming; Lu, Tsai -Te; ...

    2016-02-24

    Here, carbon dioxide is expected to be employed as an inexpensive and potential feedstock of C 1 sources for the mass production of valuable chemicals and fuel. Versatile chemical transformations of CO 2, i.e. insertion of CO 2 producing bicarbonate/acetate/formate, cleavage of CO 2 yielding μ-CO/μ-oxo transition-metal complexes, and electrocatalytic reduction of CO 2 affording CO/HCOOH/CH 3OH/CH 4/C 2H 4/oxalate were well documented. Herein, we report a novel pathway for the reductive activation of CO 2 by the [Ni III(OMe)(P(C 6H 3-3-SiMe 3-2-S) 3)] – complex, yielding the [Ni III(κ 1-OCO˙ –)(P(C 6H 3-3-SiMe 3-2-S) 3)] – complex. The formationmore » of this unusual Ni III(κ 1-OCO ˙–) complex was characterized by single-crystal X-ray diffraction, EPR, IR, SQUID, Ni/S K-edge X-ray absorption spectroscopy, and Ni valence-to-core X-ray emission spectroscopy. The inertness of the analogous complexes [Ni III(SPh)], [Ni II(CO)], and [Ni II(N 2H 4)] toward CO 2, in contrast, demonstrates that the ionic [Ni III(OMe)] core attracts the binding of weak σ-donor CO 2 and triggers the subsequent reduction of CO 2 by the nucleophilic [OMe] – in the immediate vicinity. This metal–ligand cooperative activation of CO 2 may open a novel pathway promoting the subsequent incorporation of CO 2 in the buildup of functionalized products.« less

  6. Streptococcus mutans adhesion on nickel titanium (NiTi) and copper-NiTi archwires: A comparative prospective clinical study.

    PubMed

    Abraham, Kirubaharan S; Jagdish, Nithya; Kailasam, Vignesh; Padmanabhan, Sridevi

    2017-05-01

    To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016" and 0.016" × 0.022" NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.

  7. Using Chelator-Buffered Nutrient Solutions to Induce Ni-Deficiency in the Ni-Hyperaccumulator Alyssum murale

    USDA-ARS?s Scientific Manuscript database

    Ni is essential for all plants due to its role in urease. Many Alyssum species are known to hyperaccumulate Ni to over 20 g kg-1 dry weight (DW) while normal plants require only about 0.1 mg kg-1 DW. As part of our research on Ni hyperaccumulation by plants, we conducted experiments to measure the...

  8. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  9. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    PubMed

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru; Knotko, A.V.; Garshev, A.V.

    The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce{sub 2}Ni{sub 15.8}Si{sub 1.2} (Th{sub 2}Ni{sub 17}-type), Ce{sub 2}Ni{sub 15-14}Si{sub 2-3} (Th{sub 2}Zn{sub 17}-type), CeNi{sub 8.6}Si{sub 2.4} (BaCd{sub 11}-type), CeNi{sub 8.8}Si{sub 4.2} (LaCo{sub 9}Si{sub 4}-type), CeNi{sub 6}Si{sub 6} (CeNi{sub 6}Si{sub 6}-type), CeNi{sub 5}Si{sub 1-0.3} (TbCu{sub 7}-type), CeNi{sub 4}Si (YNi{sub 4}Si-type), CeNi{sub 2}Si{sub 2} (CeGa{sub 2}Al{sub 2}-type), Ce{sub 2}Ni{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type), Ce{sub 3}Ni{sub 6}Si{sub 2} (Ce{sub 3}Ni{sub 6}Si{sub 2}-type), Ce{sub 3}Ni{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type), CeNiSi{sub 2} (CeNiSi{sub 2}-type), ~CeNi{sub 1.3}Si{sub 0.7} (unknown typemore » structure), Ce{sub 6}Ni{sub 7}Si{sub 4} (Pr{sub 6}Ni{sub 7}Si{sub 4}-type), CeNiSi (LaPtSi-type), CeNi{sub 0.8-0.3}Si{sub 1.2-1.7} (AlB{sub 2}-type), ~Ce{sub 2}Ni{sub 2}Si (unknown type structure), ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (unknown type structure), Ce{sub 15}Ni{sub 7}Si{sub 10} (Pr{sub 15}Ni{sub 7}Si{sub 10}-type), Ce{sub 5}Ni{sub 1.85}Si{sub 3} (Ce{sub 5}Ni{sub 1.85}Si{sub 3}-type), Ce{sub 6}Ni{sub 1.4}Si{sub 3.4} (Ce{sub 6}Ni{sub 1.67}Si{sub 3}-type), Ce{sub 7}Ni{sub 2}Si{sub 5} (Ce{sub 7}Ni{sub 2}Si{sub 5}-type) and Ce{sub 3}NiSi{sub 3} (Y{sub 3}NiSi{sub 3}-type) has been confirmed in this section. Moreover, the type structure has been determined for ~Ce{sub 2}Ni{sub 2}Si (Mo{sub 2}NiB{sub 2}-type Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}) and ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (W{sub 3}CoB{sub 3}-type Ce{sub 3}Ni{sub 3-2.7}Si{sub 1-1.3}) and new ternary phases Ce{sub 2}Ni{sub 6.25}Si{sub 0.75} (Gd{sub 2}Co{sub 7}-type), CeNi{sub 7-7.6}Si{sub 6-5.4} (GdNi{sub 7}Si{sub 6}-type) and ~Ce{sub 27}Ni{sub 42}Si{sub 31} (unknown type structure) have been identified in this system. Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi{sub 5}, CeNi{sub 3} and

  11. Rational Design of Hierarchically Core-Shell Structured Ni3 S2 @NiMoO4 Nanowires for Electrochemical Energy Storage.

    PubMed

    Chen, Fangshuai; Ji, Shan; Liu, Quanbing; Wang, Hui; Liu, Hao; Brett, Dan J L; Wang, Guoxiu; Wang, Rongfang

    2018-05-30

    Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core-shell structured Ni 3 S 2 @NiMoO 4 nanowires (NWs) as a binder-free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni 3 S 2 and NiMoO 4 , the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as-prepared binder-free Ni 3 S 2 @NiMoO 4 electrode can significantly improve the electrical conductivity between Ni 3 S 2 and NiMoO 4 , and effectively avoid the aggregation of NiMoO 4 nanosheets, which provide more active space for storing charge. The Ni 3 S 2 @NiMoO 4 electrode presents a high areal capacity of 1327.3 µAh cm -2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm -2 . In a two-electrode Ni 3 S 2 @NiMoO 4 //active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg -1 at a power density of 2.285 kW kg -1 with excellent cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultrathin NiGe films prepared via catalytic solid-vapor reaction of Ni with GeH(4).

    PubMed

    Peter, Antony P; Opsomer, Karl; Adelmann, Christoph; Schaekers, Marc; Meersschaut, Johan; Richard, Olivier; Vaesen, Inge; Moussa, Alain; Franquet, Alexis; Zsolt, Tokei; Van Elshocht, Sven

    2013-10-09

    A low-temperature (225-300 °C) solid-vapor reaction process is reported for the synthesis of ultrathin NiGe films (∼6-23 nm) on 300 mm Si wafers covered with thermal oxide. The films were prepared via catalytic chemical vapor reaction of germane (GeH4) gas with physical vapor deposited (PVD) Ni films of different thickness (2-10 nm). The process optimization by investigating GeH4 partial pressure, reaction temperature, and time shows that low resistive, stoichiometric, and phase pure NiGe films can be formed within a broad window. NiGe films crystallized in an orthorhombic structure and were found to exhibit a smooth morphology with homogeneous composition as evidenced by glancing angle X-ray diffraction (GIXRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Rutherford back-scattering (RBS) analysis. Transmission electron microscopy (TEM) analysis shows that the NiGe layers exhibit a good adhesion without voids and a sharp interface on the thermal oxide. The NiGe films were found to be morphologically and structurally stable up to 500 °C and exhibit a resistivity value of 29 μΩ cm for 10 nm NiGe films.

  13. In-Situ Synthesis of NiMoO4 on Ni Foam as a Binder-Free Electrode for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Chiu, Ta-Wei

    Transition metal oxides have attracted much attention for electrode materials of supercapacitors due to their outstanding capacitive behavior. One of them is NiMoO4 with the high electrochemical activity of Ni. Constricted by its intrinsically poor electrical conductivity and limited electroactive sites of aggregated NiMoO4, the capacitive performance of NiMoO 4 are far below expectation. Directly growth of NiMoO4 on nickel foam to fabricate binder-free electrodes is proposed to solve the issues. In this thesis, we successfully constructed interconnected NiMoO4 nanosheets on the Ni foam by a designed reaction between H2MoO 4 aqueous solution and Ni foam. The effects of H2MoO 4 concentration and reaction time were systematically investigated. The best electrochemical performance of NiMoO4 electrodes can be obtained with 0.005 M H2MoO4 for 80 hours. The maximum areal capacitance can reach 0.724 F/cm2 followed with outstanding rate capability (70.1% capacitance retention when current density increase from 1 mA/cm2 to 10 mA/cm2). The excellent areal capacitance and rate capability may be attributed to its interconnected NiMoO 4 nanosheets and good adhesion between electroactive materials and current collector.

  14. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Lu, Lilin; Zhu, Hengli; Chen, Yueguang; Huang, Yu; Li, Yadong; Wang, Leyu

    2017-01-01

    Incorporating oxophilic metals into noble metal-based catalysts represents an emerging strategy to improve the catalytic performance of electrocatalysts in fuel cells. However, effects of the distance between the noble metal and oxophilic metal active sites on the catalytic performance have rarely been investigated. Herein, we report on ultrasmall (~5 nm) Pd-Ni-P ternary nanoparticles for ethanol electrooxidation. The activity is improved up to 4.95 A per mgPd, which is 6.88 times higher than commercial Pd/C (0.72 A per mgPd), by shortening the distance between Pd and Ni active sites, achieved through shape transformation from Pd/Ni-P heterodimers into Pd-Ni-P nanoparticles and tuning the Ni/Pd atomic ratio to 1:1. Density functional theory calculations reveal that the improved activity and stability stems from the promoted production of free OH radicals (on Ni active sites) which facilitate the oxidative removal of carbonaceous poison and combination with CH3CO radicals on adjacent Pd active sites.

  15. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect.

    PubMed

    Liu, Ping; Rodriguez, José A

    2005-10-26

    Density functional theory (DFT) was employed to investigate the behavior of a series of catalysts used in the hydrogen evolution reaction (HER, 2H(+) + 2e(-) --> H(2)). The kinetics of the HER was studied on the [NiFe] hydrogenase, the [Ni(PS3*)(CO)](1)(-) and [Ni(PNP)(2)](2+) complexes, and surfaces such as Ni(111), Pt(111), or Ni(2)P(001). Our results show that the [NiFe] hydrogenase exhibits the highest activity toward the HER, followed by [Ni(PNP)(2)](2+) > Ni(2)P > [Ni(PS3*)(CO)](1)(-) > Pt > Ni in a decreasing sequence. The slow kinetics of the HER on the surfaces is due to the fact that the metal hollow sites bond hydrogen too strongly to allow the facile removal of H(2). In fact, the strong H-Ni interaction on Ni(2)P(001) can lead to poisoning of the highly active sites of the surface, which enhances the rate of the HER and makes it comparable to that of the [NiFe] hydrogenase. In contrast, the promotional effect of H-poisoning on the HER on Pt and Ni surfaces is relatively small. Our calculations suggest that among all of the systems investigated, Ni(2)P should be the best practical catalyst for the HER, combining the high thermostability of the surfaces and high catalytic activity of the [NiFe] hydrogenase. The good behavior of Ni(2)P(001) toward the HER is found to be associated with an ensemble effect, where the number of active Ni sites is decreased due to presence of P, which leads to moderate bonding of the intermediates and products with the surface. In addition, the P sites are not simple spectators and directly participate in the HER.

  16. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  17. Controllable synthesis and enhanced microwave absorbing properties of Fe3O4/NiFe2O4/Ni heterostructure porous rods

    NASA Astrophysics Data System (ADS)

    Li, Yana; Wu, Tong; Jin, Keying; Qian, Yao; Qian, Naxin; Jiang, Kedan; Wu, Wenhua; Tong, Guoxiu

    2016-11-01

    We developed a coordinated self-assembly/precipitate transfer/sintering method that allows the controllable synthesis of Fe3O4/NiFe2O4/Ni heterostructure porous rods (HPRs). A series of characterizations confirms that changing [Ni2+] can effectively control the crystal size, internal strain, composition, textural characteristics, and properties of HPRs. Molar percentages of Ni and NiFe2O4 in HPRs increase with [Ni2+] in various Boltzmann function modes. Saturation magnetization Ms and coercivity Hc show U-shaped change trends because of crystal size, composition, and interface magnetic coupling. High magnetic loss is maintained after decorating NiFe2O4 and Ni on the surface of Fe3O4 PRs. Controlling the NiFe2O4 interface layers and Ni content can improve impedance matching and dielectric losses, thereby leading to lighter weight, stronger absorption, and broader absorption band of Fe3O4/NiFe2O4/Ni HPRs than Fe3O4 PRs. An optimum EM wave absorbing property was exhibited by Fe3O4/NiFe2O4/Ni HPRs formed at [Ni2+] = 0.05 M. The maximum reflection loss (RL) reaches -58.4 dB at 13.68 GHz, which corresponds to a 2.1 mm matching thickness. The absorbing bandwidth (RL ≤ -20 dB) reaches 14.4 GHz with the sample thickness at 1.6-2.4 and 2.8-10.0 mm. These excellent properties verify that Fe3O4/NiFe2O4/Ni HPRs are promising candidates for new and effective absorptive materials.

  18. Recycling of used Ni-MH rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, T.; Ono, H.; Shirai, R.

    1995-12-31

    The Ni-MH (nickel metal hydride) rechargeable battery was developed several years ago. Its higher electrochemical capacity and greater safety compared with the Ni-Cd rechargeable battery have resulted in very rapid increase in its production. The Ni-MH rechargeable battery consists of Ni, Co and rare earth metals, so that recycling is important to recover these valuable mineral resources. In this study, a basic recycling process for used Ni-MH rechargeable batteries has been developed, in which the Ni, Co and rare earth elements are recovered through a combination of mechanical processing and hydrometallurgical processing.

  19. Precipitation-induced of partial annealing of Ni-rich NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Nashrudin, Muhammad Naqib; Mahmud, Abdus Samad; Mohamad, Hishamiakim

    2018-05-01

    NiTi shape memory alloy behavior is very sensitive to alloy composition and heat treatment processes. Thermomechanical behavior of near-equiatomic alloy is normally enhanced by partial anneal of a cold-worked specimen. The shape memory behavior of Ni-rich alloy can be enhanced by ageing precipitation. This work studied the effect of simultaneous partial annealing and ageing precipitation of a Ni-rich cold drawn Ti-50.9at%Ni wire towards martensite phase transformation behavior. Ageing treatment of a non-cold worked specimen was also done for comparison. It was found that the increase of heat treatment temperature caused the forward transformation stress to decrease for the cold worked and non-cold worked specimens. Strain recovery on the reverse transformation of the cold worked wire improved compared to the non-cold worked wire as the temperature increased.

  20. Carbon tolerance of Ni-Cu and Ni-Cu/YSZ sub-μm sized SOFC thin film model systems

    NASA Astrophysics Data System (ADS)

    Götsch, Thomas; Schachinger, Thomas; Stöger-Pollach, Michael; Kaindl, Reinhard; Penner, Simon

    2017-04-01

    Thin films of YSZ, unsupported Ni-Cu 1:1 alloy phases and YSZ-supported Ni-Cu 1:1 alloy solutions have been reproducibly prepared by magnetron sputter deposition on Si wafers and NaCl(001) single crystal facets at two selected substrate temperatures of 298 K and 873 K. Subsequently, the layer properties of the resulting sub-μm thick thin films as well as the tendency towards carbon deposition following treatment in pure methane at 1073 K has been tested comparatively. Well-crystallized structures of cubic YSZ, cubic NiCu and cubic NiCu/YSZ have been obtained following deposition at 873 K on both substrates. Carbon is deposited on all samples following the trend Ni-Cu (1:1) = Ni-Cu (1:1)/YSZ > pure YSZ, indicating that at least the 1:1 composition of layered Ni-Cu alloy phases is not able to suppress the carbon deposition completely, rendering it unfavorable for usage as anode component in sub-μm sized fuel cells. It is shown that surfaces with a high Cu/Ni ratio nevertheless prohibit any carbon deposition.

  1. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.

    PubMed

    Wang, Wanren; Wang, Wenhua; Wang, Mengjiao; Guo, Xiaohui

    2014-09-01

    Herein, we report the in situ growth of single-crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as-prepared Ni/Ni(OH)2 sponges were well-characterized by using X-ray diffraction (XRD), SEM, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel-skeleton-supported Ni(OH)2 rope-like aggregates were composed of numerous intercrossed single-crystal Ni(OH)2 flake-like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g(-1)) and excellent rate-capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  3. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  4. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Myneni, Satish C. B.

    2004-09-01

    Aqueous solutions containing Ni(II) and a series of structurally related carboxylic acids were analyzed using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Ni K-edge X-ray absorption fine structure spectroscopy (XAFS). XAFS spectra were also collected for solutions containing Ni 2+ and chelating ligands (ethylenediaminetetraacetic acid, nitrilotriacetic acid (NTA)) as well as soil fulvic acid. Limited spectral changes are observed for aqueous Ni(II) complexes with monocarboxylates (formate, acetate) and long-chain polycarboxylates (succinate, tricarballylate), where individual donor groups are separated by multiple bridging methylene groups. These spectral changes indicate weak interactions between Ni(II) and carboxylates, and the trends are similar to some earlier reports for crystalline Ni(II)-acetate solids, for which X-ray crystallography studies have indicated monodentate Ni(II)-carboxylate coordination. Nonetheless, electrostatic or outer-sphere coordination cannot be ruled out for these complexes. However, spectral changes observed for short-chain dicarboxylates (oxalate, malonate) and carboxylates that contain an alcohol donor group adjacent to one of the carboxylate groups (lactate, malate, citrate) demonstrate inner-sphere metal coordination by multiple donor groups. XAFS spectral fits of Ni(II) solutions containing soil fulvic acid are consistent with inner-sphere Ni(II) coordination by one or more carboxylate groups, but spectra are noisy and outer-sphere modes of coordination cannot be ruled out. These molecular studies refine our understanding of the interactions between carboxylates and weakly complexing divalent transition metals, such as Ni(II).

  5. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  6. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-09-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  7. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Dewen; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2018-01-24

    The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS 2 nanosheet array on carbon cloth (NiO@Ni/WS 2 /CC) composite. This composite serves as a unique three-dimensional (3D) synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS 2 , but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS 2 . This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO 2 , as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm -2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS 2 . Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.

  8. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    NASA Astrophysics Data System (ADS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.

    2015-12-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.

  9. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  10. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  11. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via

  12. Three-Dimensionally Hierarchical Ni/Ni3S2/S Cathode for Lithium-Sulfur Battery.

    PubMed

    Li, Zhe; Zhang, Shiguo; Zhang, Jiaheng; Xu, Miao; Tatara, Ryoichi; Dokko, Kaoru; Watanabe, Masayoshi

    2017-11-08

    Lithium-sulfur (Li-S) batteries have attracted interest as a promising energy-storage technology due to their overwhelming advantages such as high energy density and low cost. However, their commercial success is impeded by deterioration of sulfur utilization, significant capacity fade, and poor cycle life, which are principally originated from the severe shuttle effect in relation to the dissolution and migration of lithium polysulfides. Herein, we proposed an effective and facile strategy to anchor the polysulfides and improve sulfur loading by constructing a three-dimensionally hierarchical Ni/Ni 3 S 2 /S cathode. This self-supported hybrid architecture is sequentially fabricated by the partial sulfurization of Ni foam by a mild hydrothermal process, followed by physical loading of elemental sulfur. The incorporation of Ni 3 S 2 , with high electronic conductivity and strong polysulfide adsorption capability, can not only empower the cathode to alleviate the shuttle effect, but also afford a favorable electrochemical environment with lower interfacial resistance, which could facilitate the redox kinetics of the anchored polysulfides. Consequently, the obtained Ni/Ni 3 S 2 /S cathode with a sulfur loading of ∼4.0 mg/cm 2 demonstrated excellent electrochemical characteristics. For example, at high current density of 4 mA/cm 2 , this thick cathode demonstrated a discharge capacity of 441 mAh/g at the 150th cycle.

  13. Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple.

    PubMed

    Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G

    2002-07-19

    The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.

  14. Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8--83.2 at.% Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, T.; Inui, H.; Yamaguchi, M.

    1997-12-01

    Alloys based on the intermetallic phase, LaNi{sub 5} have been used as negative electrode materials of rechargeable nickel-metal hydride (Ni-MH) batteries because of their fast activation, high storage-capacity, long cycle-life and excellent electrochemical charge/discharge kinetics. Here, microstructure and hydrogen absorption/desorption properties of La-Ni alloys have been investigated as a function of alloy composition in the range of La-77.8 {approximately} 83.2 at.% Ni, which corresponds to compositions between two intermetallic phases, La{sub 2}Ni{sub 7} and LaNi{sub 5}. The intermetallic phase, La{sub 5}Ni{sub 19} of the Ce{sub 5}Co{sub 19}-type is found for the first time to exist as an equilibrium phase atmore » a composition between La{sub 2}Ni{sub 7} and LaNi{sub 5}. This phase is stable at high temperatures around 1,000 C but decomposes into La{sub 2}Ni{sub 7} and LaNi{sub 5} below 900 C. Hydrogen absorption/desorption properties described in terms of pressure-composition isotherms decline with decreasing Ni content (i.e. with increasing volume fraction of intermetallic phases other than LaNi{sub 5}). In particular, the plateau at the equilibrium pressure corresponding to the hydrogen absorption in the LaNi{sub 5} phase is narrowed with decreasing Ni content and additional plateaus with higher equilibrium pressures come into existence. The degradation becomes more pronounced in the presence of La{sub 2}Ni{sub 7} than La{sub 5}Ni{sub 19}. This can be understood in terms of the ratio of the number of LaNi{sub 2} (Laves) unit layers to that of LaNi{sub 5} unit layers in the unit cell of the two intermetallic phases.« less

  15. Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chen; Lee, Hsuan; Hau, Nga Yu; Feng, Shien-Ping; Chen, Chih-Ming

    2018-01-01

    Bismuth-telluride (Bi2Te3)-based compounds are common thermoelectric materials used for low-temperature applications, and nickel (Ni) is usually deposited on the Bi2Te3 substrates as a diffusion barrier. Deposition of Ni on the p-type (Sb-doped) and n-type (Se-doped) Bi2Te3 substrates using electroplating and interfacial reactions between Sn and Ni-coated Bi2Te3 substrates are investigated. Electrodeposition of Ni on different Bi2Te3 substrates is characterized based on cyclic voltammetry and Tafel measurements. Microstructural characterizations of the Ni deposition and the Sn/Ni/Bi2Te3 interfacial reactions are performed using scanning electron microscopy. A faster growth rate is observed for the Ni deposition on the n-type Bi2Te3 substrate which is attributed to a lower activation energy of reduction due to a higher density of free electrons in the n-type Bi2Te3 material. The common Ni3Sn4 phase is formed at the Sn/Ni interfaces on both the p-type and n-type Bi2Te3 substrates, while the NiTe phase is formed at a faster rate at the interface between Ni and n-type Bi2Te3 substrates.

  16. Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges.

