Sample records for tak1 regulates hair

  1. TAK1 regulates skeletal muscle mass and mitochondrial function

    PubMed Central

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  2. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less

  3. Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/β-catenin and MAPK pathway.

    PubMed

    Yang, Hongpeng; Guo, Yue; Wang, Dawei; Yang, Xiaofei; Ha, Chengzhi

    2018-01-02

    Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.

  4. MUC1-C ACTIVATES THE TAK1 INFLAMMATORY PATHWAY IN COLON CANCER

    PubMed Central

    Takahashi, Hidekazu; Jin, Caining; Rajabi, Hasan; Pitroda, Sean; Alam, Maroof; Ahmad, Rehan; Raina, Deepak; Hasegawa, Masanori; Suzuki, Yozo; Tagde, Ashujit; Bronson, Roderick T.; Weichselbaum, Ralph; Kufe, Donald

    2015-01-01

    The mucin 1 (MUC1) oncoprotein has been linked to the inflammatory response by promoting cytokine-mediated activation of the NF-κB pathway. The TGF-β-activated kinase 1 (TAK1) is an essential effector of proinflammatory NF-κB signaling that also regulates cancer cell survival. The present studies demonstrate that the MUC1-C transmembrane subunit induces TAK1 expression in colon cancer cells. MUC1 also induces TAK1 in a MUC1+/−/IL-10−/− mouse model of colitis and colon tumorigenesis. We show that MUC1-C promotes NF-κB-mediated activation of TAK1 transcription and, in a positive regulatory loop, MUC1-C contributes to TAK1-induced NF-κB signaling. In this way, MUC1-C binds directly to TAK1 and confers the association of TAK1 with TRAF6, which is necessary for TAK1-mediated activation of NF-κB. Targeting MUC1-C thus suppresses the TAK1→NF-κB pathway, downregulates BCL-XL, and in turn sensitizes colon cancer cells to MEK inhibition. Analysis of colon cancer databases further indicates that MUC1, TAK1 and TRAF6 are upregulated in tumors associated with decreased survival and that MUC1-C-induced gene expression patterns predict poor outcomes in patients. These results support a model in which MUC1-C-induced TAK1→NF-κB signaling contributes to intestinal inflammation and colon cancer progression. PMID:25659581

  5. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair

    PubMed Central

    Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok

    2015-01-01

    Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529

  6. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen.

    PubMed

    Levin, Rebecca S; Hertz, Nicholas T; Burlingame, Alma L; Shokat, Kevan M; Mukherjee, Shaeri

    2016-08-16

    TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.

  7. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis.

    PubMed

    Shibata, Michitaro; Breuer, Christian; Kawamura, Ayako; Clark, Natalie M; Rymen, Bart; Braidwood, Luke; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N; Sozzani, Rosangela; Sugimoto, Keiko

    2018-02-08

    How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. © 2018. Published by The Company of Biologists Ltd.

  8. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis

    PubMed Central

    Breuer, Christian; Kawamura, Ayako; Clark, Natalie M.; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N.; Sozzani, Rosangela

    2018-01-01

    ABSTRACT How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. PMID:29439132

  9. MEK and TAK1 Regulate Apoptosis in Colon Cancer Cells with KRAS-Dependent Activation of Proinflammatory Signaling.

    PubMed

    McNew, Kelsey L; Whipple, William J; Mehta, Anita K; Grant, Trevor J; Ray, Leah; Kenny, Connor; Singh, Anurag

    2016-12-01

    MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G 1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G 2 -M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G 2 -M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to

  10. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice.

    PubMed

    Qi, Bing; Cong, Qian; Li, Ping; Ma, Gang; Guo, Xizhi; Yeh, James; Xie, Min; Schneider, Michael D; Liu, Huijuan; Li, Baojie

    2014-11-24

    Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not been assessed, as mature osteoclast-specific Tak1 deletion with Cstk-Cre resulted in runtedness and postnatal lethality. Here we generated osteoclast progenitor (monocyte)-specific Tak1 knockout mice and found that these mice show normal body weight, limb size and fertility, and osteopetrosis with severity similar to that of RANK or RANKL deficient mice. Mechanistically, Tak1 deficiency altered the signaling of NF-κB, p38MAPK, and Smad1/5/8 and the expression of PU.1, MITF, c-Fos, and NFATc1, suggesting that Tak1 regulates osteoclast differentiation at multiple stages via multiple signaling pathways. Moreover, the Tak1 mutant mice showed defects in skull, articular cartilage, and mesenchymal stromal cells. Ex vivo Tak1-/- monocytes also showed enhanced ability in promoting osteogenic differentiation of mesenchymal stromal cells. These findings indicate that Tak1 functions in osteoclastogenesis in a cell-autonomous manner and in osteoblastogenesis and chondrogenesis in non-cell-autonomous manners.

  11. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice

    PubMed Central

    Qi, Bing; Cong, Qian; Li, Ping; Ma, Gang; Guo, Xizhi; Yeh, James; Xie, Min; Schneider, Michael D.; Liu, Huijuan; Li, Baojie

    2014-01-01

    Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not been assessed, as mature osteoclast-specific Tak1 deletion with Cstk-Cre resulted in runtedness and postnatal lethality. Here we generated osteoclast progenitor (monocyte)-specific Tak1 knockout mice and found that these mice show normal body weight, limb size and fertility, and osteopetrosis with severity similar to that of RANK or RANKL deficient mice. Mechanistically, Tak1 deficiency altered the signaling of NF-κB, p38MAPK, and Smad1/5/8 and the expression of PU.1, MITF, c-Fos, and NFATc1, suggesting that Tak1 regulates osteoclast differentiation at multiple stages via multiple signaling pathways. Moreover, the Tak1 mutant mice showed defects in skull, articular cartilage, and mesenchymal stromal cells. Ex vivo Tak1−/− monocytes also showed enhanced ability in promoting osteogenic differentiation of mesenchymal stromal cells. These findings indicate that Tak1 functions in osteoclastogenesis in a cell-autonomous manner and in osteoblastogenesis and chondrogenesis in non-cell-autonomous manners. PMID:25418008

  12. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

    PubMed

    Song, Zhongchen; Liu, Chao; Iwata, Junichi; Gu, Shuping; Suzuki, Akiko; Sun, Cheng; He, Wei; Shu, Rong; Li, Lu; Chai, Yang; Chen, YiPing

    2013-04-12

    Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.

  13. Bmi1 regulates auditory hair cell survival by maintaining redox balance.

    PubMed

    Chen, Y; Li, L; Ni, W; Zhang, Y; Sun, S; Miao, D; Chai, R; Li, H

    2015-01-22

    Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.

  14. Formin homology 1 (OsFH1) regulates submergence-dependent root hair development in rice plants.

    PubMed

    Huang, Jin; Liu, Jingmiao; Han, Chang-Deok

    2013-08-01

    By using a forward genetic approach, a formin homology 1 gene (OsFH1) was identified as a critical regulator of rice root hair development. The phenotypic effect of OsFH1 on root hair development was verified by using three independent mutants, one point mutation and two T-DNA insertions. The study showed that OsFH1 is required for the elongation of root-hairs. However, Osfh1 exhibited growth defect of root hairs only when roots were grown submerged in solution. To understand how OsFH1 impinges on plant responses to root submergence, the growth responses of Osfh1 root hairs to anoxia, carbohydrate supplementation and exogenous hormones (auxin and ethylene) and nutrients (Fe and Pi) were examined. However, none of these treatments rescued the growth defects of Osfhl1 root hairs. This study demonstrates that OsFH1 could be involved in preventing submergence-induced inhibition of root hair growth.

  15. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa).

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-deok

    2013-05-01

    The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.

  16. Deletion of TAK1 in the Myeloid Lineage Results in the Spontaneous Development of Myelomonocytic Leukemia in Mice

    PubMed Central

    Lamothe, Betty; Lai, YunJu; Hur, Lana; Orozco, Natalia Martin; Wang, Jing; Campos, Alejandro D.; Xie, Min; Schneider, Michael D.; Lockworth, Cynthia R.; Jakacky, Jared; Tran, Diep; Ho, Michael; Dawud, Sity; Dong, Chen; Lin, Hui-Kuan; Hu, Peter; Estrov, Zeev; Bueso-Ramos, Carlos E.; Darnay, Bryant G.

    2012-01-01

    Previous studies of the conditional ablation of TGF-β activated kinase 1 (TAK1) in mice indicate that TAK1 has an obligatory role in the survival and/or development of hematopoietic stem cells, B cells, T cells, hepatocytes, intestinal epithelial cells, keratinocytes, and various tissues, primarily because of these cells’ increased apoptotic sensitivity, and have implicated TAK1 as a critical regulator of the NF-κB and stress kinase pathways and thus a key intermediary in cellular survival. Contrary to this understanding of TAK1’s role, we report a mouse model in which TAK1 deletion in the myeloid compartment that evoked a clonal myelomonocytic cell expansion, splenomegaly, multi-organ infiltration, genomic instability, and aggressive, fatal myelomonocytic leukemia. Unlike in previous reports, simultaneous deletion of TNF receptor 1 (TNFR1) failed to rescue this severe phenotype. We found that the features of the disease in our mouse model resemble those of human chronic myelomonocytic leukemia (CMML) in its transformation to acute myeloid leukemia (AML). Consequently, we found TAK1 deletion in 13 of 30 AML patients (43%), thus providing direct genetic evidence of TAK1’s role in leukemogenesis. PMID:23251462

  17. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea.

    PubMed

    Stojanova, Zlatka P; Kwan, Tao; Segil, Neil

    2015-10-15

    In the developing cochlea, sensory hair cell differentiation depends on the regulated expression of the bHLH transcription factor Atoh1. In mammals, if hair cells die they do not regenerate, leading to permanent deafness. By contrast, in non-mammalian vertebrates robust regeneration occurs through upregulation of Atoh1 in the surviving supporting cells that surround hair cells, leading to functional recovery. Investigation of crucial transcriptional events in the developing organ of Corti, including those involving Atoh1, has been hampered by limited accessibility to purified populations of the small number of cells present in the inner ear. We used µChIP and qPCR assays of FACS-purified cells to track changes in the epigenetic status of the Atoh1 locus during sensory epithelia development in the mouse. Dynamic changes in the histone modifications H3K4me3/H3K27me3, H3K9ac and H3K9me3 reveal a progression from poised, to active, to repressive marks, correlating with the onset of Atoh1 expression and its subsequent silencing during the perinatal (P1 to P6) period. Inhibition of acetylation blocked the increase in Atoh1 mRNA in nascent hair cells, as well as ongoing hair cell differentiation during embryonic organ of Corti development ex vivo. These results reveal an epigenetic mechanism of Atoh1 regulation underlying hair cell differentiation and subsequent maturation. Interestingly, the H3K4me3/H3K27me3 bivalent chromatin structure observed in progenitors persists at the Atoh1 locus in perinatal supporting cells, suggesting an explanation for the latent capacity of these cells to transdifferentiate into hair cells, and highlighting their potential as therapeutic targets in hair cell regeneration. © 2015. Published by The Company of Biologists Ltd.

  18. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation.

    PubMed

    Morioka, Sho; Broglie, Peter; Omori, Emily; Ikeda, Yuka; Takaesu, Giichi; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

    2014-02-17

    TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8-mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)-dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.

  19. TAK1 in brain endothelial cells mediates fever and lethargy

    PubMed Central

    Ridder, Dirk A.; Lang, Ming-Fei; Salinin, Sergei; Röderer, Jan-Peter; Struss, Marcel; Maser-Gluth, Christiane

    2011-01-01

    Systemic inflammation affects the brain, resulting in fever, anorexia, lethargy, and activation of the hypothalamus–pituitary–adrenal axis. How peripheral inflammatory signals reach the brain is still a matter of debate. One possibility is that, in response to inflammatory stimuli, brain endothelial cells in proximity to the thermoregulatory centers produce cyclooxygenase 2 (COX-2) and release prostaglandin E2, causing fever and sickness behavior. We show that expression of the MAP kinase kinase kinase TAK1 in brain endothelial cells is needed for interleukin 1β (IL-1β)–induced COX-2 production. Exploiting the selective expression of the thyroxine transporter Slco1c1 in brain endothelial cells, we generated a mouse line allowing inducible deletion of Tak1 specifically in brain endothelium. Mice lacking the Tak1 gene in brain endothelial cells showed a blunted fever response and reduced lethargy upon intravenous injection of the endogenous pyrogen IL-1β. In conclusion, we demonstrate that TAK1 in brain endothelial cells induces COX-2, most likely by activating p38 MAPK and c-Jun, and is necessary for fever and sickness behavior. PMID:22143887

  20. Exogenous IGF-1 promotes hair growth by stimulating cell proliferation and down regulating TGF-β1 in C57BL/6 mice in vivo.

    PubMed

    Li, Jingjie; Yang, Zhihong; Li, Zheng; Gu, Lijuan; Wang, Yunbo; Sung, Changkeun

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) increases the growth of cultured hair follicles and plays a role in regulating hair migration during the development of hair follicles in transgenic mice. However, the exogenous effect of IGF-1 on hair growth in wild-type mice has not been reported. In the present study, we examined whether IGF-1 was an important regulator of hair follicle growth in wide-type mice in vivo. C57BL/6 mice were injected with different concentrations of IGF-1 on dorsal skin. The treated tissues were analyzed by immunoassay methods for TGF-β1 and BrdU. Local injection of IGF-1 increased hair follicle number and prolonged the growing phase during the transition from anagen to telogen. Meanwhile, immunology analyses revealed that IGF-1 also stimulated the proliferation of follicle cells in anagen of the matrix and down regulated TGF-β1 expression in hair follicles. These observations suggest that IGF-1 is an effective stimulator of hair follicle development in wide-type mice in vivo and may be a promising drug candidate for baldness therapy. Copyright © 2014. Published by Elsevier Ltd.

  1. Regulation and functional diversification of root hairs.

    PubMed

    Cui, Songkui; Suzaki, Takuya; Tominaga-Wada, Rumi; Yoshida, Satoko

    2017-10-13

    Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit

    PubMed Central

    Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith

    2015-01-01

    Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470

  3. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  4. Procarcinogenic effects of cyclosporine A are mediated through the activation of TAK1/TAB1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jianmin; Walsh, Stephanie B.; Verney, Zoe M.

    Research highlights: {yields} Organ transplant recipients are highly susceptible to early skin cancer development. {yields} CsA-mediated TGFB1-dependent TAK1/TAB1 signaling augments invasive tumor growth. {yields} CsA enhances accumulation of upstream kinases, ZMP, AMPK and IRAK to activate TAK1. {yields} TAK1 mediates enhanced proliferation and reduced apoptosis via CsA-dependent NF{kappa}B. -- Abstract: Cyclosporine A (CsA) is an immunosuppressive drug commonly used for maintaining chronic immune suppression in organ transplant recipients. It is known that patients receiving CsA manifest increased growth of aggressive non-melanoma skin cancers. However, the underlying mechanism by which CsA augments tumor growth is not fully understood. Here, we showmore » that CsA augments the growth of A431 epidermoid carcinoma xenograft tumors by activating tumor growth factor {beta}-activated kinase1 (TAK1). The activation of TAK1 by CsA occurs at multiple levels by kinases ZMP, AMPK and IRAK. TAK1 forms heterodimeric complexes with TAK binding protein 1 and 2 (TAB1/TAB2) which in term activate nuclear factor {kappa}B (NF{kappa}B) and p38 MAP kinase. Transcriptional activation of NF{kappa}B is evidenced by IKK{beta}-mediated phosphorylation-dependent degradation of I{kappa}B and consequent nuclear translocation of p65. This also leads to enhancement in the expression of its transcriptional target genes cyclin D1, Bcl2 and COX-2. Similarly, activation of p38 leads to enhanced inflammation-related signaling shown by increased phosphorylation of MAPKAPK2 and which in turn phosphorylates its substrate HSP27. Activation of both NF{kappa}B and p38 MAP kinase provide mitogenic stimuli to augment the growth of SCCs.« less

  5. Shrimp TAB1 interacts with TAK1 and p38 and activates the host innate immune response to bacterial infection.

    PubMed

    Wang, Sheng; Li, Mengqiao; Yin, Bin; Li, Haoyang; Xiao, Bang; Lǚ, Kai; Huang, Zhijian; Li, Sedong; He, Jianguo; Li, Chaozheng

    2017-08-01

    Mammalian TAB1 has been previously identified as transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) binding protein, which functions as the activator of TAK1 and p38. This report, for the first time, identified and characterized the homolog of TAB1 in shrimp, to be specific, the homolog gene from Litopenaeus vannamei, containing a 1560-bp open reading frame (ORF) that encoded a putative protein of 519 amino acids with the conserved PP2Cc (Serine/threonine phosphatases, family 2C, catalytic) domain in N-terminal and a TAK1 binding motif in C-terminus, has been cloned and named LvTAB1. LvTAB1 was most abundant in gills and its expression could respond significantly to a series of stimuli, including LPS, Vibrio parahemolyticus and Staphylococcus aureus. Moreover, Co-immunoprecipitation (Co-IP) experiments showed that LvTAB1 could combine with LvTAK1 as well as Lvp38, two members of IMD-NF-κB/MAPK pathway, which meant LvTAB1 could have a role in regulating the activities of these kinases. Over-expression of LvTAB1 in drosophila S2 cells could improve the transcriptional levels of antimicrobial peptide genes (AMPs) such as Diptericin (Dpt), the hallmark of drosophila NF-κB activated genes, indicating its activation effect on NF-κB pathway. Furthermore, suppression of LvTAB1 expression in vivo by RNA-interference increased the sensibility of shrimps to V. parahaemolyticus infection, implying its protective role against bacterial infection. In conclusion, these results provide some insight into the function of LvTAB1 during bacterial infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. TAK1 (MAP3K7) inhibition promotes apoptosis in KRAS-dependent colon cancers

    PubMed Central

    Singh, Anurag; Sweeney, Michael F.; Yu, Min; Burger, Alexa; Greninger, Patricia; Benes, Cyril; Haber, Daniel A.; Settleman, Jeff

    2012-01-01

    Summary Colon cancers frequently harbor KRAS mutations, yet only a subset of KRAS-mutant colon cancer cell lines are dependent upon KRAS signaling for survival. In a screen for kinases that promote survival of KRAS-dependent colon cancer cells, we found that the TAK1 kinase (MAP3K7) is required for tumor cell viability. The induction of apoptosis by RNAi-mediated depletion or pharmacologic inhibition of TAK1 is linked to its suppression of hyperactivated Wnt signaling, evident in both endogenous and genetically reconstituted cells. In APC-mutant/KRAS-dependent cells, KRAS stimulates BMP-7 secretion and BMP signaling, leading to TAK1 activation and enhancement of Wnt-dependent transcription. An in vitro-derived “TAK1-dependency signature” is enriched in primary human colon cancers with mutations in both APC and KRAS, suggesting potential clinical utility in stratifying patient populations. Together, these findings identify TAK1 inhibition as a potential therapeutic strategy for a treatment-refractory subset of colon cancers exhibiting aberrant KRAS and Wnt pathway activation. PMID:22341439

  7. Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-01

    Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  9. An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK.

    PubMed

    Ono, K; Ohtomo, T; Sato, S; Sugamata, Y; Suzuki, M; Hisamoto, N; Ninomiya-Tsuji, J; Tsuchiya, M; Matsumoto, K

    2001-06-29

    TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.

  10. Innate immune signaling in Drosophila is regulated by transforming growth factor β (TGFβ)-activated kinase (Tak1)-triggered ubiquitin editing

    PubMed Central

    Chen, Li; Paquette, Nicholas; Mamoor, Shahan; Rus, Florentina; Nandy, Anubhab; Leszyk, John; Shaffer, Scott A.; Silverman, Neal

    2017-01-01

    Coordinated regulation of innate immune responses is necessary in all metazoans. In Drosophila the Imd pathway detects Gram-negative bacterial infections through recognition of diaminopimelic acid (DAP)-type peptidoglycan and activation of the NF-κB precursor Relish, which drives robust antimicrobial peptide gene expression. Imd is a receptor-proximal adaptor protein homologous to mammalian RIP1 that is regulated by proteolytic cleavage and Lys-63-polyubiquitination. However, the precise events and molecular mechanisms that control the post-translational modification of Imd remain unclear. Here, we demonstrate that Imd is rapidly Lys-63-polyubiquitinated at lysine residues 137 and 153 by the sequential action of two E2 enzymes, Ubc5 and Ubc13-Uev1a, in conjunction with the E3 ligase Diap2. Lys-63-ubiquitination activates the TGFβ-activated kinase (Tak1), which feeds back to phosphorylate Imd, triggering the removal of Lys-63 chains and the addition of Lys-48 polyubiquitin. This ubiquitin-editing process results in the proteasomal degradation of Imd, which we propose functions to restore homeostasis to the Drosophila immune response. PMID:28377500

  11. Medical Castration Using the Investigational Oral GnRH Antagonist TAK-385 (Relugolix): Phase 1 Study in Healthy Males

    PubMed Central

    Shi, Hongliang; Faessel, Hélène M.; Saad, Fred

    2015-01-01

    Context: TAK-385 is a highly selective, oral, nonpeptide GnRH antagonist being investigated as a possible prostate cancer treatment. Objective: The objectives were to evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-385 on LH and testosterone. Design, Setting, and Participants: This was a three-part, randomized, double-blind, placebo-controlled, phase 1 dose-escalation study in 176 healthy male UK volunteers. Interventions: Part 1, single doses of TAK-385 (0 [placebo], 80, 120, 180, or 360 mg). Part 2, 14-day TAK-385 (0, 20, 40, 80, or 180 mg) daily. Part 3, 28-day TAK-385 (40 [with loading dose], 60, 80, or 160 mg) or placebo daily. Parts 2 and 3 included men aged 40–75 years. Main Outcome Measures: Main outcome measures included plasma concentrations of TAK-385, LH, and testosterone. Results: Oral TAK-385 was readily absorbed, and steady state was reached in ≤14 days. Food reduced TAK-385 systemic exposure by 47–52%. Mean serum testosterone levels declined ≤6 hours after TAK-385 administration. Loading doses up to 360 mg on day 1 or 360 mg on day 1 followed by 240 mg on day 2 reduced the time to achieve castrate testosterone levels from ≥7 to <3 days. TAK-385 doses ≥80 mg/d achieved sustained medical castration and trough TAK-385 concentrations >4 ng/mL. After discontinuation of TAK-385 on day 28, testosterone levels normalized in most subjects in ≤ 28 days. Common adverse events included bradycardia, headache, and hot flush (all grade ≤2). Conclusions: Oral TAK-385 (40–180 mg/d) was well tolerated and effectively lowered testosterone in healthy men. Planned phase 2 doses in men with hormone-sensitive prostate cancer are 80 and 120 mg/d. PMID:26502357

  12. The Role of Neprilysin in Regulating the Hair Cycle

    PubMed Central

    Morisaki, Naoko; Ohuchi, Atsushi; Moriwaki, Shigeru

    2013-01-01

    In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively) called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP), we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT). NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen. PMID:23418484

  13. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth.

    PubMed

    Vijayakumar, Priya; Datta, Sourav; Dolan, Liam

    2016-12-01

    ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    PubMed

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  15. A phase 1 study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of TAK-063, a selective PDE10A inhibitor.

    PubMed

    Tsai, Max; Chrones, Lambros; Xie, Jinhui; Gevorkyan, Hakop; Macek, Thomas A

    2016-10-01

    Schizophrenia is a complex neuropsychiatric disorder characterized, in part, by impaired dopamine signaling. TAK-063 is a selective inhibitor of phosphodiesterase 10A, a key regulator of intracellular signaling pathways that is highly expressed in the striatum. Safety, tolerability, and pharmacokinetics of TAK-063 were evaluated in a phase 1 study. Healthy Japanese and non-Japanese volunteers were randomized into dose cohorts of 3, 10, 30, 100, 300, and 1000 mg. Each fasting volunteer randomly received a single dose of TAK-063 or placebo. Individuals from the 100-mg cohort also received a post-washout, 100-mg dose under fed conditions. A total of 84 volunteers enrolled (14 per cohort). The most common drug-related adverse events (AEs) were somnolence (33.3 %), orthostatic tachycardia (19.7 %), and orthostatic hypotension (9.1 %). The three severe AEs recorded occurred at the highest doses: orthostatic hypotension (n = 1; 300 mg) and somnolence (n = 2; 1000 mg). There were no deaths, serious AEs, or discontinuations due to AEs. TAK-063 exposure increased in a dose-dependent manner. Median T max was reached 3 to 4 h postdose. Fed conditions slowed absorption (T max =  6 h) and increased oral bioavailability. Renal elimination was negligible. Safety and pharmacokinetic parameters were similar between Japanese and non-Japanese subjects. Impairments in cognitive function consistent with the effects of other sedative or hypnotic agents were detected using a validated, computerized cognition battery, CNS Vital Signs. TAK-063 was safe and well tolerated at doses up to 1000 mg and demonstrated a pharmacokinetic profile supporting once-daily dosing. Further evaluation of the clinical safety and efficacy of TAK-063 is warranted.

  16. Effects of TGF-β1 on plasminogen activation in human dental pulp cells: Role of ALK5/Smad2, TAK1 and MEK/ERK signalling.

    PubMed

    Chang, Mei-Chi; Chang, Hsiao-Hua; Lin, Po-Shuan; Huang, Yu-An; Chan, Chiu-Po; Tsai, Yi-Ling; Lee, Shen-Yang; Jeng, Po-Yuan; Kuo, Han-Yueh; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2018-04-01

    Transforming growth factor-β1 (TGF-β1) plays an important role in the pulpal repair and dentinogenesis. Plasminogen activation (PA) system regulates extracellular matrix turnover. In this study, we investigated the effects of TGF-β1 on PA system of dental pulp cells and its signalling pathways. Dental pulp cells were treated with different concentrations of TGF-β1. MTT assay, reverse transcription-polymerase chain reaction, Western blotting and enzyme-linked immunosorbant assay (ELISA) were used to detect the effect of TGF-β1 on cell viability, mRNA and protein expression of urokinase-type plasminogen activator (uPA), uPA receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1) as well as their secretion. The phosphorylation of Smad2 and TAK1 was analysed by Pathscan ELISA or Western blotting. Cells were pretreated with SB431542 (ALK5/Smad2/3 inhibitor), 5z-7-oxozeaenol (TAK1 inhibitor) and U0126 (MEK/ERK inhibitor) for examining the related signalling. TGF-β1 slightly inhibited cell growth that was reversed by SB431542. TGF-β1 upregulated both RNA and protein expression of PAI-1 and uPAR, whereas it downregulated uPA expression. Accordingly, TGF-β1 stimulated PAI-1 and soluble uPAR (suPAR) secretion of pulp cells, whereas uPA secretion was inhibited. TGF-β1 induced the phosphorylation of Smad2 and TAK1. In addition, SB431542, 5z-7-oxozeaenol and U0126 attenuated the TGF-β1-induced secretion of PAI-1 and suPAR. These results indicate that TGF-β1 is possibly involved in the repair/regeneration and inflammatory processes of dental pulp via regulation of PAI-1, uPA and uPAR. These effects of TGF-β1 are related to activation of ALK5/Smad2, TAK1 and MEK/ERK signalling pathways. Clarifying the signal transduction for the effects of TGF-β1 is helpful for pulpo-dentin regeneration and tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Modulating hair follicle size with Wnt10b-DKK1 pair during hair regeneration

    PubMed Central

    Lei, Mingxing; Guo, Haiying; Qiu, Weiming; Lai, Xiangdong; Yang, Tian; Widelitz, Randall B.; Chuong, Cheng-Ming; Lian, Xiaohua; Yang, Li

    2015-01-01

    Hair follicles have characteristic sizes corresponding to their cycle specific stage. However, how the anagen hair follicle specifies its size remains elusive. Here, we show that in response to prolonged ectopic Wnt10b-mediated β-catenin activation, regenerating anagen hair follicles grow larger in size. In particular, the hair bulb, dermal papilla and hair shaft become enlarged. While the formation of different hair types (Guard, Awl, Auchene, and Zigzag) is unaffected. Interestingly, we found the effect of exogenous WNT10b was mainly on Zigzag and less on the other kinds of hairs. We observed dramatically enhanced proliferation within the matrix, DP and hair shaft of the enlarged AdWnt10b-treated hair follicles compared with those of normal hair follicles at P98. Furthermore, expression of CD34, a specific hair stem cell marker, was increased in its number to the bulge region after AdWnt10b treatment. Ectopic expression of CD34 throughout the ORS region was also observed. Many CD34 positive hair stem cells were actively proliferating in AdWnt10b-induced hair follicles. Importantly, subsequent co-treatment with the Wnt inhibitor, DKK1, reduced hair follicle enlargement, decreased proliferation and maintained proper hair stem cell localization. Moreover, injection of DKK1 during early anagen significantly reduced the width of prospective hairs. Together, these findings strongly suggest that a balance of Wnt10b/DKK1 governs reciprocal signaling between cutaneous epithelium and mesenchyme to regulate proper hair follicle size. PMID:24750467

  18. LSD1 is Required for Hair Cell Regeneration in Zebrafish.

    PubMed

    He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei

    2016-05-01

    Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.

  19. TGF-β Coordinately Activates TAK1/MEK/AKT/NFkB and Smad Pathways to Promote Osteoclast Survival

    PubMed Central

    Gingery, Anne; Bradley, Elizabeth W.; Pederson, Larry; Ruan, Ming; Horwood, Nikki J.; Oursler, Merry Jo

    2008-01-01

    To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival. PMID:18586026

  20. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Gaussin, V.; Taffet, G. E.; Belaguli, N. S.; Yamada, M.; Schwartz, R. J.; Michael, L. H.; Overbeek, P. A.; Schneider, M. D.

    2000-01-01

    The transforming-growth-factor-beta-activated kinase TAK1 is a member of the mitogen-activated protein kinase kinase kinase family, which couples extracellular stimuli to gene transcription. The in vivo function of TAK1 is not understood. Here, we investigated the potential involvement of TAK1 in cardiac hypertrophy. In adult mouse myocardium, TAK1 kinase activity was upregulated 7 days after aortic banding, a mechanical load that induces hypertrophy and expression of transforming growth factor beta. An activating mutation of TAK1 expressed in myocardium of transgenic mice was sufficient to produce p38 mitogen-activated protein kinase phosphorylation in vivo, cardiac hypertrophy, interstitial fibrosis, severe myocardial dysfunction, 'fetal' gene induction, apoptosis and early lethality. Thus, TAK1 activity is induced as a delayed response to mechanical stress, and can suffice to elicit myocardial hypertrophy and fulminant heart failure.

  1. Notch Signaling Regulates Late-Stage Epidermal Differentiation and Maintains Postnatal Hair Cycle Homeostasis

    PubMed Central

    Lin, Hsien-Yi; Kao, Cheng-Heng; Lin, Kurt Ming-Chao; Kaartinen, Vesa; Yang, Liang-Tung

    2011-01-01

    Background Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis. Methodology and Principal Findings We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes. Significance our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is

  2. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.

    PubMed

    Ii, Masayuki; Matsunaga, Naoko; Hazeki, Kaoru; Nakamura, Kazuyo; Takashima, Katsunori; Seya, Tsukasa; Hazeki, Osamu; Kitazaki, Tomoyuki; Iizawa, Yuji

    2006-04-01

    Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.

  3. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Pan; Hongqian, Chu; Qinghe, Meng

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and themore » lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8{sup +} T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.« less

  4. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  5. Balance between fibroblast growth factor 10 and secreted frizzled-relate protein-1 controls the development of hair follicle by competitively regulating β-catenin signaling.

    PubMed

    Zhang, Haihua; Nan, Weixiao; Wang, Shiyong; Si, Huazhe; Li, Guangyu

    2018-07-01

    Growth of hairs depends on the regular development of hair follicles which are hypothesized to be regulated by fibroblast growth factor 10 (FGF10) and secreted frizzled-relate protein-1 (sFRP1). In the current study, the effect of FGF10 or sFRP1 on hair follicle cells was assessed and the possible mechanism mediating the interaction between FGF10 and sFRP1 in hair follicle cells was explored. Out root sheath (ORS) and dermal papilla (DP) cells were isolated from mink skin tissues and subjected to administrations of FGF10 (50 ng/ml) or sFRP1 (10 ng/ml). Then proliferation, cell cycle distribution, and migration potentials of both cell types were detected. Moreover, the nuclear translocation of β-catenin was determined. The results showed that the administration of FGF10 increased cell proliferation and migration potential in both cell types, which was associated with the up-regulated nuclear level of β-catenin. To the contrary, the administration of sFRP1 decreased cell proliferation and migration potentials while induced the G1 cell cycle arrest in both cell types by inhibiting nuclear translocation of β-catenin. Compared with the sole administrations, the co-treatment of FGF10 and sFRP1 had a medium effect on cell proliferation, cell cycle distribution, cell migration, and nuclear β-catenin level, representing an antagonistic interaction between the two factors, which was exerted by competitively regulating β-catenin pathway. Conclusively, the cycle of hair follicles was promoted by FGF10 while blocked by sFRP1 and the interplay between the two factors controlled the development of hair follicles by competitively regulating β-catenin signaling. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1.

    PubMed

    Yang, Woo Seok; Yang, Eunju; Kim, Min-Jeong; Jeong, Deok; Yoon, Deok Hyo; Sung, Gi-Ho; Lee, Seungihm; Yoo, Byong Chul; Yeo, Seung-Gu; Cho, Jae Youl

    2018-01-01

    Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.

  7. The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats.

    PubMed

    Su, Xuesong; Zhou, Guangyu; Wang, Yanqiu; Yang, Xu; Li, Li; Yu, Rui; Li, Detian

    2014-06-01

    Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25% PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1-NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1-NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.

  8. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt)

    PubMed Central

    Erickson, Timothy; Morgan, Clive P; Olt, Jennifer; Hardy, Katherine; Busch-Nentwich, Elisabeth; Maeda, Reo; Clemens, Rachel; Krey, Jocelyn F; Nechiporuk, Alex; Barr-Gillespie, Peter G; Marcotti, Walter; Nicolson, Teresa

    2017-01-01

    Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle. DOI: http://dx.doi.org/10.7554/eLife.28474.001 PMID:28534737

  9. Prickle1 regulates neurite outgrowth of apical spiral ganglion neurons but not hair cell polarity in the murine cochlea

    PubMed Central

    Kersigo, Jennifer; Wu, Shu; Fritzsch, Bernd; Bassuk, Alexander G.

    2017-01-01

    In the mammalian organ of Corti (OC), the stereocilia on the apical surface of hair cells (HCs) are uniformly organized in a neural to abneural axis (or medial-laterally). This organization is regulated by planar cell polarity (PCP) signaling. Mutations of PCP genes, such as Vangl2, Dvl1/2, Celsr1, and Fzd3/6, affect the formation of HC orientation to varying degrees. Prickle1 is a PCP signaling gene that belongs to the prickle / espinas / testin family. Prickle1 protein is shown to be asymmetrically localized in the HCs of the OC, and this asymmetric localization is associated with loss of PCP in Smurf mutants, implying that Prickle1 is involved in HC PCP development in the OC. A follow-up study found no PCP polarity defects after loss of Prickle1 (Prickle1-/-) in the cochlea. We show here strong Prickle1 mRNA expression in the spiral ganglion by in situ hybridization and β-Gal staining, and weak expression in the OC by β-Gal staining. Consistent with this limited expression in the OC, cochlear HC PCP is unaffected in either Prickle1C251X/C251X mice or Prickle1f/f; Pax2-cre conditional null mice. Meanwhile, type II afferents of apical spiral ganglion neurons (SGN) innervating outer hair cells (OHC) have unusual neurite growth. In addition, afferents from the apex show unusual collaterals in the cochlear nuclei that overlap with basal turn afferents. Our findings argue against the role of Prickle1 in regulating hair cell polarity in the cochlea. Instead, Prickle1 regulates the polarity-related growth of distal and central processes of apical SGNs. PMID:28837644

  10. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling

    PubMed Central

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D.; Tucker, Haley O.; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling. PMID:26171970

  11. Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia.

    PubMed

    Trüeb, Ralph M

    2018-04-01

    Observations on the Laron syndrome originally offered the opportunity to explore the effect of insulin-like growth factor 1 (IGF-1) deficiency on human hair growth and differentiation. According to its expression in the dermal hair papilla, IGF-1 is likely involved in reciprocal signaling. It has been shown to affect follicular proliferation, tissue remodeling, and the hair growth cycle, as well as follicular differentiation, identifying IGF-1 signaling as an important mitogenic and morphogenetic regulator in hair follicle biology. Of all the cytokines or growth factors that have been postulated to play a role in hair follicles, ultimately IGF-1 is known to be regulated by androgens. Accordingly, dermal papillary cells from balding scalp follicles were found to secrete significantly less IGF-1 than their counterparts from nonbalding scalp follicles. Herein, hypotrichosis in primary growth hormone deficiency, and a lack of response of female and male androgenetic-type alopecia to treatment with topical minoxidil and oral finasteride in patients who had undergone surgical resection of the pituitary gland, provide further evidence for an effect of IGF-1 on hair growth and alopecia.

  12. A herbal formula comprising Rosae Multiflorae Fructus and Lonicerae Japonicae Flos inhibits the production of inflammatory mediators and the IRAK-1/TAK1 and TBK1/IRF3 pathways in RAW 264.7 and THP-1 cells.

    PubMed

    Cheng, Brian Chi Yan; Yu, Hua; Su, Tao; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Cao, Hui-Hui; Tse, Anfernee Kai-Wing; Kwan, Hiu-Yee; Yu, Zhi-Ling

    2015-11-04

    As documented in the Chinese Materia Medica Grand Dictionary (), a herbal formula (RL) consisting of Rosae Multiflorae Fructus (multiflora rose hips) and Lonicerae Japonicae Flos (Japanese honeysuckle flowers) has traditionally been used in treating inflammatory disorders. RL was previously reported to inhibit the expression of various inflammatory mediators regulated by NF-κB and MAPKs that are components of the TLR4 signalling pathways. This study aims to provide further justification for clinical application of RL in treating inflammatory disorders by further delineating the involvement of the TLR4 signalling cascades in the effects of RL on inflammatory mediators. RL consisting of Rosae Multiflorae Fructus and Lonicerae Japonicae Flos (in 5:3 ratio) was extracted using absolute ethanol. We investigated the effect of RL on the production of cytokines and chemokines that are regulated by three key transcription factors of the TLR4 signalling pathways AP-1, NF-κB and IRF3 in LPS-stimulated RAW264.7 cells using the multiplex biometric immunoassay. Phosphorylation of AP-1, NF-κB, IRF3, IκB-α, IKKα/β, Akt, TAK1, TBK1, IRAK-1 and IRAK-4 were examined in LPS-stimulated RAW264.7 cells and THP-1 cells using Western blotting. Nuclear localizations of AP-1, NF-κB and IRF3 were also examined using Western blotting. RL reduced the secretion of various pro-inflammatory cytokines and chemokines regulated by transcription factors AP-1, NF-κB and IRF3. Phosphorylation and nuclear protein levels of these transcription factors were decreased by RL treatment. Moreover, RL inhibited the activation/phosphorylation of IκB-α, IKKα/β, TAK1, TBK1 and IRAK-1. Suppression of the IRAK-1/TAK1 and TBK1/IRF3 signalling pathways was associated with the effect of RL on inflammatory mediators in LPS-stimulated RAW264.7 and THP-1 cells. This provides further pharmacological basis for the clinical application of RL in the treatment of inflammatory disorders. Copyright © 2015 Elsevier

  13. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression

    PubMed Central

    Hou, Chun; Miao, Yong; Wang, Jin; Wang, Xue; Chen, Chao-Yue; Hu, Zhi-Qi

    2015-01-01

    Background It has been reported that collagenases (matrix metalloproteinase 2 [MMP-2] and matrix metalloproteinase 9 [MMP-9]) are associated with hair cycle, whereas the mechanism of the association is largely unknown. Methods The mice were randomly allocated into four groups: saline, and 5, 10, and 15 nM SB-3CT. Immunohistochemical analysis was employed to examine MMP-2 and MMP-9 protein. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay were performed to determine mRNA and protein levels of VEGF, IGF-1, TGF-β, and GAPDH. Growing hair follicles from anagen phase III–IV were scored based on hematoxylin and eosin staining. Hair regrowth was also evaluated. Results Results showed that mRNA expressions of enzymes changed with a peak at late anagen and a trough at telogen after depilation. Immunostaining showed that the highest expression of MMP-2 was more than that of MMP-9, and the highest expression of enzymes changed during anagen. The localizations of MMP-2 changed from dermal papilla, keratinocyte strand, out of root sheath, and basal plate at early anagen, to hair bulb, inner root sheath, and outer root sheath at late anagen. The localization of MMP-9 changed from partial keratinocyte to dermal papilla at early anagen and to outer root sheath at late anagen. VEGF, IGF-1, and TGF-β have been shown to regulate hair growth. We found mRNA and protein expressions of VEGF and IGF-1 fluctuated with a peak at anagen and a decrease at catagen to telogen. In contrast, mRNA and protein expressions of TGF-β changed with highest and lowest levels at anagen and telogen, respectively. With selective inhibitor of collagenase IV, SB-3CT, mice showed significant suppressed hair growth and decreased expression of VEGF, IGF-1, and TGF-β. The MMPs agonist also significantly increased expression of VEGF, IGF-1, and TGF-β. Meanwhile, SB-3CT treatment significantly suppressed hair growth. Conclusion All these data suggest that the type IV collagenases

  14. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay.