    PubMed

    Chauke, Vongani; Matemadombo, Fungisai; Nyokong, Tebello

    2010-06-15

    This work reports the electrocatalysis of bisphenol A on Ni(II) tetraamino metallophthalocyanine (NiTAPc) polymer modified gold electrode containing Ni-O-Ni bridges (represented as Ni(OH)TAPc). The Ni(II)TAPc films were electro-transformed in 0.1 mol L(-1) NaOH aqueous solution to form 'O-Ni-O oxo bridges', forming poly-n-Ni(OH)TAPc (where n is the number of polymerising scans). poly-30-Ni(OH)TAPc, poly-50-Ni(OH)TAPc, poly-70-Ni(OH)TAPc and poly-90-Ni(OH)TAPc films were investigated. The polymeric films were characterised by electrochemical impedance spectroscopy and the charge transfer resistance (R(CT)) values increased with film thickness. The best catalytic activity for the detection of bisphenol A was on poly-70-Ni(OH)TAPc. Electrode resistance to passivation improved with polymer thickness. The electrocatalytic behaviour of bisphenol A was compared to that of p-nitrophenol in terms of electrode passivation and regeneration. The latter was found to passivate the electrode less than the former. The poly-70-Ni(OH)TAPc modified electrode could reliably detect bisphenol A in a concentration range of 7x10(-4) to 3x10(-2)mol L(-1) with a limit of detection of 3.68x10(-9)mol L(-1). The sensitivity was 3.26x10(-4)A mol(-1) L cm(-2). Copyright 2010 Elsevier B.V. All rights reserved.

  17. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  18. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Liao, Ming-Han; Chen, Sheng-Chi; Li, Zhi-Yue; Lin, Po-Chun; Song, Shu-Mei

    2018-03-01

    n-type NiO:Al thin films were deposited by RF magnetron sputtering. Their optoelectronic properties versus Al target power was investigated. The results show that with increasing Al target power, the conduction type of NiO films changes from p-type to n-type. The variation of the film’s electrical and optical properties depends on Al amount in the film. When Al target power is relatively low, Al3+ cations tend to enter nickel vacancy sites, which makes the lattice structure of NiO more complete. This improves the carrier mobility and film’s transmittance. However, when Al target power exceeds 40 W, Al atoms begin to enter into interstitial sites and form an Al cluster in the NiO film. This behavior is beneficial for improving the film’s n-type conductivity but degrades the film’s transmittance. Finally, Al/(p-type NiO)/(n-type NiO:Al)/ITO homojunctions were fabricated. Their performance was compared with Al/(p-type NiO)/ITO heterojunctions without an n-type NiO layer. Thanks to the better interface quality between the two NiO layers, the homojunctions present better performance.

  19. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  20. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  1. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  2. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.

    PubMed

    Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin

    2006-01-26

    We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.

  3. Spray forming of NiTi and NiTiPd shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-03-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  4. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  5. Characterization and electron-energy-loss spectroscopy on NiV and NiMo superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S.H.

    1986-01-01

    NiV superlattices with periods (A) ranging from 15 to 80 A, and NiMo superlattices with from 14 to 110 A were studied using X-ray Diffraction (XRD), Electron Diffraction (ED), Energy-Dispersive X-Ray (EDX) microanalysis, and Electron Energy Loss Spectroscopy (EELS). Both of these systems have sharp superlattice-to-amorphous (S-A) transitions at about empty set = 17A. Superlattices with empty set around the S-A boundary were found to have large local variations in the in-plane grain sizes. Except for a few isolated regions, the chemical composition of the samples were found to be uniform. In samples prepared at Argonne National Laboratory (ANL), mostmore » places studied with EELS showed changes in the EELS spectrum with decreasing empty set. An observed growth in a plasmon peak at approx. 10ev in both NiV and NiMo as empty set decreased down to 19 A is attributed to excitation of interface plasmons. Consistent with this attribution, the peak height shrank in the amorphous samples. The width of this peak is consistent with the theory. The sift in this peak down to 9 ev with decreasing empty set in NiMo is not understood.« less

  6. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  7. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  8. Cs0.9Ni3.1Se3: A Ni-Based Quasi-One-Dimensional Conductor with Spin-Glass Behavior.

    PubMed

    Sun, Fan; Guo, Zhongnan; Liu, Ning; Wu, Dan; Lin, Jiawei; Cheng, Erjian; Ying, Tianping; Li, Shiyan; Yuan, Wenxia

    2018-04-02

    In this work, we report the discovery of a new Ni-based quasi-one-dimensional selenide: Cs 0.9 Ni 3.1 Se 3 . This compound adopts the TlFe 3 Te 3 -type structure with space group P6 3 / m, which consists of infinite [Ni 3 Se 3 ] chains with face-sharing Ni 6 octahedra along the c direction. The lattice parameters are calculated as a = 9.26301(4) Å and c = 4.34272(2) Å, with the Ni-Ni distance in the ab plane as 2.582(3) Å, suggesting the formation of a Ni-Ni metallic bond in this compound. Interestingly, it has been found that Cs 0.9 Ni 3.1 Se 3 is nonstoichiometric, which is different from the other TlFe 3 Te 3 -type phases reported so far. Structure refinement shows that the extra Ni atom in the structure may occupy the 2c site, together with Cs atoms. Cs 0.9 Ni 3.1 Se 3 shows metallic behavior with monotonously decreased resistivity with temperatures from 300 to 0.5 K. Measurements on the magnetic susceptibility display a spin-glass state below 7 K. The specific heat curve gives a Sommerfeld coefficient of 14.6 mJ·K -2 ·mol -1 and a Debye temperature of 143.6 K. The discovery of this new compound enriches the diversity of low-dimensional materials in a transition-metal-based family and also sheds light on the structure-property relationship of this system.

  9. Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming

    2018-01-01

    A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.

  10. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    PubMed

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    PubMed

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  12. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder.

  13. Magnetic Properties of Porous Metal-Organic Frameworks: Ni2(BODC)2(TED) and Ni2(BDC)2(TED)

    NASA Astrophysics Data System (ADS)

    Hamida, Youcef; Danilovic, Dusan; Lin, Chyan; Yuen, Tan; Li, Kunhao; Padmanabhan, Moothetty; Li, Jing

    2010-03-01

    Results of χ(T), M(H), and heat capacity C(T) measurements on two Ni dimer based porous materials Ni2(BODC)2(TED) and Ni2(BDC)2(TED) are reported. These materials form a tetragonal crystal structure of space group P4/ncc with a=b = 14.9 å and c = 19.4 å and Ni-Ni separation of 2.61å within the dimer. Magnetic data of Ni2(BODC)2(TED) revealed a ferromagnetic-like transition at about 17 K with θ = 8 K, and a coercivity field of 1700 G was observed in the hysteresis curve. Though isostructural to Ni2(BODC)2(TED), χ(T) and M(H) results of Ni2(BDC)2(TED) showed an antiferromagnetic transition at 10 K with θ = - 132 K, and no hysteresis was observed. Although specific heat data C(T) showed no clear transition in both compounds, nonlinear behavior is clearly seen in C/T vs. T plots, and a fit to the electron and phonon contributions to C(T) gives a large heavy-fermion-like γ in both cases. A model for the magnetic interactions is proposed and a comparison to the Cu and Co analogues is also made.

  14. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility.

    PubMed

    Michiardi, A; Aparicio, C; Planell, J A; Gil, F J

    2006-05-01

    Various oxidation treatments were applied to nearly equiatomic NiTi alloys so as to form a Ni-free protective oxide on the surface. Sample surfaces were analyzed by X-ray Photoelectron Spectroscopy, and NiTi transformation temperatures were determined by differential scanning calorimetry (DSC) before and after the surface treatment. An ion release experiment was carried out up to one month of immersion in SBF for both oxidized and untreated surfaces. The results show that oxidation treatment in a low-oxygen pressure atmosphere leads to a high surface Ti/Ni ratio, a very low Ni surface concentration and a thick oxide layer. This oxidation treatment does not significantly affect the shape memory properties of the alloy. Moreover, the oxide formed significantly decreases Ni release into exterior medium comparing with untreated surfaces. As a consequence, this new oxidation treatment could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys. (c) 2005 Wiley Periodicals, Inc.

  15. Solution Combustion Synthesis of Ni/NiO/ZnO Nanocomposites for Photodegradation of Methylene Blue Under Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Biglari, Z.; Masoudpanah, S. M.; Alamolhoda, S.

    2018-02-01

    In this work, Ni/NiO/ZnO nanocomposites were synthesized by the one-pot solution combustion synthesis method. Phase evolution investigated by the x-ray diffraction method showed that the ZnO and NiO contents can be tuned by addition of a zinc precursor. The microstructure characterized by electron microscopy exhibited granular morphology with a particle size of 1.1 μm decreasing to 90 nm as a function of the amounts of ZnO and NiO phases. Specific surface area determined by N2 adsorption-desorption isotherms increased from 1.4 m2/g to 25.6 m2/g with the increase of oxide phases. However, the saturation magnetization decreased from 51.3 emu/g to 25.9 emu/g in the presence of antiferromagnetic NiO and nonmagnetic ZnO phases. Photodegradation of methylene blue under ultraviolet light exhibited the maximum efficiency in the sample containing 16.25 wt.% of ZnO and 21.25 wt.% of NiO, and may be due to the synergic effect between ZnO and NiO.

  16. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, D., E-mail: danny.guzman@uda.cl; Ordonez, S.; Fernandez, J.F.

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{submore » 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.« less

  17. Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming

    NASA Astrophysics Data System (ADS)

    Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja

    2018-05-01

    El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.

  18. Controlled crystallization and granulation of nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    He, Xiangming; Li, Jianjun; Cheng, Hongwei; Jiang, Changyin; Wan, Chunrong

    A novel synthesis of controlled crystallization and granulation was attempted to prepare nano-scale β-Ni(OH) 2 cathode materials for high power Ni-MH batteries. Nano-scale β-Ni(OH) 2 and Co(OH) 2 with a diameter of 20 nm were prepared by controlled crystallization, mixed by ball milling, and granulated to form about 5 μm spherical grains by spray drying granulation. Both the addition of nano-scale Co(OH) 2 and granulation significantly enhanced electrochemical performance of nano-scale Ni(OH) 2. The XRD and TEM analysis shown that there were a large amount of defects among the crystal lattice of as-prepared nano-scale Ni(OH) 2, and the DTA-TG analysis shown that it had both lower decomposition temperature and higher decomposition reaction rate, indicating less thermal stability, as compared with conventional micro-scale Ni(OH) 2, and indicating that it had higher electrochemical performance. The granulated grains of nano-scale Ni(OH) 2 mixed with nano-scale Co(OH) 2 at Co/Ni = 1/20 presented the highest specific capacity reaching its theoretical value of 289 mAh g -1 at 1 C, and also exhibited much improved electrochemical performance at high discharge capacity rate up to 10 C. The granulated grains of nano-scale β-Ni(OH) 2 mixed with nano-scale Co(OH) 2 is a promising cathode active material for high power Ni-MH batteries.

  19. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  20. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  1. Electrochemical properties of LaNi{sub 5{minus}x}Ge{sub x} alloys in Ni-MH batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witham, C.; Hightower, A.; Fultz, B.

    1997-11-01

    Electrochemical studies were performed on LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys with 0 {le} x {le} 0.5. The authors carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption. The electrochemical characteristics of the Ge-substituted alloys are compared to those of the Sn-substituted alloys reported earlier. LaNi{sub 5{minus}x}Ge{sub x} alloys show compositional trends similar to LaNi{sub 5{minus}x}Sn{sub x} alloys, but unlike the Sn-substituted alloys, Ge-substituted alloys continue to exhibit facile kinetics for hydrogen absorption/desorption at high solute concentrations. Cycle lives ofmore » LaNi{sub 5{minus}x}Ge{sub x} electrodes were measured in 300 mAh laboratory test cells and were found to be superior to the Sn-substituted LaNi{sub 5} and comparable to a Mm(Ni, Co, Mn, Al){sub 5} alloy. The optimum Ge content for LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys in alkaline rechargeable cells is in the range 0.4 {le} x {le} 0.5.« less

  2. Phytoremediation of Ni-contaminated soil by Salicornia iranica.

    PubMed

    Kaviani, Elina; Niazi, Ali; Moghadam, Ali; Taherishirazi, Mohsen; Heydarian, Zohreh

    2017-10-16

    Although nickel (Ni) is useful and is used in various industries, it is one of the most usual and important sources of heavy metals pollutants in the world. In this study, Salicornia iranica was used in order to phytoremediate Ni-contaminated soil. Possible mechanisms of plant tolerance to Ni pollution and its detoxification were studied through using expression analysis of glutathione-S-transferase (GST) and measurement of involved key physiological components. The concentration of the chlorophylls a, b, total chlorophyll, and carotenoids were significantly decreased in 500 mg/kg Ni at 3, 24, 48 h, and 90 days after the treatment. Free proline significantly increased in the tissues. The absorption and concentration of Ni increased in tissues, so that Ni concentration at 50, 250, and 500 mg Ni/kg soil significantly increased to 2.5, 3.5, and 4.5 fold compared with the lowest Ni level respectively. In addition, the GST expression was significantly increased both in the 50 and 500 mg/kg Ni treatment. The highest concentration of Ni affected plant growth parameters such as the root and shoot lengths. Therefore, S. iranica is able to accumulate Ni and it can be used as an environmental biotechnological study for phytoremediation of Ni-polluted soils. ABA: abscisic acid; ABRE: ABA-responsive element; As +3 : arsenic; Cd 2+ : cadmium; ef1: elongation factor; FW: fresh weight; GSH: glutathione; GST: glutathione-S-transferase; GSTU: tau class GST; Hcl: hydrochloric acid; Hg 2+ : mercury; HgCl 2 : mercury(II) chloride; MYB: myeloblastosis viral oncogene homolog; Ni +2 : nickel; Pb: lead; SiGSTU: Salicornia iranica GSTU; ZnSO 4 : zinc sulfate.

  3. Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure.

    PubMed

    Zhang, Yan; Wang, Yang; Anderson, Kirsten; Novikov, Andrey; Liu, Zikou; Pacheco, Karin; Dai, Shaodong

    2017-09-15

    T cell mediated hypersensitivity to nickel (Ni 2+ ) is one of the most common causes of allergic contact dermatitis. Ni 2+ sensitization may also contribute to the failure of Ni 2+ containing joint implants, and revision to non-Ni 2+ containing hardware can be costly and debilitating. Previously, we identified Ni 2+ mimotope peptides, which are reactive to a CD4 + T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni 2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni 2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni 2+ induced contact dermatitis. Here, we generated DR52c/Ni 2+ mimotope tetramers, and used them to test if the same Ni 2+ T cell activation mechanism could be generalized to Ni 2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni 2+ mimotope tetramer detected Ni 2+ reactive CD4 + T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni 2+ sensitized by patch testing and a positive Ni 2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni 2+ stimulation induced the expansion of Vβ17 positive CD4 + T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni 2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni 2+ independent mimotope tetramers may be a useful tool to identify the Ni 2+ reactive CD4 + T cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    NASA Astrophysics Data System (ADS)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  5. The Niño1+2 region and the Niño4 region predictability.

    NASA Astrophysics Data System (ADS)

    Miguel, Tasambay-Salazar; Jose, Ortizbevia Maria; Francisco Jose, Alvarez-Garcia; Antonio, Ruizdeelvira

    2016-04-01

    The El Niño-Southern Oscillation variability is monitored basically by the the Niño3.4 Index. In addition, the Niño1+2 and the Niño4 Indexes are also used to characterise ENSO variability, by reason of their relationships with some of the variability of the neighboring regions, like the air temperature in South America or Australia. However, with the increased length of the available instrumental ENSO records, the need of considering the two different ENSO types identified, Eastern Pacific (EP) or Central Pacific (CP), has become more evident. (Yu and Kim 2013). While the Nino3.4 Index is used to monitor the EP events, the CP events are currently identified by removing from the Niño4 Index the variability associated to the Niño1+2 Index (Kao and Yu 2009). Therefore there is a renewed interest on the predictability of both Indexes. In this study we focus on the predictability of the Niño1+2 region variability and those of the Niño4 region, in the recent post-satellital period. We develop a methodology to identify potential predictors among climate modes, represented by their respective indexes. Among the tropical predictors tested we include the most commonly used,like the Southern Oscillation Index or the Warm Water Volume in the equatorial Pacific (WWV) Index, but also some whose part in the ENSO generation and evolution has been pointed only recently, like the Pacific Meridional Mode (PMM) Index or the North Tropical Zonal Gradient and South Tropical Zonal Gradient Indexes.We also include in our study some other tropical Indexes outside the Pacific basin, like the Tropical North Atlantic, the Tropical South Atlantic and the Indian Ocean Dipole Indexes. We use a seasonal approach, based in a linear statistical relationship and focus on leads going from one season to one year. In the case of the Niño1+2 Index, the number of potential predictors is much higher in spring, followed by winter and summer and last of all autumn. The potential predictor most

  6. Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types

    NASA Astrophysics Data System (ADS)

    Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.

    2017-12-01

    Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.

  7. Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explain nugget formation in Ni-laterites

    NASA Astrophysics Data System (ADS)

    Aiglsperger, Thomas; Proenza, Joaquín A.; Font-Bardia, Mercè; Baurier-Aymat, Sandra; Galí, Salvador; Lewis, John F.; Longo, Francisco

    2017-10-01

    Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in saprolite (beneath the Mg discontinuity) or as `floating chromitites' within limonite (above the Mg discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are observed within floating chromitites. The following formation model for multistage PGE grains is discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and accumulation) of Pt-Ir-Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Ni-laterites from the Dominican Republic.

  8. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    PubMed

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  9. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  10. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo

    2017-09-01

    Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.

  11. Controlled Pyrolysis of Ni-MOF-74 as a Promising Precursor for the Creation of Highly Active Ni Nanocatalysts in Size-Selective Hydrogenation.

    PubMed

    Nakatsuka, Kazuki; Yoshii, Takeharu; Kuwahara, Yasutaka; Mori, Kohsuke; Yamashita, Hiromi

    2018-01-19

    Metal organic frameworks (MOFs) are a class of porous organic-inorganic crystalline materials that have attracted much attention as H 2 storage devices and catalytic supports. In this paper, the synthesis of highly-dispersed Ni nanoparticles (NPs) for the hydrogenation of olefins was achieved by employing Ni-MOF-74 as a precursor. Investigations of the structural transformation of Ni species derived from Ni-MOF-74 during heat treatment were conducted. The transformation was monitored in detail by a combination of XRD, in situ XAFS, and XPS measurements. Ni NPs prepared from Ni-MOF-74 were easily reduced by the generation of reducing gases accompanied by the decomposition of Ni-MOF-74 structures during heat treatment at over 300 °C under N 2 flow. Ni-MOF-74-300 exhibited the highest activity for the hydrogenation of 1-octene due to efficient suppression of excess agglomerated Ni species during heat treatment. Moreover, Ni-MOF-74-300 showed not only high activity for the hydrogenation of olefins but also high size-selectivity because of the selective formation of Ni NPs covered by MOFs and the MOF-derived carbonaceous layer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of NiAlTa precipitates in beta-NiAl + 2 at. pct Ta alloy

    NASA Technical Reports Server (NTRS)

    Pathare, V.; Michal, G. M.; Vedula, K.; Nathal, M. V.

    1987-01-01

    Results are reported from experiments performed to identify the precipitates, and their orientation in the matrix, in a beta-NiAl alloy containing 2 at. pct. Ta after undergoing creep test at 1300 K. Test specimens formed by extruding hot powders were compressed at 1300 K for about 50 hr at a strain rate averaging 6/1 million per sec. The specimens were then thinned and examined under an electron microscope and by X-ray diffractometry. An intermetallic NiAlTa compound with a hexagonal Cl4 structure appeared as second phase precipitates in the samples, exhibiting plate-like shapes and a habit plane close to (012). The prism planes of the hexagonal NiAlTa precipitates paralleled the closest packed planes in the cubic beta-NiAl matrix.

  13. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  14. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    PubMed

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  15. Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells

    NASA Astrophysics Data System (ADS)

    Cha, Chuansin; Yu, Jingxian; Zhang, Jixiao

    The behavior of the sealed Ni-Cd and Ni-MH systems are compared experimentally with regard to their ability to consume gaseous products generated during the overcharge stage of these systems. It was found that the Ni-Cd system could only consume oxygen, while the Ni-MH system possesses the additional ability to adsorb hydrogen and to catalyze the recombination reaction of hydrogen and oxygen. The internal pressure within both sealed Ni-Cd cells and sealed Ni-MH cells can be kept well under control during the charge/overcharge processes if the rate of overcharge is not too high and if there is sufficient surplus of charging capacity at the negative electrodes. However, the internal pressure can rise to dangerously high levels if the rate of overcharge is too high or there is a deficiency of the charging capacity at the negative electrodes. The various factors that may affect the surplus of charging capacity of the negative electrodes are also discussed.

  16. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  17. The isothermal section of Gd-Ni-Si system at 1070 K

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Manfrinetti, P.; Pani, M.; Provino, A.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-03-01

    The Gd-Ni-Si system has been investigated at 1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: GdNi10Si2, GdNi8Si3, GdNi5Si3, GdNi7Si6, GdNi6Si6, GdNi4Si, GdNi2Si2, GdNiSi3, Gd3Ni6Si2, GdNiSi, GdNiSi2, GdNi0.4Si1.6, Gd2Ni2.35Si0.65, Gd3NiSi2, Gd3NiSi3 and Gd6Ni1.67Si3, has been confirmed. Moreover, five new phases have been identified in this system. The crystal structure for four of them has been determined: Gd2Ni16-12.8Si1-4.2 (Th2Zn17-type), GdNi6.6Si6 (GdNi7Si6-type), Gd3Ni8Si (Y3Co8Si-type) and Gd3Ni11.5Si4.2(Gd3Ru4Ga12-type). The compound with composition ~Gd2Ni4Si3 still remains with unknown structure. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi5, GdNi3, GdNi2, GdNi, GdSi2 and GdSi1.67; while no appreciable solubility was observed for the other binary compounds of the Gd-Ni-Si system. Magnetic properties of the GdNi6Si6, GdNi6.6Si6 and Gd3Ni11.5Si4.2 compounds have also been investigated and are here reported.

  18. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications

    PubMed Central

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K.

    2014-01-01

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5–90 V), electrolyte temperature (10–50°C) and electrolyte NH4F content (0.025–0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0–1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15–70 nm) and length (45–1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants. PMID:25520180

  19. Room-temperature ferromagnetism in Dy films doped with Ni

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.

    2008-09-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x)Ni x-Ni and Dy (1-x)(NiFe) x-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x)Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni.

  20. Hierarchical Heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) as an Electrode Material for High-Performance Supercapacitors.

    PubMed

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Wang, Linlin

    2016-12-01

    Hierarchical heterostructures of NiCo2O4@XMoO4 (X = Ni, Co) were developed as an electrode material for supercapacitor with improved pseudocapacitive performance. Within these hierarchical heterostructures, the mesoporous NiCo2O4 nanosheet arrays directly grown on the Ni foam can not only act as an excellent pseudocapacitive material but also serve as a hierarchical scaffold for growing NiMoO4 or CoMoO4 electroactive materials (nanosheets). The electrode made of NiCo2O4@NiMoO4 presented a highest areal capacitance of 3.74 F/cm(2) at 2 mA/cm(2), which was much higher than the electrodes made of NiCo2O4@CoMoO4 (2.452 F/cm(2)) and NiCo2O4 (0.456 F/cm(2)), respectively. Meanwhile, the NiCo2O4@NiMoO4 electrode exhibited good rate capability. It suggested the potential of the hierarchical heterostructures of NiCo2O4@CoMoO4 as an electrode material in supercapacitors.

  1. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    NASA Astrophysics Data System (ADS)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  2. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors

    PubMed Central

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-01-01

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296

  3. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of

  4. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Rongeat, C.; Grosjean, M.-H.; Ruggeri, S.; Dehmas, M.; Bourlot, S.; Marcotte, S.; Roué, L.

    Several methods have been investigated to enhance the cycle life of amorphous MgNi used as the negative electrode for Ni-MH batteries. The first approach involves modifying its surface composition in different ways, including the electroless deposition of a chromate conversion coating, the addition of chromate salt or NaF into the electrolyte and the mechanical coating of the particles with various compounds (e.g. TiO 2). Another approach consists of developing (MgNi + AB 5) composite materials. However, the cycle life of these modified MgNi electrodes remains unsatisfactory. On the other hand, the modification of the bulk composition of the MgNi alloy with elements such as Ti and Al appears to be more effective. For instance, a Mg 0.9Ti 0.1NiAl 0.05 electrode retains 67% of its initial discharge capacity (404 mAh g -1) after 15 cycles compared to 29% for MgNi. The charging conditions also have a great influence on the electrode cycle life as demonstrated by the existence of a charge input threshold below which minor capacity decay occurs. In addition, the particle size has a major influence on the electrode performance. We have developed an optimized electrode constituted of Mg 0.9Ti 0.1NiAl 0.05 particles with the appropriate size (>150 μm) showing a capacity decay rate as low as ∼0.2% per cycle when charged at 300 mAh g -1.

  5. Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.

    1985-11-01

    Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.

  6. Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.

    Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less

  7. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    NASA Astrophysics Data System (ADS)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  8. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    NASA Astrophysics Data System (ADS)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  9. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  10. Formation of alternating interfacial layers in Au-12Ge/Ni joints

    PubMed Central

    Lin, Shih-kang; Tsai, Ming-yueh; Tsai, Ping-chun; Hsu, Bo-hsun

    2014-01-01

    Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300°C and 400°C. For the reactions at 300°C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon – the formation of (Au,Ni,Ge)/NiGe alternating layers – was observed for the reactions at 400°C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/···/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper. PMID:24690992

  11. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x}more » particles are durable and active catalysts for photocatalytic H{sub 2} generation.« less

  12. Euhedral metallic-Fe-Ni grains in extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    Metallic Fe-Ni is rare in terrestrial rocks, being largely restricted to serpentinized peridotites and volcanic rocks that assimilated carbonaceous material. In contrast, metallic Fe-Ni is nearly ubiquitous among extraterrestrial samples (i.e., meteorites, lunar rocks, and interplanetary dust particles). Anhedral grains are common. For example, in eucrites and lunar basalts, most of the metallic Fe-Ni occurs interstitially between silicate grains and thus tends to have irregular morphologies. In many porphyritic chondrules, metallic Fe-Ni and troilite form rounded blebs in the mesostasis because their precursors were immiscible droplets. In metamorphosed ordinary chondrites, metallic Fe-Ni and troilite form coarse anhedral grains. Some of the metallic Fe-Ni and troilite grains has also been mobilized and injected into fractures in adjacent silicate grains where local shock-reheating temperatures reached the Fe-FeS eutectic (988 C). In interplanetary dust particles metallic Fe-Ni most commonly occurs along with sulfide as spheroids and fragments. Euhedral metallic Fe-Ni grains are extremely rare. Several conditions must be met before such grains can form: (1) grain growth must occur at free surfaces, restricting euhedral metallic Fe-Ni grains to systems that are igneous or undergoing vapor-deposition; (2) the metal (+/-) sulfide assemblage must have an appropriate bulk composition so that taenite is the liquidus phase in igneous systems or the stable condensate phase in vapor-deposition systems; and (3) metallic Fe-Ni grains must remain underformed during subsequent compaction, thermal metamorphism, and shock. Because of these restrictions, the occurrence of euhedral metallic Fe-Ni grains in an object can potentially provide important petrogenetic information. Despite its rarity, euhedral metallic Fe-Ni occurs in a wide variety of extraterrestrial materials. Some of these materials formed in the solar nebula; others formed on parent body surfaces by meteoroid

  13. Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less

  14. Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Kong, Dezhi; Huang, Zhi Xiang; Mo, Runwei; Wang, Ye; Han, Zhaojun; Cheng, Chuanwei; Yang, Hui Ying

    2016-05-01

    Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power density of 56.33 W cm-3 at 0.94 mW h cm-3. As a result, the hybrid nanoarchitecture opens a new way to design high performance electrodes for electrochemical energy storage applications.Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm-2 at a current density of 5 mA cm-2 is among the highest values and the only 6.7% capacitance decay after 10 000 cycles demonstrates the excellent cycling stability. A flexible asymmetric supercapacitor (ASC) was fabricated with activated carbon (AC) as the anode and the obtained NiCo2O4@Ni3S2 NWAs as the cathode. The ASC device exhibited a high energy density of 1.89 mW h cm-3 at 5.81 W cm-3 and a high power

  15. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  16. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE PAGES

    Li, Boyan; Zhang, Lei; Li, Chengliang; ...

    2018-04-18

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  17. The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Boyan; Zhang, Lei; Li, Chengliang

    The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less

  18. Microstructure of Vacuum-Brazed Joints of Super-Ni/NiCr Laminated Composite Using Nickel-Based Amorphous Filler Metal

    NASA Astrophysics Data System (ADS)

    Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan

    2013-06-01

    Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.

  19. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  20. On the decrepitation mechanism of MgNi and LaNi 5-based electrodes studied by in situ acoustic emission

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Idrissi, H.; Roué, L.

    In situ monitoring of the pulverization of amorphous MgNi and crystalline LaNi 5-based alloys has been studied during their hydrogen charge by combining acoustic emission and electrochemical measurements. In both alloys, two classes of acoustic signals with specific temporal and energetic characteristics were detected during their charge: a P1 class related to the particle cracking and a P2 class due to the release of H 2 bubbles. By comparing the P1 activity on both materials as a function of the charge input, it was shown that the pulverization phenomenon becomes significant at a much lower charge input for the LaNi 5-based electrode (∼5-25 mAh g -1) than for the MgNi electrode (∼365 mAh g -1), reflecting the fact that the mechanism responsible of their decrepitation is not similar. Indeed, it was demonstrated that the cracking of the amorphous and porous MgNi material is mainly induced by the hydrogen evolution reaction whereas for the crystalline and denser LaNi 5-based material, the α-β lattice expansion is responsible of its decrepitation. It was also shown that the particle size and the charge current density have a major impact on the MgNi decrepitation. The correlation between the MgNi particle cracking and the discharge capacity decay with cycling was established.

  1. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  2. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    NASA Astrophysics Data System (ADS)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  3. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra

    NASA Astrophysics Data System (ADS)

    Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng

    2018-05-01

    Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.

  4. DFT study on dry reforming of methane over Ni2Fe overlayer of Ni(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Xu, Li-li; Wen, Hong; Jin, Xin; Bing, Qi-ming; Liu, Jing-yao

    2018-06-01

    We reported the complete catalytic cycle of dry reforming of methane (DRM) on Ni2Fe overlayer of Ni(1 1 1) surface by periodic density functional theory (DFT) calculations. The pathways for dehydrogenation of CH4 and CO2 activation were located. Our results demonstrate that compared with pure Ni(1 1 1) surface, the introduction Fe into Ni increases the energy barrier of CH dissociation to carbon and hydrogen atoms, thereby suppressing coke deposition on the surface, while it promotes the H-induced CO2 activation pathway to form OH radical, and thus not only the surface oxygen but also OH are responsible for the oxidation of CHx (x = 0,1) on the Ni2Fe overlayer. The most favorable pathway of CH/C oxidation is found to be CH∗ + OH∗ → CHOH∗ → CHO∗ + H∗ → CO∗ + 2H∗, with the rate-limiting energy barrier of 1.12 eV. Furthermore, since Fe is oxidized partially to FeO leading to a partial dealloying under DRM conditions, we also studied the surface-carbon removal and the activity for the reforming of methane on the FeO ribbon supported Ni(1 1 1) (FeO/Ni) interface by DFT+U method. The surface C reacts with lattice oxygen of FeO to produce CO via a Mars-van Krevelen (MvK) mechanism, with a very lower energy barrier of 0.16 eV. The present results show that the introduction of Fe into Ni has a positive effect on the activity toward DRM and has an improved coke resistance.

  5. Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires

    NASA Astrophysics Data System (ADS)

    Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo

    2002-07-01

    In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.

  6. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    Covering more than 70% of tropical and subtropical coastlines, mangrove intertidal forests are well known to accumulate potentially toxic trace metals in their sediments, and thus are generally considered to play a protective role in marine and lagoon ecosystems. However, the chemical forms of these trace metals in mangrove sediments are still not well known, even though their molecular-level speciation controls their long-term behavior. Here we report the vertical and lateral changes in the chemical forms of nickel, which accumulates massively in mangrove sediments downstream from lateritized ultramafic deposits from New Caledonia, where one of nature's largest accumulations of nickel occurs. To accomplish this we used Ni K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy data in combination with microscale chemical analyses using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDXS). After Principal Component and Target Transform analyses (PCA-TT), the EXAFS data of the mangrove sediments were reliably least-squares fitted by linear combination of 3-components chosen from a large model compound spectral database including synthetic and natural Ni-bearing sulfides, clay minerals, oxyhydroxides, and organic complexes. Our results show that in the inland salt flat Ni is hosted in minerals inherited from the eroded lateritic materials, i.e. Ni-poor serpentine (44-58%), Ni-rich talc (20-31%), and Ni-goethite (18-24%). In contrast, in the hydromorphic sediments beneath the vegetated Avicennia and Rhizophora stands, a large fraction of Ni is partly redistributed into a neoformed smectite pool (20-69% of Ni-montmorillonite), and Ni speciation significantly changes with depth in the sediment. Indeed, Ni-rich talc (25-56%) and Ni-goethite (15-23%) disappear below ∼15 cm depth in the sediment and are replaced by Ni-sorbed pyrite (23-52%) in redox-active intermediate depth layers and by pyrite (34-55%) in the deepest

  7. Physical and mechanical metallurgy of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  8. Human gingival fibroblast response to electropolished NiTi surfaces.

    PubMed

    Es-Souni, Martha; Fischer-Brandies, Helge; Es-Souni, Mohammed

    2007-01-01

    In the present study the in vitro biocompatibility of electropolished NiTi sheets is investigated. The assessment of cytotoxic effects due to potential Ni leaching from metal sheets was performed in direct contact with primary human fibroblast cultures using the 5-bromo-2'-deoxyuridine cell proliferation assay and morphologic studies via light microscopy and scanning electron microscopy. To assess toxic effects related to Ni-ions release, cells cultured in the presence of increasing concentrations of Ni(2+) (NiSO(4).6H(2)O) served as positive controls. It is shown that while the addition of NiSO(4) caused severe proliferation decrease (approximately 80%) and morphologic damage at a concentration of 50 mg/L Ni(2+) no negative effects were observed in fibroblasts cultured in the presence of electropolished NiTi sheets. The results are discussed in terms of surface topography effects on the biocompatibility of NiTi shape memory alloys. (c) 2006 Wiley Periodicals, Inc.

  9. Novel reactions of homodinuclear Ni2 complexes [Ni(RNPyS4)]2 with Fe3(CO)12 to give heterotrinuclear NiFe2 and mononuclear Fe complexes relevant to [NiFe]- and [Fe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Cao, Meng; Wang, Yong-Xiang

    2015-04-21

    The homodinuclear complexes [Ni(RNPyS4)]2 (; RNPyS4 = 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine; R = H, MeO, Cl, Br, i-Pr) were found to be prepared by reactions of the in situ generated Li2[Ni(1,2-S2C6H4)2] with 2,6-bis[(tosyloxy)methyl]pyridine and its substituted derivatives 2,6-bis[(tosyloxy)methyl]-4-R-pyridine. Further reactions of with Fe3(CO)12 gave both heterotrinuclear complexes NiFe2(RNPyS4)(CO)5 () and mononuclear complexes Fe(RNPyS4)(CO) (), unexpectedly. Interestingly, complexes and could be regarded as models for the active sites of [NiFe]- and [Fe]-hydrogenases, respectively. All the prepared complexes were characterized by elemental analysis, spectroscopy, and particularly for some of them, by X-ray crystallography. In addition, the electrochemical properties of and as well as the electrocatalytic H2 production catalyzed by and were investigated by CV techniques.

  10. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  11. Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors.

    PubMed

    Huang, Liang; Chen, Dongchang; Ding, Yong; Wang, Zhong Lin; Zeng, Zhengzhi; Liu, Meilin

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)2 nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)2/NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 mA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  12. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGES

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; ...

    2015-11-23

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  13. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  14. Chemical Ni-C Bonding in Ni-Carbon Nanotube Composite by a Microwave Welding Method and Its Induced High-Frequency Radar Frequency Electromagnetic Wave Absorption.

    PubMed

    Sha, Linna; Gao, Peng; Wu, Tingting; Chen, Yujin

    2017-11-22

    In this work, a microwave welding method has been used for the construction of chemical Ni-C bonding at the interface between carbon nanotubes (CNTs) and metal Ni to provide a different surface electron distribution, which determined the electromagnetic (EM) wave absorption properties based on a surface plasmon resonance mechanism. Through a serial of detailed examinations, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectrum, the as-expected chemical Ni-C bonding between CNTs and metal Ni has been confirmed. And the Brunauer-Emmett-Teller and surface zeta potential measurements uncovered the great evolution of structure and electronic density compared with CNTs, metal Ni, and Ni-CNT composite without Ni-C bonding. Correspondingly, except the EM absorption due to CNTs and metal Ni in the composite, another wide and strong EM absorption band ranging from 10 to 18 GHz was found, which was induced by the Ni-C bonded interface. With a thinner thickness and more exposed Ni-C interfaces, the Ni-CNT composite displayed less reflection loss.

  15. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  16. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys.

    PubMed

    Lu, Chenyang; Jin, Ke; Béland, Laurent K; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M; Stoller, Roger E; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  17. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    PubMed Central

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-01-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance. PMID:26829570

  18. Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Herzberger, Jana; Natalio, Filipe; Köhler, Oskar; Branscheid, Robert; Mugnaioli, Enrico; Ksenofontov, Vadim; Panthöfer, Martin; Kolb, Ute; Frey, Holger; Tremel, Wolfgang

    2016-05-01

    One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water. Electronic supplementary

  19. Field dependence of TB in NiO and (Ni, Zn)O Nanoclusters

    NASA Astrophysics Data System (ADS)

    Huh, Yung; Peck, M.; Skomski, R.; Zhang, R.; Kharel, P.; Allison, M.; Sellmyer, D.; Langell, M.

    2011-03-01

    Size dependence of magnetic properties of rocksalt NiO and Zn substituted NiO nanoparticles are investigated. Nanoparticle diameters are determined from 8 to 30 nm by XRD and AFM. Uncompensated spins at the nanoparticle surface contribute to superparametism at low temperatures and their blocking temperatures increase with stronger applied field. The field induced spin canting of the antiferromagnetic sublattices is a bulk effect and studied by the substitution of Zn with transition metal. Nanoparticles start exhibiting bulk magnetic behavior with size greater than 18 nm. Magnetization rotation of uncompensated spins under the magnetic field is mainly due to nanoscale size effect. The anisotropy of the nanoparticle is about four times larger than that of the bulk NiO. This research is supported by the NSF (CHE-1012366 and Nebraska MRSEC Grant DMR-0820521), the DOE Grant DE-FG02-04ER46152 (P. K. and D. J. S.) and NCMN.

  20. The Electrolytic Effect on the Catalytic Degradation of Dye and Nitrate Ion by New Ceramic Beads of Natural Minerals and TiO2

    NASA Astrophysics Data System (ADS)

    Sata, Akiyoshi; Sakai, Takako; Goto, Yusuke; Ohta, Toshiyuki; Hayakawa, Katumitu

    2007-05-01

    We have developed a new hybrid ceramic material "Taiyo" as a water processing catalyst. The porous ceramic has a core-shell structure. It decolorized completely the dye solutions as well as the wastewater output after primary water processing by microorganism in a pig farm. This new material showed the acceleration of water purification by applying electric voltage. The degradation of dyes and pig urine output from the primary treatments was accelerated by applying voltage. Nitrate in underground water was also decomposed only by applying voltage, while it was not decomposed without voltage.

  1. Surface oxidation of NiTi shape memory alloy.

    PubMed

    Firstov, G S; Vitchev, R G; Kumar, H; Blanpain, B; Van Humbeeck, J

    2002-12-01

    Mechanically polished NiTi alloy (50 at% Ni) was subjected to heat treatment in air in the temperature range 300-800 degrees C and characterised by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. Thermogravimetry measurements were carried out to investigate the kinetics of oxidation. The results of thermodynamic calculations were compared to the experimental observations. It was found that NiTi alloy exhibits different oxidation behaviour at temperatures below and above 500 degrees C. A Ni-free zone was found in the oxide layer for oxidation temperatures of 500 degrees C and 600 degrees C. The oxidation at 500 degrees C produces a smooth protective nickel-free oxide layer with a relatively small amount of Ni species at the air/oxide interface, which is in favour of good biocompatibility of NiTi implants. The oxidation mechanism for the NiTi shape memory alloy is discussed. Copyright 2002 Elsevier Science Ltd.

  2. Nano-sized Ni-doped carbon aerogel for supercapacitor.

    PubMed

    Lee, Yoon Jae; Jung, Ji Chul; Park, Sunyoung; Seo, Jeong Gil; Baeck, Sung-Hyeon; Yoon, Jung Rag; Yi, Jongheop; Song, In Kyu

    2011-07-01

    Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.

  3. Unusual reaction of [NiFe]-hydrogenases with cyanide.

    PubMed

    Hexter, Suzannah V; Chung, Min-Wen; Vincent, Kylie A; Armstrong, Fraser A

    2014-07-23

    Cyanide reacts rapidly with [NiFe]-hydrogenases (hydrogenase-1 and hydrogenase-2 from Escherichia coli) under mild oxidizing conditions, inhibiting the electrocatalytic oxidation of hydrogen as recorded by protein film electrochemistry. Electrochemical, EPR, and FTIR measurements show that the final enzyme product, formed within a second (even under 100% H2), is the resting state known as Ni-B, which contains a hydroxido-bridged species, Ni(III)-μ(OH)-Fe(II), at the active site. "Cyanide inhibition" is easily reversed because it is simply the reductive activation of Ni-B. This paper brings back into focus an observation originally made in the 1940s that cyanide inhibits microbial H2 oxidation and addresses the interesting mechanism by which cyanide promotes the formation of Ni-B. As a much stronger nucleophile than hydroxide, cyanide binds more rapidly and promotes oxidation of Ni(II) to Ni(III); however, it is quickly replaced by hydroxide which is a far superior bridging ligand.

  4. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2014-10-28

    The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less

  5. Biocompatilibity-related surface characteristics of oxidized NiTi.

    PubMed

    Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo

    2007-09-15

    In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible. Copyright 2007 Wiley Periodicals, Inc.

  6. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    PubMed

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  7. The Effects of Variations in El Niño and La Niña Patterns on World Food Markets

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Robertson, R.; Zhu, T.; Steinschneider, S.; Brown, C. M.

    2014-12-01

    The El-Niño Southern Oscillation (ENSO) is a variation in the sea surface temperature (SST) in the tropical eastern Pacific Ocean, and corresponding air surface pressure in the tropical western Pacific. During El Niño events (high SST), some global regions are wetter than normal, and others are dryer than normal. The inverse is true of La Niña events. El-Niño events are strongly correlated with drought extent and severity, especially in the Tropics. La Niña events are correlated with drought in other areas, though the global effect is less significant than that of El-Niños. GCM-based studies exploring changes in atmospheric mechanisms suggest that El Niño events may become more frequent in the next century, while those exploring changes in oceanic mechanisms suggest that La-Niñas may become more frequent. Overall, the IPCC Fifth Assessment Report concludes that there is "low confidence" in our ability to project future ENSO patterns. In order to test the effect of changing ENSO patterns on global food production, we have developed a Markov Chain to generate multiple scenarios of ENSO frequency and strength, and explore each generated timeseries using the IMPACT Model, which is designed to examine alternative futures for global food supply, demand, trade, prices, and food security. Results identify the potential consequences of changes in ENSO patterns on global food production and markets.

  8. Structural diversity in Ni II cluster chemistry: Ni 5, Ni 6, and {NiNa 2} n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid

    DOE PAGES

    Perlepe, Panagiota S.; Cunha-Silva, Luis; Bekiari, Vlasoula; ...

    2016-05-23

    The employment of the fluorescent bridging and chelating ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH 2) in Ni II cluster chemistry has led to a series of pentanuclear and hexanuclear compounds with different structural motifs, magnetic and optical properties, as well as an interesting 1-D coordination polymer. Synthetic parameters such as the inorganic anion present in the NiX 2 starting materials (X = ClO 4 - or Cl -), the reaction solvent and the nature of the organic base employed for the deprotonation of nacbH 2 were also proved to be structure-directing components. Undoubtedly, the reported results demonstrate the rich coordination chemistry ofmore » nacbH 2 in the presence of Ni II metal ions and the ability of this chelate to adopt a variety of different modes, thus fostering the formation of high-nuclearity molecules with many physical properties.« less

  9. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-01

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  10. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors.

    PubMed

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-14

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g(-1) at a high current density of 6 A g(-1), a good rate capability even at high current density (760 F g(-1) at 20 A g(-1)) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  11. Enhanced hydrogen storage capacity of Ni/Sn-coated MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Varshoy, Shokufeh; Khoshnevisan, Bahram; Behpour, Mohsen

    2018-02-01

    The hydrogen storage capacity of Ni-Sn, Ni-Sn/multi-walled carbon nanotube (MWCNT) and Ni/Sn-coated MWCNT electrodes was investigated by using a chronopotentiometry method. The Sn layer was electrochemically deposited inside pores of nanoscale Ni foam. The MWCNTs were put on the Ni-Sn foam with nanoscale porosities using an electrophoretic deposition method and coated with Sn nanoparticles by an electroplating process. X-ray diffraction and energy dispersive spectroscopy results indicated that the Sn layer and MWCNTs are successfully deposited on the surface of Ni substrate. On the other hand, a field-emission scanning electron microscopy technique revealed the morphology of resulting Ni foam, Ni-Sn and Ni-Sn/MWCNT electrodes. In order to measure the hydrogen adsorption performed in a three electrode cell, the Ni-Sn, Ni-Sn/MWCNT and Ni/Sn-coated MWCNT electrodes were used as working electrodes whereas Pt and Ag/AgCl electrodes were employed as counter and reference electrodes, respectively. Our results on the discharge capacity in different electrodes represent that the Ni/Sn-coated MWCNT has a maximum discharge capacity of ˜30 000 mAh g-1 for 20 cycles compared to that of Ni-Sn/MWCNT electrodes for 15 cycles (˜9500 mAh g-1). By increasing the number of cycles in a constant current, the corresponding capacity increases, thereby reaching a constant amount for 20 cycles.

  12. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Ma, Chenglong

    2018-05-01

    Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.

  13. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway.

    PubMed

    Krause, Mary E; Glass, Amanda M; Jackson, Timothy A; Laurence, Jennifer S

    2013-01-07

    The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.

  14. Spectroscopic investigation of Ni speciation in hardened cement paste.

    PubMed

    Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M

    2006-04-01

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.

  15. Comparative study on microstructure and martensitic transformation of aged Ni-rich NiTi and NiTiCo shape memory alloys

    NASA Astrophysics Data System (ADS)

    El-Bagoury, Nader

    2016-05-01

    In this article the influence of aging heat treatment conditions of 250, 350, 450 and 550 °C for 3 h on the microstructure, martensitic transformation temperatures and mechanical properties of Ni51Ti49Co0 and Ni47 Ti49Co4 shape memory alloys was investigated. This comparative study was carried out using X-ray diffraction analysis, scanning electron microscope, energy dispersive spectrometer, differential scanning calorimeter and Vickers hardness tester. The results show that the microstructure of both aged alloys contains martensite phase and Ti2Ni in addition to some other precipitates. The martensitic transformation temperature was increased steadily by increasing the ageing temperature and lowering the value of valence electron number (ev/a) and concentration. Moreover, the hardness measurements were gradually increased at first by increasing the aging temperature from 250 to 350 °C. Further elevating in aging temperature to 450 and 550 °C decreases the hardness value.