    PubMed

    Yao, Pan; Hongqian, Chu; Qinghe, Meng; Lanqin, Shang; Jianjun, Jiang; Xiaohua, Yang; Xuetao, Wei; Weidong, Hao

    2016-09-15

    Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and the lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8(+) T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    PubMed Central

    2015-01-01

    We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors. PMID:25075558

  16. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancermore » cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.« less

  17. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells

    PubMed Central

    Pujol, Remy; Cunningham, Dale E.; Hailey, Dale W.; Prendergast, Andrew; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    ABSTRACT Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  18. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.

  19. REGULATED VESICULAR TRAFFICKING OF SPECIFIC PCDH15 AND VLGR1 VARIANTS IN AUDITORY HAIR CELLS

    PubMed Central

    Zallocchi, Marisa; Delimont, Duane; Meehan, Daniel T.; Cosgrove, Dominic

    2012-01-01

    Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal co-localization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular sub-pools. The apically trafficked pool co-localized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associates with membrane microdomains and SNAP25. Moreover, co-immunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions. PMID:23035094

  20. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  1. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE PAGES

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; ...

    2014-07-17

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  2. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways

    PubMed Central

    Berth, Sarah H.; Mesnard-Hoaglin, Nichole; Wang, Bin; Kim, Hajwa; Song, Yuyu; Sapar, Maria; Morfini, Gerardo

    2016-01-01

    Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP. PMID:27872270

  3. Development, validation and application of the liquid chromatography tandem mass spectrometry method for simultaneous quantification of azilsartan medoxomil (TAK-491), azilsartan (TAK-536), and its 2 metabolites in human plasma.

    PubMed

    Kuze, Yoji; Kogame, Akifumi; Jinno, Fumihiro; Kondo, Takahiro; Asahi, Satoru

    2015-09-15

    Azilsartan medoxomil potassium salt (TAK-491) is an orally administered angiotensin II type 1 receptor blocker for the treatment of hypertension and is an ester-based prodrug that is rapidly hydrolyzed to the pharmacologically active moiety, azilsartan (TAK-536), during absorption. TAK-536 is biotransformed to the 2 metabolites M-I by decarboxylation and M-II by dealkylation. In this study, we developed and validated a LC/MS/MS method which can simultaneously determine 4 analytes, TAK-491, TAK-536, M-I and M-II. The bioanalytical method can be outlined as follows: two structural analogues are used as the internal standards. The analytes and the IS are extracted from human plasma using solid phase extraction. After evaporating, the residue is reconstituted and injected into a LC/MS/MS system with an ESI probe and analyzed in the positive ion mode. Separation is performed through a conventional reversed-phase column with a mobile phase of water/acetonitrile/acetic acid (40:60:0.05, v/v/v) mixture at a flow rate of 0.2mL/min. The total run time is 8.5min. The calibration range is 1-2500ng/mL in human plasma for all the analytes. Instability issues of the prodrug, TAK-491, were overcome and all the validation results met the acceptance criteria in accordance with the regulatory guideline/guidance. As a result of the clinical study, the human PK profiles of TAK-536, M-I and M-II were successfully obtained and also it was confirmed that TAK-491 was below the LLOQ (1ng/mL) in the human plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro.

    PubMed

    Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo

    2003-07-01

    1. Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. 2. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED(50), 2.9 mg kg(-1)) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. 3. In marmosets, TAK-475 (30, 100 mg kg(-1), p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg(-1), p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. 4. TAK-475 (60 mg kg(-1), p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. 5. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of (125)I-low-density lipoprotein (LDL) to LDL receptors. 6. These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia.

  5. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation.

    PubMed

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J N Mark; Giam, Chou-Zen

    2015-08-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells.

  6. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation

    PubMed Central

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J. N. Mark; Giam, Chou-Zen

    2015-01-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells. PMID:26285145

  7. Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro

    PubMed Central

    Nishimoto, Tomoyuki; Amano, Yuichiro; Tozawa, Ryuichi; Ishikawa, Eiichiro; Imura, Yoshimi; Yukimasa, Hidefumi; Sugiyama, Yasuo

    2003-01-01

    Squalene synthase is the enzyme that converts farnesyl pyrophosphate to squalene in the cholesterol biosynthesis pathway. We examined the lipid-lowering properties of 1-[[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-5-(2,3-dimethoxyphenyl)-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]acetyl]piperidine-4-acetic acid (TAK-475), a novel squalene synthase inhibitor. TAK-475 inhibited hepatic cholesterol biosynthesis in rats (ED50, 2.9 mg kg−1) and showed lipid-lowering effects in beagle dogs, marmosets, cynomolgus monkeys and Wistar fatty rats. In marmosets, TAK-475 (30, 100 mg kg−1, p.o., for 4 days) lowered both plasma non-high-density lipoprotein (HDL) cholesterol and triglyceride, but did not affect plasma HDL cholesterol. On the other hand, atorvastatin (10, 30 mg kg−1, p.o., for 4 days) lowered the levels of all these lipids. A correlation between decrease in triglyceride and increase in HDL cholesterol was observed, and TAK-475 increased HDL cholesterol with a smaller decrease in triglyceride than did atorvastatin. TAK-475 (60 mg kg−1, p.o., for 15 days) suppressed the rate of triglyceride secretion from the liver in hypertriglyceridemic Wistar fatty rats, which show an enhanced triglyceride secretion rate from the liver compared with their lean littermates. In HepG2 cells, TAK-475 and its pharmacologically active metabolite, T-91485, increased the binding of 125I-low-density lipoprotein (LDL) to LDL receptors. 6 These results suggest that TAK-475 has clear hypolipidemic effects in animals via inhibition of hepatic triglyceride secretion and upregulation of LDL receptors, and that TAK-475 might increase HDL cholesterol by decreasing triglyceride. Thus, TAK-475 is expected to be useful for the treatment of dyslipidemia. PMID:12839864

  8. Pre-clinical Characterization of Absorption, Distribution, Metabolism and Excretion Properties of TAK-063.

    PubMed

    Tohyama, Kimio; Sudo, Miyako; Morohashi, Akio; Kato, Suguru; Takahashi, Junzo; Tagawa, Yoshihiko

    2018-06-01

    TAK-063 is currently being developed to treat schizophrenia. In this study, we investigated the absorption, distribution, metabolism and excretion (ADME) properties of TAK-063 using several paradigms. Following oral administration of TAK-063 at 0.3 mg/kg, bioavailability of TAK-063 was 27.4% in rats and 49.5% in dogs with elimination half-lives of 3.1 hr in rats and 3.7 hr in dogs. TAK-063 is a highly permeable compound without P-glycoprotein (P-gp) or breast cancer resistance protein substrate liability and can be readily absorbed into systemic circulation via the intestine. TAK-063 can also cross the blood-brain barrier. TAK-063 was metabolized mainly by CYP2C8 and CYP3A4/5, while incubation with human liver microsomes produced the major human metabolite, M-I as well as several unknown minor metabolites. Metabolism of TAK-063 to M-I occurs through hydroxylation of the mono-substituted pyrazole moiety. In vitro, TAK-063 was observed to inhibit CYP2C8, CYP2C19 and P-gp with IC 50 values of 8.4, 12 and 7.13 μM, respectively. TAK-063 was primarily excreted in the faeces in rats and dogs with M-I as a predominant component. The pre-clinical data from these ADME studies demonstrate a favourable pharmacokinetic profile for TAK-063 with good brain distribution supporting the feasibility of targeting central nervous system regions involved in schizophrenia pathophysiology. TAK-063 has recently been investigated in a phase 2 clinical trial (NCT02477020). © 2018 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. [The mechanism of root hair development and molecular regulation in plants].

    PubMed

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  10. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN

    PubMed Central

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying

    2017-01-01

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794

  12. The ciliopathy gene Rpgrip1l is essential for hair follicle development.

    PubMed

    Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A

    2015-03-01

    The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.

  13. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiting; Tu, Qunfei; Yan, Wei

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-inducedmore » HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.« less

  14. Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22

    PubMed Central

    Meng, Qingyong; Zhao, Yiqiang; Chen, Lei; Zhang, Hongquan; Xue, Lixiang; Zhang, Xiuqing; Lengner, Christopher; Yu, Zhengquan

    2015-01-01

    Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth. PMID:26020521

  15. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  16. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle.

    PubMed

    Suo, Liye; Sundberg, John P; Everts, Helen B

    2015-05-01

    Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs. © 2014 by the Society for Experimental Biology and Medicine.

  17. Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia X.

    PubMed

    Brunner, Magdalena A T; Jagannathan, Vidhya; Waluk, Dominik P; Roosje, Petra; Linek, Monika; Panakova, Lucia; Leeb, Tosso; Wiener, Dominique J; Welle, Monika M

    2017-01-01

    Alopecia X is a hair cycle arrest disorder in Pomeranians. Histologically, kenogen and telogen hair follicles predominate, whereas anagen follicles are sparse. The induction of anagen relies on the activation of hair follicle stem cells and their subsequent proliferation and differentiation. Stem cell function depends on finely tuned interactions of signaling molecules and transcription factors, which are not well defined in dogs. We performed transcriptome profiling on skin biopsies to analyze altered molecular pathways in alopecia X. Biopsies from five affected and four non-affected Pomeranians were investigated. Differential gene expression revealed a downregulation of key regulator genes of the Wnt (CTNNB1, LEF1, TCF3, WNT10B) and Shh (SHH, GLI1, SMO, PTCH2) pathways. In mice it has been shown that Wnt and Shh signaling results in stem cell activation and differentiation Thus our findings are in line with the lack of anagen hair follicles in dogs with Alopecia X. We also observed a significant downregulation of the stem cell markers SOX9, LHX2, LGR5, TCF7L1 and GLI1 whereas NFATc1, a quiescence marker, was upregulated in alopecia X. Moreover, genes coding for enzymes directly involved in the sex hormone metabolism (CYP1A1, CYP1B1, HSD17B14) were differentially regulated in alopecia X. These findings are in agreement with the so far proposed but not yet proven deregulation of the sex hormone metabolism in this disease.

  18. Drug evaluation: TAK-475--an oral inhibitor of squalene synthase for hyperlipidemia.

    PubMed

    Burnett, John R

    2006-09-01

    Takeda Pharmaceutical Co Ltd is developing TAK-475, a squalene synthetase inhibitor from a series of 4,1-benzoxazepine-3-acetic acid derivatives, for the potential oral treatment of hyperlipidemia. By March 2005, TAK-475 was undergoing phase III clinical trials in the US and Europe.

  19. Identification of hair shaft progenitors that create a niche for hair pigmentation

    PubMed Central

    Liao, Chung-Ping; Booker, Reid C.; Morrison, Sean J.; Le, Lu Q.

    2017-01-01

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20+ cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. PMID:28465357

  20. Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin to Regulate Hair Follicle Formation and Growth.

    PubMed

    Telerman, Stephanie B; Rognoni, Emanuel; Sequeira, Inês; Pisco, Angela Oliveira; Lichtenberger, Beate M; Culley, Oliver J; Viswanathan, Priyalakshmi; Driskell, Ryan R; Watt, Fiona M

    2017-11-01

    B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Sox2 in the dermal papilla niche controls hair growth by fine-tuning Bmp signaling in differentiating hair shaft progenitors

    PubMed Central

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael

    2012-01-01

    SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495

  2. TAK-264 (MLN0264) in Previously Treated Asian Patients with Advanced Gastrointestinal Carcinoma Expressing Guanylyl Cyclase C: Results from an Open-Label, Non-randomized Phase 1 Study

    PubMed Central

    Bang, Yung-Jue; Takano, Toshimi; Lin, Chia-Chi; Fasanmade, Adedigbo; Yang, Huyuan; Danaee, Hadi; Asato, Takayuki; Kalebic, Thea; Wang, Hui; Doi, Toshihiko

    2018-01-01

    Purpose This phase 1 dose-escalation portion of the study evaluated the safety, pharmacokinetics (PK), and antitumor activity of TAK-264 in Asian patients with advanced gastrointestinal (GI) carcinoma or metastatic or recurrent gastric or gastroesophageal junction adenocarcinoma expressing guanylyl cyclase C (GCC). Materials and Methods Adult patients with advanced GI malignancies expressing GCC (H-score ≥ 10) received TAK-264 on day 1 of 3-week cycles as 30-minute intravenous infusions for up to 1 year or until disease progression or unacceptable toxicity. The primary objectives were to evaluate the safety profile including dose-limiting toxicities (DLTs) during cycle 1, determine the maximum tolerated dose (MTD), and characterize the PK profile of TAK-264. Results Twelve patients were enrolled and treated with 1.2 mg/kg (n=3), 1.5 mg/kg (n=3), or 1.8 mg/kg TAK-264 (n=6). Median number of treatment cycles received was two (range, 1 to 10). None of the patients experienced a DLT and the MTD was not determined. Ten patients (83%) experienced adverse events (AEs). The most common were neutropenia, anorexia, and nausea (each reported by four patients). Five patients (42%) experienced grade ≥ 3 AEs consisting of tumor hemorrhage and hypertension, ascites, adrenal insufficiency, neutropenia and asthenia. Serum exposure to TAK-264 increased proportionally with the dose and the median half-life was approximately 5.5-6.6 days. No patients experienced an objective response. Conclusion TAK-264 demonstrated a manageable safety profile with limited antitumor activity consistent with studies conducted in Western patients with advanced GI malignancies. TAK-264 exposure increased proportionally with the dose. PMID:28494535

  3. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells.

    PubMed

    Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A; David, Larry L; Johnson, Kenneth R; Barr-Gillespie, Peter G

    2018-01-24

    Sensory hair cells require control of physical properties of their apical plasma membranes for normal development and function. Members of the ADP-ribosylation factor (ARF) small GTPase family regulate membrane trafficking and cytoskeletal assembly in many cells. We identified ELMO domain-containing protein 1 (ELMOD1), a guanine nucleoside triphosphatase activating protein (GAP) for ARF6, as the most highly enriched ARF regulator in hair cells. To characterize ELMOD1 control of trafficking, we analyzed mice of both sexes from a strain lacking functional ELMOD1 [roundabout ( rda )]. In rda/rda mice, cuticular plates of utricle hair cells initially formed normally, then degenerated after postnatal day 5; large numbers of vesicles invaded the compromised cuticular plate. Hair bundles initially developed normally, but the cell's apical membrane lifted away from the cuticular plate, and stereocilia elongated and fused. Membrane trafficking in type I hair cells, measured by FM1-43 dye labeling, was altered in rda/rda mice. Consistent with the proposed GAP role for ELMOD1, the ARF6 GTP/GDP ratio was significantly elevated in rda/rda utricles compared with controls, and the level of ARF6-GTP was correlated with the severity of the rda/rda phenotype. These results suggest that conversion of ARF6 to its GDP-bound form is necessary for final stabilization of the hair bundle. SIGNIFICANCE STATEMENT Assembly of the mechanically sensitive hair bundle of sensory hair cells requires growth and reorganization of apical actin and membrane structures. Hair bundles and apical membranes in mice with mutations in the Elmod1 gene degenerate after formation, suggesting that the ELMOD1 protein stabilizes these structures. We show that ELMOD1 is a GTPase-activating protein in hair cells for the small GTP-binding protein ARF6, known to participate in actin assembly and membrane trafficking. We propose that conversion of ARF6 into the GDP-bound form in the apical domain of hair cells is

  4. Identification of hair shaft progenitors that create a niche for hair pigmentation.

    PubMed

    Liao, Chung-Ping; Booker, Reid C; Morrison, Sean J; Le, Lu Q

    2017-04-15

    Hair differentiates from follicle stem cells through progenitor cells in the matrix. In contrast to stem cells in the bulge, the identities of the progenitors and the mechanisms by which they regulate hair shaft components are poorly understood. Hair is also pigmented by melanocytes in the follicle. However, the niche that regulates follicular melanocytes is not well characterized. Here, we report the identification of hair shaft progenitors in the matrix that are differentiated from follicular epithelial cells expressing transcription factor KROX20. Depletion of Krox20 lineage cells results in arrest of hair growth, confirming the critical role of KROX20 + cells as antecedents of structural cells found in hair. Expression of stem cell factor (SCF) by these cells is necessary for the maintenance of differentiated melanocytes and for hair pigmentation. Our findings reveal the identities of hair matrix progenitors that regulate hair growth and pigmentation, partly by creating an SCF-dependent niche for follicular melanocytes. © 2017 Liao et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Extract of Allium tuberosum Rottler ex Spreng Promoted the Hair Growth through Regulating the Expression of IGF-1

    PubMed Central

    Park, Ki Moon; Kim, Dong Woo; Lee, Seung Ho

    2015-01-01

    Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal skin of ethanol extract of ATRES treated mouse group compared with the control mouse group. To enrich the hair promoting activity, an ethanol-insoluble fraction was further extracted in sequence with n-hexane, dichloromethane, ethyl acetate, n-butanol, and distilled water. Interestingly, we found that extraction with n-butanol is most efficient in producing the hair promoting activity. In addition, the soluble fraction of the n-butanol extract was further separated by silica gel chromatography and thin layer chromatography (TLC) resulting in isolating four single fractions which have hair growth regeneration potential. Furthermore, administration of ATRES extracts to dorsal skin area increased the number of hair follicles compared with control mouse group. Interestingly, administration of ATRES extract stimulated the expression of insulin-like growth factor-1 (IGF-1) but not of keratin growth factor (KGF) or vascular endothelial growth factor (VEGF). Taken together, these results suggest that ATRES possesses strong hair growth promoting potential which controls the expression of IGF-1. PMID:26078771

  6. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    PubMed

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.

    PubMed

    Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr

    2013-01-01

    We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.

  8. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development*

    PubMed Central

    Cheng, Yen-Fu; Tong, Mingjie; Edge, Albert S. B.

    2016-01-01

    Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival. PMID:27542412

  9. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  10. Pharmacokinetics of TAK-475, a Squalene Synthase Inhibitor, in Rats and Dogs.

    PubMed

    Ebihara, T; Teshima, K; Kondo, T; Tagawa, Y; Moriwaki, T; Asahi, S

    2016-06-01

    The pharmacokinetics of TAK-475 (lapaquistat acetate), a squalene synthase inhibitor, was investigated in rats and dogs. After oral administration of (14)C-labeled TAK-475 ([(14)C]TAK-475) to rats and dogs at a dose of 10 mg/kg, the bioavailability (BA) was relatively low at 3.5 and 8.2%, respectively. The main component of the radioactivity in the plasma was M-I, which has a comparable pharmacological activity to TAK-475 in vitro. The radioactivity in the portal plasma after intraduodenal administration of [(14)C]TAK-475 to portal vein-cannulated rat was also mainly M-I, suggesting that most of the TAK-475 was hydrolyzed to M-I during the permeable process in the intestine. The concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration of [(14)C]TAK-475 to rats. The main elimination route of the radioactivity was fecal excretion after oral administration of [(14)C]TAK-475 to rats and dogs, and the absorbed radioactivity was mainly excreted via the bile as M-I in rats. M-I excreted into the bile was partially subjected to enterohepatic circulation. These results suggest that although the BA values of TAK-475 are low, M-I can exert compensatory pharmacological effects in the animals. These pharmacokinetic characteristics in animals were also confirmed in the clinical studies. The evaluation of M-I disposition is important for the pharmacokinetics, pharmacodynamics and toxicity of TAK-475 in animals and humans. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Androgen regulation of the human hair follicle: the type I hair keratin hHa7 is a direct target gene in trichocytes.

    PubMed

    Jave-Suarez, Luis F; Langbein, Lutz; Winter, Hermelita; Praetzel, Silke; Rogers, Michael A; Schweizer, Juergen

    2004-03-01

    Previous work had shown that most members of the complex human hair keratin family were expressed in terminal scalp hairs. An exception to this rule was the type I hair keratin hHa7, which was only detected in some but not all vellus hairs of the human scalp (Langbein et al, 1999). Here we show that hHa7 exhibits constitutive expression in medullary cells of all types of male and female sexual hairs. Medullated beard, axillary, and pubic hairs arise during puberty from small, unmedullated vellus hairs under the influence of circulating androgens. This suggested an androgen-controlled expression of the hHa7 gene. Further evidence for this assumption was provided by the demonstration of androgen receptor (AR) expression in the nuclei of medullary cells of beard hairs. Moreover, homology search for the semipalindromic androgen receptor-binding element (ARE) consensus sequence GG(A)/(T)ACAnnnTGTTCT in the proximal hHa7 promoter revealed three putative ARE motifs. Electrophoretic mobility shift assays demonstrated the specific binding of AR to all three hHa7 AREs. Their function as AR-responsive elements, either individually or in concert within the hHa7 promoter, could be further confirmed by transfection studies with or without an AR expression vector in PtK2 and prostate PC3-Arwt cells, respectively in the presence or absence of a synthetic androgen. Our study detected hHa7 as the first gene in hair follicle trichocytes whose expression appears to be directly regulated by androgens. As such, hHa7 represents a marker for androgen action on hair follicles and might be a suitable tool for investigations of androgen-dependent hair disorders.

  12. Lipid-lowering effects of TAK-475, a squalene synthase inhibitor, in animal models of familial hypercholesterolemia.

    PubMed

    Amano, Yuichiro; Nishimoto, Tomoyuki; Tozawa, Ryu ichi; Ishikawa, Eiichiro; Imura, Yoshimi; Sugiyama, Yasuo

    2003-04-11

    The lipid-lowering effects of 1-[2-[(3R,5S)-1-(3-acetoxy-2,2-dimethylpropyl)-7-chloro-1,2,3,5-tetrahydro-2-oxo-5-(2,3-dimethoxyphenyl)-4,1-benzoxazepine-3-yl] acetyl] piperidin-4-acetic acid (TAK-475), a novel squalene synthase inhibitor, were examined in two models of familial hypercholesterolemia, low-density lipoprotein (LDL) receptor knockout mice and Watanabe heritable hyperlipidemic (WHHL) rabbits. Two weeks of treatment with TAK-475 in a diet admixture (0.02% and 0.07%; approximately 30 and 110 mg/kg/day, respectively) significantly lowered plasma non-high-density lipoprotein (HDL) cholesterol levels by 19% and 41%, respectively, in homozygous LDL receptor knockout mice. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, simvastatin and atorvastatin (in 0.02% and 0.07% admixtures), also reduced plasma levels of non-HDL cholesterol. In homozygous WHHL rabbits, 4 weeks of treatment with TAK-475 (0.27%; approximately 100 mg/kg/day) lowered plasma total cholesterol, triglyceride and phospholipid levels by 17%, 52% and 26%, respectively. In Triton WR-1339-treated rabbits, TAK-475 inhibited to the same extent the rate of secretion from the liver of the cholesterol, triglyceride and phospholipid components of very-low-density lipoprotein (VLDL). These results suggest that the lipid-lowering effects of TAK-475 in WHHL rabbits are based partially on the inhibition of secretion of VLDL from the liver. TAK-475 had no effect on plasma aspartate aminotransferase and alanine aminotransferase activities. Thus, the squalene synthase inhibitor TAK-475 revealed lipid-lowering effects in both LDL receptor knockout mice and WHHL rabbits.

  13. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    PubMed Central

    Wang, Tao; Li, Chengxiang; Wu, Zhihua; Jia, Yancui; Wang, Hong; Sun, Shiyong; Mao, Chuanzao; Wang, Xuelu

    2017-01-01

    Abscisic acid (ABA) plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10) had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2) had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development. PMID:28702040

  14. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds

    PubMed Central

    Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori

    2007-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227

  15. Directional selectivity of afferent neurons in zebrafish neuromasts is regulated by Emx2 in presynaptic hair cells

    PubMed Central

    Ji, Young Rae; Warrier, Sunita; Jiang, Tao

    2018-01-01

    The orientation of hair bundles on top of sensory hair cells (HCs) in neuromasts of the lateral line system allows fish to detect direction of water flow. Each neuromast shows hair bundles arranged in two opposing directions and each afferent neuron innervates only HCs of the same orientation. Previously, we showed that this opposition is established by expression of Emx2 in half of the HCs, where it mediates hair bundle reversal (Jiang et al., 2017). Here, we show that Emx2 also regulates neuronal selection: afferent neurons innervate either Emx2-positive or negative HCs. In emx2 knockout and gain-of-function neuromasts, all HCs are unidirectional and the innervation patterns and physiological responses of the afferent neurons are dependent on the presence or absence of Emx2. Our results indicate that Emx2 mediates the directional selectivity of neuromasts by two distinct processes: regulating hair bundle orientation in HCs and selecting afferent neuronal targets. PMID:29671737

  16. Expression and localization of VEGFR-2 in hair follicles during induced hair growth in mice.

    PubMed

    Wu, Xian-Jie; Jing, Jing; Lu, Zhong-Fa; Zheng, Min

    2018-06-16

    Recently, VEGFR-2 has been detected not only in vascular and lymphatic endothelial cells but also in some non-vascular endothelial cells, particularly human hair follicles, sebaceous glands, and sweat glands. In addition, VEGFR-2 has been confirmed to play direct roles in hair follicle keratinocyte regulation beyond simply angiogenesis. To elucidate whether VEGFR-2 activation plays a role in hair follicle cycling regulation, immunofluorescence of VEGFR-2 expression was performed during hair cycling of the dorsum of the mouse induced by hair plucking. We observed that staining for VEGFR-2 in hair follicles during anagen II and IV was much stronger than during anagen VI, catagen and telogen. During anagen II, intense staining for VEGFR-2 was observed on the keratinocyte strands of the hair follicle. Subsequently, we detected intense staining for VEGFR-2 in the ORS, IRS and hair bulb during anagen IV. Moderate staining for VEGFR-2 was detected in the ORS and hair bulb, but staining was most intense in IRS during anagen VI. During catagen, staining for VEGFR-2 in the IRS remained intense, while staining in the ORS and hair bulb was significantly weakened and was negative in the dermal papilla. During telogen, we detected VEGFR-2 in germ cells, cap, and club hair adjoining the epidermis. In conclusion, VEGFR-2 was expressed on the hair follicles of the dorsum of the mouse and varied in expression on the mouse hair follicles during hair cycling, suggesting that VEGFR-2 may exert roles in hair cycle regulation in hair follicles on the dorsum of mice.

  17. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63.

    PubMed

    Warshauer, Emily; Samuelov, Liat; Sarig, Ofer; Vodo, Dan; Bindereif, Albrecht; Kanaan, Moien; Gat, Uri; Fuchs-Telem, Dana; Shomron, Noam; Farberov, Luba; Pasmanik-Chor, Metsada; Nardini, Gil; Winkler, Eyal; Meilik, Benjamin; Petit, Isabelle; Aberdam, Daniel; Paus, Ralf; Sprecher, Eli; Nousbeck, Janna

    2015-08-01

    Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Hair loss in women.

    PubMed

    Tosti, A; Piraccini, B M; Sisti, A; Duque-Estrada, B

    2009-10-01

    Hair loss in women is a very common clinical complaint, and is usually associated with severe emotional distress. In this article, the authors review the most common clinical causes of hair loss in women, and emphasize the role of hormonal changes in the regulation of hair loss and hair growth.

  19. Panax ginseng extract antagonizes the effect of DKK-1-induced catagen-ike changes of hair follicles

    PubMed Central

    Lee, Yonghee; Kim, Su Na; Hong, Yong Deog; Park, Byung Cheol; Na, Yongjoo

    2017-01-01

    It is well known that Panax ginseng (PG) has various pharmacological effects such as anti-aging and anti-inflammation. In a previous study, the authors identified that PG extract induced hair growth by means of a mechanism similar to that of minoxidil. In the present study, the inhibitory effect of PG extract on Dickkopf-1 (DKK-1)-induced catagen-like changes in hair follicles (HFs) was investigated in addition to the underlying mechanism of action. The effects of PG extract on cell proliferation, anti-apoptotic effect, and hair growth were observed using cultured outer root sheath (ORS) keratinocytes and human HFs with or without DKK-1 treatment. The PG extract significantly stimulated proliferation and inhibited apoptosis, respectively, in ORS keratinocytes. PG extract treatment affected the expression of apoptosis-related genes Bcl-2 and Bax. DKK-1 inhibited hair growth, and PG extract dramatically reversed the effect of DKK-1 on ex vivo human hair organ culture. PG extract antagonizes DKK-1-induced catagen-like changes, in part, through the regulation of apoptosis-related gene expression in HFs. These findings suggested that PG extract may reduce hair loss despite the presence of DKK-1, a strong catagen inducer via apoptosis. PMID:28849028

  20. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  2. Differential effects of caffeine on hair shaft elongation, matrix and outer root sheath keratinocyte proliferation, and transforming growth factor-β2/insulin-like growth factor-1-mediated regulation of the hair cycle in male and female human hair follicles in vitro.

    PubMed

    Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R

    2014-11-01

    Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.

  3. Domain Specificity of MAP3K Family Members, MLK and Tak1, for JNK Signaling in Drosophila

    PubMed Central

    Stronach, Beth; Lennox, Ashley L.; Garlena, Rebecca A.

    2014-01-01

    A highly diverse set of protein kinases functions as early responders in the mitogen- and stress-activated protein kinase (MAPK/SAPK) signaling pathways. For instance, humans possess 14 MAPK kinase kinases (MAP3Ks) that activate Jun kinase (JNK) signaling downstream. A major challenge is to decipher the selective and redundant functions of these upstream MAP3Ks. Taking advantage of the relative simplicity of Drosophila melanogaster as a model system, we assessed MAP3K signaling specificity in several JNK-dependent processes during development and stress response. Our approach was to generate molecular chimeras between two MAP3K family members, the mixed lineage kinase, Slpr, and the TGF-β activated kinase, Tak1, which share 32% amino acid identity across the kinase domain but otherwise differ in sequence and domain structure, and then test the contributions of various domains for protein localization, complementation of mutants, and activation of signaling. We found that overexpression of the wild-type kinases stimulated JNK signaling in alternate contexts, so cells were capable of responding to both MAP3Ks, but with distinct outcomes. Relative to wild-type, the catalytic domain swaps compensated weakly or not at all, despite having a shared substrate, the JNK kinase Hep. Tak1 C-terminal domain-containing constructs were inhibitory in Tak1 signaling contexts, including tumor necrosis factor-dependent cell death and innate immune signaling; however, depressing antimicrobial gene expression did not necessarily cause phenotypic susceptibility to infection. These same constructs were neutral in the context of Slpr-dependent developmental signaling, reflecting differential subcellular protein localization and by inference, point of activation. Altogether, our findings suggest that the selective deployment of a particular MAP3K can be attributed in part to its inherent sequence differences, cellular localization, and binding partner availability. PMID:24429281

  4. Mechanistic Studies on the Use of Polygonum multiflorum for the Treatment of Hair Graying

    PubMed Central

    Han, Ming-Nuan; Lu, Jian-Mei; Zhang, Guang-Yuan; Zhao, Rong-Hua

    2015-01-01

    Polygonum multiflorum is a traditional Chinese medicine with a long history in hair growth promotion and hair blackening. The purpose of the study was to examine the effect and the mechanism of Polygonum multiflorum in hair blackening. C57BL/6 mice hair fade was induced with H2O2 and used in this research. Hair pigmentogenesis promotion activities of Polygonum Multiflorum Radix (PMR, raw crude drug), Polygonum Multiflorum Radix Preparata (PMRP, processed crude drug), and their major chemical constituent TSG were investigated. The regulation effects of several cytokines and enzymes such as POMC, α-MSH, MC1R, ASIP, MITF, TYR, TRP-1, and TRP-2 were investigated. PMR group gave out the most outstanding black hair among all groups with the highest contents of total melanin, α-MSH, MC1R, and TYR. Promotion of hair pigmentogenesis was slightly decreased after processing in the PMRP group. TSG as the major constituent of PMR showed weaker hair color regulation effects than both PMR and PMRP. PMR, but not PMRP, should be used to blacken hair. The α-MSH, MC1R, and TYR were the major targets in the medicinal use of PMR in hair graying. Chemical constituents other than TSG may contribute to the hair color regulation activity of PMR. PMID:26640791

  5. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

    PubMed

    Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis

    2013-03-01

    Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles

    PubMed Central

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  7. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    PubMed

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Thyroid hormone activates rat liver adenosine 5,-monophosphate-activated protein kinase: relation to CaMKKb, TAK1 and LKB1 expression and energy status.

    PubMed

    Vargas, R; Ortega, Y; Bozo, V; Andrade, M; Minuzzi, G; Cornejo, P; Fernandez, V; Videla, L A

    2013-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status supporting cellular energy homeostasis that may represent the metabolic basis for 3,3,,5-triiodo-L-thyronine (T3) liver preconditioning. Functionally transient hyperthyroid state induced by T3 (single dose of 0.1 mg/kg) in fed rats led to upregulation of mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of hepatic AMPK at 8 to 36 h after treatment. AMPK Thr 172 phosphorylation induced by T3 is associated with enhanced mRNA expression of the upstream kinases Ca2+ -calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) and transforming growth-factor-beta-activated kinase-1 (TAK1), with increased protein levels of CaMKKbeta and higher TAK1 phosphorylation, without changes in those of the liver kinase B1 (LKB1) signaling pathway. Liver contents of AMP and ADP were augmented by 291 percent and 44 percent by T3 compared to control values (p less than 0.05), respectively, whereas those of ATP decreased by 64% (p less than 0.05), with no significant changes in the total content of adenine nucleotides (AMP + ADP + ATP) at 24 h after T3 administration. Consequently, hepatic ATP/ADP content ratios exhibited 64 percent diminution (p less than 0.05) and those of AMP/ATP increased by 425 percent (p less than 0.05) in T3-treated rats over controls. It is concluded that in vivoT3 administration triggers liver AMPK upregulation in association with significant enhancements in AMPK mRNA expression, AMPK phosphorylation coupled to CaMKKbeta and TAK1 activation, and in AMP/ATP ratios, which may promote enhanced AMPK activity to support T3-induced energy consuming processes such as those of liver preconditioning.

  9. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells

    PubMed Central

    Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu

    2017-01-01

    The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862

  10. Vitamin D3 analogs stimulate hair growth in nude mice.

    PubMed

    Vegesna, Vijaya; O'Kelly, James; Uskokovic, Milan; Said, Jonathan; Lemp, Nathan; Saitoh, Takayuki; Ikezoe, Takayuki; Binderup, Lise; Koeffler, H Phillip

    2002-11-01

    The active form of vitamin D3 can regulate epidermal keratinization by inducing terminal differentiation; and mice lacking the vitamin D receptor display defects leading to postnatal alopecia. These observations implicate the vitamin D3 pathway in regulation of hair growth. We tested the ability of 1,25 dihydroxyvitamin D3 and its synthetic analogs to stimulate hair growth in biege/nude/xid (BNX) nu/nu (nude) mice exhibiting congenital alopecia. Nude mice were treated with different vitamin D3 analogs at doses that we had previously found to be the highest dose without inducing toxicity (hypercalcemia). The mice were monitored for hair growth and were scored according to a defined scale. Skin samples were taken for histological observation of hair follicles and for extraction of RNA and protein. Vitamin D3 analogs dramatically stimulated the hair growth of nude mice, although parental 1,25 dihydroxyvitamin D3 had no effect. Hair growth occurred in a cyclical pattern, accompanied by formation of normal hair follicles and increased expression of certain keratins (Ha7, Ha8, and Hb3). Vitamin D3 analogs seem to act on keratinocytes to initiate hair follicle cycling and stimulate hair growth in mice that otherwise do not grow hair.

  11. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    PubMed

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  12. WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability1[C][W][OA

    PubMed Central

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-01-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190

  13. Ecklonia cava promotes hair growth.

    PubMed

    Bak, S S; Ahn, B N; Kim, J A; Shin, S H; Kim, J C; Kim, M K; Sung, Y K; Kim, S K

    2013-12-01

    Previous studies have reported the protective effects on skin elasticity of the edible marine seaweed Ecklonia cava, which acts through regulation of both antioxidative and anti-inflammatory responses. We evaluated the effect of E. cava and one of its components, dioxinodehydroeckol, on hair-shaft growth in cultured human hair follicles and on hair growth in mice. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to check cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells after treatment with E. cava and its metabolite, dioxinodehydroeckol. Hair-shaft growth was measured using the in vitro hair-follicle organ-culture system, in the presence or absence of E. cava and dioxinodehydroeckol. Anagen induction activity was examined by topical application of E. cava to the dorsal skin of C57BL/6 mice. Insulin-like growth factor (IGF)-1 expression was measured by reverse transcriptase PCR and ELISA. The proliferation activity was found to be highest for the ethyl acetate-soluble fraction of E. cava (EAFE) in DPCs and in ORS cells. Treatment with EAFE resulted in elongation of the hair shaft in cultured human hair follicles, and promoted transition of the hair cycle from the telogen to the anagen phase in the dorsal skin of C57BL/6 mice. In addition, EAFE induced an increase in IGF-1 expression in DPCs. Dioxinodehydroeckol, a component of E. cava, induced elongation of the hair shaft, an increase in proliferation of DPCs and ORS cells, and an increase in expression of IGF-1 in DPCs. These results suggest that E. cava containing dioxinodehydroeckol promotes hair growth through stimulation of DPCs and ORS cells. © 2013 British Association of Dermatologists.

  14. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  15. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4.

    PubMed

    Chen, Chih-Chiang; Murray, Philip J; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K; Widelitz, Randall B; Chuong, Cheng-Ming

    2014-08-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging-associated alopecia. Recently, we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age, hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3 mm range of the interface, suggesting that changes are due to extracellular factors. Therefore, hair stem cells in aged skin can be reactivated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator, which is highly expressed in late telogen and early anagen. Indeed, follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the interorgan macroenvironment can regulate the aging process by integrating both "activator" and "inhibitor" signals.

  16. Fasiglifam (TAK-875) Alters Bile Acid Homeostasis in Rats and Dogs: A Potential Cause of Drug Induced Liver Injury

    PubMed Central

    Zhu, Andy Z. X.; Johnson, Mike; Yu, Shaoxia; Moriya, Yuu; Ebihara, Takuya; Csizmadia, Vilmos; Grieves, Jessica; Paton, Martin; Liao, Mingxiang; Gemski, Christopher; Pan, Liping; Vakilynejad, Majid; Dragan, Yvonne P.; Chowdhury, Swapan K.; Kirby, Patrick J.

    2017-01-01

    Abstract Fasiglifam (TAK-875), a Free Fatty Acid Receptor 1 (FFAR1) agonist in development for the treatment of type 2 diabetes, was voluntarily terminated in phase 3 due to adverse liver effects. A mechanistic investigation described in this manuscript focused on the inhibition of bile acid (BA) transporters as a driver of the liver findings. TAK-875 was an in vitro inhibitor of multiple influx (NTCP and OATPs) and efflux (BSEP and MRPs) hepatobiliary BA transporters at micromolar concentrations. Repeat dose studies determined that TAK-875 caused a dose-dependent increase in serum total BA in rats and dogs. Additionally, there were dose-dependent increases in both unconjugated and conjugated individual BAs in both species. Rats had an increase in serum markers of liver injury without correlative microscopic signs of tissue damage. Two of 6 dogs that received the highest dose of TAK-875 developed liver injury with clinical pathology changes, and by microscopic analysis had portal granulomatous inflammation with neutrophils around a crystalline deposition. The BA composition of dog bile also significantly changed in a dose-dependent manner following TAK-875 administration. At the highest dose, levels of taurocholic acid were 50% greater than in controls with a corresponding 50% decrease in taurochenodeoxycholic acid. Transporter inhibition by TAK-875 may cause liver injury in dogs through altered bile BA composition characteristics, as evidenced by crystalline deposition, likely composed of test article, in the bile duct. In conclusion, a combination of in vitro and in vivo evidence suggests that BA transporter inhibition could contribute to TAK-875-mediated liver injury in dogs. PMID:28108665

  17. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  18. ILK modulates epithelial polarity and matrix formation in hair follicles.

    PubMed

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  19. ILK modulates epithelial polarity and matrix formation in hair follicles

    PubMed Central

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-01-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage. PMID:24371086

  20. Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist-Induced Rat Models of Schizophrenia.

    PubMed

    Nakashima, Masato; Imada, Haruka; Shiraishi, Eri; Ito, Yuki; Suzuki, Noriko; Miyamoto, Maki; Taniguchi, Takahiko; Iwashita, Hiroki

    2018-04-01

    The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N -methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, ( N -{(1 S )-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3- b ]pyrazine-4(1 H )-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α -amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products. Copyright © 2013 John Wiley & Sons, Ltd.

  2. OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice1[C][W

    PubMed Central

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-01-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice. PMID:17259288

  3. Hair dyeing, hair washing and hair cortisol concentrations among women from the healthy start study.

    PubMed

    Kristensen, Sheila K; Larsen, Sofus C; Olsen, Nanna J; Fahrenkrug, Jan; Heitmann, Berit L

    2017-03-01

    Hair cortisol concentration (HCC) has been suggested as a promising marker for chronic stress. However, studies investigating the influence of hair dyeing and hair washing frequency on HCC have shown inconsistent results. To examine associations between HCC and hair dyeing status or weekly hair washing frequency among women. This cross-sectional study was based on data from 266 mothers participating in the Healthy Start intervention study. HCC was measured in the proximal end of the hair (1-2cm closest to the scalp) while hair dyeing status, frequency of hair washing and covariates were reported by the women. Linear regression analyses were applied to assess the associations between HCC and hair dyeing or weekly frequency of hair washing. No statistically significant difference (p=0.91) in HCC was found between women who dyed hair (adjusted mean: 137pg/mg [95% CI: 122,153]) and women with natural hair color (adjusted mean: 139pg/mg [95% CI: 123,155]). Frequency of hair washing was not associated with HCC (β: -3.7 [95% CI: -9.0, 1.5; P=0.20]). This study of 266 Danish women provides no evidence in support of an association between HCC and hair dyeing status or hair washing frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice.