  16. Durability of nickel-metal hydride (Ni-MH) battery cathode using nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite

    NASA Astrophysics Data System (ADS)

    Béléké, Alexis Bienvenu; Higuchi, Eiji; Inoue, Hiroshi; Mizuhata, Minoru

    2014-02-01

    We report the durability of the optimized nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite prepared by liquid phase deposition (LPD) as cathode active materials in nickel metal hydride (Ni-MH) secondary battery. The positive electrode was used for charge-discharge measurements under two different current: 5 mA for 300 cycles in half-cell conditions, and 5.8 mA for 569 cycles in battery regime, respectively. The optimized Ni-Al LDH/C composite exhibits a good lifespan and stability with the capacity retention above 380 mA h gcomp-1 over 869 cycles. Cyclic voltammetry shows that the α-Ni(OH)2/γ-NiOOH redox reaction is maintained even after 869 cycles, and the higher current regime is beneficial in terms of materials utilization. X-ray diffraction (XRD) patterns of the cathode after charge and discharge confirms that the α-Ni(OH)2/γ-NiOOH redox reaction occurs without any intermediate phase.

  17. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  18. A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of (CO)3Fe(μ-StBu)3Ni{SC6H3-2,6-(mesityl)2} and reversible CO addition at the Ni site

    PubMed Central

    Ohki, Yasuhiro; Yasumura, Kazunari; Ando, Masaru; Shimokata, Satoko; Tatsumi, Kazuyuki

    2010-01-01

    A [NiFe] hydrogenase model compound having a distorted trigonal-pyramidal nickel center, (CO)3Fe(μ-StBu)3Ni(SDmp), 1 (Dmp = C6H3-2,6-(mesityl)2), was synthesized from the reaction of the tetranuclear Fe-Ni-Ni-Fe complex [(CO)3Fe(μ-StBu)3Ni]2(μ-Br)2, 2 with NaSDmp at -40 °C. The nickel site of complex 1 was found to add CO or CNtBu at -40 °C to give (CO)3Fe(StBu)(μ-StBu)2Ni(CO)(SDmp), 3, or (CO)3Fe(StBu)(μ-StBu)2Ni(CNtBu)(SDmp), 4, respectively. One of the CO bands of 3, appearing at 2055 cm-1 in the infrared spectrum, was assigned as the Ni-CO band, and this frequency is comparable to those observed for the CO-inhibited forms of [NiFe] hydrogenase. Like the CO-inhibited forms of [NiFe] hydrogenase, the coordination of CO at the nickel site of 1 is reversible, while the CNtBu adduct 4 is more robust. PMID:20147622

  19. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2011-06-01

    A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5mm. (4) The size of particles between 0.5 and 2mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  1. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window.

    PubMed

    Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng

    2016-03-16

    The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.

  2. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates

    PubMed Central

    2013-01-01

    Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni single segment has a mean length of around 290 nm for the Co54Ni46 alloy, whereas the length of the Co85Ni15 segments was around 430 nm. The composition and crystalline structure of each Co-Ni nanowire segment were determined by transmission electron microscopy and selected area electron diffraction techniques. The employed single-bath electrochemical nanowire growth method allows for tuning both the composition and crystalline structure of each individual Co-Ni segment. The room temperature magnetic behavior of the multisegmented Co-Ni nanowire arrays is also studied and correlated with their structural and morphological properties. PMID:23735184

  3. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors.

    PubMed

    Zou, Xu; Sun, Qing; Zhang, Yuxin; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Yang, Lan; Zou, Xiaoxin

    2018-03-14

    Amorphous Ni-Mn bimetallic hydroxide film on the three-dimensional nickle foam (NF)-supported conductive Ni 3 S 2 nanosheets (denoted as Ni-Mn-OH@Ni 3 S 2 /NF) is successfully synthesized by an ultrafast process (5 s). The fascinating structural characteristic endows Ni-Mn-OH@Ni 3 S 2 /NF electrodes better electrochemical performance. The specific capacitance of 2233.3 F g -1 at a current density of 15 A g -1 can achieve high current density charge and discharge at 20/30 A g -1 that the corresponding capacitance is 1529.16 and 1350 F g -1 , respectively. As well as good cycling performance after 1000 cycles can maintain 72% at 15 A g -1 . The excellent performance can be attributed to unique surface modification nanostructures and the synergistic effect of the bimetallic hydroxide film. The impressive results provide new opportunity to produce advanced electrode materials by simple and green route and this material is expected to apply in high energy density storage systems.

  4. Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L; Chen, DC; Ding, Y

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)(2) nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)(2)/ NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 rnA/cm(2), with a capacitance retention of 79% as the cyclingmore » current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.« less

  5. Free-energy based pair-additive potentials for bulk Ni-Al systems: Application to study Ni-Al reactive alloying

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Rice, Betsy M.

    2012-09-01

    We present new numerical pair-additive Al, Ni, and Al-Ni potentials by force-matching (FM) ionic force and virial data from single (bulk liquid) phase ab initio molecular dynamics (MD) simulations using the Born-Oppenheimer method. The potentials are represented by piece-wise functions (splines) and, therefore, are not constrained to a particular choice of analytical functional form. The FM method with virial constraint naturally yields a potential which maps out the ionic free-energy surface of the reference ensemble. To further improve the free energetics of the FM ensemble, the FM procedure is modified to bias the potentials to reproduce the experimental melting temperatures of the reference (FCC-Al, FCC-Ni, B2-NiAl) phases, the only macroscopic data included in the fitting set. The performance of the resultant potentials in simulating bulk metallic phases is then evaluated. The new model is applied to perform MD simulations of self-propagating exothermic reaction in Ni-Al bilayers at P = 0-5 GPa initiated at T = 1300 K. Consistent with experimental observations, the new model describes realistically a sequence of peritectic phase transformations throughout the reaction and at a realistic rate. The reaction proceeds through interlayer diffusion of Al and Ni atoms at the interface with formation of B2-NiAl in the Al melt. Such material responses have, in the past, been proven to be difficult to observe with then-existing potentials.

  6. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni 0.5 Co 0.5 , Ni 0.5 Fe 0.5 , Ni 0.8 Fe 0.2 and Ni 0.8 Cr 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2016-01-01

    The distribution of migration energies of vacancies and interstitials in Ni 0.5Fe 0.5has a region of overlap, an indication of their comparable mobility compared to pure Ni (indicated by dotted line), which will greatly facilitate the recombination of Frenkel pairs.

  7. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    DOE PAGES

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; ...

    2016-02-01

    We report that energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters farmore » exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.« less

  8. Novel topotactically transformed carbon-CoO-NiO-NiCo₂O₄ nanosheet hybrid hetero-structured arrays as ultrahigh performance supercapacitors.

    PubMed

    Wang, Hai; Guo, Junling; Qing, Chen; Sun, Daming; Wang, Bixiao; Tang, Yiwen

    2014-08-14

    A novel carbon-CoO-NiO-NiCo2O4 integrated electrode has been designed by reducing the hetero-structured NiCo2O4 nanosheet array with C2H2 on the nickel foam at a low temperature of 350 °C. The topotactical transformation from NiCo2O4 to the integrated electrode has been first conceived and investigated. Such unique nanoarchitectures exhibit excellent electrochemical performance with ultrahigh capacitance and desirable cycle life at high rates.

  9. Synthesis and electrochemical properties of NiO nanospindles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn

    2014-02-01

    Graphical abstract: NiO nanospindles with a different electrochemical activity as compared to those previous reports were synthesized via an agglomeration–dissolution–recrystallization growth process without the addition of any surfactant. - Highlights: • NiO nanospindles were synthesized without the addition of any surfactant. • The agglomeration–dissolution–recrystallization growth process was used to explain the precursors’ formation process of the spindle-like NiO. • As-obtained spindle-like NiO showed a different electrochemical activity as compared to those previous reports. - Abstract: NiO nanospindles were successfully synthesized via a hydrothermal and post-treatment method. The as-synthesized nanospindles were about several hundred nanometers in width and about one micrometermore » in length. X-ray diffraction (XRD) analysis revealed that the spindle-like structure was cubic NiO phase crystalline. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that these NiO nanospindles were of single crystal nature. On the basis of time-dependent experiments, a possible agglomeration–dissolution–recrystallization growth process was proposed to explain the formation process of the spindle-like precursors. The cyclic voltammetry (CV) measurement showed that the as-prepared spindle-like NiO exhibited a pseudo-capacitance behavior.« less

  10. A new family of Ni4 and Ni6 aggregates from the self-assembly of [Ni2] building units: role of carboxylate and carbonate bridges.

    PubMed

    Pait, Moumita; Bauzá, Antonio; Frontera, Antonio; Colacio, Enrique; Ray, Debashis

    2015-05-18

    Carboxylato (R = (t)Bu and Et) and carbonato bridges have been utilized for nickel(II)-based aggregates [Ni4(μ-H2L)2(μ3-OH)2(μ1,3-O2CBu(t))2](NO3)2·H2O·2DMF (1·H2O·2DMF), Ni4(μ-(hy)HL)2(μ3-OMe)2(μ1,1-N3)2(μ1,3-O2CEt)2]·4H2O (2·4H2O), and Ni6(μ4-L)(μ3-L)2(μ6-CO3)(H2O)8](ClO4)·9H2O (3·9H2O). Building blocks [Ni2(μ-H2L)](3+), [Ni2(μ-(hy)HL)](3+), and [Ni2(μ-L)](+) originating from [Ni2(μ-H2L)](3+) have been trapped in these complexes. The complexes have been characterized by X-ray crystallography, magnetic measurements, and density functional theory (DFT) analysis. In 1, the magnetic interactions are transmitted through the μ3-phenoxido/μ3-hydroxido/syn-syn-(t)BuCO2(-), μ3-phenoxido/μ3- hydroxido, and double μ3-phenoxido/double μ3-hydroxido bridges with J = +11.4 cm(-1), J1 = -2.1 cm(-1), and J2 = -2.8 cm(-1), respectively. In 2, the interactions are ferromagnetic, with J1 = +27.5 cm(-1), J2 = +20.62 cm(-1), and J3 = +1.52 cm(-1) describing the magnetic couplings through the μ-phenoxidoo/μ3-methoxido, μ-azido/μ3-methoxido, and μ3-methoxido/μ3-methoxido exchange pathways, respectively. Complex 3 gives J1 = -3.30 cm(-1), J2 = +1.7 cm(-1), and J3 = -12.8 cm(-1) for exchange pathways mediated by μ-phenoxido/μ-carbonato, μ-alkoxido/μ-alkooxido/μ-syn-syn-carbonato, and the μ-phenoxido/μ-carbonato, respectively. Interestingly, 1 and 3 below 20 K and 35 K, respectively, show an abrupt increase of the χMT product to reach a magnetic-field-dependent maximum, which is associated with a slightly frequency-dependent out-of-phase alternating-current peak. DFT calculations have also been performed on 1-3 to explain the exchange interaction mechanisms and to support the magnitude and sign of the magnetic coupling constants between the Ni(II) ions.

  11. Porous NiTi for bone implants: a review.

    PubMed

    Bansiddhi, A; Sargeant, T D; Stupp, S I; Dunand, D C

    2008-07-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.

  12. Porous NiTi for bone implants: A review

    PubMed Central

    Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.

    2011-01-01

    NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912

  13. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  14. Concerto catalysis--harmonising [NiFe]hydrogenase and NiRu model catalysts.

    PubMed

    Ichikawa, Koji; Nonaka, Kyoshiro; Matsumoto, Takahiro; Kure, Bunsho; Yoon, Ki-Seok; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2010-03-28

    This communication reports the successful merging of the chemical properties of a natural [NiFe]hydrogenase (Desulfovibrio vulgaris Miyazaki F) and our previously reported [NiRu] hydrogenase-mimic. The catalytic activity of both the natural enzyme and the mimic is almost identical, with the exception of working pH ranges, and this allows us to use them simultaneously in the same reaction flask. In such a manner, isotope exchange between D(2) and H(2)O could be conducted over an extended pH range (about 2-10) in one pot under mild conditions at ambient temperature and pressure.

  15. Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe{sub 2}O{sub 3}-NiO core/shell hybrid nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ashutosh K., E-mail: ashuvishen@gmail.com, E-mail: aksingh@bose.res.in; Mandal, Kalyan

    The present work reports on fabrication and supercapacitor applications of a core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures (HNs) electrode. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures have been fabricated through a two step method (nanowire fabrication and their controlled oxidation). The 1D hybrid nanostructure consists of highly porous shell layer (redox active materials NiO and Fe{sub 2}O{sub 3}) and the conductive core (FeNi nanowire). Thus, the highly porous shell layer allows facile electrolyte diffusion as well as faster redox reaction kinetics; whereas the conductive FeNi nanowire core provides the proficient express way for electrons to travel to the current collector,more » which helps in the superior electrochemical performance. The core/shell Fe-Ni/Fe{sub 2}O{sub 3}-NiO hybrid nanostructures electrode based supercapacitor shows very good electrochemical performances in terms of high specific capacitance nearly 1415 F g{sup −1} at a current density of 2.5 A g{sup −1}, excellent cycling stability and rate capability. The high quality electrochemical performance of core/shell hybrid nanostructures electrode shows its potential as an alternative electrode for forthcoming supercapacitor devices.« less

  16. Formation of β-NiAl Phase During Casting of a Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Detrois, Martin; Jablonski, Paul D.

    2018-04-01

    A high-refractory Ni-based superalloy prototype was melted on a research scale while simulating industry practices. Ingots were vacuum induction melted and subjected to a computationally optimized homogenization heat treatment prior to fabrication which consisted of forging and hot rolling. Failure of one of the ingots at the early stage of the forging process was attributed to the precipitation of the β-NiAl phase during melting which stabilized the eutectic constituent.

  17. From Mixed-Metal MOFs to Carbon-Coated Core-Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to CoxNi1-x@CoyNi1-yO@C for the Oxygen Evolution Reaction.

    PubMed

    Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui

    2017-05-01

    Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated Co x Ni 1-x @Co y Ni 1-y O with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the Co x Ni 1-x @Co y Ni 1-y O nanoparticles in small size. The Co x Ni 1-x @Co y Ni 1-y O@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.

  18. Fabrication and Gas-Sensing Properties of Ni-Silicide/Si Nanowires.

    PubMed

    Hsu, Hsun-Feng; Chen, Chun-An; Liu, Shang-Wu; Tang, Chun-Kai

    2017-12-01

    Ni-silicide/Si nanowires were fabricated by atomic force microscope nano-oxidation on silicon-on-insulator substrates, selective wet etching, and reactive deposition epitaxy. Ni-silicide nanocrystal-modified Si nanowire and Ni-silicide/Si heterostructure multi-stacked nanowire were formed by low- and high-coverage depositions of Ni, respectively. The Ni-silicide/Si Schottky junction and Ni-silicide region were attributed high- and low-resistance parts of nanowire, respectively, causing the resistance of the Ni-silicide nanocrystal-modified Si nanowire and the Ni-silicide/Si heterostructure multi-stacked nanowire to be a little higher and much lower than that of Si nanowire. An O 2 sensing device was formed from a nanowire that was mounted on Pt electrodes. When the nanowires exposed to O 2 , the increase in current in the Ni-silicide/Si heterostructure multi-stacked nanowire was much larger than that in the other nanowires. The Ni-silicide nanocrystal-modified Si nanowire device had the highest sensitivity. The phenomenon can be explained by the formation of a Schottky junction at the Ni-silicide/Si interface in these two types of Ni-Silicide/Si nanowire and the formation of a hole channel at the silicon nanowire/native oxide interface after exposing the nanowires to O 2 .

  19. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the

  20. Atomistic Modeling of Pd Site Preference in NiTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.

  1. Phosphine-functionalized NHC Ni(ii) and Ni(0) complexes: synthesis, characterization and catalytic properties.

    PubMed

    Rull, S G; Rama, R J; Álvarez, E; Fructos, M R; Belderrain, T R; Nicasio, M C

    2017-06-13

    Two families of nickel complexes bearing chelating diphenylphosphine-functionalized NHC ligands [Ni II (ArNHCPPh 2 )(allyl)]Cl 1a (Ar = Mes); 1b, (Ar = 2,6-iPr 2 -C 6 H 3 ) and [Ni 0 (ArNHCPPh 2 )(alkene)] 2a (Ar = 2,6-iPr 2 -C 6 H 3 , alkene = styrene); 2b (Ar = 2,6-iPr 2 -C 6 H 3 , alkene = diethyl fumarate) have been prepared and fully characterized. VT-NMR experiments in solution reveal that the allyl derivatives 1a-b are stereochemically nonrigid. The solid-state structure of the Ni 0 derivative 2b is also reported. These complexes display interesting catalytic properties in various cross-coupling reactions. The precatalyst [Ni 0 (ArNHCPPh 2 )(styrene)] 2a was found to be the most active system. The bulkiness of the N-substituent on the imidazole ring and the low oxidation state of the metal center in 2a accounted for its enhanced catalytic performance. This system catalyzed effectively the coupling of (hetero)aryl chlorides with a range of nucleophiles including Grignard reagents, boronic acids, secondary amines and indoles.

  2. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-12-01

    SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.

  3. Adsorption Characteristics of LaNi 5Particles

    NASA Astrophysics Data System (ADS)

    Song, M. Y.; Park, H. R.

    1997-11-01

    Nitrogen adsorption on an intermetallic compound, LaNi 5, was studied before and after activation and after hydriding-dehydriding cycling. The specific surface area of activated LaNi 5was 0.271±0.004 m 2g -1. Adsorption and desorption isotherms of activated LaNi 5were obtained. The adsorption isotherm was similar to type II among the five types of isotherms classified by S. Brunauer, L. S. Deming, W S. Deming, and E. Teller ( J. Am. Chem. Soc.62, 1723, 1940). Its hysteresis curve had the type B form among de Boer's five types of hysteresis. Desorption pore-size analyses showed that the activated LaNi 5had only a few mesopores, the diameters of which were around 20-110 Å. The average adsorption rate of the activated LaNi 5showed a first-order dependence on nitrogen pressure at 77 K.

  4. Nanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.

    PubMed

    Xu, Shusheng; Li, Xiaolin; Yang, Zhi; Wang, Tao; Jiang, Wenkai; Yang, Chao; Wang, Shuai; Hu, Nantao; Wei, Hao; Zhang, Yafei

    2016-10-10

    Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowires to form ultrathin nanosheets and porous nanostructures. The as-designed free-standing Ni@Ni(OH) 2 film electrodes display a significantly enhanced volumetric capacity (462 C/cm 3 at 0.5 A/cm 3 ) and excellent cycle stability. Moreover, the as-developed hybrid supercapacitor employed Ni@Ni(OH) 2 film as positive electrode and graphene-carbon nanotube film as negative electrode exhibits a high volumetric capacitance of 95 F/cm 3 (at 0.25 A/cm 3 ) and excellent cycle performance (only 14% capacitance reduction for 4500 cycles). Furthermore, the volumetric energy density can reach 33.9 mWh/cm 3 , which is much higher than that of most thin film lithium batteries (1-10 mWh/cm 3 ). This work gives an insight for designing high-volume three-dimensional electrodes and paves a new way to construct binder-free film electrode for high-performance hybrid supercapacitor applications.

  5. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  6. Correlation between charge input and cycle life of MgNi electrode for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Ruggeri, Stéphane; Roué, Lionel

    Amorphous MgNi material has been prepared by mechanically alloying magnesium and nickel powders for 10 h. Its cycle life as a negative electrode for nickel-metal hydride (Ni-MH) batteries has been studied with charge inputs varying from 0 to 600 mAh/g. For charge inputs lower than 400 mAh/g, the first cycle discharge capacity is superior to the charge input capacity. This surplus discharge capacity can be associated with the alloy oxidation to Mg(OH) 2 and Ni(OH) 2. For charge inputs higher than 400 mAh/g, the initial discharge capacity becomes inferior to the charge input capacity due to the progressive decrease of the charge efficiency related to the hydrogen evolution side reaction. From the second charge/discharge cycle, no additional discharge capacity appears and no discharge capacity degradation occurs for charge inputs inferior or equal to 233 mAh/g. In contrast, for higher charge input values, an important decay in the discharge capacity appears, which is accentuated with increasing charge input. The thresholds charge input of 233 mAh/g corresponds to an amount of hydrogen absorbed into the alloy of 0.8 wt.% (MgNiH 0.7). For higher absorbed hydrogen amounts, it is assumed that extended electrode pulverization occurs, which breaks the passive surface layer of Mg(OH) 2 formed during the first charge/discharge cycle. This creates unprotected fresh MgNi surfaces and consequently, leads to electrode capacity degradation. The stability of the MgNi electrode for absorbed hydrogen content lower than 0.8 wt.% may be related to its amorphous character, which favors a gradual volume expansion upon hydrogen absorption in contrast to crystalline compounds characterized by an abrupt α-to-β lattice expansion.

  7. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.

    PubMed

    Lee, Daeho; Paeng, Dongwoo; Park, Hee K; Grigoropoulos, Costas P

    2014-10-28

    We introduce a method for direct patterning of Ni electrodes through selective laser direct writing (LDW) of NiO nanoparticle (NP) ink. High-resolution Ni patterns are generated from NiO NP thin films by a vacuum-free, lithography-free, and solution-processable route. In particular, a continuous wave laser is used for the LDW reductive sintering of the metal oxide under ambient conditions with the aid of reducing agents in the ink solvent. Thin (∼ 40 nm) Ni electrodes of glossy metallic surfaces with smooth morphology and excellent edge definition can be fabricated. By applying this method, we demonstrate a high transmittance (>87%), electrically conducting panel for a touch screen panel application. The resistivity of the Ni electrode is less than an order of magnitude higher compared to that of the bulk Ni. Mechanical bending test, tape-pull test, and ultrasonic bath test confirm the robust adhesion of the electrodes on glass and polymer substrates.

  8. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    NASA Astrophysics Data System (ADS)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  9. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  10. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  11. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2015-12-01

    NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux

  12. The Ho-Ni-Ge system: Isothermal section and new rare-earth nickel germanides

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Yuan, Fang; Mozharivskyj, Y.; Pani, M.; Provino, A.; Manfrinetti, P.

    2015-05-01

    The Ho-Ni-Ge system has been investigated at 1070 K and up to 60 at% Ho by X-ray diffraction and microprobe analyses. Besides the eight known compounds, HoNi5Ge3 (YNi5Si3-type), HoNi2Ge2 (CeAl2Ga2-type), Ho2NiGe6 (Ce2CuGe6-type), HoNiGe3 (SmNiGe3-type), HoNi0.2÷0.6Ge2 (CeNiSi2-type), Ho37÷34Ni6÷24Ge57÷42 (AlB2-type), HoNiGe (TiNiSi-type), Ho3NiGe2 (La3NiGe2-type), the ternary system contains four new compounds: Ho3Ni11Ge4 (Sc3Ni11Ge4-type), HoNi3Ge2 (ErNi3Ge2-type), Ho3Ni2Ge3 (Hf3Ni2Si3-type) and Ho5Ni2Ge3 (unknown structure). Quasi-binary solid solutions were observed at 1070 K for Ho2Ni17, HoNi5, HoNi7, HoNi3, HoNi2, HoNi and Ho2Ge3, but no detectable solubility was found for the other binary compounds in the Ho-Ni-Ge system. Based on the magnetization measurements, the HoNi5Ge3, HoNi3Ge2 and Ho3Ni11Ge4 (and isostructural {Tb, Dy}3Ni11Ge4) compounds have been found to show paramagnetic behavior down to 5 K, whereas Ho3Ni2Ge3 exhibits an antiferromagnetic transition at 7 K. Additionally, the crystal structure of the new isostructural phases {Y, Yb}Ni3Ge2 (ErNi3Ge2-type), Er3Ni11Ge4 (Sc3Ni11Ge4-type) and {Y, Tb, Dy, Er, Tm}3Ni2Ge3 (Hf3Ni2Si3-type) has been also investigated.

  13. Eutectic superalloys strengthened by sigma, Ni3CB lamellae and gamma prime, Ni3Al precipitates

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.

    1973-01-01

    By means of a screening and solidification optimization study of certain alloys located on the gamma-sigma liquidus surface within the Ni-Cb-Cr-Al system, alloys with high temperature properties superior to those of all known superalloys were defined. One alloy, Ni - 19.7w/o Cb - 6.0w/o Cr - 2.5w/o Al, directionally solidified at 3 cm/hr met or exceeded each program goal. A second alloy, Ni-21.75 w/o Cb-2.55 w/o Al, although deficient in its inherent oxidation resistance, met the other program goals and combined a remarkable insensitivity of composite microstructure to solidification parameters with excellent low temperature toughness. This investigation demonstrated that useful properties for gas turbine airfoil application have been achieved by reinforcing a strong and tough gamma solid solution matrix containing precipitated gamma prime by a lamellar intermetallic compound Ni3 Cb having greater strength at elevated temperature.

  14. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  15. Corrosion and wear properties of Zn-Ni and Zn-Ni-Al2O3 multilayer electrodeposited coatings

    NASA Astrophysics Data System (ADS)

    Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A.; Poursalehi, R.

    2017-09-01

    Zn-Ni and Zn-Ni-Al2O3 multilayer coatings with 32, 128, and 512 layers were electroplated on a low carbon steel substrate by pulse electrodeposition under alternative changes in the duty cycle between 20% and 90% and a constant frequency of 250 Hz. Corrosion behavior was investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) and wear behavior of the coatings was evaluated by a pin on disk test. The results showed that the corrosion resistance of coatings was improved by increasing the number of layers (the decrease in layer thickness) as well as the presence of alumina nanoparticles. The lowest corrosion current density corresponds to Zn-Ni-Al2O3 with 512 layers equal to 3.74 µA cm-2. Increasing the number of layers in the same total thickness and the presence of alumina nanoparticles within the coating also leads to the improvement in wear resistance of the samples. The coefficient of friction decreased with increasing number of layers and the lowest coefficient of friction (0.517) corresponds to Zn-Ni-Al2O3 coating with 512 layers. Wear mechanism of Zn-Ni coatings with a different number of layers is adhesive while in the Zn-Ni-Al2O3 coatings wear mechanism is a combination of adhesive and abrasive wear, where by increasing the number of the layers to 512 abrasive wear mechanism becomes dominant.

  16. Impacts of El Niño and El Niño Modoki on the precipitation in Colombia

    NASA Astrophysics Data System (ADS)

    Córdoba Machado, Samir; Palomino Lemus, Reiner; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda; Jesús Esteban Parra, María

    2015-04-01

    The influence of the tropical Pacific SST on precipitation in Colombia is examined using 341 stations covering the period 1979-2009. Through a Singular Value Decomposition (SVD) the two main coupled variability modes show SST patterns clearly associated with El Niño (EN) and El Niño Modoki (ENM), respectively, presenting great coupling strength with the corresponding seasonal precipitation modes in Colombia. The results reveal that, mainly in winter and summer, EN and ENM events are associated with a significant rainfall decrease over northern, central, and western Colombia. The opposite effect occurs in some localities during spring, summer, and autumn. The southwestern region of Colombia exhibits an opposite behaviour connected to EN and ENM events during years when both events do not coexist, showing that the seasonal precipitation response is not linear. The Partial Regression Analysis used to quantify separately the influence of the two types of ENSO on seasonal precipitation shows the importance of both types in the reconstruction process. The results obtained in this study establish the base for modeling and forecasting the seasonal precipitation in Colombia using the tropical Pacific SST associated with El Niño and El Niño Modoki. Keywords: Seasonal precipitation, Tropical Pacific SST, El Niño, El Niño Modoki, Singular Value Decomposition, Colombia. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  17. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    PubMed Central

    Gravina, Marco Abdo; Canavarro, Cristiane; Elias, Carlos Nelson; Chaves, Maria das Graças Afonso Miranda; Brunharo, Ione Helena Vieira Portella; Quintão, Cátia Cardoso Abdo

    2014-01-01

    Objective This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni) Titanium (Ti) conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek), to the wires with addition of copper (CuNiTi 27ºC and 35ºC, Ormco) after traction test. Methods The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV) with EDS system of microanalysis (energy dispersive spectroscopy). Results The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu). As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27ºC and 35ºC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi.4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27ºC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35ºC wires presented inadequate wire-surface roughness in the fracture region. Conclusion CuNiTi 35ºC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region. PMID:24713562

  18. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files - An In-Vitro SEM study.

    PubMed

    Reddy, J M V Raghavendra; Latha, Prasanna; Gowda, Basavana; Manvikar, Varadendra; Vijayalaxmi, D Benal; Ponangi, Kalyana Chakravarthi

    2014-02-01

    Predictable successful endodontic therapy depends on correct diagnosis, effective cleaning, shaping and disinfection of the root canals and adequate obturation. Irrigation serves as a flush to remove debris, tissue solvent and lubricant from the canal irregularities; however these irregularities can restrict the complete debridement of root canal by mechanical instrumentation.Various types of hand and rotary instruments are used for the preparation of the root canal system to obtain debris free canals. The purpose of this study was to evaluate the amount of smear layer and debris removal on canal walls following the using of manual Nickel-Titanium (NiTi) files compared with rotary ProTaperNiTi files using a Scanning Electron Microscope in two individual groups. A comparative study consisting of 50 subjects randomized into two groups - 25 subjects in Group A (manual) and 25 subjects in Group B (rotary) was undertaken to investigate and compare the effects of smear layer and debris between manual and rotary NiTi instruments. Chi square test was used to find the significance of smear layer and debris removal in the coronal, middle and apical between Group A and Group B. Both systems of Rotary ProTaperNiTi and manual NiTi files used in the present study, did not create completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary ProTaperNiTi instruments. Rotary instruments were less time consuming when compared to manual instruments. Instrument separation was not found to be significant with both the groups. Both systems of Rotary ProTaperNiTi and manual NiTi files used did not produce completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary protaper instruments. How to cite the article: Reddy JM, Latha P, Gowda B, Manvikar V, Vijayalaxmi DB, Ponangi KC. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni-Ti files

  19. Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires.

    PubMed

    Mane, Pratap P; Pawar, Renuka; Ganiger, Chanamallappa; Phaphe, Sandesh

    2012-05-01

    The aim of this study was to see the effect of topical fluoride on surface texture on nickel-titanium and copper-nickel-titanium orthodontic archwires. Preformed rectangular NiTi and CuNiTi wires were immersed in in fluoride solution and artificial saliva (control) for 90 minutes at 37°C. after immersion optical microscope was used to see the fluoride effect on the wire topography. The acidulated fluoride agents appeared to cause greater corrosive effects as compared to the neutral fluoride agents. The result suggest that using topical fluoride agents leads to corrosion of surface topography indirectly affecting the mechanical properties of the wire that will lead to prolonged orthodontic treatment. The use of topical fluoride agents has to be limited in patients with prolonged orthodontic treatment as it causes the corrosion of the NiTi and CuNiTi wires.

  20. Synthesis of hierarchical Ni(OH)(2) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water.

    PubMed

    Cheng, Bei; Le, Yao; Cai, Weiquan; Yu, Jiaguo

    2011-01-30

    Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    PubMed

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Tuning Surface Electronic Configuration of NiFe LDHs Nanosheets by Introducing Cation Vacancies (Fe or Ni) as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Wang, Yanyong; Qiao, Man; Li, Yafei; Wang, Shuangyin

    2018-04-01

    Intrinsically inferior electrocatalytic activity of NiFe layered double hydroxides (LDHs) nanosheets is considered as a limiting factor to inhibit the electrocatalytic properties for oxygen evolution reaction (OER). Proper defect engineering to tune the surface electronic configuration of electrocatalysts may significantly improve the intrinsic activity. In this work, the selective formation of cation vacancies in NiFe LDHs nanosheets is successfully realized. The as-synthesized NiFe LDHs-V Fe and NiFe LDHs-V Ni electrocatalysts show excellent activity for OER, mainly attributed to the introduction of rich iron or nickel vacancies in NiFe LDHs nanosheets, which efficiently tune the surface electronic structure increasing the adsorbing capacity of OER intermediates. Density functional theory (DFT) computational results also further indicate that the OER catalytic performance of NiFe LDHs can be pronouncedly improved by introducing Fe or Ni vacancies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Wang, Miaosheng; Pan, Chunxu

    2017-04-01

    A kind of sandwich-like NiCo2O4/rGO/NiO heterostructure composite has been successfully anchored on nickel foam substrate via a three-step hydrothermal method with successive annealing treatment. The smart combination of NiCo2O4, reduced graphene oxide (rGO), and NiO nanostructure in the sandwich-like nano architecture shows a promising synergistic effect for supercapacitors with greatly enhanced electrochemical performance. For serving as supercapacitor electrode, the NiCo2O4/rGO/NiO heterostructure materials exhibit remarkable specific capacitance of 2644 mF cm-2 at current density of 1 mA cm-2, and excellent capacitance retentions of 97.5% after 3000 cycles. It is expected that the present heterostructure will be a promising electrode material for high-performance supercapacitors.

  4. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  5. Formation of nickel germanides from Ni layers with thickness below 10 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less

  6. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Li, Minchan; Lv, Fucong; Yang, Mingyang; Tao, Pengpeng; Tang, Yougen; Liu, Hongtao; Lu, Zhouguang

    2015-10-01

    A novel heterogeneous NiCo2O4@PPy core/sheath nanowire arrays are directly grown on Ni foam involving three facile steps, hydrothermal synthesis and calcination of NiCo2O4 nanowire arrays and subsequent in-situ oxidative polymerization of polypyrrole (PPy). When investigated as binder- and conductive additive-free electrodes for supercapacitors (SCs) in 6 M KOH, the NiCo2O4@PPy core/sheath nanowire arrays exhibit high areal capacitance of 3.49 F cm-2 at a discharge current density of 5 mA cm-2, which is almost 1.5 times as much as the pristine NiCo2O4 (2.30 F cm-2). More importantly, it can remain 3.31 F cm-2 (94.8% retention) after 5000 cycles. The as-obtained electrode also displays excellent rate capability, whose areal capacitance can still remain 2.79 F cm-2 while the discharge current density is increased to 50 mA cm-2. The remarkable electrochemical performance is mainly attributed to the unique heterogeneous core/sheath nanowire-array architectures.

  7. Nanostructured Mg 2Ni materials prepared by cold rolling and used as negative electrode for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Pedneault, Sylvain; Huot, Jacques; Roué, Lionel

    In the present work, cold rolling has been investigated as a new means of producing Mg-based metal hydrides for nickel-metal hydride (Ni-MH) batteries. Structure and electrochemical evolution of 2Mg-Ni cold-rolled samples were investigated as a function of the number of rolling passes as well as heat treatment. It was found that nanocrystalline Mg 2Ni alloy can be obtained by an appropriate three step process involving rolling, heat treatment and rolling again. It was shown that the number of primary and secondary rolling passes must be carefully optimized in order to favour the complete formation of Mg 2Ni alloy having a nanocrystalline structure (∼10 nm in crystallite size) without excessive sample oxidation. Actually, the best result was obtained by first rolling 90 times, followed by a heat treatment at 400 °C for 4 h and roll again 20 times. The resulting material displayed an initial discharge capacity of 205 mAh g -1, which is quite similar to that obtained with ball-milled Mg 2Ni alloy.

  8. Ni nanoparticles@Ni-Mo nitride nanorod arrays: a novel 3D-network hierarchical structure for high areal capacitance hybrid supercapacitors.

    PubMed

    Ruan, Yunjun; Lv, Lin; Li, Zhishan; Wang, Chundong; Jiang, Jianjun

    2017-11-23

    Because of the advanced nature of their high power density, fast charge/discharge time, excellent cycling stability, and safety, supercapacitors have attracted intensive attention for large-scale applications. Nevertheless, one of the obstacles for their further development is their low energy density caused by sluggish redox reaction kinetics, low electroactive electrode materials, and/or high internal resistance. Here, we develop a facile and simple nitridation process to successfully synthesize hierarchical Ni nanoparticle decorated Ni 0.2 Mo 0.8 N nanorod arrays on a nickel foam (Ni-Mo-N NRA/NF) from its NiMoO 4 precursor, which delivers a high areal capacity of 2446 mC cm -2 at a current density of 2 mA cm -2 and shows outstanding cycling stability. The superior performance of the Ni-Mo-N NRA/NF can be ascribed to the metallic conductive nature of the Ni-Mo nitride, the fast surface redox reactions for the electrolyte ions and electrode materials, and the low contacted resistance between the active materials and the current collectors. Furthermore, a hybrid supercapacitor (HSC) is assembled using the Ni-Mo-N NRA/NF as the positive electrode and reduced graphene oxide (RGO) as the negative electrode. The optimized HSC exhibits excellent electrochemical performance with a high energy density of 40.9 W h kg -1 at a power density of 773 W kg -1 and a retention of 80.1% specific capacitance after 6000 cycles. These results indicate that the Ni-Mo-N NRA/NF have a promising potential for use in high-performance supercapacitors.

  9. Detection of OH stretching mode of CH3OH chemisorbed on Ni3+ and Ni4+ by infrared photodissociation spectroscopy.

    PubMed

    Hirabayashi, Shinichi; Okawa, Ryuji; Ichihashi, Masahiko; Kondow, Tamotsu; Kawazoe, Yoshiyuki

    2007-08-09

    Structures of nickel cluster ions adsorbed with methanol, Ni3+ (CH3OH)m (m = 1-3) and Ni4+ (CH3OH)m (m = 1-4) were investigated by using infrared photodissociation (IR-PD) spectroscopy based on a tandem-type mass spectrometer, where they were produced by passing Ni3,4+ through methanol vapor under a multiple collision condition. The IR-PD spectra were measured in the wavenumber region between 3100 and 3900 cm-1. In each IR-PD spectrum, a single peak was observed at a wavenumber lower by approximately 40 cm-1 than that of the OH stretching vibration of a free methanol molecule and was assigned to the OH stretching vibrations of the methanol molecules in Ni3,4+ (CH3OH)m. The photodissociation was analyzed by assuming that Ni3,4+ (CH3OH)m dissociate unimolecularly after the photon energy absorbed by them is statistically distributed among the accessible modes of Ni3,4+ (CH3OH)m. In comparison with the calculations performed by the density functional theory, it is concluded that (1) the oxygen atom of each methanol molecule is bound to one of the nickel atoms in Ni3,4+ (defined as molecular chemisorption), (2) the methanol molecules in Ni3,4+ (CH3OH)m do not form any hydrogen bonds, and (3) the cross section for demethanation [CH4 detachment from Nin+ (CH3OH)] is related to the electron density distribution inside the methanol molecule.

  10. Cell degradation of a Na–NiCl 2 (ZEBRA) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.

    2013-09-23

    In this work, the parameters influencing the degradation of a Na-NiCl 2 (ZEBRA) battery were investigated. Planar Na-NiCl 2 cells using β”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl 2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influencemore » the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.« less

  11. Different Effect of Co on the Formation of Topologically Close-Packed Phases in Ni-Cr-Mo and Ni-Cr-Re Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang

    2017-11-01

    In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.

  12. Measurements of 59Ni in meteorites by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Paul, M.; Fifield, L. K.; Fink, D.; Albrecht, A.; Allan, G. L.; Herzog, G.; Tuniz, C.

    1993-10-01

    Isotopic abundances of the radionuclide 59Ni (T1/2 = 76000 yr) were measured by accelerator mass spectrometry with the 14UD Pelletron tandem accelerator at the Australian National University and a detection system solely based on a multianode ionization chamber. The sensitivity limit in the measurement of 59Ni isotopic abundances is 5 × 10-13, as determined by residual interferences from isobaric 59Co and isotopic 58Ni ions. Cosmogenic 59Ni abundances 59Ni/Ni = (8-20) × 10-12 were measured in four samples prepared from the metal phase of two meteorites (mesosiderites). The ratio of the 59Ni abundances to those measured for 41Ca in the silicate phase of the same samples, is in fair agreement with the ratio of the production rates via thermal-neutron capture on 58Ni and 40Ca.

  13. Micromirror structure actuated by TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Y. Q.; Luo, J. K.; Hu, M.; Du, H. J.; Flewitt, A. J.; Milne, W. I.

    2005-10-01

    TiNi films were deposited by co-sputtering TiNi and Ti targets. Results from differential scanning calorimetry and curvature measurement revealed martensitic transformation and shape memory effect upon heating and cooling. Two types of TiNi/Si micromirror structures with a Si mirror cap (40 µm thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, a V-shaped cantilever based on the TiNi/Si bimorph structure was used as the actuation mechanism for the micromirror. In the second design, three elbow-shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. The TiNi/Si microbeams were flat at room temperature and bent up by applying voltage in the TiNi electrodes (due to phase transformation and shape memory effect), thus causing changes in angles of the micromirror.

  14. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  15. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  16. Electrical behaviour of heterobimetallic [MM'(EtCS2)4] (MM'=NiPd, NiPt, PdPt) and MM'X-chain polymers [PtM(EtCS2)4I] (M=Ni, Pd).

    PubMed

    Givaja, Gonzalo; Castillo, Oscar; Mateo, Eva; Gallego, Almudena; Gómez-García, Carlos J; Calzolari, Arrigo; di Felice, Rosa; Zamora, Félix

    2012-11-26

    Herein, we report the isolation of new heterobimetallic complexes [Ni(0.6)Pd(1.4)(EtCS(2))(4)] (1), [NiPt(EtCS(2))(4)] (2) and [Pd(0.4)Pt(1.6)(EtCS(2))(4)] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni(0.6)Pt(1.4)(EtCS(2))(4)I] (4) and [Ni(0.1)Pd(0.3)Pt(1.6)(EtCS(2))(4)I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt(2)(EtCS(2))(4)I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spontaneous breaking of the conduction bands. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.

    PubMed

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J

    2017-12-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries.

    PubMed

    Li, Baojun; Cao, Huaqiang; Shao, Jin; Zheng, He; Lu, Yuexiang; Yin, Jiefu; Qu, Meizhen

    2011-03-21

    Incorporation of reduced graphene oxide into β-Ni(OH)(2) presents high performances with specific discharge capacity of 283 mA hg(-1) after 50 cycles in Ni-MH batteries, and 507 mA hg(-1) after 30 cycles in Li ion batteries.

  19. Anodic electrodeposition of NiTSPP from aqueous basic media.

    PubMed

    Pérez-Morales, Marta; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis

    2005-06-07

    The oxidative electrodeposition of NiTSPP (tetrakis(4-sulfonatophenyl) Ni porphyrin) on ITO electrode from 0.1 M NaOH aqueous solution has been studied, and UV-visible and reflection FTIR spectroscopies have been used to analyze the composition of such film. By use of UV-vis spectroscopy, small absorbance of the film and an almost nulling effect on the Soret band of the porphyrin along the Ni(III)/Ni(II) redox process were observed. The reflection FTIR spectroscopy detected the presence of Ni-OH groups in the reduced film and as well the state of the porphyrin molecules as radical cation. Moreover, the porphyrin has been quantified by means of the area of the vibration bands assigned to the sulfonate groups by using as reference a Langmuir-Blodgett film containing a known surface concentration of NiTSPP. These results lead us propose the formation of a conductor salt by electrocrystallization, with stoichiometries TSPP/Ni(II)(OH)2 and TSPP/Ni(III)OOH, for its reduced and oxidized forms, respectively. In these two forms, the porphyrin rings will be present as radical cation, which may be stabilized through its dimerization or polymerization.

  20. NiH2 Battery Reconditioning for LEO Applications

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.; Hafen, D. P.

    1997-01-01

    This paper summarizes reasons for and benefits of reconditioning nickel-hydrogen (NiH2) batteries used for Low Earth Orbit (LEO) applications. NiH2 battery cells do not have the classic discharge voltage problems more commonly associated with nickel-cadmium (NiCd) cells. This is due, in part, to use of hydrogen electrodes in place of cadmium electrodes. The nickel electrode, however, does have a similar discharge voltage signature for both cell designs. This can have an impact on LEO applications where peak loads at higher relative depths of discharge can impact operations. Periodic reconditioning provides information which can be used for analyzing long term performance trends to predict usable capacity to a specified voltage level. The reconditioning process described herein involves discharging NiH2 batteries at C/20 rates or less, to an average cell voltage of 1.0 volts or less. Recharge is performed at nominal C/5 rates to specified voltage/temperature (V/T) charge levels selected to restore required capacity with minimal overcharge. Reconditioning is a process of restoring reserve capacity lost on cycling, which is commonly called the memory effect in NiCd cells. This effect is characterized by decreases in the discharge voltage curve with operational life and cycling. The end effect of reconditioning NiH2 cells may be hidden in the versatility, of that design over the NiCd cell design and its associated negative electrode fading problem. The process of deep discharge at lower rates by way of reconditioning tends to redistribute electrolyte and water in the NiH2 cell electrode stack, while improving utilization and charge efficiency. NiH2 battery reconditioning effects on life are considered beneficial and may, in fact. extend life based on NiCd experience. In any case, usable capacity data obtained from reconditioning is required for performance evaluation and trend analysis. Characterization and life tests have provided the historical data base used to

  1. Design of a 10.8 kWh, 28V Ni-MH Battery Using Commercial Ni-MH Cells

    NASA Technical Reports Server (NTRS)

    Hellen, Robert M.; Darcy, Eric C.

    2000-01-01

    This paper describes the design of a 10.8 kWh, 28V, Ni-MH battery using commercial off-the shelf (COTS) 4/3A Ni-MH cells for the X-38 vehicle, an experimental version of the Crew Return Vehicle (CRY). This will be an autonomous vehicle that will enable International Space Station crews to return to earth in the event of a medical, or other, emergency. The X-38 will be powered by 3 batteries: a 32 V primary battery, which will power the vehicle avionics for up to 7 hours for a loiter and de-orbit phase of the descent; a 28 V Ni-MH battery which will take over for the primary battery after de-orbit until landing, and a 270V Ni-Cd battery, which will be used to power electromechanical actuators and the winches controlling a parachute for landing.

  2. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  3. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fieldsmore » (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.« less

  4. Synthesis and reactivity of NHC-supported Ni2(μ(2)-η(2),η(2)-S2)-bridging disulfide and Ni2(μ-S)2-bridging sulfide complexes.

    PubMed

    Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F

    2015-03-16

    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.

  5. Ni doped Fe3O4 magnetic nanoparticles.

    PubMed

    Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J

    2012-03-01

    In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

  6. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  7. Short and Medium-Range Order in Liquid Ternary Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 Alloys

    NASA Astrophysics Data System (ADS)

    Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr

    2010-01-01

    A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.

  8. Study of surfactant mediated growth of Ni/V superlattices

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-01

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  9. Nucleation and Growth of Tetrataenite (FeNi) in Meteorites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.

    1992-07-01

    The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite

  10. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  11. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files - An In-Vitro SEM study

    PubMed Central

    Reddy, J M V Raghavendra; Latha, Prasanna; Gowda, Basavana; Manvikar, Varadendra; Vijayalaxmi, D Benal; Ponangi, Kalyana Chakravarthi

    2014-01-01

    Background: Predictable successful endodontic therapy depends on correct diagnosis, effective cleaning, shaping and disinfection of the root canals and adequate obturation. Irrigation serves as a flush to remove debris, tissue solvent and lubricant from the canal irregularities; however these irregularities can restrict the complete debridement of root canal by mechanical instrumentation.Various types of hand and rotary instruments are used for the preparation of the root canal system to obtain debris free canals. The purpose of this study was to evaluate the amount of smear layer and debris removal on canal walls following the using of manual Nickel-Titanium (NiTi) files compared with rotary ProTaperNiTi files using a Scanning Electron Microscope in two individual groups. Materials & Methods: A comparative study consisting of 50 subjects randomized into two groups – 25 subjects in Group A (manual) and 25 subjects in Group B (rotary) was undertaken to investigate and compare the effects of smear layer and debris between manual and rotary NiTi instruments. Chi square test was used to find the significance of smear layer and debris removal in the coronal, middle and apical between Group A and Group B. Results: Both systems of Rotary ProTaperNiTi and manual NiTi files used in the present study, did not create completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary ProTaperNiTi instruments. Rotary instruments were less time consuming when compared to manual instruments. Instrument separation was not found to be significant with both the groups. Conclusions: Both systems of Rotary ProTaperNiTi and manual NiTi files used did not produce completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary protaper instruments. How to cite the article: Reddy JM, Latha P, Gowda B, Manvikar V, Vijayalaxmi DB, Ponangi KC. Smear layer and debris removal using manual

  12. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    NASA Astrophysics Data System (ADS)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  13. Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni3 S2 Nanowire Films for High-Performance Supercapacitors.