    PubMed

    Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel

    2010-11-01

    Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. (c) 2010 Wiley-Liss, Inc.

  5. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice.

    PubMed

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-03-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.

  6. Biomonitoring the cooked meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in hair: impact of exposure, hair pigmentation, and cytochrome P450 1A2 phenotype.

    PubMed

    Turesky, Robert J; Liu, Lin; Gu, Dan; Yonemori, Kim M; White, Kami K; Wilkens, Lynne R; Le Marchand, Loïc

    2013-03-01

    Hair is a promising tissue to assess exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogen formed in cooked meats. However, an understanding of how dietary exposure to PhIP, cytochrome P450 1A2 activity-a key enzyme involved in PhIP metabolism, and hair pigmentation affect the level of PhIP accrued in hair is required to determine the reliability of the PhIP hair level as a biomarker of exposure to this carcinogen. We examined the impact of PhIP exposure, cytochrome P450 1A2 activity, and hair pigmentation on the levels of PhIP accumulated in the hair of volunteers on a 4-week semicontrolled diet of cooked meat containing known quantities of PhIP. The amount of PhIP in hair increased, on average, 15-fold in light- and dark-haired individuals during consumption of cooked meat. PhIP levels in hair were correlated to PhIP intake (ρ = 0.53; P < 0.001), and the relationship was strengthened when PhIP levels were normalized for the melanin content of hair (ρ = 0.71; P < 0.001). However, PhIP accrual in hair was not correlated to cytochrome P450 1A2 activity, as assessed by the caffeine test, or to the levels of unmetabolized PhIP in urine or to the metabolic ratio of the major urinary metabolite N(2)-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine to unmetabolized PhIP. The use of the PhIP hair biomarker should take hair pigmentation into account for accurate exposure assessment of PhIP. PhIP hair levels can serve as a biomarker in epidemiologic studies investigating the association of heterocyclic aromatic amine (HAA), cooked meat, and cancer risk.

  7. The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1.

    PubMed

    Riley, B B; Chiang, M; Farmer, L; Heck, R

    1999-12-01

    Recent studies of inner ear development suggest that hair cells and support cells arise within a common equivalence group by cell-cell interactions mediated by Delta and Notch proteins. We have extended these studies by analyzing the effects of a mutant allele of the zebrafish deltaA gene, deltaA(dx2), which encodes a dominant-negative protein. deltaA(dx2/dx2 )homozygous mutants develop with a 5- to 6-fold excess of hair cells and a severe deficiency of support cells. In addition, deltaA(dx2/dx2) mutants show an increased number of cells expressing pax2.1 in regions where hair cells are normally produced. Immunohistological analysis of wild-type and deltaA(dx2/dx2) mutant embryos confirmed that pax2.1 is expressed during the initial stages of hair cell differentiation and is later maintained at high levels in mature hair cells. In contrast, pax2.1 is not expressed in support cells. To address the function of pax2.1, we analyzed hair cell differentiation in no isthmus mutant embryos, which are deficient for pax2.1 function. no isthmus mutant embryos develop with approximately twice the normal number of hair cells. This neurogenic defect correlates with reduced levels of expression of deltaA and deltaD in the hair cells in no isthmus mutants. Analysis of deltaA(dx2/dx2); no isthmus double mutants showed that no isthmus suppresses the deltaA(dx2) phenotype, probably by reducing levels of the dominant-negative mutant protein. This interpretation was supported by analysis of T(msxB)(b220), a deletion that removes the deltaA locus. Reducing the dose of deltaA(dx2) by generating deltaA(dx2)/T(msxB)(b220 )trans-heterozygotes weakens the neurogenic effects of deltaA(dx2), whereas T(msxB)(b220) enhances the neurogenic defects of no isthmus. mind bomb, another strong neurogenic mutation that may disrupt reception of Delta signals, causes a 10-fold increase in hair cell production and is epistatic to both no isthmus and deltaA(dx2). These data indicate that deltaA expressed by

  8. Synaptic Calcium Regulation in Hair Cells of the Chicken Basilar Papilla

    PubMed Central

    Im, Gi Jung; Moskowitz, Howard S.; Lehar, Mohammed; Hiel, Hakim

    2014-01-01

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents (“minis”) resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. PMID:25505321

  9. 6-Gingerol inhibits hair cycle via induction of MMP2 and MMP9 expression.

    PubMed

    Hou, Chun; Miao, Yong; Ji, Hang; Wang, Susheng; Liang, Gang; Zhang, Zhihua; Hong, Weijin

    2017-01-01

    6-Gingerol is the major active constituent of ginger. In the current study, we aimed to investigate the mechanisms underlying the effects of 6-Gingerol on hair growth. Mice were randomly divided into five groups; after hair depilation (day 0), mice were treated with saline, or different concentrations of 6-Gingerol for 11 days. The histomorphological characteristics of the growing hair follicles were examined after hematoxylin and eosin staining. The results indicated that 6-Gingerol significantly suppressed hair growth compared with that in the control group. And choose the concentration of 6-Gingerol at 1 mg/mL to treated with mice. Moreover, 6-Gingerol (1 mg/mL) significantly reduced hair re-growth ratio, hair follicle number, and hair follicle length, which were associated with increased expression of MMP2 and MMP9. Furthermore, the growth factors, such as EGF, KGF, VEGF, IGF-1 and TGF-β participate in the hair follicle cycle regulation and regulate hair growth. We then measured the concentrations of them using ELISA assays, and the results showed that 6-Gingerol decreased EGF, KGF, VEGF, and IGF-1 concentrations, and increased TGF-β concentration. Thus, this study showed that 6-Gingerol might act as a hair growth suppressive drug via induction of MMP2 and MMP9 expression, which could interfere with the hair cycle.

  10. Topical Treatment of Hair Loss with Formononetin by Modulating Apoptosis.

    PubMed

    Kim, Mi Hye; Choi, You Yeon; Lee, Ji Eun; Kim, Kyuseok; Yang, Woong Mo

    2016-01-01

    Formononetin is one of the main components of red clover plants and its role on hair regrowth against hair loss has not been established yet. In the present study, we assessed the potential effects of formononetin on alopecia, along with impaired hair cycles by induction of apoptosis-regression.Depilated C57BL/6 mice were used for monitoring the hair cycles. Formononetin (1 and 100 µM) was topically treated to the dorsal skin for 14 days. Topical formononetin treatment induced miniaturized hair follicles to recover to normal sizes. Tapering hair shaft began to grow newly, emerging from the hair follicles by formononetin. In addition, formononetin inhibited the activation of caspase-8 and decreased the procaspase-9 expression. As a result of formononetin treatment, anti-apoptotic Bcl-2 was up-regulated, whereas pro-apoptotic Bax and p53 were down-regulated, resulting in a decrease of caspase-3 activation. Formononetin showed the obvious inhibition of apoptosis under terminal deoxynucleotidyl transferase dUTP nick end labeling staining thereafter.Taken together, our findings demonstrate that formononetin exerted the hair regrowth effect on hair loss, in which the underlying mechanisms were associated with Fas/Fas L-induced caspase activation, thus inhibiting apoptosis. Georg Thieme Verlag KG Stuttgart · New York.

  11. Loss of Par-1a/MARK3/C-TAK1 kinase leads to reduced adiposity, resistance to hepatic steatosis, and defective gluconeogenesis.

    PubMed

    Lennerz, Jochen K; Hurov, Jonathan B; White, Lynn S; Lewandowski, Katherine T; Prior, Julie L; Planer, G James; Gereau, Robert W; Piwnica-Worms, David; Schmidt, Robert E; Piwnica-Worms, Helen

    2010-11-01

    Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.

  12. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized double-blind (ORD) study.

    PubMed

    Tatsuno, Ichiro; Saito, Yasushi; Kudou, Kentarou; Ootake, Jun

    2013-01-01

    Hypertriglyceridemia is a risk factor for cardiovascular disease, and clinical practice guidelines advocate treatment to reduce triglyceride (TG) levels. In Japan, an EPA-E (eicosapentaenoic acid-ethyl ester) product has been used clinically for treating dyslipidemia. We investigated the TG-lowering effects of TAK-085 (EPA-E + docosahexaenoic acid-ethyl ester) in comparison with EPA-E in Japanese patients with hypertriglyceridemia (TG ≥150 mg/dL and <750 mg/dL). In this multicenter, 12-week, double-blind study, subjects were stratified for coadministration of a 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor then randomized to TAK-085 2 g once daily (n = 205), TAK-085 2 g twice daily (n = 210), or EPA-E 0.6 g three times daily (n = 195). Each one gram of fatty acid in TAK-085 contains approximately 465 mg of EPA plus 375 mg of docosahexaenoic acid-ethyl as ethyl esters. Guidance on lifestyle modifications was provided throughout. The primary end point was the percent change in TG levels (baseline from end of treatment), which was -10.8 ± 22.6, -22.9 ± 23.1, and -11.2 ± 25.7 in the TAK-085 2 g/day, TAK-085 4 g/day, and EPA-E 1.8 g/day groups, respectively. TAK-085 4 g/day produced a significantly greater reduction in TG than EPA-E 1.8 g/day (P < .0001), whereas TAK-085 2 g/day was not inferior to EPA-E 1.8 g/day. Changes in other lipid parameters were relatively modest. There were no notable safety or tolerability differences between the groups. In Japanese patients with modest hypertriglyceridemia who also underwent lifestyle intervention, TAK-085 4 g/day reduced TG more than EPA-E 1.8 g/day. TAK-085 2 g/day had similar effects on TG as EPA-E 1.8 g/day. TAK-085 was well-tolerated. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  13. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    PubMed

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  14. Beyond generalized hair cells: Molecular cues for hair cell types

    PubMed Central

    Jahan, Israt; Pan, Ning; Kersigo, Jennifer; Fritzsch, Bernd

    2012-01-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti (OC) from scratch, including the two types of HCs, inner (IHC) and outer (OHC) hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral, LOC and medial, MOC olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the OC. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs. PMID:23201032

  15. β-Catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching

    PubMed Central

    Enshell-Seijffers, David; Lindon, Catherine; Wu, Eleanor; Taketo, Makoto M.; Morgan, Bruce A.

    2010-01-01

    The switch between black and yellow pigment is mediated by the interaction between Melanocortin receptor 1 (Mc1r) and its antagonist Agouti, but the genetic and developmental mechanisms that modify this interaction to obtain different coat color in distinct environments are poorly understood. Here, the role of Wnt/β-catenin signaling in the regulation of pigment-type switching was studied. Loss and gain of function of β-catenin in the dermal papilla (DP) of the hair follicle results in yellow and black animals, respectively. β-Catenin activity in the DP suppresses Agouti expression and activates Corin, a negative regulator of Agouti activity. In addition, β-catenin activity in the DP regulates melanocyte activity by a mechanism that is independent of both Agouti and Corin. The coordinate and inverse regulation of Agouti and Corin renders pelage pigmentation sensitive to changes in β-catenin activity in the DP that do not alter pelage structure. As a result, the signals that specify two biologically distinct quantitative traits are partially uncoupled despite their common regulation by the β-catenin pathway in the same cells. PMID:21098273

  16. Safety and efficacy analysis of liposomal insulin-like growth factor-1 in a fluid gel formulation for hair-loss treatment in a hamster model.

    PubMed

    Castro, R F; Azzalis, L A; Feder, D; Perazzo, F F; Pereira, E C; Junqueira, V B C; Rocha, K C; Machado, C D'A; Paschoal, F C; Gnann, L A; Fonseca, F L A

    2012-12-01

    Insulin-like growth factor (IGF)-1 has shown some interesting results in studies examining its use as a hair-loss treatment. IGF-1 works by regulating cellular proliferation and migration during the development of hair follicles. Hepatotoxicity and myelotoxicity were evaluated in hamsters (Mesocricetus auratus) after topical application of the liquid gel vehicle (placebo), 1% IGF-1 or 3% IGF-1. No significant difference in the levels of aspartate aminotransferase or alanine aminotransferase was found between the control and treated groups. ELISA did not shown any increase in the plasma level of IGF-1. A haematopoietic niche was found, but it was not associated with myelotoxicity. Efficacy was determined by dermatoscopy analysis of hair density and microscopy analysis of hair diameter, with hair found to be thicker and with more rapid growth in the 3% group than in either the 1% group or the control group. These results strongly suggest that liposomal IGF-1 in a liquid gel formulation is a safe and efficient treatment for hair loss. © The Author(s). CED © 2012 British Association of Dermatologists.

  17. Methylation analysis of CMTM3 and DUSP1 gene promoters in high-quality brush hair in the Yangtze River delta white goat.

    PubMed

    Qiang, Wang; Guo, Haiyan; Li, Yongjun; Shi, Jianfei; Yin, Xiuyuan; Qu, Jingwen

    2018-08-20

    The Yangtze River delta white goat is the only goat breed that produces high-quality brush hair, which is specifically used in top-grade writing brushes. Previous studies have indicated that the CMTM3 and DUSP1 genes are involved in the growth and cycle of high-quality brush hair, and these genes are thought to be involved in the formation of high-quality brush hair traits. In this study, we investigated the relationship between methylation of CMTM3 and DUSP1 and such traits. The results indicated that the relative expression levels of the CMTM3 and DUSP1 genes were higher in non-high-quality brush hair than in high-quality brush hair. Furthermore, the CpG sites of the DUSP1 gene were not methylated, and the methylation level of CMTM3 was negatively correlated with the gene expression level. We believe that the DUSP1 gene regulates the formation of high-quality brush hair by non-methylated, and that methylation of the CMTM3 gene results in a decrease in its expression, causing an increase in the activity of the androgen receptor and the level of androgen. This high androgen level promotes the growth of high-quality brush hair. These study results provide a theoretical basis for further elucidating the molecular mechanism of the formation of high-quality brush hair characteristics, and provide scientific reference for the molecular breeding of high-quality brush hair. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. TAK-242 treatment ameliorates liver ischemia/reperfusion injury by inhibiting TLR4 signaling pathway in a swine model of Maastricht-category-III cardiac death.

    PubMed

    Shao, Zigong; Jiao, Baoping; Liu, Tingting; Cheng, Ying; Liu, Hao; Liu, Yongfeng

    2016-12-01

    This study aims to test the effects of TAK-242 on liver transplant viability in a model of swine Maastricht-category-III cardiac death. A swine DCD Maastricht-III model of cardiac death was established, and TAK-242 was administered prior to the induction of cardiac death. The protein and mRNA level of TLR4 signaling pathway molecules and cytokines that are important in mediating immune and inflammatory responses were assessed at different time points following the induction of cardiac death. After induction of cardiac death, both the mRNA and protein levels of key molecules (TLR4, TRAF6, NF-ϰB, ICAM-1, MCP-1 and MPO), TNF-α and IL-6 increased significantly. Infusion of TAK-242 1h before induction of cardiac death blocked the increase of immune and inflammatory response molecules. However, the increase of TLR4 level was not affected by infusion of TAK-242. Histology study showed that infusion of TAK-242 protect liver tissue from damage during cardiac death. These results indicates that TLR4 signaling pathway may contribute to ischemia/reperfusion injury in the liver grafts, and blocking TLR4 pathway with TAk-242 may reduce TLR4-mediated tissue damage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Synaptic calcium regulation in hair cells of the chicken basilar papilla.

    PubMed

    Im, Gi Jung; Moskowitz, Howard S; Lehar, Mohammed; Hiel, Hakim; Fuchs, Paul Albert

    2014-12-10

    Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling. Copyright © 2014 the authors 0270-6474/14/3416688-10$15.00/0.

  20. Ablation of Coactivator Med1 Switches the Cell Fate of Dental Epithelia to That Generating Hair

    PubMed Central

    Nguyen, Thai; Sakai, Kiyoshi; He, Bing; Fong, Chak; Oda, Yuko

    2014-01-01

    Cell fates are determined by specific transcriptional programs. Here we provide evidence that the transcriptional coactivator, Mediator 1 (Med1), is essential for the cell fate determination of ectodermal epithelia. Conditional deletion of Med1 in vivo converted dental epithelia into epidermal epithelia, causing defects in enamel organ development while promoting hair formation in the incisors. We identified multiple processes by which hairs are generated in Med1 deficient incisors: 1) dental epithelial stem cells lacking Med 1 fail to commit to the dental lineage, 2) Sox2-expressing stem cells extend into the differentiation zone and remain multi-potent due to reduced Notch1 signaling, and 3) epidermal fate is induced by calcium as demonstrated in dental epithelial cell cultures. These results demonstrate that Med1 is a master regulator in adult stem cells to govern epithelial cell fate. PMID:24949995

  1. How and where to build a root hair.

    PubMed

    Dolan, L

    2001-12-01

    The root hair of Arabidopsis has become a model system for investigations of the patterning and morphogenesis of cells in plants. A cascade of transcriptional regulators controls the pattern of cellular differentiation. Recently, one of the genes that plays a specific role in cellular differentiation in roots, WEREWOLF, has been shown to be functionally equivalent to GLABRA1, which functions only in the shoot. The cloning of genes defined by mutants with defective root-hair growth has provided insights into the roles of the cell wall, ion transport and the cytoskeleton during hair growth. Genetic analyses continue to identify mutants that will be instructive in furthering our understanding of the growth and development of root-hair cells.

  2. CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1.

    PubMed

    Selvakumar, Dakshnamurthy; Drescher, Marian J; Dowdall, Jayme R; Khan, Khalid M; Hatfield, James S; Ramakrishnan, Neeliyath A; Drescher, Dennis G

    2012-04-15

    The molecular characteristics of CNG (cyclic nucleotide-gated) channels in auditory/vestibular hair cells are largely unknown, unlike those of CNG mediating sensory transduction in vision and olfaction. In the present study we report the full-length sequence for three CNGA3 variants in a hair cell preparation from the trout saccule with high identity to CNGA3 in olfactory receptor neurons/cone photoreceptors. A custom antibody targeting the N-terminal sequence immunolocalized CNGA3 to the stereocilia and subcuticular plate region of saccular hair cells. The cytoplasmic C-terminus of CNGA3 was found by yeast two-hybrid analysis to bind the C-terminus of EMILIN1 (elastin microfibril interface-located protein 1) in both the vestibular hair cell model and rat organ of Corti. Specific binding between CNGA3 and EMILIN1 was confirmed with surface plasmon resonance analysis, predicting dependence on Ca2+ with Kd=1.6×10-6 M for trout hair cell proteins and Kd=2.7×10-7 M for organ of Corti proteins at 68 μM Ca2+. Pull-down assays indicated that the binding to organ of Corti CNGA3 was attributable to the EMILIN1 intracellular sequence that follows a predicted transmembrane domain in the C-terminus. Saccular hair cells also express the transcript for PDE6C (phosphodiesterase 6C), which in cone photoreceptors regulates the degradation of cGMP used to gate CNGA3 in phototransduction. Taken together, the evidence supports the existence in saccular hair cells of a molecular pathway linking CNGA3, its binding partner EMILIN1 (and β1 integrin) and cGMP-specific PDE6C, which is potentially replicated in cochlear outer hair cells, given stereociliary immunolocalizations of CNGA3, EMILIN1 and PDE6C.

  3. A Class I ADP-Ribosylation Factor GTPase-Activating Protein Is Critical for Maintaining Directional Root Hair Growth in Arabidopsis1[W][OA

    PubMed Central

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.

    2008-01-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780

  4. Long-term safety and efficacy of TAK-085 in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized long-term (ORL) study.

    PubMed

    Tatsuno, Ichiro; Saito, Yasushi; Kudou, Kentarou; Ootake, Jun

    2013-01-01

    TAK-085 is an omega-3 preparation that contains eicosapentaenoic acid ethyl-ester (EPA-E) and docosahexaenoic acid-ethyl ester used in the management of hypertriglyceridemia. The aim of the study was to evaluate the long-term safety (adverse events [AEs], laboratory parameters, vital signs, weight, and electrocardiograms) and effects on lipid profiles, especially triglyceride levels, of TAK-085 in Japanese patients with hypertriglyceridemia (triglyceride levels ≥150 mg/dL and <750 mg/dL). In this multicenter, open-label, randomized study, adults with hypertriglyceridemia undergoing lifestyle modification received TAK-085 2 g (2 g once daily; n = 165) or 4 g (2 g twice daily; n = 171), or EPA-E 1.8 g (0.6 g three times daily; n = 167) for 52 weeks. Patients were stratified for co-administration of a statin. TAK-085 was well tolerated throughout the 52-week study. Overall, no substantial differences were found in the tolerability of TAK-085 2 g, TAK-085 4 g, and EPA-E 1.8 g with incidence rates for AEs of 83.6%, 86.0%, and 89.2%, respectively. Most AEs were mild or moderate in severity. Triglyceride levels decreased from baseline in all groups by week 4, and the decreases were maintained throughout the study. At week 52 the reduction in triglycerides with TAK-085 2 g (-13.9%) was similar to that with EPA-E 1.8 g (-12.1%), whereas the reduction seen with TAK-085 4 g (-25.5%) was greater than that with EPA-E 1.8 g, as assessed by point estimates and 95% confidence intervals. TAK-085 was safe and well tolerated for up to 52 weeks of treatment in Japanese patients with hypertriglyceridemia undergoing lifestyle modification. Reductions in triglyceride levels achieved after 4 weeks were maintained at 52 weeks. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  5. Thermal effects on shearing resistance of fractures in Tak granite

    NASA Astrophysics Data System (ADS)

    Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.