    PubMed

    Xu, Shusheng; Wang, Tao; Ma, Yujie; Jiang, Wenkai; Wang, Shuai; Hong, Min; Hu, Nantao; Su, Yanjie; Zhang, Yafei; Yang, Zhi

    2017-10-23

    Metal sulfides have aroused great interest for energy storage. However, their low specific capacities and inferior rate capabilities hinder their practical applications. In this work, a facile cobalt-doping process is used to boost the electrochemical performance of Ni@Ni 3 S 2 core-sheath nanowire film electrodes for high-performance electrochemical energy storage. Co ions are doped successfully and uniformly into Ni 3 S 2 nanosheets through a facile ion-exchange process. The electrochemical properties of film electrodes are improved greatly, and an ultrahigh volumetric capacity (increased from 105 to 730 C cm -3 at 0.25 A cm -3 ) and excellent rate capability are obtained after Co is doped into Ni@Ni 3 S 2 core-sheath nanowires. A hybrid asymmetric supercapacitor with Co-doped Ni@Ni 3 S 2 as the positive electrode and graphene-carbon nanotubes as the negative electrode is assembled and exhibits an ultrahigh volumetric capacitance of 142 F cm -3 (based on the total volume of both electrodes) at 0.5 A cm -3 and excellent cycling stability (only 3 % capacitance decrease after 5000 cycles). Moreover, the volumetric energy density can reach 44.5 mWh cm -3 , which is much larger than those of thin-film lithium batteries (1-10 mWh cm -3 ). These results may provide useful insights for the fabrication of high-performance film electrodes for energy-storage applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  15. Refinement of the β-Sn Grains in Ni-Doped Sn-3.0Ag-0.5Cu Solder Joints with Cu-Based and Ni-Based Substrates

    NASA Astrophysics Data System (ADS)

    Chou, Tzu-Ting; Chen, Wei-Yu; Fleshman, Collin Jordon; Duh, Jenq-Gong

    2018-03-01

    A fine-grain structure with random orientations of lead-free solder joints was successfully obtained in this study. The Sn-Ag-Cu solder alloys doped with minor Ni were reflowed with Ni-based or Cu-based substrates to fabricate the joints containing different Ni content. Adding 0.1 wt.% Ni into the solder effectively promoted the formation of fine Sn grains, and reflowing with Ni-based substrates further enhanced the effects of β-Sn grain refinement. The crystallographic characteristics and the microstructures were analyzed to identify the solidification mechanism of different types of microstructure in the joints. The phase precipitating order in the joint altered as the solder composition were modified by elemental doping and changing substrate, which significantly affected the efficiency of grain refinement and the final grain structure. The formation mechanism of fine β-Sn grains in the Ni-doped joint with a Ni-based substrate is attributable to the heterogeneous nucleation by Ni, whereas the Ni in the joint using ChouCu-based substrate is consumed to form an intermetallic compound and thus retard the effect of grain refining.

  16. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng

    2014-11-15

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less

  17. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  18. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  19. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callori, S. J., E-mail: sara.callori@ansto.gov.au; Bertinshaw, J.; Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At lowmore » magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.« less

  20. Ni{sub 5}TiO{sub 7}” is Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalbandyan, V.B.

    2017-05-15

    It is shown that the compound known as Ni{sub 5}TiO{sub 7} and considered as a promising catalyst and oxidation product of alloys does not exist and its XRD pattern actually corresponds to Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} - Graphical abstract: XRD pattern of “Ni{sub 5}TiO{sub 7}” (top) is identical to that for Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} (bottom) based on single-crystal structural data. - Highlights: • Popular catalyst known as Ni{sub 5}TiO{sub 7} is actually Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}. • B{sub 2}O{sub 3} came from the flux used for crystal growth. • Some authors reporting this phase did notmore » use any boron compounds.« less

  1. Network analysis reveals strongly localized impacts of El Niño

    NASA Astrophysics Data System (ADS)

    Fan, Jingfang; Meng, Jun; Ashkenazy, Yosef; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2017-07-01

    Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.

  2. Network analysis reveals strongly localized impacts of El Niño.

    PubMed

    Fan, Jingfang; Meng, Jun; Ashkenazy, Yosef; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2017-07-18

    Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network "in"-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.

  3. NiO Nanofibers as a Candidate for a Nanophotocathode

    PubMed Central

    Macdonald, Thomas J.; Xu, Jie; Elmas, Sait; Mange, Yatin J.; Skinner, William M.; Xu, Haolan; Nann, Thomas

    2014-01-01

    p-type NiO nanofibers have been synthesized from a simple electrospinning and sintering procedure. For the first time, p-type nanofibers have been electrospun onto a conductive fluorine doped tin oxide (FTO) surface. The properties of the NiO nanofibers have been directly compared to that of bulk NiO nanopowder. We have observed a p-type photocurrent for a NiO photocathode fabricated on an FTO substrate. PMID:28344222

  4. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  5. Steam Reforming of CH4 Using Ni- Substituted Pyrochlore Catalysts

    NASA Astrophysics Data System (ADS)

    Haynes, Daniel J.

    The steam reforming of methane (SMR) continues to remain an important industrial reaction for large-scale production of H2 as well as synthesis gas mixtures which can be used for the production of useful chemicals (e.g. methanol). Although SMR is a rather mature technology, traditional nickel based catalysts used industrially are subjected to severe temperatures and reaction conditions, which lead to irreversible activity loss through sintering, support collapse, and carbon formation. Pyrochlore-based mixed oxide have been identified as refractory materials that can be modified through the substitution of catalytic metals and other promoting species into the structure to mitigate these issues causing deactivation. For this study, a lanthanum zirconate pyrochlore catalyst was substituted with Ni to determine whether the oxide structure could effectively stabilize the activity of the catalytic metal during the SMR. The effect of different variables including calcination temperature, a comparison of a substituted versus supported Ni pyrochlore catalyst, Ni weight loading, and Sr promotion have been evaluated to determine the location of the Ni in the structure, and their effect on catalytic behavior. It was revealed that the effect of calcination temperature on a 6wt% Ni substituted pyrochlore produced by the Pechini method demonstrated very little Ni was soluble in the pyrochlore lattice. It was further revealed that by XRD, TEM, and atom probe tomography that, despite the metal loading, Ni exsolves from the structure upon crystallization of the pyrochlore at 700°C, and forms NiO at the surface and grain boundaries. An additional separate La2ZrNiO6 perovskite phase also began to form at higher temperatures (>800°C). Increasing calcination temperature was found to lead to slight sintering of the NiO at the surface, which made the NiO more reducible. Meanwhile decreasing the Ni weight loading was found to produce a lower reduction temperature due to the presence of

  6. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    PubMed

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  7. Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro

    2010-11-01

    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.

  8. Combined effect of Pt and W alloying elements on Ni-silicide formation

    NASA Astrophysics Data System (ADS)

    Luo, T.; Mangelinck, D.; Descoins, M.; Bertoglio, M.; Mouaici, N.; Hallén, A.; Girardeaux, C.

    2018-03-01

    A combinatorial study of the combined effect of Pt and W on Ni silicide formation is performed. Ni(Pt, W) films with thickness and composition gradients were prepared by a co-deposition composition spread technique using sputtering deposition from Pt, W, and Ni targets. The deposited Ni(Pt,W) films were characterized by X-ray diffraction, X-ray reflectivity, Rutherford backscattering, and atom probe tomography. The maximum content of alloying elements is close to 27 at. %. Simulations of the thickness and composition were carried out and compared with experimental results. In situ X-ray diffraction and atom probe tomography were used to study the phase formation. Both additive alloying elements (Pt + W) slow down the Ni consumption and the effect of W is more pronounced than the one of Pt. Regarding the effect of alloying elements on Ni silicides formation, three regions could be distinguished in the Ni(Pt,W)/Si wafer. For the region close to the Ni target, the low contents of alloying elements (Pt + W) have little impact on the phase sequence (δ-Ni2Si is the first silicide and NiSi forms when Ni is entirely consumed) but the kinetics of silicide formation slows down. The region close to the Pt target has high contents of (Pt + W) and is rich in Pt and a simultaneous phase formation of δ-Ni2Si and NiSi is observed. For the high (Pt + W) contents and W-rich region, NiSi forms unexpectedly before δ-Ni2Si and the subsequent growth of δ-Ni2Si is accompanied by the NiSi consumption. When Ni is entirely consumed, NiSi regrows at the expense of δ-Ni2Si.

  9. Reaction between NiO and Al2O3 in NiO/γ-Al2O3 catalysts probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Zhang, H. J.; Chen, Z. Q.

    2013-02-01

    NiO/γ-Al2O3 catalysts with NiO content of 9 wt% and 24 wt% were prepared by solid state reaction method. They are annealed in air at temperatures from 100 °C to 1000 °C. Positron lifetime spectra were measured to study the microstructure variation during annealing process. Four positron lifetime components were resolved with two long lifetime τ3 and τ4, which can be attributed to the ortho-positronium lifetime in microvoids and large pores, respectively. It was found that the longest lifetime τ4 is rather sensitive to the chemical environment of the large pores. The NiO active centers in the catalysts cause decrease of both τ4 and its intensity I4, which is due to the spin-conversion of positronium induced by NiO. However, after heating the catalysts above 600 °C, abnormal increase of the lifetime τ4 is observed. This is due to the formation of NiAl2O4 spinel from the reaction of NiO and γ-Al2O3. The generated NiAl2O4 weakens the spin-conversion effect of positronium, thus leads to the increase of o-Ps lifetime τ4. Formation of NiAl2O4 is further confirmed by both X-ray diffraction and X-ray photoelectron spectroscopy measurements.

  10. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    NASA Astrophysics Data System (ADS)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  11. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    NASA Astrophysics Data System (ADS)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  12. Synthesis, structural characterization, and electrochemical properties of dinuclear Ni/Mn model complexes for the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Li, Jia-Peng; Xie, Zhao-Jun; Song, Hai-Bin

    2013-10-07

    Four new dinuclear Ni/Mn model complexes RN(PPh2)2Ni(μ-SEt)2(μ-Cl)Mn(CO)3 (7, R = p-MeC6H4CH2; 8, R = EtO2CCH2) and RN(PPh2)2Ni(μ-SEt)2(μ-Br)Mn(CO)3 (9, R = p-MeC6H4CH2; 10, R = EtO2CCH2) have been prepared via the four separated step-reactions involving six new precursors RN(PPh2)2 (1, R = p-MeC6H4CH2; 2, R = EtO2CCH2), RN(PPh2)2NiCl2 (3, R = p-MeC6H4CH2; 4, R = EtO2CCH2), and RN(PPh2)2Ni(SEt)2 (5, R = p-MeC6H4CH2; 6, R = EtO2CCH2). The Et3N-assisted aminolysis of Ph2PCl with p-MeC6H4CH2NH2 or EtO2CCH2NH2·HCl in CH2Cl2 gave the azadiphosphine ligands 1 and 2 in 38% and 53% yields, whereas the coordination reaction of 1 or 2 with NiCl2·6H2O in CH2Cl2/MeOH afforded the mononuclear Ni dichloride complexes 3 and 4 in 59% and 78% yields, respectively. While thiolysis of 3 or 4 with EtSH under the assistance of Et3N in CH2Cl2 produced the mononuclear Ni dithiolate complexes 5 and 6 in 64% and 68% yields, further treatment of 5 and 6 with Mn(CO)5Cl or Mn(CO)5Br resulted in formation of the dinuclear Ni/Mn model complexes 7-10 in 31-73% yields. All the new compounds 1-10 have been structurally characterized, while model complexes 7 and 9 have been found to be catalysts for HOAc proton reduction to hydrogen under CV conditions.

  13. pH-Dependent isotope exchange and hydrogenation catalysed by water-soluble NiRu complexes as functional models for [NiFe]hydrogenases.

    PubMed

    Kure, Bunsho; Matsumoto, Takahiro; Ichikawa, Koji; Fukuzumi, Shunichi; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2008-09-21

    The pH-dependent hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes and hydrogenation of the carbonyl compounds have been investigated with water-soluble bis(mu-thiolate)(mu-hydride)NiRu complexes, Ni(II)(mu-SR)(2)(mu-H)Ru(II) {(mu-SR)(2) = N,N'-dimethyl-N,N'-bis(2-mercaptoethyl)-1,3-propanediamine}, as functional models for [NiFe]hydrogenases. In acidic media (at pH 4-6), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes has H(+) properties, and the complexes catalyse the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes. A mechanism of the hydrogen isotope exchange reaction between gaseous isotopes and medium isotopes through a low-valent Ni(I)(mu-SR)(2)Ru(I) complex is proposed. In contrast, in neutral-basic media (at pH 7-10), the mu-H ligand of the Ni(II)(mu-SR)(2)(mu-H)Ru(II) complexes acts as H(-), and the complexes catalyse the hydrogenation of carbonyl compounds.

  14. Nanostructured CdO-NiO composite for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S.

    2018-01-01

    In this study, CdO, NiO, and CdO-NiO nanocomposites (NCs) were synthesized and investigated by X-ray diffraction (XRD), scanning electron microscopy, and Fourier transform-infrared spectroscopy. XRD detected cubic structures with average crystallite sizes of 45 nm for CdO, 25 nm for NiO, and 30 nm for CdO-NiO. The band gap was estimated based on the ultraviolet-visible spectra. The near band edge emission was determined according to the luminescence spectrum. The antibacterial activities were tested against seven foodborne pathogens and the zones of inhibition with the Gram-negative bacterium Bacillus subtilis measured as 30 mm with CdO, 20 mm NiO, and 27 mm with CdO-NiO. The death of the bacterial cells was confirmed by confocal laser scanning microscope analysis. Cytotoxicity assays indicated the non-toxic effects of the NCs on normal healthy red blood cells. Furthermore, the in vitro cytotoxic effects of the CdO, NiO, and CdO-NiO NCs were examined using the human MCF-7 breast cancer cell line based on 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide assays with normal mouse embryonic fibroblasts (NH3T3) under identical conditions.

  15. Synthesis of FeCoNi nanoparticles by galvanostatic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita

    Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less

  16. Microstructure of hydrogenated Mg2Ni studied by SANS

    NASA Astrophysics Data System (ADS)

    Mori, K.; Sugiyama, M.; Iwase, K.; Kawabe, S.; Onodera, Y.; Itoh, K.; Otomo, T.; Fukunaga, T.

    2010-10-01

    X-ray powder diffraction (XRD) and small-angle neutron scattering (SANS) experiments were carried out for the hydrogenated and duterated Mg2Ni, respectively. According to the results of XRD experiments, both of them coexisted with unhydrogenated (or undeuterated) Mg2Ni in the hydrogen absorbing cycle. Furthermore, in the SANS experiments, a slope of SANS curve, I(Q), was roughly evaluated by using the following power law: I(Q) propto Q-m, where Q is the magnitude of the scattering vector, and m can be equated with a fractal dimensionality, DS (= 6 - m). In conclusion, the hydrogenated and duterated Mg2Ni showed DS~ 3 and ~ 2, respectively. The significant difference between DS's can be understood by considering the scattering length densities, ρ, of Mg2Ni, Mg2NiH4, and Mg2NiD4.

  17. Comment on “the ground-state structures of Au10-, Au8Ni and Au9Ni clusters”

    NASA Astrophysics Data System (ADS)

    Zheng, Ben-Xia; Die, Dong; Li, Qian-Qian; Dai, Ming-Liang; Li, Zhi-Qin; Yang, Ji-Xian

    2017-09-01

    The lowest energy structures of Aun+1- and AunNi (n = 2-9) clusters have been researched using the CALYPSO structure searching method in conjunction with the density functional theory. It is found that the most stable structures of Au10-, Au8Ni and Au9Ni clusters reported by Tang et al. [C. M. Tang, X. X. Chen and X. D. Yang, Int. J. Mod. Phys. B 28, 1450138 (2014)] are low-lying isomers. The correct ground states and vibrational spectra are given in this paper.

  18. Micromirror structure based on TiNi shape memory thin films

    NASA Astrophysics Data System (ADS)

    Fu, Yong Qing; Hu, Min; Du, Hejun; Luo, Jack; Flewitt, Andrew J.; Milne, William I.

    2005-02-01

    TiNi films were deposited on silicon by co-sputtering TiNi target and a separate Ti target at a temperature of 450°C. Results from differential scanning calorimeter, in-situ X-ray diffraction and curvature measurement revealed clearly martensitic transformation upon heating and cooling. Two types of TiNi/Si optical micromirror structures with a Si mirror cap (20 micron thick) and TiNi/Si actuation beams were designed and fabricated. For the first design, three elbow shaped Si beams with TiNi electrodes were used as the arms to actuate the mirror. In the second design, a V-shaped cantilever based on TiNi/Si bimorph beams was used as the actuation mechanism for micromirror. TiNi electrodes were patterned and wet-etched in a solutions of HF:HNO3:H2O (1:1:20) with an etch rate of 0.6 μm/min. The TiNi/Si microbeams were flat at room temperature, and bent up with applying voltage in TiNi electrodes (due to phase transformation and shape memory effect), thus causing the changes in angles of micromirror.

  19. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    PubMed Central

    2012-01-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the ‘core/shell’ interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon. PMID:22548846

  20. Interplay between out-of-plane anisotropic L1{sub 1}-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, P.; Defence Metallurgical Research Laboratory, Hyderabad 500058; Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw

    2014-06-28

    Films of L1{sub 1}-type CoPt/NiFe exchange springs were grown with different NiFe (Permalloy) layer thickness (t{sub NiFe} = 0–10 nm). X-ray diffraction analysis reveals that the characteristic peak position of NiFe(111) is not affected by the CoPt-layer—confirming the absence of any inter-diffusion between the CoPt and NiFe layers. Magnetic studies indicate that the magnetization orientation of NiFe layer can be tuned through varying t{sub NiFe} and the perpendicular magnetic anisotropy of L1{sub 1}-type CoPt/NiFe films cannot sustain for t{sub NiFe} larger than 3.0 nm due to the existence of exchange interaction at the interface of L1{sub 1}-CoPt and NiFe layers. Magnetic force microscopy analysismore » on the as-grown samples shows the changes in morphology from maze-like domains with good contrast to hazy domains when t{sub NiFe} ≥ 3.0 nm. The three-dimensional micro-magnetic simulation results demonstrate that the magnetization orientation in NiFe layer is not uniform, which continuously increases from the interface to the top of NiFe layer. Furthermore, the tilt angle of the topmost NiFe layers can be changed over a very wide range from a small number to about 75° by varying t{sub NiFe} from 1 to 10 nm. It is worth noting that there is an abrupt change in the magnetization direction at the interface, for all the t{sub NiFe} investigated. The results of present study demonstrate that the tunable tilted exchange springs can be realized with L1{sub 1}-type CoPt/NiFe bilayers for future applications in three-axis magnetic sensors or advanced spintronic devices demanding inclined magnetic anisotropy.« less

  1. Noncrystalline structure of Ni-P nanoparticles prepared by liquid pulse discharge.

    PubMed

    Tan, Yuanyuan; Yu, Hongying; Wu, Zhonghua; Yang, Bin; Gong, Yu; Yan, Shi; Du, Rong; Chen, Zhongjun; Sun, Dongbai

    2015-03-01

    Noncrystalline nickel phosphide (Ni-P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni-P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni-P nanoparticles. In this paper, noncrystalline Ni-P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni-P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni-P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni-P nanoparticles. Therefore, the as-prepared noncrystalline Ni-P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate.

  2. Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys

    DOE PAGES

    Jin, Ke; Mu, Sai; An, Ke; ...

    2016-12-27

    For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g -1·K -1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exceptionmore » that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less

  3. Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/NiFe and Mn 80Ir 20/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    2007-03-01

    Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.

  4. Crystal growth velocity in deeply undercooled Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.

    2012-02-01

    The crystal growth velocity of Ni95Si5 and Ni90Si10 alloys as a function of undercooling is investigated using molecular dynamics simulations. The modified imbedded atom method potential yields the equilibrium liquidus temperatures T L ≈ 1505 and 1387 K for Ni95Si5 and Ni90Si10 alloys, respectively. From the liquidus temperatures down to the deeply undercooled region, the crystal growth velocities of both the alloys rise to the maximum with increasing undercooling and then drop slowly, whereas the athermal growth process presented in elemental Ni is not observed in Ni-Si alloys. Instead, the undercooling dependence of the growth velocity can be well-described by the diffusion-limited model, furthermore, the activation energy associated with the diffusion from melt to interface increases as the concentration increases from 5 to 10 at.% Si, resulting in the remarkable decrease of growth velocity.

  5. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  6. Electrochemical Performance of Ni-MOFs for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  7. Solid solution cermet: (Ti,Nb)(CN)-Ni cermet.

    PubMed

    Kwon, Hanjung; Jung, Sun-A

    2014-11-01

    Solid solution powders without W, (Ti,Nb)(CN) powders with a B1 structure (NaCl like), were synthesized by high energy milling and carbothermal reduction in nitrogen. The range of molar ratios of Ti/Nb for forming complete (Ti,Nb)(CN) phase was broader than that of Ti/W for the (Ti,W)(CN) phase because carbide or carbonitride of Nb had a B1 crystal structure identical to Ti(CN) while WC had a hexagonal crystal structure. The results revealed that the hardness of (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,W)(CN)-Ni cermets. The lower density of the (Ti,Nb)(CN) powder contributed to the higher hardness compared to (Ti,W)(CN) because the volumetric ratio of (Ti,Nb)(CN) in the (Ti,Nb)(CN)-Ni cermets was higher than that of (Ti,Nb)(CN) in the (Ti,W)(CN)-Ni cermets at the same weight ratio of Ni. Additionally, it was assumed that intrinsic the properties of (Ti,Nb)(CN) could also be the cause for the high hardness of the (Ti,Nb)(CN)-Ni cermets.

  8. Prediction of Indentation Behavior of Superelastic TiNi

    NASA Astrophysics Data System (ADS)

    Neupane, Rabin; Farhat, Zoheir

    2014-09-01

    Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.

  9. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2.

    PubMed

    Zhao, Shijun; Stocks, G Malcolm; Zhang, Yanwen

    2016-09-14

    It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. Using ab initio calculations based on density functional theory and special quasirandom structures, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atoms in the structure, which further determines the elemental diffusion properties. Different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.

  10. Magnetic interactions in NiO at ultrahigh pressure

    DOE PAGES

    Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...

    2016-05-24

    Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less

  11. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  12. The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Chung, Young-Soo; Choi, Jun-Hyeok; Kim, Hong-Taek; Lee, Hacksoo

    2010-03-01

    The purpose of this study is to assess the confining effectiveness of shape memory alloy (SMA) wire jackets for concrete. The performance of SMA wire jackets was compared to that of steel jackets. A prestrained martensitic SMA wire was wrapped around a concrete cylinder and then heated by a heating jacket. In the process, a confining stress around the cylinder was developed in the SMA wire due to the shape memory effect; this jacketing method can increase the strength and ductility of the cylinder under an axial compressive load. In this study, NiTi and NiTiNb SMA wires of 1.0 mm in diameter were used for the confinement. Recovery tests were conducted on the wires to assess their recovery and residual stress. The confinement by SMA wire jackets increased the strength slightly and greatly increased the ductility compared to the strength and ductility of plain concrete cylinders. The NiTiNb SMA wire jacket showed better performance than that of the NiTi SMA wire jacket. The confining effectiveness of the SMA wire jackets of this study was estimated to be similar to that of the steel jackets. This study showed the potential of the SMA wire jacketing method to retrofit reinforced concrete columns and protect them from seismic risks.