    2018-06-01

    Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.

  6. Dissecting the bulge in hair regeneration

    PubMed Central

    Ito, Mayumi; Myung, Peggy

    2012-01-01

    The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells. PMID:22293183

  7. Non-Cell-Autonomous Regulation of Root Hair Patterning Genes by WRKY75 in Arabidopsis1[W

    PubMed Central

    Rishmawi, Louai; Pesch, Martina; Juengst, Christian; Schauss, Astrid C.; Schrader, Andrea; Hülskamp, Martin

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), root hairs are formed in cell files over the cleft of underlying cortex cells. This pattern is established by a well-known gene regulatory network of transcription factors. In this study, we show that WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE. The WRKY75 protein binds to the CAPRICE promoter in a yeast one-hybrid assay. Binding to the promoter fragment requires an intact WRKY protein-binding motif, the W box. A comparison of the spatial expression of WRKY75 and the localization of the WRKY75 protein revealed that WRKY75 is expressed in the pericycle and vascular tissue and that the WRKY75 RNA or protein moves into the epidermis. PMID:24676857

  8. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 andmore » keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly

  9. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells.

    PubMed

    van den Akker, Guus G; van Beuningen, Henk M; Vitters, Elly L; Koenders, Marije I; van de Loo, Fons A; van Lent, Peter L; Blaney Davidson, Esmeralda N; van der Kraan, Peter M

    2017-12-01

    Chondrogenic differentiation of mesenchymal stem cells (MSC) requires transforming growth factor beta (TGFβ) signaling. TGFβ binds to the type I receptor activin-like kinase (ALK)5 and results in C-terminal SMAD2/3 phosphorylation (pSMAD2/3C). In turn pSMAD2/3C translocates to the nucleus and regulates target gene expression. Inflammatory mediators are known to exert an inhibitory effect on MSC differentiation. In this study we investigated the effect of interleukin 1 β (IL1β) on SMAD2/3 signaling dynamics and post-translational modifications. Co-stimulation of MSC with TGFβ and IL1β did not affect peak pSMAD2C levels at 1h post-stimulation. Surprisingly, SMAD3 transcriptional activity, as determined by the CAGA 12 -luciferase reporter construct, was enhanced by co-stimulation of TGFβ and IL1β compared to TGFβ alone. Furthermore, IL1β stimulation induced CAGA 12 -luciferase activity in a SMAD dependent way. As SMAD function can be modulated independent of canonical TGFβ signaling through the SMAD linker domain, we studied SMAD2 linker phosphorylation at specific threonine and serine residues. SMAD2 linker threonine and serine modifications were observed within 1h following TGFβ, IL1β or TGFβ and IL1β stimulation. Upon co-stimulation linker modified SMAD2 accumulated in the cytoplasm and SMAD2/3 target gene transcription (ID1, JUNB) at 2-4h was inhibited. A detailed time course analysis of IL1β-induced SMAD2 linker modifications revealed a distinct temperospatial pattern compared to TGFβ. Co-stimulation with both factors resulted in a similar kinetic profile as TGFβ alone. Nevertheless, IL1β did subtly alter TGFβ-induced pSMAD2C levels between 8 and 24h post-stimulation, which was reflected by TGFβ target gene expression (PAI1, JUNB). Direct evidence for the importance of SMAD3 linker modifications for the effect of IL1β on TGFβ signaling was obtained by over-expression of SMAD3 or a SMAD3 linker phospho-mutant. Finally, an inhibitor screening

  10. Does D matter? The role of vitamin D in hair disorders and hair follicle cycling.

    PubMed

    Amor, Karrie T; Rashid, Rashid M; Mirmirani, Paradi

    2010-02-15

    The role of vitamin D in the proliferation and differentiation of keratinocytes is well known within the field of dermatology. We sought to evaluate the role that vitamin D and the vitamin D receptor play in the hair cycle and assess how this can be clinically applied to the treatment of hair disorders. A MEDLINE search (1955-July 2009) was preformed to find relevant articles pertaining to vitamin D, the vitamin D receptor, and hair loss. The vitamin D receptor, independent of vitamin D, plays an important role in hair cycling, specifically anagen initiation. The role of vitamin D in hair follicle cycling is not as well understood. The review is broad and there are limited human studies available to date. Additional studies to evaluate the role of vitamin D in the hair cycle should be done. Treatments that up regulate the vitamin D receptor may be successful in treating hair disorders and are a potential area of further study.

  11. Reno-protective effects of TAK-242 on acute kidney injury in a rat model.

    PubMed

    Mohammad, Bassim I; Raheem, Abdulla K; Hadi, Najah R; Jamil, Dina A; Al-Aubaidy, Hayder A

    2018-06-13

    Acute kidney inschemia/reperfusion (I/R) injury is characterized by an abrupt loss of kidney function, resulting in the retention of urea and other nitrogenous waste products and in the dysregulation of extracellular volume and electrolytes. Despite the advances in therapeutic techniques, the mortality and morbidity of patients remain high and have not appreciably improved. This study aims to evaluate the potential protective effect of TAK-242 on renal ischemia/reperfusion injury using an animal model. Thirty-five adult male Sprague-dawely rats (weighing 200-300), were assigned randomly into the following experimental groups (n = 7 in each group), Control (I/R), Sham (negative control), TAK-242 (5 mg/kg body weight), TAK-242 (10 mg/kg body weight) and Vehicle (DMSO). Rats were exposed to a 30 min of ischemia then 3 h of reperfusion. At the end of reperfusion phase, rats were sacrificed then plasma, serum and tissue samples were obtained to measure markers of kidney oxidative stress and inflammation. Plasma levels of neutrophil gelatinase-associated lipocalin (NGAL), and tissue levels of interleukin-18 (IL-18) and malondialdehyde (MDA) were significantly lower in TAK-242 pretreated groups than the vehicle group and the control group (p < 0.05). Furthermore; serum levels of urea and creatinine were significantly lower in the TAK-242 pretreated groups as compared to the control group (p < 0.05). We conclude that administration of TAK-242 can be useful preventive method in attenuating the degree of acute kidney injury during ischemic reperfusion process as shown by a significant reduction of urinary inflammatory markers as well as significant reduction of urea and creatinine levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    PubMed

    Olt, Jennifer; Mburu, Philomena; Johnson, Stuart L; Parker, Andy; Kuhn, Stephanie; Bowl, Mike; Marcotti, Walter; Brown, Steve D M

    2014-01-01

    Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs) and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs) and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.

  13. TGF-β–Activated Kinase 1 Is Crucial in Podocyte Differentiation and Glomerular Capillary Formation

    PubMed Central

    Lee, So-Young; Wang, Zhibo; Ding, Yan; Haque, Nadeem; Zhang, Jiwang; Zhou, Jing

    2014-01-01

    TGF-β–activated kinase 1 (TAK1) is a key intermediate in signal transduction induced by TGF-β or inflammatory cytokines, such as TNF-α and IL-1, which are potent inducers of podocyte injury responses that lead to proteinuria and glomerulosclerosis. Nevertheless, little is known about the physiologic and pathologic roles of TAK1 in podocytes. To examine the in vivo role of TAK1, we generated podocyte-specific Tak1 knockout mice (Nphs2-Cre+:Tak1fx/fx; Tak1∆/∆). Targeted deletion of Tak1 in podocytes resulted in perinatal lethality, with approximately 50% of animals dying soon after birth and 90% of animals dying within 1 week of birth. Tak1∆/∆ mice developed proteinuria from P1 and exhibited delayed glomerulogenesis and reduced expression of Wilms’ tumor suppressor 1 and nephrin in podocytes. Compared with Tak1fx/fx mice, Tak1∆/∆ mice exhibited impaired formation of podocyte foot processes that caused disruption of the podocyte architecture with prominent foot process effacement. Intriguingly, Tak1∆/∆ mice displayed increased expression of vascular endothelial growth factor within the glomerulus and abnormally enlarged glomerular capillaries. Furthermore, 4- and 7-week-old Tak1∆/∆ mice with proteinuria had increased collagen deposition in the mesangium and the adjacent tubulointerstitial area. Thus, loss of Tak1 in podocytes is associated with the development of proteinuria and glomerulosclerosis. Taken together, our data show that TAK1 regulates the expression of Wilms’ tumor suppressor 1, nephrin, and vascular endothelial growth factor and that TAK1 signaling has a crucial role in podocyte differentiation and attainment of normal glomerular microvasculature during kidney development and glomerular filtration barrier homeostasis. PMID:24652804

  14. Bone bonding in bioactive glass ceramics combined with a new synthesized agent TAK-778.

    PubMed

    Kato, H; Neo, M; Tamura, J; Nakamura, T

    2001-11-01

    We studied the stimulatory effects of TAK-778, a new synthetic 3-benzothiepin derivative that promotes osteoblast differentiation, in the bonding of bone to bioactive glass ceramic implants in rabbit tibiae. Smooth-surfaced, rectangular plates (15 x 10 x 2 mm) made of apatite-wollastonite-containing glass ceramic were implanted bilaterally into the proximal metaphyses of rabbit tibiae. Sustained-release microcapsules containing TAK-778 were packed into the medullary cavity in one limb and untreated microcapsules were packed into the contralateral limb to serve as a paired control. At 4, 8, and 16 weeks after implantation, bonding at the bone/implant interfaces was evaluated using a detaching test and histological examination of undecalcified specimens. The tensile failure load increased during weeks 4 to 16 in both groups; the tensile failure load in the TAK-778-treated group was significantly greater than that in the control group at each interval after implantation. Histologically, the TAK-778-treated specimens showed greater active new bone formation mainly in the medullary cavity and more extensive bonding between the implant and bone than the untreated specimens. The results of this study suggest that adding the bone formation-promoting TAK-778 to bioactive glass ceramic implants may significantly accelerate bone apposition to the implants and improve the bonding process at the interface. This would help to establish earlier and stronger bonding of orthopedic ceramic implants to the surrounding bone tissue. Copyright 2001 John Wiley & Sons, Inc.

  15. Hair Cortisol Concentrations Are Associated with Hair Growth Rate.

    PubMed

    Xiang, Lianbin; Sunesara, Imran; Rehm, Kristina E; Marshall, Gailen D

    2016-01-01

    There is a growing interest in hair cortisol concentrations as a valuable biomarker for the assessment of metabolic diseases and chronic psychological stress. Fifty-three volunteers were recruited, and hair segments proximal to the scalp were collected from each individual. A cost-effective ball mill was used for the preparation of hair samples, and ELISA was performed to analyze cortisol concentrations. Results indicate that the frequency of hair washing affects the hair cortisol concentration. The group that washed their hair every day had significantly lower cortisol concentrations than the group that washed it less often. However, no significant differences were detected between cosmetic-treated and nontreated hair samples. The study also shows that hair cortisol concentrations in the first 3 cm of hair segments proximal to the scalp corresponded to average hair growth rate based on 1 cm/month. Thus, hair cortisol concentrations of segments 3 cm proximal to the scalp may represent cumulative stress exposure over the previous 3 months. These findings will allow more widespread research to validate the utility of hair cortisol as a potential biomarker to assess chronic stress. © 2017 S. Karger AG, Basel.

  16. Managing hair loss in midlife women.

    PubMed

    Mirmirani, Paradi

    2013-02-01

    Hair is considered one of the most defining aspects of human appearance. Hair loss, or alopecia in women is often met with significant emotional distress and anxiety. In midlife, women may encounter various hormonal and age-related physiologic changes that can lead to alterations in hair texture and growth. The most significant hormonal alteration is the onset of menopause in which there is a cessation of ovarian estrogen production. This decrease in estrogen is known to have deleterious effects on the skin and cutaneous appendages. As our understanding of the molecular and hormonal controls on the hair follicle has grown, there has been increased interest in the various modulators of hair growth, including the potential role of estrogen. Further study of hair changes in midlife women provides an important opportunity for identification of the complex regulation of hair growth as well as identification of treatment targets that may specifically benefit women. In this review, management of hair loss in midlife women is discussed with a focus on three most commonly encountered clinical conditions: female pattern hair loss, hair shaft alterations due to hair care, and telogen effluvium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Loss of Par-1a/MARK3/C-TAK1 Kinase Leads to Reduced Adiposity, Resistance to Hepatic Steatosis, and Defective Gluconeogenesis ▿

    PubMed Central

    Lennerz, Jochen K.; Hurov, Jonathan B.; White, Lynn S.; Lewandowski, Katherine T.; Prior, Julie L.; Planer, G. James; Gereau, Robert W.; Piwnica-Worms, David; Schmidt, Robert E.; Piwnica-Worms, Helen

    2010-01-01

    Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice. PMID:20733003

  18. Immunopotentiator from Pantoea agglomerans 1 (IP-PA1) Promotes Murine Hair Growth and Human Dermal Papilla Cell Gene Expression.

    PubMed

    Wakame, Koji; Okawa, Hiroshi; Komatsu, Ken-Ich; Nakata, Akifumi; Sato, Keisuke; Ingawa, Hiroyuki; Kohchi, Chie; Nishizawa, Takashi; Soma, Gen-Ichiro

    2016-07-01

    The lipopolysaccharide (LPS)-like compound derived from Pantoea agglomerans (immunopotentiator from Pantoea agglomerans 1 (IP-PA1)) has been used not only as dietary supplement or cosmetic for humans, but also by Japanese veterinarians as an anti-tumor, anti-allergy, "keep a fine coat of fur" and hair growth-promoting functional food for dogs and cats. In the present study, we focused on the hair growth-promoting effects of IP-PA1 on a hair-shaved animal model and its mechanism of action. We also investigated its potential on gene expression after stimulating human dermal papilla cells with IP-PA1. The hair on the back of a C3H/HeN mouse was shaved and IP-PA1 was orally administered or applied to the skin. The status of hair growth was observed and recorded for 14 days. Skin was collected and histological tissue examination was performed with respect to hair growth status using hematoxylin and eosin staining. After IP-PA1 administration (2 and 10 μg/ml) to human dermal papilla cell culture system for 24 h, fibroblast growth factor-7 (FGF-7) and vascular endothelial growth factor (VEGF) mRNA expression were measured using real-time polymerase chain reaction (PCR) analysis. IP-PA1, when given orally, showed a tendency to promote hair growth in mice. In addition, skin application also significantly promoted hair growth, while histopathological examinations further demonstrated hair elongation from dermal papilla cells. In the human dermal papilla cell culture system, significant FGF-7 and VEGF mRNA expressions were observed (p<0.05). An underlying mechanism of gene expression by which IP-PA1 promotes hair growth was suggested to be different from that of medicine and traditional hair tonics, such as minoxidil and adenosine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth

    PubMed Central

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A.; Andl, Thomas; Zhang, Yuhang

    2016-01-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. PMID:27462123

  20. Identification of TGF-β-activated kinase 1 as a possible novel target for renal cell carcinoma intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fandong; Li, Yan; Tian, Xin

    Highlights: • Inhibition of TAK1 kinase activity suppresses NF-κB activation and RCC cell survival. • TAK1 inhibitors induces apoptotic cytotoxicity against RCC cells. • RCC cells with TAK1 depletion show reduced cell viability and increased apoptosis. • TAK1 and p-NF-κB are both over-expressed in human RCC tissues. • Inhibition or depletion of TAK1 enhances the activity of vinblastine sulfate. - Abstract: Renal cell carcinoma (RCC) is common renal malignancy within poor prognosis. TGF-β-activated kinase 1 (TAK1) plays vital roles in cell survival, apoptosis-resistance and carcinogenesis through regulating nuclear factor-κB (NF-κB) and other cancer-related pathways. Here we found that TAK1 inhibitorsmore » (LYTAK1, 5Z-7-oxozeanol (5Z) and NG-25) suppressed NF-κB activation and RCC cell (786-O and A489 lines) survival. TAK1 inhibitors induced apoptotic cytotoxicity against RCC cells, which was largely inhibited by the broad or specific caspase inhibitors. Further, shRNA-mediated partial depletion of TAK1 reduced 786-O cell viability whiling activating apoptosis. Significantly, TAK1 was over-expressed in human RCC tissues, and its level was correlated with phosphorylated NF-κB. Finally, kinase inhibition or genetic depletion of TAK1 enhanced the activity of vinblastine sulfate (VLB) in RCC cells. Together, these results suggest that TAK1 may be an important oncogene or an effective target for RCC intervention.« less

  1. Targeting of CXXC5 by a Competing Peptide Stimulates Hair Regrowth and Wound-Induced Hair Neogenesis.

    PubMed

    Lee, Soung-Hoon; Seo, Seol Hwa; Lee, Dong-Hwan; Pi, Long-Quan; Lee, Won-Soo; Choi, Kang-Yell

    2017-11-01

    The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5 -/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5 -/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    PubMed Central

    de Vries, Michel

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. PMID:26977085

  3. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis.

    PubMed

    Verweij, Walter; Spelt, Cornelis E; Bliek, Mattijs; de Vries, Michel; Wit, Niek; Faraco, Marianna; Koes, Ronald; Quattrocchio, Francesca M

    2016-03-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Cell proliferation during hair cell regeneration induced by Math1 in vestibular epithelia in vitro

    PubMed Central

    Huang, Yi-bo; Ma, Rui; Yang, Juan-mei; Han, Zhao; Cong, Ning; Gao, Zhen; Ren, Dongdong; Wang, Jing; Chi, Fang-lu

    2018-01-01

    Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation. 5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation. PMID:29623936

  5. C-terminal polymorphism of Plasmodium falciparium merozoite surface protein-1 (MSP-1) from Tak Province, Thailand.

    PubMed

    Viputtigul, Kwanjai; Tungpukdee, Noppadon; Ruangareerate, Toon; Luplertlop, Natthanej; Wilairatana, Polrat; Gaywee, Jariyanart; Krudsood, Srivicha

    2013-01-01

    This study was undertaken to ascertain the extent of polymorphism in the C-terminal region of Plasmodium falciparum merozoite surface protein (MSP-1) from 119 malaria patients in Tak Province on the western border of Thailand, who were admitted to the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. P. falciparum infection was confirmed by microscopic examination of peripheral blood smears. Clinical manifestations were categorized into 2 groups: uncomplicated (94 cases) and complicated/severe (25 cases). A 1,040 basepair fragment of P. falciparum MSP-1 gene was compared with MSP-1 of reference strains retrieved from GenBank. The consensus sequences of MSP-1 block 16 showed it belonged to MAD20 genotype, which is the major allele of falciparum malaria from the western border of Thailand. MSP-1 block 16 amino acid fragment could be separated into 2 groups: similar and dissimilar to reference sequence. Four variations in MSP-1 block 16 were -1494K, D1510G, D1556N, and K1696I. MSP-1 block 16 diversity is not significantly associated with clinical manifestation although MAD 20 genotype is the predominant genotype in this area. The genetic data of MSP1 gene of faciparum malaria isolated from western Thai border contribute to the existing genetic database of Thai P. falciparum strain.

  6. Hair loss at injection sites of mesotherapy for alopecia.

    PubMed

    El-Komy, Mohamed; Hassan, Akmal; Tawdy, Amira; Solimon, Mohamed; Hady, Mohamed Abdel

    2017-12-01

    The side effects of mesotherapy for treatment of various forms of alopecia are often underreported, while scientific data for its efficacy are severely lacking. To demonstrate the late onset side effects of mesotherapy for alopecia. Three patients with androgenetic alopecia showed hair loss after previously uneventful mesotherapy sessions up to 1 year. Clinical, dermoscopic, and histopathological findings suggested an inflammatory scaring process at sites of mesotherapy injections. Mesotherapy for androgenetic alopecia may paradoxically induce hair loss and scarring. Proper regulation and monitoring of the use of mesotherapy products for treating hair loss in women, needs to be addressed. © 2017 Wiley Periodicals, Inc.

  7. CD133-positive dermal papilla-derived Wnt ligands regulate postnatal hair growth.

    PubMed

    Zhou, Linli; Yang, Kun; Carpenter, April; Lang, Richard A; Andl, Thomas; Zhang, Yuhang

    2016-10-01

    Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients.