  13. Properties of TiNi intermetallic compound industrially produced by combustion synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaieda, Yoshinari

    Most TiNi shape memory intermetallic compounds are conventionally produced by the process including high frequency induction vacuum melting and casting. A gravity segregation occurs in a cast TiNi ingot because of the big difference in the specific gravity between Ti and Ni. It is difficult to control accurately the phase transformation temperature of TiNi shape memory intermetallic compound produced by the conventional process, because the martensitic transformation temperature shifts by 10K due to the change in 0.1 % of Ni content. Homogeneous TiNi intermetallic compound is produced by the industrial process including combustion synthesis method, which is a newly developedmore » manufacturing process. In the new process, phase transformation temperatures of TiNi can be controlled accurately by controlling the ratio of Ti and Ni elemental starting powders. The chemical component, the impurities and the phase transformation temperatures of the TiNi products industrially produced by the process are revealed. These properties are vitally important when combustion synthesis method is applied to an industrial mass production process for producing TiNi shape memory intermetallic compounds. TiNi shape memory products are industrially and commercially produced today the industrial process including combustion synthesis. The total production weight in a year is 30 tins in 1994.« less

  14. Stabilization of Reactive MgO Surfaces by Ni Doping

    NASA Astrophysics Data System (ADS)

    Mazheika, Aliaksei; Levchenko, Sergey V.

    Ni-MgO solid solutions are promising materials for catalytic reduction of CO2 and dry reforming of CH4. To explain the catalytic activity, an ab initio study of Ni-substitutional defects in MgO (NiMg) has been performed. At first, the validation of the theory level was done. We compared results of CCSD(T) embedded-cluster calculations of NiMg formation energies and adsorption energies of CO, CO2 and H2 on them to the HSE(α) hybrid DFT functional with the fraction of the exact exchange α varied between 0 and 1. HSE(0.3) was found to be the best compromise in this study. Our periodic HSE(0.3) calculations show that NiMg defects are most stable at corner sites, followed by steps, and are least stable at (001) terraces. Thus, Ni-doping stabilizes stepped MgO surfaces. The dissociative adsorption of H2 on the terrace is found to be endothermic (+ 1 . 1 eV), whereas on (110) surface with NiMg it is highly exothermic (- 1 . 6 eV). Adsorbed CO2 is also significantly stabilized (- 0 . 6 vs. - 2 . 2 eV). These findings explain recent microcalorimetry measurements of H2 and CO2 adsorption at doped Ni-MgO samples. partially supported by UniCat (Deutsche Forschungsgemeinschaft).

  15. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedesmore » the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al 2O 3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni 3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O 3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni 3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (~970 C) in the very early stage of oxidation. It was

  16. Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events

    NASA Astrophysics Data System (ADS)

    Wu, Renguang; Song, Lei

    2018-02-01

    The present study analyzes the intraseasonal oscillation (ISO) intensity change over the tropical Indo-Pacific associated with the El Niño-Southern Oscillation (ENSO) and compares the intensity change between El Niño and La Niña years and between the 10-20-day and 30-60-day ISOs. The ISO intensity change tends to be opposite between El Niño and La Niña years in the developing and mature phases. The intensity change features a contrast between the tropical southeastern Indian Ocean and the tropical western North Pacific (WNP) in the developing phases and between the Maritime Continent and the tropical central Pacific in the mature phase. In the decaying phases, the intensity change shows notable differences between El Niño and La Niña events and between fast and slow decaying El Niño events. Large intensity change is observed over the tropical WNP in the developing summer, over the tropical southeastern Indian Ocean in the developing fall, and over the tropical WNP in the fast decaying El Niño summer due to a combined effect of vertical shear, vertical motion, and lower-level moisture. In the ENSO developing summer and in the El Niño decaying summer, the 10-20-day ISO intensity change displays a northwest-southeast tilted distribution over the tropical WNP, whereas the large 30-60-day ISO intensity change is confined to the off-equatorial WNP. In the La Niña decaying summer, the 30-60-day ISO intensity change features a large zonal contrast across the Philippines, whereas the 10-20-day ISO intensity anomaly is characterized by a north-south contrast over the tropical WNP.

  17. El Niño and health.

    PubMed

    Kovats, R Sari; Bouma, Menno J; Hajat, Shakoor; Worrall, Eve; Haines, Andy

    2003-11-01

    El Niño Southern Oscillation (ENSO) is a climate event that originates in the Pacific Ocean but has wide-ranging consequences for weather around the world, and is especially associated with droughts and floods. The irregular occurrence of El Niño and La Niña events has implications for public health. On a global scale, the human effect of natural disasters increases during El Niño. The effect of ENSO on cholera risk in Bangladesh, and malaria epidemics in parts of South Asia and South America has been well established. The strongest evidence for an association between ENSO and disease is provided by time-series analysis with data series that include more than one event. Evidence for ENSO's effect on other mosquito-borne and rodent-borne diseases is weaker than that for malaria and cholera. Health planners are used to dealing with spatial risk concepts but have little experience with temporal risk management. ENSO and seasonal climate forecasts might offer the opportunity to target scarce resources for epidemic control and disaster preparedness.

  18. Is it worth hyperaccumulating Ni on non-serpentine soils? Decomposition dynamics of mixed-species litters containing hyperaccumulated Ni across serpentine and non-serpentine environments.

    PubMed

    Adamidis, George C; Kazakou, Elena; Aloupi, Maria; Dimitrakopoulos, Panayiotis G

    2016-06-01

    Nickel (Ni)-hyperaccumulating species produce high-Ni litters and may potentially influence important ecosystem processes such as decomposition. Although litters resembling the natural community conditions are essential in order to predict decomposition dynamics, decomposition of mixed-species litters containing hyperaccumulated Ni has never been studied. This study aims to test the effect of different litter mixtures containing hyperaccumulated Ni on decomposition and Ni release across serpentine and non-serpentine soils. Three different litter mixtures were prepared based on the relative abundance of the dominant species in three serpentine soils in the island of Lesbos, Greece where the Ni-hyperaccumulator Alyssum lesbiacum is present. Each litter mixture decomposed on its original serpentine habitat and on an adjacent non-serpentine habitat, in order to investigate whether the decomposition rates differ across the contrasted soils. In order to make comparisons across litter mixtures and to investigate whether additive or non-additive patterns of mass loss occur, a control non-serpentine site was used. Mass loss and Ni release were measured after 90, 180 and 270 d of field exposure. The decomposition rates and Ni release had higher values on serpentine soils after all periods of field exposure. The recorded rapid release of hyperaccumulated Ni is positively related to the initial litter Ni concentration. No differences were found in the decomposition of the three different litter mixtures at the control non-serpentine site, while their patterns of mass loss were additive. Our results: (1) demonstrate the rapid decomposition of litters containing hyperaccumulated Ni on serpentine soils, indicating the presence of metal-tolerant decomposers; and (2) imply the selective decomposition of low-Ni parts of litters by the decomposers on non-serpentine soils. This study provides support for the elemental allelopathy hypothesis of hyperaccumulation, presenting the

  19. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp; Mori, Kazuhiro; Terashita, Naoyoshi

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from themore » Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.« less

  20. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  1. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors.

    PubMed

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-07

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo 2 S 4 @NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm -2 at the current density of 1 mA cm -2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo 2 S 4 @NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg -1 at 0.288 KW kg -1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo 2 S 4 @NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  2. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  3. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    PubMed Central

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-01-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm−2 at the current density of 1 mA cm−2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg−1 at 0.288 KW kg−1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations. PMID:27924927

  4. Effect of NiFeCr seed and capping layers on exchange bias and planar Hall voltage response of NiFe/Au/IrMn trilayer structures

    NASA Astrophysics Data System (ADS)

    Talantsev, Artem; Elzwawy, Amir; Kim, CheolGi

    2018-05-01

    Thin films and cross junctions, based on NiFe/Au/IrMn structures, were grown on Ta and NiFeCr seed layers by magnetron sputtering. The effects of substitution of Ta with NiFeCr in seed and capping layers on an exchange bias field are studied. A threefold improvement of the exchange bias value in the structures, grown with NiFeCr seed and capping layers, is demonstrated. The reasons for this effect are discussed. Formation of clusters in the NiFeCr capping layer is proved by atomic force microscopy technique. Ta replacement on NiFeCr in the capping layer results in the enhancement of magnetoresistive response and a reduction of noise.

  5. Dirac R-matrix calculations of photoionization cross sections of Ni XII and atomic structure data of Ni XIII

    NASA Astrophysics Data System (ADS)

    Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.

    2017-02-01

    We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.

  6. Theoretical study of local structure for Ni2+ ions at tetragonal sites in K2ZnF4:Ni2+ system.

    PubMed

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-15

    A theoretical method for studying the local lattice structure of Ni2+ ions in (NiF6)(4-) coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 x 45 complete energy matrices for d8 (d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters (R perpendicular and R || ) of Ni2+ ions in K2ZnF4:Ni2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K2ZnF4:Ni2+ system at 78 and 290 K are reported first.

  7. Theoretical study of local structure for Ni 2+ ions at tetragonal sites in K 2ZnF 4:Ni 2+ system

    NASA Astrophysics Data System (ADS)

    Wang, Su-Juan; Kuang, Xiao-Yu; Lu, Cheng

    2008-12-01

    A theoretical method for studying the local lattice structure of Ni 2+ ions in (NiF 6) 4- coordination complex is presented. Using the ligand-field model, the formulas relating the microscopic spin Hamiltonian parameters with the crystal structure parameters are derived. Based on the theoretical formulas, the 45 × 45 complete energy matrices for d8 ( d2) configuration ions in a tetragonal ligand-field are constructed. By diagonalizing the complete energy matrices, the local distortion structure parameters ( R⊥ and R||) of Ni 2+ ions in K 2ZnF 4:Ni 2+ system have been investigated. The theoretical results are accorded well with the experimental values. Moreover, to understand the detailed physical and chemical properties of the fluoroperovskite crystals, the theoretical values of the g factor of K 2ZnF 4:Ni 2+ system at 78 and 290 K are reported first.

  8. Shock Mitigation in Open-Celled TiNi Foams

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    2018-05-01

    High-energy shock events generated by impacts are effectively mitigated by Nitinol materials. Initial evidence of this capability was suggested by the dramatically superior cavitation-erosion performance of Nitinol coatings made by plasma spray processes, over steels and brasses. A fast acting hysteretic stress-strain response mechanism was proposed to explain this result, transforming the shock energy into heat. Extending this work to bulk TiNi, dynamic load characterization using Split Rod Hopkinson Bar techniques on solid porous TiNi confirmed that the mechanical response to high strain rates below 4200 s-1 were indeed hysteretic. This paper reports on dynamical load characterization on TiNi foams made by Self-Propagating High-Temperature Synthesis (SHS) using Split Rod Hopkinson Bar and gas-gun impact characterization to compare these foams to alternative materials. This work verified that SHS-derived TiNi foams were indeed hysteretic at strain rates from 180 to 2300 s-1. In addition, Shock Spectrum Analysis demonstrated that TiNi foams were very effective in mitigating the shock spectrum range below 5 kHz, and that increasing porosity increased the amount of shock attenuation in that spectral range. Finally under impact loading, 55% porous TiNi foams were a factor of 7 superior to steel and a factor of 4 better than Al 6061 or Cu in mitigating peak g-loads and this attenuation improved with bilayer structures of 57 and 73% porous TiNi foam article.

  9. Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer.

    PubMed

    Xiao, Yong; Wang, Qiwei; Wang, Ling; Zeng, Xian; Li, Mingyu; Wang, Ziqi; Zhang, Xingyi; Zhu, Xiaomeng

    2018-07-01

    In this study, Cu alloy joints were fabricated with a Ni-foam reinforced Sn-based composite solder with the assistance of ultrasonic vibration. Effects of ultrasonic soldering time on the microstructure and mechanical properties of Cu/Ni-Sn/Cu joints were investigated. Results showed that exceptional metallurgic bonding could be acquired with the assistance of ultrasonic vibration using a self-developed Ni-foam/Sn composite solder. For joint soldered for 5 s, a (Cu,Ni) 6 Sn 5 intermetallic compound (IMC) layer was formed on the Cu substrate surface, Ni skeletons distributed randomly in the soldering seam and a serrated (Ni,Cu) 3 Sn 4 IMC layer was formed on the Ni skeleton surface. Increasing the soldering time to 20 s, the (Ni,Cu) 3 Sn 4 IMC layer grew significantly and exhibited a loose porous structure on the Ni skeleton surface. Further increase the soldering time to 30 s, Ni skeletons were largely dissolved in the Sn base solder, and micro-sized (Ni,Cu) 3 Sn 4 particles were formed and dispersed homogeneously in the soldering seam. The formation of (Ni,Cu) 3 Sn 4 particles was mainly ascribed to acoustic cavitations induced erosion and grain refining effects. The joint soldered for 30 s exhibited the highest shear strength of 64.9 ± 3.3 MPa, and the shearing failure mainly occurred at the soldering seam/Cu substrate interface. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Improved specific energy Ni-H2 cell

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1985-07-01

    Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.

  11. Improved Specific Energy Ni-h2 Cell

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1985-01-01

    Design optimization activities which have evolved and validated the necessary technology to produce Ni-H2 battery cells exhibiting a specific energy of 75-80 Whr/Kg (energy density approximately 73 Whr/L are summarized. Final design validation is currently underway with the production of battery cells for qualification and life testing. The INTELSAT type Ni-H2 battery cell design has been chosen for expository purposes. However, it should be recognized portions of the improved technology could be applied to the Air Force type Ni-H2 battery cell design with equal benefit.

  12. Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures

    NASA Astrophysics Data System (ADS)

    Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.

  13. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Schütz, Gisela; Goering, Eberhard J.

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  14. High Ni in Archean tholeiites

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  15. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.

    PubMed

    Lee, In-Gu; Lee, Heejin; Kang, Bo Sung; Kim, Young-Min; Kim, Sang Chai; Jung, Sang-Chul; Ko, Chang Hyun; Park, Young-Kwon

    2018-02-01

    The catalytic hydrodeoxygenation (HDO) of bio-oil over Ni-supported mesoporous materials was performed using a high pressure autoclave reactor. The actual pyrolysis oil of cork oak wood was used as a sample, and Ni/Al-SBA-15 and Ni/Al-MSU-F were used as catalysts. In addition, supercritical ethanol was added as solvent. Both Ni-supported mesoporous catalysts showed efficient HDO reaction ability. A higher heating value and pH of bio-oil were achieved by the HDO reaction over both catalysts and upgraded bio-oil had a lower viscosity. Compared to Ni/Al-MSU-F, Ni/Al- SBA-15 produced more upgraded bio-oil with a lower oxygen content and higher heating value via a catalytic HDO process.

  16. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 - (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shen, X.; Chen, T.; Bishop, S. R.; Perry, N. H.; Tuller, H. L.; Sasaki, K.

    2017-12-01

    Oxide anodes composed of 60 wt% Gd0.1Ce0.8Ni0.1O2 (GDCN)- 40 wt% (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 (SLTN) composites were prepared and tested on (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ) electrolyte-supported SOFC cells utilizing a (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode, in 3%-humidified hydrogen fuel at 800 °C. Improved electrochemical performance was found compared to the cell using Ni-free 60 wt% Gd0.1Ce0.9O2 (GDC) - 40 wt % Sr0.9La0.1TiO3 (SLT) that was attributed to the exsolution of nano-sized Ni particles from the Ni-doped system. This exsolution process represents a simpler, more attractive method to improve performance than the more conventional but more complicated infiltration method for introducing catalytic nanoparticles. Redox cycling testing was performed to investigate the performance and structural stability of the Ni-doped GDC-SLT anode. The results indicated that the Ni exsolution and aggregation occurred while redox cycling proceeded, resulting in a gradually reduced anodic overvoltage. Symmetric cells with dense thin film Gd0.1Ce0.9-xNixO2 (x = 0, 0.05, 0.1, 0.15) electrodes were also tested, demonstrating lower area-specific resistances with increasing Ni content on the surface under reducing conditions. The steady improvement during redox cycling, despite Ni agglomeration, is related to the continuous increase in the overall Ni content on the anode surface, which may be enabled by kinetic limitations to Ni re-dissolving under oxidizing transients.

  17. Structural, optical and high pressure electrical resistivity studies of pure NiO and Cu-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Marselin, M. Abila; Jaya, N. Victor

    2016-04-01

    In this paper, pure NiO and Cu-doped NiO nanoparticles are prepared by co-precipitation method. The electrical resistivity measurements by applying high pressure on pure NiO and Cu-doped NiO nanoparticles were reported. The Bridgman anvil set up is used to measure high pressures up to 8 GPa. These measurements show that there is no phase transformation in the samples till the high pressure is reached. The samples show a rapid decrease in electrical resistivity up to 5 GPa and it remains constant beyond 5 GPa. The electrical resistivity and the transport activation energy of the samples under high pressure up to 8 GPa have been studied in the temperature range of 273-433 K using diamond anvil cell. The temperature versus electrical resistivity studies reveal that the samples behave like a semiconductor. The activation energies of the charge carriers depend on the size of the samples.

  18. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  19. Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.

    PubMed

    Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang

    2017-05-01

    Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Bhatti, Haq Nawaz; Ahmad, Najum Rashid; Ansari, Tariq Mehmood

    2007-01-10

    Cassia fistula is a fast-growing, medium-sized, deciduous tree which is now widely cultivated worldwide as an ornamental tree for its beautiful showy yellow flowers. Methods are required to reuse fallen leaves, branches, stem bark and pods when they start getting all over lawn. This investigation studies the use of these non-useful parts of C. fistula as naturally occurring biosorbent for the batch removal of Ni(II) in a well stirred system under different experimental conditions. The data showed that the maximum pH (pHmax) for efficient sorption of Ni(II) was 6 at which evaluated biosorbent dosage, biosorbent particle size, initial concentrations of Ni(II) and sorption time were 0.1 g/100 mL, <0.255 mm, up to 200 mg/L and 720 min, respectively. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fitted well to data of Ni(II) biosorption by C. fistula biomass as compared to the model of Freundlich. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation. The magnitude of the Gibbs free energy values indicates spontaneous nature of the sorption process. The sorption ability of C. fistula biomass for Ni(II) removal tends to be in the order: leavesNi(II) removal was achieved when the initial Ni(II) concentration was 25 mg/L. Due to its outstanding Ni(II) uptake capacity, C. fistula biomass proved to be an excellent biomaterial for accumulating Ni(II) from aqueous solutions.

  1. Electrochemical Hydrogen Evolution at Ordered Mo 7 Ni 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csernica, Peter M.; McKone, James R.; Mulzer, Catherine R.

    2017-04-11

    Ni–Mo alloys containing up to ~15 mol % Mo are excellent non-noble electrocatalysts for the hydrogen evolution reaction (HER) in alkaline aqueous electrolytes. To date, studies have not addressed the details of HER activity of ordered Ni–Mo intermetallic compounds, which can contain a significantly larger fraction of Mo (up to 50 mol %) than can be accessed through high-temperature alloying. Here, we present a straightforward and facile synthesis of three phase-pure electrocatalyst powders using a precipitation–reduction approach: ordered Mo7Ni7, disordered Ni0.92Mo0.08, and pure Ni. The Ni0.92Mo0.08 alloy exhibited a nearly 10-fold higher mass-specific HER activity than either pure Ni ormore » Mo7Ni7, where much of the difference could be attributed to relative surface area. Therefore, we attempted to quantify and account for differences in surface areas using electron microscopy, impedance spectroscopy, and gas adsorption measurements. These data suggest that Ni–Mo alloys and intermetallic compounds exhibit substantial pseudocapacitance at potentials near the onset of hydrogen evolution, which can cause impedance spectroscopy to overestimate the interfacial capacitance, and thus the electrochemically active surface area, of these materials. From these observations, we postulate Mo redox activity as the chemical basis for the observed pseudocapacitance of Ni–Mo composites. Furthermore, using gas adsorption measurements, rather than capacitance, to estimate active surface area, we find that ordered Mo7Ni7 is more intrinsically active than the Ni0.92Mo0.08 alloy, implying that Mo7Ni7 intermetallics with high surface area will also give higher mass-specific activities than alloys with comparable roughness.« less

  2. High strength, low stiffness, porous NiTi with superelastic properties.

    PubMed

    Greiner, Christian; Oppenheimer, Scott M; Dunand, David C

    2005-11-01

    Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.

  3. Nanophase-separated Ni3Nb as an automobile exhaust catalyst.

    PubMed

    Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-Ichi; Fujita, Takeshi; Abe, Hideki

    2017-05-01

    Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) ( i.e. , Ni 3 Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust ( i.e. , nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni 3 Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix ( i.e. , NbO x ( x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N 2 generation, and the NbO x matrix absorbs excessive nitrogen adatoms to retain the active Ni 0 sites at the metal/oxide interface. Furthermore, the NbO x matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours.

  4. Nanocomposite SAC Solders: The Effect of Adding Ni and Ni-Sn Nanoparticles on Morphology and Mechanical Properties of Sn-3.0Ag-0.5Cu Solders

    NASA Astrophysics Data System (ADS)

    Yakymovych, A.; Švec, P.; Orovcik, L.; Bajana, O.; Ipser, H.

    2018-01-01

    This study investigates the effect of minor additions of Ni, Ni3Sn or Ni3Sn2 nanoparticles on the microstructure and mechanical properties of Cu/solder/Cu joints. The nanocomposite Sn-3.0Ag-0.5Cu (SAC305) solders with 0.5, 1.0 and 2.0 wt.% metallic nanoparticles were prepared through a paste mixing method. The employed Ni and Ni-Sn nanoparticles were produced via a chemical reduction method. The microstructure of as-solidified Cu/solder/Cu joints was studied by x-ray diffraction and scanning electron microscopy. The results showed that additions of Ni and Ni-Sn nanoparticles to the SAC305 solder paste lead initially to a decrease in the average thickness of the intermetallic compound layer in the interface between solder and substrate, while further additions up to 2.0 wt.% did not induce any significant changes. In addition, shear strength and microhardness tests were performed to investigate the relationship between microstructure and mechanical properties of the investigated solder joints. The results indicated an increase in both of these properties which was most significant for the solder joints using SAC305 with 0.5 wt.% Ni or Ni-Sn nanoparticles.

  5. Contrast studies of the process optimization and characterization of shielding fabric by amorphous Ni-Fe-P and Ni-P alloy

    NASA Astrophysics Data System (ADS)

    Yao, Kai; Wu, Xueyan; An, Zhentao

    2017-01-01

    A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.

  6. Modulated exchange bias in NiFe/CoO/α-Fe2O3 trilayers and NiFe/CoO bilayers

    NASA Astrophysics Data System (ADS)

    Li, X.; Lin, K.-W.; Yeh, W.-C.; Desautels, R. D.; van Lierop, J.; Pong, Philip W. T.

    2017-02-01

    While the exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayer and FM1/AF/FM2 trilayer configurations has been widely investigated, the role of an AF2 layer in FM/AF1/AF2 trilayer configurations is still not well understood. In this work, the magnetic properties of NiFe/CoO, NiFe/α-Fe2O3 bilayers, and NiFe/CoO/α-Fe2O3 trilayer were studied comparatively. The microstructure and chemical composition were characterized. Temperature dependent magnetometry reveals increased irreversibility temperature in NiFe/CoO/α-Fe2O3 trilayer compared with NiFe/CoO bilayer. The magnetic hysteresis loops show that the exchange bias (Hex) and coercivity (Hc) depend strongly on the anisotropy of AF layer (CoO, α-Fe2O3 and CoO/α-Fe2O3). Our work shows that the AF1/AF2 interfacial interactions can be used effectively for tuning the exchange bias in FM/AF1/AF2 trilayers.

  7. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.