  9. P-cadherin regulates human hair growth and cycling via canonical Wnt signaling and transforming growth factor-β2.

    PubMed

    Samuelov, Liat; Sprecher, Eli; Tsuruta, Daisuke; Bíró, Tamás; Kloepper, Jennifer E; Paus, Ralf

    2012-10-01

    P-cadherin is a key component of epithelial adherens junctions, and it is prominently expressed in the hair follicle (HF) matrix. Loss-of-function mutations in CDH3, which encodes P-cadherin, result in hypotrichosis with juvenile macular dystrophy (HJMD), an autosomal recessive disorder featuring sparse and short hair. Here, we attempted to recapitulate some aspects of HJMD in vitro by transfecting normal, organ-cultured human scalp HFs with lipofectamine and CDH3-specific or scrambled control siRNAs. As in HJMD patients, P-cadherin silencing inhibited hair shaft growth, prematurely induced HF regression (catagen), and inhibited hair matrix keratinocyte proliferation. In situ, membrane β-catenin expression and transcription of the β-catenin target gene, axin2, were significantly reduced, whereas glycogen synthase kinase 3 β (GSK3β) and phospho-β-catenin immunoreactivity were increased. These effects were partially reversed by inhibiting GSK3β. P-cadherin silencing reduced the expression of the anagen-promoting growth factor, IGF-1, whereas that of transforming growth factor β 2 (TGFβ2; catagen promoter) was enhanced. Neutralizing TGFβ antagonized the catagen-promoting effects of P-cadherin silencing. In summary, we introduce human HFs as an attractive preclinical model for studying the functions of P-cadherin in human epithelial biology and pathology. This model demonstrates that cadherins can be successfully knocked down in an intact human organ in vitro, and shows that P-cadherin is needed for anagen maintenance by regulating canonical Wnt signaling and suppressing TGFβ2.

  10. Shaping and Conditioning Hair; Cosmetology 1: 9205.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This Quinmester course is presented in 135 clock hours of classroom laboratory instruction which are broken down into five blocks of instruction (basic hair shaping, hair shaping for current styles, scalp and hair treatment, development of manipulative skills, and Quinmester posttests). Upon completion of this course, the student will have an…

  11. Fumonisin mycotoxins in human hair.

    PubMed

    Sewram, Vikash; Mshicileli, Ndumiso; Shephard, Gordon S; Marasas, Walter F O

    2003-01-01

    This study shows for the first time the accumulation of fumonisin mycotoxins in human hair of population clusters exposed to contaminated maize, and thus the feasibility of human hair analysis for the assessment of past fumonisin exposure. Composite hair samples were obtained from the Bizana, Butterworth and Centane districts within the Transkei region of the Eastern Cape Province of South Africa. Following methanol extraction and strong anion exchange clean up, the fumonisins FB(1), FB(2) and FB(3) were detected using high performance liquid chromatography coupled to electrospray ionization-mass spectrometry (HPLC-ESI-MS). Hair from Centane and Butterworth showed mean levels of FB(1) of 26.7 and 23.5 microg kg(-1) hair, respectively. FB(2) was only detected in hair from Centane and in one sampling point in Butterworth, with mean levels of 6.5 and 5.7 microg kg(-1) hair, respectively. Hair samples from Bizana, on the other hand, were found to contain higher levels of FB(1) (mean 33.0 microg kg(-1) hair) and FB(2) (mean 11.1 microg kg(-1) hair). No samples contained more than trace levels of FB(3). Recoveries from spiked hair samples using this method ranged from 81% to 101%, demonstrating the applicability of hair analysis in assessing human exposure to fumonisin mycotoxins.

  12. Stress and the Hair Growth Cycle: Cortisol-Induced Hair Growth Disruption.

    PubMed

    Thom, Erling

    2016-08-01

    The stress hormone, cortisol, is known to affect the function and cyclic regulation of the hair follicle. When cortisol is present at high levels it has been demonstrated to reduce the synthesis and accelerate the degradation of important skin elements, namely hyaluronan and proteoglycans by approximately 40%. The following discussion outlines the relationship between stress, cortisol, and the effect on the normal function of the hair follicle. As a result of this connection, important correlations have been established in the literature to form a basis for novel, effective treatments of stress-related hair growth disorders.
    Amongst various treatment methods and substances, oral supplementation with a specific bioavailable proteoglycan stands out as a promising new therapeutic treatment method.

    J Drugs Dermatol. 2016;15(8):1001-1004.

  13. Ingrowing Hair

    PubMed Central

    Luo, Di-Qing; Liang, Yu-Hua; Li, Xi-Qing; Zhao, Yu-Kun; Wang, Fang; Sarkar, Rashmi

    2016-01-01

    Abstract Cutaneous pili migrans and creeping eruption caused by parasitic diseases may present as a moving linear lesion in skin. The former, caused by a hair shaft or fragment embedded in the superficial skin or middle dermis, is a rare condition characterized by creeping eruption with a black line observed at the advancing end. In exceptionally rare instance, the hair grows inside the skin and burrows in the uppermost dermis, such a condition has been called “ingrown hair.” We report a 30-year-old Chinese man, who was accustomed to pull or extrude the beard hairs, with 1-year history of slowly extending black linear eruption on his right chin. Cutaneous examination revealed a 4-cm long black linear lesion beneath the skin associated with edematous erythema around and folliculitis on both ends of the lesion. After treatment with topical mupirocin ointment, the erythema and folliculitis improved and 2 hairs of the beard with hair follicles were pulled out from the skin. Two weeks later, another similar black line about 1 cm in length in the skin presented on the prior lesional area, which was pulled out by a shallow incision of the skin and was also demonstrated as a beard hair with hair follicle. The patient was diagnosed as “ingrowing hair” with multiple recurrences. The lesions recovered after the beard hairs were pulled out. No recurrence occurred in a year of follow-up. We suggest that “ingrowing hair” is better than “ingrown hair” to describe such a condition. Pulling out the involved hair and correcting the bad practice are its optimal management strategies. PMID:27175694

  14. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.

    PubMed

    Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong

    2015-04-20

    Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in

  15. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  16. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    PubMed

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment

  17. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability.

    PubMed

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-08-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.

  18. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model

    PubMed Central

    Takashima, K; Matsunaga, N; Yoshimatsu, M; Hazeki, K; Kaisho, T; Uekata, M; Hazeki, O; Akira, S; Iizawa, Y; Ii, M

    2009-01-01

    Background and purpose: TAK-242, a novel synthetic small-molecule, suppresses production of multiple cytokines by inhibiting Toll-like receptor (TLR) 4 signalling. In this study, we investigated the target molecule of TAK-242 and examined its therapeutic effect in a mouse sepsis model. Experimental approach: Binding assay with [3H]-TAK-242 and nuclear factor-κB reporter assay were used to identify the target molecule and binding site of TAK-242. Bacillus calmette guerin (BCG)-primed mouse sepsis model using live Escherichia coli was used to estimate the efficacy of TAK-242 in sepsis. Key results: TAK-242 strongly bound to TLR4, but binding to TLR2, 3, 5, 9, TLR-related adaptor molecules and MD-2 was either not observed or marginal. Mutational analysis using TLR4 mutants indicated that TAK-242 inhibits TLR4 signalling by binding to Cys747 in the intracellular domain of TLR4. TAK-242 inhibited MyD88-independent pathway as well as MyD88-dependent pathway and its inhibitory effect was largely unaffected by lipopolysaccharide (LPS) concentration and types of TLR4 ligands. TAK-242 had no effect on the LPS-induced conformational change of TLR4-MD-2 and TLR4 homodimerization. In mouse sepsis model, although TAK-242 alone did not affect bacterial counts in blood, if co-administered with ceftazidime it inhibited the increases in serum cytokine levels and improved survival of mice. Conclusions and implications: TAK-242 suppressed TLR4 signalling by binding directly to a specific amino acid Cys747 in the intracellular domain of TLR4. When co-administered with antibiotics, TAK-242 showed potent therapeutic effects in an E. coli-induced sepsis model using BCG-primed mice. Thus, TAK-242 may be a promising therapeutic agent for sepsis. PMID:19563534

  19. Foxi3 deficiency compromises hair follicle stem cell specification and activation

    PubMed Central

    Shirokova, Vera; Biggs, Leah C.; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K.; Mikkola, Marja L.

    2017-01-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ. Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary hair germ marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary hair germ activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. PMID:26992132

  20. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    PubMed

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  1. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

    PubMed

    Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S

    2018-07-01

    Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Lactate dehydrogenase activity drives hair follicle stem cell activation

    PubMed Central

    Aimee, Flores; John, Schell; Abby, Krall; David, Jelinek; Matilde, Miranda; Melina, Grigorian; Daniel, Braas; White Andrew, C; Jessica, Zhou; Nick, Graham; Thomas, Graeber; Pankaj, Seth; Denis, Evseenko; Hilary, Coller; Jared, Rutter; Heather, Christofk; Lowry William, E

    2017-01-01

    Summary While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to remain dormant and yet quickly respond to appropriate proliferative stimuli. PMID:28812580

  3. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development ofmore » hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased

  4. ß-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase.

    PubMed

    Arenas-Alfonseca, Lucía; Gotor, Cecilia; Romero, Luis C; García, Irene

    2018-05-01

    In Arabidopsis thaliana, cyanide is produced concomitantly with ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. In roots, CAS-C1 activity is essential to maintain a low level of cyanide for proper root hair development. Root hair elongation relies on polarized cell expansion at the growing tip, and we have observed that CAS-C1 locates in mitochondria and accumulates in root hair tips during root hair elongation, as shown by observing the fluorescence in plants transformed with the translational construct ProC1:CASC1-GFP, containing the complete CAS-C1 gene fused to green fluorescent protein (GFP). Mutants in the SUPERCENTIPEDE (SCN1) gene, that regulate the NADPH oxidase gene ROOT HAIR DEFECTIVE 2 (RHD2)/AtrbohC, are affected at the very early steps of the development of root hair that do not elongate and do not show a preferential localization of the GFP accumulation in the tips of the root hair primordia. Root hairs of mutants in CAS-C1 or RHD2/AtrbohC, whose protein product catalyzes the generation of ROS and the Ca2+ gradient, start to grow out correctly, but they do not elongate. Genetic crosses between the cas-c1 mutant and scn1 or rhd2 mutants were performed, and the detailed phenotypic and molecular characterization of the double mutants demonstrates that scn1 mutation is epistatic to cas-c1 and cas-c1 is epistatic to rhd2 mutation, indicating that CAS-C1 acts in early steps of the root hair development process. Moreover, our results show that the role of CAS-C1 in root hair elongation is independent of H2O2 production and of a direct NADPH oxidase inhibition by cyanide.

  5. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  6. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  7. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  8. Does the recipient site influence the hair growth characteristics in hair transplantation?

    PubMed

    Hwang, Sungjoo; Kim, Jung Chul; Ryu, Hyo Sub; Cha, Young Chang; Lee, Seok Jong; Na, Gun Yoen; Kim, Do Won

    2002-09-01

    Recently hair transplantation has been widely applied not only to correct androgenetic alopecia, but also to correct hair loss on other parts of the body such as the eyebrows and pubic area. It is believed that the transplanted hairs will maintain their integrity and characteristics after transplantation to new nonscalp sites. To evaluate whether the transplanted hairs maintain their hair growth characteristics after transplantation to a new anatomic site other than the scalp. Three study designs were used. Study I: Hair transplantation from the author's occipital scalp to his lower leg was performed and clinical evaluations were made at both 6 months and at 3 years after the transplantation. Study II: After finding changes in hair growth characteristics, transplanted hairs were harvested from the leg and retransplanted to the left side of the nape of the neck (group A). As a control study, occipital hairs were transplanted to the opposite side (group B). Observations were made at 6 months after the operation. Study III: An observational study was done in 12 patients with androgenetic alopecia about 1 year after transplantation of occipital hair to frontal scalp. At each step, survival rates were documented and the rate of growth and the diameter of the shafts were measured for both recipient and donor sites. Study I: Surviving hairs on the lower leg showed a lower growth rate (8.2 +/- 0.9 mm/month), but the same diameter (0.086 +/- 0.018 mm) compared with occipital hairs (16.0 +/- 1.1 mm/month, 0.088 +/- 0.016 mm). The survival rate 3 years after transplantation was 60.2%. Study II: There was no significant difference in the growth rate, shaft diameter, and survival rate between retransplanted hairs (group A) and controls (group B). Groups A and B showed a lower growth rate, but the same diameter, compared with occipital hairs. Study III: There was no significant difference in the growth rate and shaft diameter between the transplanted hairs on the frontal scalp

  9. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  10. Probing the Effects of Stress Mediators on the Human Hair Follicle

    PubMed Central

    Peters, Eva M.J.; Liotiri, Sofia; Bodó, Enikő; Hagen, Evelin; Bíró, Tamás; Arck, Petra C.; Paus, Ralf

    2007-01-01

    Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and β2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata. PMID:18055548

  11. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran H.; Brechenmacher, Laurent; Aldrich, Joshua T.

    2012-11-11

    Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e., roots from which root hairs were removed) during rhizobial colonization and infection to gain insightmore » into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag 8-plex ITRAQ, enriched using Ni-NTA magnetic beads and subjected to nRPLC-MS/MS analysis using HCD and decision tree guided CID/ETD strategy. A total of 1,625 unique phosphopeptides, spanning 1,659 non-redundant phosphorylation sites, were detected from 1,126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5 fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.« less

  12. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth.

    PubMed

    Berson, Tobias; von Wangenheim, Daniel; Takáč, Tomáš; Šamajová, Olga; Rosero, Amparo; Ovečka, Miroslav; Komis, George; Stelzer, Ernst H K; Šamaj, Jozef

    2014-09-27

    Small Rab GTPases are important regulators of vesicular trafficking in plants. AtRabA1d, a member of the RabA1 subfamily of small GTPases, was previously found in the vesicle-rich apical dome of growing root hairs suggesting a role during tip growth; however, its specific intracellular localization and role in plants has not been well described. The transient expression of 35S::GFP:RabA1d construct in Allium porrum and Nicotiana benthamiana revealed vesicular structures, which were further corroborated in stable transformed Arabidopsis thaliana plants. GFP-RabA1d colocalized with the trans-Golgi network marker mCherry-VTI12 and with early FM4-64-labeled endosomal compartments. Late endosomes and endoplasmic reticulum labeled with FYVE-DsRed and ER-DsRed, respectively, were devoid of GFP-RabA1d. The accumulation of GFP-RabA1d in the core of brefeldin A (BFA)-induced-compartments and the quantitative upregulation of RabA1d protein levels after BFA treatment confirmed the association of RabA1d with early endosomes/TGN and its role in vesicle trafficking. Light-sheet microscopy revealed involvement of RabA1d in root development. In root cells, GFP-RabA1d followed cell plate expansion consistently with cytokinesis-related vesicular trafficking and membrane recycling. GFP-RabA1d accumulated in disc-like structures of nascent cell plates, which progressively evolved to marginal ring-like structures of the growing cell plates. During root hair growth and development, GFP-RabA1d was enriched at root hair bulges and at the apical dome of vigorously elongating root hairs. Importantly, GFP-RabA1d signal intensity exhibited an oscillatory behavior in-phase with tip growth. Progressively, this tip localization dissapeared in mature root hairs suggesting a link between tip localization of RabA1d and root hair elongation. Our results support a RabA1d role in events that require vigorous membrane trafficking. RabA1d is located in early endosomes/TGN and is involved in vesicle

  13. Study of colouring effect of herbal hair formulations on graying hair

    PubMed Central

    Singh, Vijender; Ali, Mohammed; Upadhyay, Sukirti

    2015-01-01

    Objective: To screen the hair colouring properties of hair colorants/ herbal hair colouring formulations. Materials and Methods: The dried aqueous herbal extracts of Gudhal leaves (Hibiscus rosa-sinensis), Jatamansi rhizome (Nardostachys jatamansi), Kuth roots (Saussurea lappa), Kattha (Acacia catechu), Amla dried fruit (Embelica officinalis), were prepared. Coffee powder (Coffea arabica) and Henna powder (Lowsonia inermis) were taken in the form of powder (# 40). Fourteen herbal hair colorants were prepared from these dried aqueous herbal extracts and powders. Activities of hair colorants were observed on sheep wool fibers. On the basis of the above observation six hair colorants were selected. These six formulations were taken for trials on human beings. Observation: The formulation coded HD-3 gave maximum colouring effect on sheep wool fibers as well as on human beings and percentage of acceptance among the volunteers were in the following order: HD- 3 > HD- 4 > HD-1 > HD-13 > HD-14 > HD-11. Results and Discussion: The remarkable results were obtained from five herbal hair colorants, viz., HD-1, HD- 3, HD- 4, HD-13 and HD-14 on sheep wool fibers and human beings. Formulation HD-3, having gudhal, jatamansi, kuth, kattha, amla, coffee and henna, was the maximum accepted formulation and suggested that these herbs in combination acts synergistically in hair colouring action. It also concluded that jatamansi, present in different hair colorants, was responsible to provide maximum blackening on hair PMID:26130937

  14. Hair phenotype in non-syndromic deafness.

    PubMed

    Volo, T; Sathiyaseelan, T; Astolfi, L; Guaran, V; Trevisi, P; Emanuelli, E; Martini, A

    2013-08-01

    The GJB2 gene is located on chromosome 13q12 and it encodes the connexin 26, a transmembrane protein involved in cell-cell attachment of almost all tissues. GJB2 mutations cause autosomal recessive (DFNB1) and sometimes dominant (DFNA3) non-syndromic sensorineural hearing loss. Moreover, it has been demonstrated that connexins are involved in regulation of growth and differentiation of epidermal tissues. Hence, mutations in GJB2 gene, which is responsible for non-syndromic deafness, may be associated with an abnormal skin and hair phenotype. We analyzed hair samples from 96 subjects: a study group of 42 patients with hearing impairments of genetic origin (38 with a non-syndromic form, 4 with a syndromic form), and a control group including 54 people, i.e. 43 patients with other, non-genetic hearing impairments and 11 healthy volunteers aged up to 10 years old. The surface structure of 49 hair samples was normal, whereas in 45 cases it was altered, with a damaged appearance. Two hair samples were considered unclassifiable: one from the patient heterozygotic for the pendrin mutation (Fig. 2C), the other from a patient from Ghana with a R134W mutation (Fig. 2D). Among the 43 altered hair samples, 31 belonged to patients with connexin mutations and the other 12 came from patients without connexin mutations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. 1α,25-dihydroxyvitamin D3 modulates the hair-inductive capacity of dermal papilla cells: therapeutic potential for hair regeneration.

    PubMed

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki; Yoshimura, Kotaro

    2012-08-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D(3) (VD(3)) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD(3) actions on DPCs. VD(3) suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD(3) in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD(3) was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD(3)) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD(3) upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD(3) significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD(3) may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies.

  16. 1α,25-Dihydroxyvitamin D3 Modulates the Hair-Inductive Capacity of Dermal Papilla Cells: Therapeutic Potential for Hair Regeneration

    PubMed Central

    Aoi, Noriyuki; Inoue, Keita; Chikanishi, Toshihiro; Fujiki, Ryoji; Yamamoto, Hanako; Kato, Harunosuke; Eto, Hitomi; Doi, Kentaro; Itami, Satoshi; Kato, Shigeaki

    2012-01-01

    Dermal papilla cells (DPCs) have the potential to induce differentiation of epithelial stem cells into hair, and Wnt signaling is deeply involved in the initiation process. The functional limitation of expanded adult DPCs has been a difficult challenge for cell-based hair regrowth therapy. We previously reported that 1α,25-dihydroxyvitamin D3 (VD3) upregulates expression of transforming growth factor (TGF)-β2 and alkaline phosphatase (ALP) activity, both features of hair-inducing human DPCs (hDPCs). In this study, we further examined the effects and signaling pathways associated with VD3 actions on DPCs. VD3 suppressed hDPC proliferation in a dose-dependent, noncytotoxic manner. Among the Wnt-related genes investigated, Wnt10b expression was significantly upregulated by VD3 in hDPCs. Wnt10b upregulation, as well as upregulation of ALPL (ALP, liver/bone/kidney) and TGF-β2, by VD3 was specific in hDPCs and not detected in human dermal fibroblasts. Screening of paracrine or endocrine factors in the skin indicated that all-trans retinoic acid (atRA) upregulated Wnt10b gene expression, although synergistic upregulation (combined atRA and VD3) was not seen. RNA interference with vitamin D receptor (VDR) revealed that VD3 upregulation of Wnt10b, ALPL, and TGF-β2 was mediated through the genomic VDR pathway. In a rat model of de novo hair regeneration by murine DPC transplantation, pretreatment with VD3 significantly enhanced hair folliculogenesis. Specifically, a greater number of outgrowing hair shafts and higher maturation of regenerated follicles were observed. Together, these data suggest that VD3 may promote functional differentiation of DPCs and be useful in preserving the hair follicle-inductive capacity of cultured DPCs for hair regeneration therapies. PMID:23197867

  17. Stem cell dynamics in the hair follicle niche

    PubMed Central

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  18. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation

    PubMed Central

    Song, Li; Yu, Haopeng; Dong, Jinsong; Liu, Dong

    2016-01-01

    Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress

  19. Hair growth induction by substance P.

    PubMed

    Paus, R; Heinzelmann, T; Schultz, K D; Furkert, J; Fechner, K; Czarnetzki, B M

    1994-07-01

    In vitro, some neuropeptides, including the tachykinin, substance P (SP), act as growth factors. The cyclic growth of the richly innervated hair follicle offers a model for probing such functions in a complex, developmentally regulated tissue interaction system under physiologic conditions. Dissecting the role of neuropeptides in this system may also reveal as yet obscure neural mechanisms of hair growth control. The neuropeptide-releasing neurotoxin, capsaicin was injected intradermally, or SP slow-release formulations were implanted subcutaneously in the back skin of C57BL/6 mice with all follicles in the resting stage of the hair cycle (telogen) in order to see whether this induced hair growth (anagen). In addition, the endogenous SP skin concentration and the activity of the main SP-degrading enzyme, neutral endopeptidase, were determined during the induced murine hair cycle by high performance liquid chromatography-controlled radioimmuno-assay (SP) or by fluorometry (neutral endopeptidase). Both capsaicin and SP induced significant hair growth (anagen) in the back skin of telogen mice. This was associated with substantial mast cell degranulation. The endogenous SP skin concentration showed significant, hair cycle-dependent fluctuations during the induced murine hair cycle, which were largely independent of the activity of neutral endopeptidase. SP may play a role in the neural control of hair growth. Whereas this pilot study does not address the underlying mechanisms of action, it demonstrates that SP has potential as a hair growth-stimulatory agent in vivo, and serves as a basis for exploring the role of tachykinins in epithelial-mesenchymal-neuroectodermal interaction systems like the hair follicle.