    PubMed

    Hwang, Hyeyoun; Kwon, Taehyun; Kim, Ho Young; Park, Jongsik; Oh, Aram; Kim, Byeongyoon; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2018-01-01

    The development of highly active electrocatalysts is crucial for the advancement of renewable energy conversion devices. The design of core-shell nanoparticle catalysts represents a promising approach to boost catalytic activity as well as save the use of expensive precious metals. Here, a simple, one-step synthetic route is reported to prepare hexagonal nanosandwich-shaped Ni@Ru core-shell nanoparticles (Ni@Ru HNS), in which Ru shell layers are overgrown in a regioselective manner on the top and bottom, and around the center section of a hexagonal Ni nanoplate core. Notably, the synthesis can be extended to NiCo@Ru core-shell nanoparticles with tunable core compositions (Ni 3 Co x @Ru HNS). Core-shell HNS structures show superior electrocatalytic activity for the oxygen evolution reaction (OER) to a commercial RuO 2 black catalyst, with their OER activity being dependent on their core compositions. The observed trend in OER activity is correlated to the population of Ru oxide (Ru 4+ ) species, which can be modulated by the core compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  9. UV-photodetector based on NiO/diamond film

    NASA Astrophysics Data System (ADS)

    Chang, Xiaohui; Wang, Yan-Feng; Zhang, Xiaofan; Liu, Zhangcheng; Fu, Jiao; Fan, Shuwei; Bu, Renan; Zhang, Jingwen; Wang, Wei; Wang, Hong-Xing; Wang, Jingjing

    2018-01-01

    In this study, a NiO/diamond UV-photodetector has been fabricated and investigated. A single crystal diamond (SCD) layer was grown on a high-pressure-high-temperature Ib-type diamond substrate by using a microwave plasma chemical vapor deposition system. NiO films were deposited directly by the reactive magnetron sputtering technique in a mixture gas of oxygen and argon onto the SCD layer. Gold films were patterned on NiO films as electrodes to form the metal-semiconductor-metal UV-photodetector which shows good repeatability and a 2 orders of magnitude UV/visible rejection ratio. Also, the NiO/diamond photodetector has a higher responsivity and a wider response range in contrast to a diamond photodetector.

  10. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  11. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-12

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  12. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  13. Microstructural and mechanical challenges in biomedical NiTi

    NASA Astrophysics Data System (ADS)

    Franz-Xaver Wagner, Martin

    2010-07-01

    The mechanical behaviour of NiTi shape memory alloys superficially resembles that of certain biomaterials, such as bones or tissues: By virtue of a reversible martensitic phase transformation, NiTi alloys can recover relatively large strains; uniaxial stress-strain curves exhibit constant stress-plateaus (at several hundreds of MPa, depending on alloy composition and testing temperature) associated with the phase transition. These novel functional properties, in combination with high mechanical strength in ultra-fine grained NiTi and good biocompatibility, are utilized in various implants and medical devices. Yet - and quite similar to hierarchically structured biomaterials - the deformation behaviour of NiTi is intricately linked to distinct deformation processes on several length scales, and there remain significant gaps in our understanding of the microstructure-property relations. In the present paper, recent experimental and theoretical results from first-principles calculations, micromechanical modelling and nanoindentation are discussed with a focus on the role of inelastic deformation processes, twin boundaries and the interaction of plastic deformation and stress-induced phase transformations. These novel findings challenge our understanding of the fundamental mechanical properties of NiTi. They highlight the importance of inelastic deformation mechanisms for the overall mechanical properties and strength of NiTi.

  14. Microstructure characteristics of Ni/WC composite cladding coatings

    NASA Astrophysics Data System (ADS)

    Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan

    2016-02-01

    A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.

  15. Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure

    NASA Astrophysics Data System (ADS)

    Saha, B.; Sarkar, K.; Bera, A.; Deb, K.; Thapa, R.

    2017-10-01

    Delocalization of charge carriers through formation of native defects in NiO, to achieve a good metal oxide hole transport layer was attemted in this work and thus a heterojunction of p-type NiO and n-type FTO have been prepared through sol-gel process on FTO coated glass substrate. The synthesis process was stimulated by imparting large number of OH- sites during nucleation of Ni(OH)2 on FTO, so that during oxidation through annealing Ni vacancies are introduced. The structural properties as observed from X-ray diffraction measurement indicate formation of well crystalline NiO nanoparticles. Uniform distribution of NiO nanoparticles has been observed in the images obtained from scanning electron microscope. The occurrence of p-type conductivity in the NiO film was stimulated through the formation of delocalized defect carriers originated from crystal defects like vacancies or interstitials in the lattice. Ni vacancy creates shallow levels with respect to the valance band maxima and they readily produce holes. Thus a native p-type conductivity of NiO originates from Ni vacancies. NiO was thus obtained as an auspicious hole transport medium, which creates an expedient heterojunction at the interface with FTO. Excellent rectifying behavior was observed in the electrical J-V plot obtained from the prepared heterojunction. The results are explained from the band energy diagram of the NiO/FTO heterojunction. Remarkable photoresponse has been observed in the reverse characteristics of the heterojunction caused by photon generated electron hole pairs.

  16. Negative Ion Photoelectron Spectroscopy Reveals Remarkable Noninnocence of Ligands in Nickel Bis(dithiolene) Complexes [Ni(dddt) 2 ] - and [Ni(edo) 2 ] -

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xing; Hou, Gao-Lei; Wang, Xuefeng

    2016-04-21

    [Ni(dddt) 2] – (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) and [Ni(edo) 2] – (edo = 5,6-dihydro-1,4-dioxine-2,3-dithiolate) are two donor-type nickel bis(dithiolene) complexes, with the tendency of donating low binding energy electrons. These two structurally similar complexes differ only with respect to the outer atoms in the ligand framework where the former has four S atoms while the latter has four O atoms. Herein, we report a negative ion photoelectron spectroscopy (NIPES) study on these two complexes to probe electronic structures of the anions and their corresponding neutrals. The NIPE spectra exhibit the adiabatic electron detachment energy (ADE) or, equivalently, the electron affinity (EA)more » of the neutral [Ni(L) 2] 0 to be relatively low for this type complexes, 2.780 and 2.375 eV for L = dddt and edo, respectively. The 0.4 eV difference in ADEs shows significant substitution effect for sulfur in dddt by oxygen in edo, i.e., noninnocence of the ligands, which has decreased the electronic stability of [Ni(edo) 2] – by lowering its electron binding energy by ~0.4 eV. The observed substitution effect on gas-phase EA values correlates well with the measured redox potentials for [Ni(dddt) 2] –/0 and [Ni(edo) 2] –/0 in solutions. The singlet-triplet splitting (ΔE ST) of [Ni(dddt) 2] 0 and [Ni(edo) 2] 0 is also determined from the spectra to be 0.57 and 0.53 eV, respectively. Accompanying DFT calculations and molecular orbital (MO) composition analyses show significant ligand contributions to the redox MOs and allow the components of the orbitals involved in each electronic transition and spectral assignments to be identified.« less

  17. Comparison of ``AA`` nickel metal hydride cells with ``AA`` Ni-Cd cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alminauskas, V.; Johnson, W.

    1996-12-31

    This paper compares ``AA`` size nickel metal hydride (Ni-HM) cells with comparable ``AA;; nickel cadmium (Ni-Cd) cells both of which were obtained in 1993. The Ni-MH cells were found to be a suitable substitute for conventional Ni-Cd cells. Both these cell types have similar voltages and discharge characteristics. The Ni-MH cells, though had nearly twice the capacity as comparable Ni-Cd cells. There was no significant difference in self discharge between the two types of cells. The Ni-MH cells also performed as well as Ni-Cd cells at rates lower than 5 amperes and at temperatures higher than 0 C (32 F).more » The most interesting finding is that the Ni-MH cells showed an irreversible decay of the discharge voltage with each cycle which was more noticeable during pulses. Eventually the Ni-MH packs fail, not because of loss of capacity, but because of low voltage during the pulse.« less

  18. AF Ni-Cd cell qualification program

    NASA Technical Reports Server (NTRS)

    Hall, Steve; Brown, Harry; Collins, G.; Hwang, Warren

    1994-01-01

    The present status of the USAF NiCd cell qualification program, which is underway at the Naval Surface Warfare Center-Crane Division, is summarized. The following topics are discussed: overview; background; purpose; stress tests; results for super Ni-Cd; results for SAFT cells; GPS stress test; GPS simulated orbit; and results for gates cells. The discussion is presented in viewgraph format.

  19. 60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Ingole, Sudeep

    2013-06-01

    60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.

  20. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization.

    PubMed

    Bodin, Anders; Christoffersen, Ann-Louise N; Elkjær, Christian F; Brorson, Michael; Kibsgaard, Jakob; Helveg, Stig; Chorkendorff, Ib

    2018-06-13

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo 75 Ni 25 metal target in a reactive atmosphere of Ar and H 2 S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

  1. Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Xi, Yuebin; Xu, Huidao; Wang, Lu

    2016-01-01

    Magnetic nanoparticles of Ni-Mn-Zn ferrite have been prepared by a sol-gel method making use of spent Ni-MH and Zn-Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The Ms values increase and the Hc values decrease as the size of the Ni-Mn-Zn ferrite particles increases.

  2. Hydrogen in La2MgNi9D13: the role of magnesium.

    PubMed

    Denys, Roman V; Yartys, Volodymyr A; Webb, Colin J

    2012-04-02

    Reversible hydrogen storage capacity of the La(3-x)Mg(x)Ni(9) alloys, charged by gaseous hydrogen or by electrochemical methods, reaches its maximum at composition La(2)MgNi(9). As (La,Mg)Ni(3-3.5) alloys are the materials used in advanced metal hydride electrodes in Ni-MH batteries, this raises interest in the study of the structure-properties interrelation in the system La(2)MgNi(9)-H(2) (D(2)). In the present work, this system has been investigated by use of in situ synchrotron X-ray and neutron powder diffraction in H(2)/D(2) gas and by performing pressure-composition-temperature measurements. The saturated La(2)MgNi(9)D(13.1) hydride forms via an isotropic expansion and crystallizes with a trigonal unit cell (space group R3m (No.166); a = 5.4151(1) Å; c = 26.584(2) Å; V = 675.10(6) Å(3)). The studied hybrid structure is composed of a stacking of two layers resembling existing intermetallic compounds LaNi(5) (CaCu(5) type) and LaMgNi(4) (Laves type). These are occupied by D to form LaNi(5)D(5.2) and LaMgNi(4)D(7.9). The LaNi(5)D(5.2) slab has a typical structure observed for all reported LaNi(5)-containing hybrid structures of the AB(5) + Laves phase types. However, the Laves type slab LaMgNi(4)D(7.9) is different from the characterized individual LaMgNi(4)D(4.85) hydride. This results from the filling of a greater variety of interstitial sites in the La(2)MgNi(9)D(13)/LaMgNi(4)D(7.9), including MgNi(2), Ni(4), (La/Mg)(2)Ni(2), and (La/Mg)Ni(3), in contrast with individual LaMgNi(4)D(4.85) where only La(2)MgNi(2) and Ni(4) interstitials are occupied. Despite a random distribution of La and Mg in the structure, a local hydrogen ordering takes place with H atoms favoring occupation of two Mg-surrounded sites, triangles MgNi(2) and tetrahedra LaMgNi(2). A directional bonding between Ni, Mg, and hydrogen is observed and is manifested by a formation of the NiH(4) tetrahedra and MgH(6) octahedra, which are connected to each other by sharing H vertexes to form a

  3. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

    PubMed

    Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie

    2009-01-01

    The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.

  4. Very early warning of next El Niño.

    PubMed

    Ludescher, Josef; Gozolchiani, Avi; Bogachev, Mikhail I; Bunde, Armin; Havlin, Shlomo; Schellnhuber, Hans Joachim

    2014-02-11

    The most important driver of climate variability is the El Niño Southern Oscillation, which can trigger disasters in various parts of the globe. Despite its importance, conventional forecasting is still limited to 6 mo ahead. Recently, we developed an approach based on network analysis, which allows projection of an El Niño event about 1 y ahead. Here we show that our method correctly predicted the absence of El Niño events in 2012 and 2013 and now announce that our approach indicated (in September 2013 already) the return of El Niño in late 2014 with a 3-in-4 likelihood. We also discuss the relevance of the next El Niño to the question of global warming and the present hiatus in the global mean surface temperature.

  5. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  6. Homogeneous Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide by Ni(cyclam)

    NASA Astrophysics Data System (ADS)

    Froehlich, Jesse Dan

    The homogeneous electrochemical reduction of CO2 by the molecular catalyst [Ni(cyclam)]2+ was studied by electrochemistry and infrared spectroelectrochemistry. This catalyst has been previously shown to have increased CO2 reduction activity when adsorbed on a mercury electrode. The homogeneous reactivity, without a mercury electrode, was often ignored in the literature. Ni(cyclam) was found to efficiently and selectively produce CO at moderate overpotentials in both aqueous and mixed organic solvent systems in a homogenous fashion at an inert glassy carbon electrode. Methylated analogs of Ni(cyclam) were also studied and observed to have more positive reduction potentials and attenuated CO2 reduction activity. The electrochemical kinetics were probed by varying CO2 substrate and proton concentrations. Products of CO2 reduction are observed in infrared spectra obtained from spectroelectrochemical experiments. The two major species observed were a Ni(I) carbonyl, [Ni(cyclam)(CO)]+, and a Ni(II) coordinated bicarbonate, [Ni(cyclam)(CO2OH)] +. The rate-limiting step during electrocatalysis was determined to be CO loss from the deactivated species, [Ni(cyclam)(CO)]+, to produce the active catalyst, [Ni(cyclam)]+. Another macrocyclic complex, [Ni(TMC)]+, was deployed as a CO scavenger in order to inhibit the deactivation of [Ni(cyclam)] + by CO. Addition of the CO scavenger was shown to dramatically increase the catalytic current observed for CO2 reduction by [Ni(cyclam)] +. Evidence for the [Ni(TMC)]+ acting as a CO scavenger includes the observation of [Ni(TMC)(CO)]+ by IR. Density functional theory calculations, probing the optimized geometry of the [Ni(cyclam)(CO)] + species, are also presented. These findings have implications on the increased activity for CO2 reduction when [Ni(cyclam)] + is adsorbed on a mercury electrode. The [Ni(cyclam)(CO)] + structure has significant distortion of the Ni center out of the plane of the cyclam nitrogens. This distortion

  7. Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang

    Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials

  8. Microstructures, Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Han, X. L.; Song, K. K.; Zhang, L. M.; Xing, H.; Sarac, B.; Spieckermann, F.; Maity, T.; Mühlbacher, M.; Wang, L.; Kaban, I.; Eckert, J.

    2018-03-01

    In this work, the microstructure and mechanical properties of rapidly solidified Ti50- x/2Ni50- x/2Hf x ( x = 0, 2, 4, 6, 8, 10, and 12 at.%) and Ti50- y/2Ni50- y/2Si y ( y = 1, 2, 3, 5, 7, and 10 at.%) shape memory alloys (SMAs) were investigated. The sequence of the phase formation and transformations in dependence on the chemical composition is established. Rapidly solidified Ti-Ni-Hf or Ti-Ni-Si SMAs are found to show relatively high yield strength and large ductility for specific Hf or Si concentrations, which is due to the gradual disappearance of the phase transformation from austenite to twinned martensite and the predominance of the phase transformation from twinned martensite to detwinned martensite during deformation as well as to the refinement of dendrites and the precipitation of brittle intermetallic compounds.

  9. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles.

    PubMed

    Lu, Haicui; Chen, Jizhang; Tian, Qinghua

    2018-03-01

    Wearable electronics are developing rapidly in recent years. In this work, we develop a cost-effective, facile, and scalable approach to transform insulating cotton textile to highly conductive Ni-coated cotton textile (NCT). In order to verify the feasibility of NCT as a flexible current collector for wearable supercapacitors, we electrodeposit low-crystalline Ni-Al layered double hydroxide (LDH) nanoparticles onto the NCT. The obtained NCT@NiAl-LDH shows high specific capacitance (935.2 mF cm -2 ), superior rate capability, and good cyclability. Besides, the asymmetric supercapacitor (ASC) assembled from NCT@NiAl-LDH exhibits high specific energy of 58.8 Wh kg -1 (134 μWh cm -2 ) when the specific power is 539 W kg -1 (1228 μW cm -2 ). The results demonstrate great potential of our methodology. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  11. Structure of Ni 78 from First-Principles Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  12. Structure of Ni 78 from First-Principles Computations

    DOE PAGES

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.; ...

    2016-10-17

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the J π = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the J π = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  13. Construction of a Hierarchical NiCo2S4@PPy Core-Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor.

    PubMed

    Yan, Minglei; Yao, Yadong; Wen, Jiqiu; Long, Lu; Kong, Menglai; Zhang, Guanggao; Liao, Xiaoming; Yin, Guangfu; Huang, Zhongbing

    2016-09-21

    In this paper, a hierarchical NiCo2S4@polypyrrole core-shell heterostructure nanotube array on Ni foam (NiCo2S4@PPy/NF) was successfully developed as a bind-free electrode for supercapacitors. NiCo2S4@PPy-50/NF obtained under 50 s PPy electrodeposition shows a low charge-transfer resistance (0.31 Ω) and a high area specific capacitance of 9.781 F/cm(2) at a current density of 5 mA/cm(2), which is two times higher than that of pristine NiCo2S4/NF (4.255 F/cm(2)). Furthermore, an asymmetric supercapacitor was assembled using NiCo2S4@PPy-50/NF as positive electrode and activated carbon (AC) as negative electrode. The resulting NiCo2S4@PPy-50/NF//AC device exhibits a high energy density of 34.62 Wh/kg at a power density of 120.19 W/kg with good cycling performance (80.64% of the initial capacitance retention at 50 mA/cm(2) over 2500 cycles). The superior electrochemical performance can be attributed to the combined contribution of both component and unique core-shell heterostructure. The results demonstrate that the NiCo2S4@PPy-50 core-shell heterostructure nanotube array is promising as electrode material for supercapacitors in energy storage.

  14. A Review of Selective Laser Melted NiTi Shape Memory Alloy

    PubMed Central

    Khoo, Zhong Xun; Shen, Yu Fang

    2018-01-01

    NiTi shape memory alloys (SMAs) have the best combination of properties among the different SMAs. However, the limitations of conventional manufacturing processes and the poor manufacturability of NiTi have critically limited its full potential applicability. Thus, additive manufacturing, commonly known as 3D printing, has the potential to be a solution in fabricating complex NiTi smart structures. Recently, a number of studies on Selective Laser Melting (SLM) of NiTi were conducted to explore the various aspects of SLM-produced NiTi. Compared to producing conventional metals through the SLM process, the fabrication of NiTi SMA is much more challenging. Not only do the produced parts require a high density that leads to good mechanical properties, strict composition control is needed as well for the SLM NiTi to possess suitable phase transformation characteristics. Additionally, obtaining a good shape memory effect from the SLM NiTi samples is another challenging task that requires further understanding. This paper presents the results of the effects of energy density and SLM process parameters on the properties of SLM NiTi. Its shape memory properties and potential applications were then reviewed and discussed. PMID:29596320

  15. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles for oil/water separation

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Yong; Lyu, Shu-Shen; Fu, Yuan-Xiang; Heng, Yi; Mo, Dong-Chuan

    2017-07-01

    Janus effect has been studied for emerging materials like Janus membranes, Janus nanoparticles, etc., and the applications including fog collection, oil/water separation, CO2 removal and stabilization of multiphasic mixtures. However, the Janus effect on oil/water separation is still unclear. Herein, Janus Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles is synthesized via selective electrodeposition, in which we keep one side of Cu mesh (Janus A) to be superhydrophilic, while manipulate the wettability of another side (Janus B) from hydrophobic to superhydrophilic. Experimental results indicate that Cu mesh with both-side superhydrophilic shows the superior oil/water separation performance (separation efficiency >99.5%), which is mainly due to its higher water capture percentage as well as larger oil intrusion pressure. Further, we demonstrate the orientation of Janus membranes for oil/water separation, and summarize that the wettability of the upper surface plays a more important role than the lower surface to achieve remarkable performance. Our work provides a clear insight of Janus effect on oil/water separation, it is significative to design high-performance membranes for oil/water separation and many other applications.

  16. Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers

    NASA Astrophysics Data System (ADS)

    Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.

    2015-05-01

    The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.

  17. The Influence of the Regional Hadley and Walker Circulations on Precipitation Patterns over Africa in El Niño, La Niña, and Neutral Years

    NASA Astrophysics Data System (ADS)

    de Oliveira, Cristiano Prestrelo; Aímola, Luis; Ambrizzi, Tércio; Freitas, Ana Carolina Vasques

    2018-02-01

    This study focuses on the differential impacts of the positive (El Niño), negative (La Niña), and neutral phases of the El Niño Southern Oscillation (ENSO) on precipitation over Africa during DJF and JJA, evaluated through changes in the regional Hadley and Walker Circulations. Identification of the Hadley and Walker Cells was done using stream function mass transport calculations of ERA-Interim reanalysis data from 1979 to 2014. Analysis of the spatial pattern of precipitation anomalies shows that during DJF, El Niño (La Niña) negatively (positively) impacts precipitation over the African continent. During JJA, El Niño (La Niña) influences precipitation variability over the Sahel region, producing positive (negative) anomalies. Negative precipitation anomalies associated with El Niño (DJF) over southern Africa are linked to a strengthening in subsidence of the descending branch of the regional Hadley Cell, and during JJA the negative precipitation anomalies over the Sahel are associated with a weakening of the ascending branch of the regional Hadley Cell. During La Niña events in DJF, there is a tendency toward increased convection in southern Africa, associated with a stronger ascending branch and weaker descending branch of the regional Hadley Cell. During La Niña events in JJA, positive precipitation anomalies over the Sahel are associated with an intensification of the ascending branch of the regional Hadley Cell north of the equator.

  18. Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN) 4

    DOE PAGES

    Wong-Ng, W.; Culp, J. T.; Chen, Y. S.; ...

    2013-01-01

    This paper reports our synthesis of flexible coordination polymer, Ni(L)[Ni(CN) 4], (L = 1,2-bis(4-pyridyl)ethylene (nicknamed bpene)), and its structural characterization using synchrotron single crystal X-ray diffraction. The structure of the purplish crystals has been determined to be monoclinic, space group P2 1/m, a = 13.5941(12) Å, b = 14.3621(12) Å, c = 14.2561(12) Å, β = 96.141(2)°, V = 2767.4(4) Å 3, Z = 4, D c = 1.46 g cm -1. Ni(bpene)[Ni(CN) 4] assumes a pillared layer structure with layers defined by Ni[Ni(CN) 4] n nets and bpene ligands acting as pillars. With the present crystallization technique which involvesmore » the use of concentrated ammonium hydroxide solution and dimethyl sulfoxide (DMSO), disordered free bpene ligands and solvents of crystallization (DMSO and water molecules) occupy the pores, resulting in a formula of Ni(bpene)[Ni(CN) 4](1/2)bpene∙DMSO 2H 2O, or Ni 2N 7C 24H 25SO 3. Without the inclusion of free bpene ligands and solvent molecules, the free volume is approximately 61% of the total volume; this free volume fraction is reduced to 50% with the free ligands present. Pores without the free ligands were found to have a local diameter of 5.7 Å and a main aperture of 3.5 Å. Based on the successful crystal synthesis, we also devised a new bulk synthetic technique which yielded a polycrystalline material with a significantly improved CO 2 uptake as compared to the originally reported powder material. The improved synthetic technique yielded a polycrystalline material with 40% higher CO 2 uptake compared to the previously reported powder material. An estimated 14.4 molecules of CO 2 per unit cell was obtained.« less

  19. Magnetism and charge density wave in GdNiC2 and NdNiC2

    NASA Astrophysics Data System (ADS)

    Klimczuk, Tom; Kolincio, Kamil; Wianiarski, Michal; Strychalska-Nowak, Judyta; Górnicka, Karolina

    The RNiC2 compounds form in an orthorhombic Amm2 crystal structure with Ni and the rare-earth (R) metal chains along the crystallographic a-axis. This system is of particular interest because both a CDW and a long range magnetic ordering phases have been observed together. We report the specific heat, magnetic, magnetotransport and galvanomagnetic properties of GdNiC2 and NdNiC2 antiferromagnets. Complex B-T phase diagrams were built based on the specific heat data. Large negative magnetoresistance due to Zeeman splitting of the electronic bands and partial destruction of a charge density wave ground state is observed above TN. The magnetoresistance and Hall measurements show that at low temperatures a magnetic field induced transformation from antiferromagnetic order to a metamagnetic phase results in the partial suppression of the CDW. This project is financially supported by National Science Centre (Poland), Grant Number: UMO-2015/19/B/ST3/03127.

  20. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGES

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; ...

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less