  20. New multi-targeting strategy in hair growth promotion: in vitro and in vivo studies.

    PubMed

    Marzani, Barbara; Pinto, Daniela; Sorbellini, Elisabetta; Rinaldi, Fabio

    2018-06-01

    Considering the importance of hair in our modern society and the impact of hair loss, the efforts of researchers are addressed to better understand the mechanisms behind the hair cycle regulation and dysregulation. Because hair loss is multifactorial, differenced and new approaches are required. In particular we addressed our attention to two recently identified targets in hair cycling and growth control: olfactory receptor and autophagy. The aim of the study was to evaluate: the possible pro-autophagic effect of N1-methylspermidine (a spermidine analogue) in vitro and, in a double blind clinical trial, the safety and efficacy of topical daily application of a lotion containing N1-methylspermidine and Sandalore®. Autophagic modulation by N1-methylspermidine was monitored in vitro by LC3 and p62 fluorescent signal cell line. Topical daily application of the lotion was tested in 60 male and female subjects with chronic telogen effluvium by means of non-invasive objective evaluation. The results obtained by in vitro tests showed the capacity of N1-methylspermidine to increase autophagic process while the clinical trials performed confirmed the safety and anti hair loss efficacy of the lotion reporting a reduction of hair loss (modified wash test) and hair growth stimulation as evaluated by hair density, hair shaft diameter, % of anagen hair and Hair Mass Index increase after 3 months of treatment. The lotion efficacy remained statistically significant for the above-mentioned parameters, with the exception of hair lost during wash, also 3 months after the end of treatment. Based on the obtained results, the daily use of the N1-methylspermidine and Sandalore®-based lotion is efficient to counteract hair loss and increase hair growth by a multifunctional targeting approach.

  1. Characterization of Transporters in the Hepatic Uptake of TAK-475 M-I, a Squalene Synthase Inhibitor, in Rats and Humans.

    PubMed

    Ebihara, T; Takeuchi, T; Moriya, Y; Tagawa, Y; Kondo, T; Moriwaki, T; Asahi, S

    2016-06-01

    TAK-475 (lapaquistat acetate) is a squalene synthase inhibitor and M-I is a pharmacologically active metabolite of TAK-475. Preclinical pharmacokinetic studies have demonstrated that most of the dosed TAK-475 was hydrolyzed to M-I during the absorption process and the concentrations of M-I in the liver, the main organ of cholesterol biosynthesis, were much higher than those in the plasma after oral administration to rats. In the present study, the mechanism of the hepatic uptake of M-I was investigated.The uptake studies of (14)C-labeled M-I into rat and human hepatocytes indicated that the uptakes of M-I were concentrative, temperature-dependent and saturable in both species with Km values of 4.7 and 2.8 μmol/L, respectively. M-I uptake was also inhibited by cyclosporin A, an inhibitor for hepatic uptake transporters including organic anion transporting polypeptide (OATP). In the human hepatocytes, M-I uptake was hardly inhibited by estrone 3-sulfate as an inhibitor for OATP1B1, and most of the M-I uptake was Na(+)-independent. Uptake studies using human transporter-expressing cells revealed the saturable uptake of M-I for OATP1B3 with a Km of 2.13 μmol/L. No obvious uptake of M-I was observed in the OATP1B1-expressing cells.These results indicated that M-I was taken up into hepatocytes via transporters in both rats and humans. OATP1B3 would be mainly involved in the hepatic uptake of M-I in humans. These findings suggested that hepatic uptake transporters might contribute to the liver-selective inhibition of cholesterol synthesis by TAK-475. This is the first to clarify a carrier-mediated hepatic uptake mechanism for squalene synthase inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Synergistic effect of a factor Xa inhibitor, TAK-442, and antiplatelet agents on whole blood coagulation and arterial thrombosis in rats.

    PubMed

    Konishi, Noriko; Hiroe, Katsuhiko; Kawamura, Masaki

    2010-08-01

    Activated platelets facilitate blood coagulation by providing factor V and a procoagulant surface for prothrombinase. Here, we investigated the potential synergy of a potent factor Xa/prothrombinase inhibitor, TAK-442, plus aspirin or clopidogrel in preventing arterial thrombosis and whole blood coagulation. Thrombus formation was initiated by FeCl(3)-induced rat carotid injury. Bleeding time was evaluated with the rat tail transection model. Whole blood coagulation was assessed by thromboelastographic examination (TEG) for which blood obtained from control, aspirin-, or clopidogrel-treated rats was transferred to a TEG analyzer containing, collagen or adenosine diphosphate (ADP), and TAK-442 or vehicle. TAK-442 (3mg/kg, po), aspirin (100mg/kg, po) or clopidogrel (3mg/kg, po) alone had no significant effect on thrombus formation, whereas the combination of TAK-442 with aspirin and clopidogrel remarkably prolonged the time to thrombus formation without additional significant prolongation of bleeding time. TEG demonstrated that the onset of collagen-induced blood coagulation were slightly longer in aspirin-treated rats than control; however, when the blood from aspirin-treated rats was subsequently treated in vitro with 100 nM TAK-442, the onset of clotting was significantly prolonged. In contrast, only marginal prolongation was observed with TAK-442 treatment of blood from control animals. The onset time of ADP-induced blood coagulation was slightly longer in clopidogrel-treated rats compared with control, and it was further extended by TAK-442 treatment. These results demonstrate that blood coagulation can be markedly delayed by the addition of TAK-442 to antiplatelets treatment which could contribute to synergistic antithrombotic efficacy in these settings. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    PubMed

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  4. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato.

    PubMed Central

    Lauter, F R; Ninnemann, O; Bucher, M; Riesmeier, J W; Frommer, W B

    1996-01-01

    Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8755617

  5. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    PubMed

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  6. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    PubMed

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  7. Protein extraction from human anagen head hairs 1-millimeter or less in total length.

    PubMed

    Carlson, Traci L; Moini, Mehdi; Eckenrode, Brian A; Allred, Brent M; Donfack, Joseph

    2018-04-01

    A simple method for extracting protein from human anagen (i.e., actively growing hair stage) head hairs was developed in this study for cases of limited sample availability and/or studies of specific micro-features within a hair. The distinct feature segments of the hair from one donor were divided lengthwise (i.e., each of ∼200-400 μm) and then pooled for three individual hairs to form a total of eight composite hair samples (i.e., each of ∼1 mm or less in total length). The proteins were extracted, digested using trypsin, and characterized via nano-flow liquid chromatography tandem-mass spectrometry (nLC-MS/MS). A total of 63 proteins were identified from all eight protein samples analyzed of which 60% were keratin and keratin-associated proteins. The major hair keratins identified are consistent with previous studies using fluorescence in situ hybridization and nLC-MS/MS while requiring over 400-8000-fold less sample. The protein extraction method from micro-sized human head hairs described in this study will enable proteomic analysis of biological evidence for cases of limited sample availability and will complement hair research. For example, research seeking to develop alternative non-DNA based techniques for comparing questioned to known hairs, and understanding the biochemistry of hair decomposition.

  8. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  9. Role of thymosin beta 4 in hair growth.

    PubMed

    Gao, Xiao-Yu; Hou, Fang; Zhang, Zhi-Peng; Nuo, Ming-Tu; Liang, Hao; Cang, Ming; Wang, Zhi-Gang; Wang, Xin; Xu, Teng; Yan, Le-Yan; Guo, Xu-Dong; Liu, Dong-Jun

    2016-08-01

    Although thymosin beta 4 (Tβ4) is known to play a role in hair growth, its mechanism of action is unclear. We examined the levels of key genes in a Tβ4 epidermal-specific over-expressing mouse model and Tβ4 global knockout mouse model to explore how Tβ4 affects hair growth. By depilation and histological examination of the skin, we confirmed the effect of Tβ4 on hair growth, the number of hair shafts and hair follicle (HF) structure. The mRNA and protein expression of several genes involved in hair growth were detected by real-time PCR and western blotting, respectively. Changes in the expression of β-catenin and Lef-1, the two key molecules in the Wnt signaling pathway, were similar to the changes observed in Tβ4 expression. We also found that compared to the control mice, the mRNA and protein expression of MMP-2 and VEGF were increased in the Tβ4 over-expressing mice, while the level of E-cadherin (E-cad) remained the same. Further, in the Tβ4 global knockout mice, the mRNA and protein levels of MMP-2 and VEGF decreased dramatically and the level of E-cad was stable. Based on the above results, we believe that Tβ4 may regulate the levels of VEGF and MMP-2 via the Wnt/β-catenin/Lef-1 signaling pathway to influence the growth of blood vessels around HFs and to activate cell migration. Tβ4 may have potential for the treatment of hair growth problems in adults, and its effects should be further confirmed in future studies.

  10. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch.

    PubMed

    Millimaki, Bonny B; Sweet, Elly M; Dhason, Mary S; Riley, Bruce B

    2007-01-01

    Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.

  11. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system.

    PubMed

    Hao, Juan; Tu, Lili; Hu, Haiyan; Tan, Jiafu; Deng, Fenglin; Tang, Wenxin; Nie, Yichun; Zhang, Xianlong

    2012-10-01

    As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from -2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling.

  12. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system

    PubMed Central

    Zhang, Xianlong

    2012-01-01

    As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA library of sea-island cotton fibre (from –2 to 25 days post anthesis). GbTCP was preferentially expressed in the elongating cotton fibre from 5 to 15 days post anthesis. Some expression was also observed in stems, apical buds, and petals. RNAi silencing of GbTCP produced shorter fibre, a reduced lint percentage, and a lower fibre quality than the wild-type plants. Overexpression of GbTCP enhanced root hair initiation and elongation in Arabidopsis and regulated branching. Solexa sequencing and Affymetrix GeneChip analysis indicated that GbTCP positively regulates the level of jasmonic acid (JA) and, as a result, activates downstream genes (reactive oxygen species, calcium signalling, ethylene biosynthesis and response, and several NAC and WRKY transcription factors) necessary for elongation of fibres and root hairs. JA content analysis in cotton also confirmed that GbTCP has a profound effect on JA biosynthesis. In vitro ovule culture showed that an appropriate concentration of JA promoted fibre elongation. The results suggest that GbTCP is an important transcription factor for fibre and root hair development by regulating JA biosynthesis and response and other pathways, including reactive oxygen species, calcium channel and ethylene signalling. PMID:23105133

  13. Effects of solar radiation on hair and photoprotection.

    PubMed

    Dario, Michelli F; Baby, André R; Velasco, Maria Valéria R

    2015-12-01

    In this paper the negative effects of solar radiation (ultraviolet, visible and infrared wavelengths) on hair properties like color, mechanical properties, luster, protein content, surface roughness, among others, will be discussed. Despite knowing that radiation damages hair, there are no consensus about the particular effect of each segment of solar radiation on the hair shaft. The hair photoprotection products are primarily targeted to dyed hair, specially auburn pigments, and gray shades. They are usually based on silicones, antioxidants and quaternary chemical UV filters that have more affinity for negatively charged hair surface and present higher efficacy. Unfortunately, there are no regulated parameters, like for skin photoprotection, for efficacy evaluation of hair care products, which makes impossible to compare the results published in the literature. Thus, it is important that researchers make an effort to apply experimental conditions similar to a real level of sun exposure, like dose, irradiance, time, temperature and relative humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fullerene nanomaterials potentiate hair growth.

    PubMed

    Zhou, Zhiguo; Lenk, Robert; Dellinger, Anthony; MacFarland, Darren; Kumar, Krishan; Wilson, Stephen R; Kepley, Christopher L

    2009-06-01

    Hair loss is a common symptom resulting from a wide range of disease processes and can lead to stress in affected individuals. The purpose of this study was to examine the effect of fullerene nanomaterials on hair growth. We used shaved mice as well as SKH-1 "bald" mice to determine if fullerene-based compounds could affect hair growth and hair follicle numbers. In shaved mice, fullerenes increase the rate of hair growth as compared with mice receiving vehicle only. In SKH-1 hairless mice fullerene derivatives given topically or subdermally markedly increased hair growth. This was paralleled by a significant increase in the number of hair follicles in fullerene-treated mice as compared with those mice treated with vehicle only. The fullerenes also increased hair growth in human skin sections maintained in culture. These studies have wide-ranging implications for those conditions leading to hair loss, including alopecia, chemotherapy, and reactions to various chemicals.

  15. Sensory hair cell development and regeneration: similarities and differences

    PubMed Central

    Atkinson, Patrick J.; Huarcaya Najarro, Elvis; Sayyid, Zahra N.; Cheng, Alan G.

    2015-01-01

    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration. PMID:25922522

  16. Red hair is the null phenotype of MC1R.

    PubMed

    Beaumont, Kimberley A; Shekar, Sri N; Cook, Anthony L; Duffy, David L; Sturm, Richard A

    2008-08-01

    The Melanocortin-1 Receptor (MC1R) is a G-protein coupled receptor, which is responsible for production of the darker eumelanin pigment and the tanning response. The MC1R gene has many polymorphisms, some of which have been linked to variation in pigmentation phenotypes within human populations. In particular, the p.D84E, p.R151C, p.R160W and p.D294 H alleles have been strongly associated with red hair, fair skin and increased skin cancer risk. These red hair colour (RHC) variants are relatively well described and are thought to result in altered receptor function, while still retaining varying levels of signaling ability in vitro. The mouse Mc1r null phenotype is yellow fur colour, the p.R151C, p.R160W and p.D294 H alleles were able to partially rescue this phenotype, leading to the question of what the true null phenotype of MC1R would be in humans. Due to the rarity of MC1R null alleles in human populations, they have only been found in the heterozygous state until now. We report here the first case of a homozygous MC1R null individual, phenotypic analysis indicates that red hair and fair skin is found in the absence of MC1R function.

  17. Caprin-1 is a target of the deafness gene Pou4f3 and is recruited to stress granules in cochlear hair cells in response to ototoxic damage

    PubMed Central

    Towers, Emily R.; Kelly, John J.; Sud, Richa; Gale, Jonathan E.; Dawson, Sally J.

    2011-01-01

    The POU4 family of transcription factors are required for survival of specific cell types in different sensory systems. Pou4f3 is essential for the survival of auditory sensory hair cells and several mutations in human POU4F3 cause hearing loss. Thus, genes regulated by Pou4f3 are likely to be essential for hair cell survival. We performed a subtractive hybridisation screen in an inner-ear-derived cell line to find genes with differential expression in response to changes in Pou4f3 levels. The screen identified the stress-granule-associated protein Caprin-1 as being downregulated by Pou4f3. We demonstrated that this regulation occurs through the direct interaction of Pou4f3 with binding sites in the Caprin-1 5′ flanking sequence, and describe the expression pattern of Caprin-1 mRNA and protein in the cochlea. Moreover, we found Caprin-1-containing stress granules are induced in cochlear hair cells following aminoglycoside-induced damage. This is the first report of stress granule formation in mammalian hair cells and suggests that the formation of Caprin-1-containing stress granules is a key damage response to a clinically relevant ototoxic agent. Our results have implications for the understanding of aminoglycoside-induced hearing loss and provide further evidence that stress granule formation is a fundamental cellular stress response. PMID:21402877

  18. Defect of Hepatocyte Growth Factor Activator Inhibitor Type 1/Serine Protease Inhibitor, Kunitz Type 1 (Hai-1/Spint1) Leads to Ichthyosis-Like Condition and Abnormal Hair Development in Mice

    PubMed Central

    Nagaike, Koki; Kawaguchi, Makiko; Takeda, Naoki; Fukushima, Tsuyoshi; Sawaguchi, Akira; Kohama, Kazuyo; Setoyama, Mitsuru; Kataoka, Hiroaki

    2008-01-01

    Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1+/+ blastocysts with Hai-1/Spint1−/− embryonic stem cells successfully generated high-chimeric Hai-1/Spint1−/− embryos (B6Hai-1−/−High) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1−/− mice was caused by placental dysfunction. However, newborn B6Hai-1−/−High mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development. PMID:18832587

  19. Hair corticosterone measurement in mouse models of type 1 and type 2 diabetes mellitus.

    PubMed

    Erickson, Rebecca L; Browne, Caroline A; Lucki, Irwin

    2017-09-01

    In diabetes, glucocorticoid secretion increases secondary to hyperglycemia and is associated with an extensive list of disease complications. Levels of cortisol in humans, or corticosterone in rodents, are usually measured as transitory biomarkers of stress in blood or saliva. Glucocorticoid concentrations accumulate in human or animal hair over weeks and could more accurately measure the cumulative stress burden of diseases like chronic diabetes. In this study, corticosterone levels were measured in hair in verified rodent models of diabetes mellitus. To induce type 1 diabetes, C57BL/6J mice were injected with streptozotocin and blood and hair samples were collected 28days following induction. Leptin receptor deficient (db/db) mice were used as a spontaneous model of type 2 diabetes and blood and hair samples were collected at 8weeks of age, after the development of hyperglycemia and obesity. Corticosterone levels from serum, new growth hair and total growth hair were analyzed using an enzyme immunoassay. Corticosterone levels in new growth hair and serum were significantly elevated in both models of diabetes compared to controls. In contrast, corticosterone levels in old hair growth did not differ significantly between diabetic and non-diabetic animals. Thus, hair removal and sampling of new hair growth was a more sensitive procedure for detecting changes in hair corticosterone levels induced by periods of hyperglycemia lasting for 4weeks in mice. These results validate the use of hair to measure long-term changes in corticosterone induced by diabetes in rodent models. Further studies are now needed to validate the utility of hair cortisol as a tool for measuring the stress burden of individuals with diabetes and for following the effects of long-term medical treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response to Phosphate Deficiency in Arabidopsis thaliana

    PubMed Central

    Savage, Natasha; Yang, Thomas J. W.; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A. M.; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1. PMID:24130712

  1. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less

  2. Gene-expression analysis of hair cell regeneration in the zebrafish lateral line

    PubMed Central

    Jiang, Linjia; Romero-Carvajal, Andres; Haug, Jeff S.; Seidel, Christopher W.; Piotrowski, Tatjana

    2014-01-01

    Deafness caused by the terminal loss of inner ear hair cells is one of the most common sensory diseases. However, nonmammalian animals (e.g., birds, amphibians, and fish) regenerate damaged hair cells. To understand better the reasons underpinning such disparities in regeneration among vertebrates, we set out to define at high resolution the changes in gene expression associated with the regeneration of hair cells in the zebrafish lateral line. We performed RNA-Seq analyses on regenerating support cells purified by FACS. The resulting expression data were subjected to pathway enrichment analyses, and the differentially expressed genes were validated in vivo via whole-mount in situ hybridizations. We discovered that cell cycle regulators are expressed hours before the activation of Wnt/β-catenin signaling following hair cell death. We propose that Wnt/β-catenin signaling is not involved in regulating the onset of proliferation but governs proliferation at later stages of regeneration. In addition, and in marked contrast to mammals, our data clearly indicate that the Notch pathway is significantly down-regulated shortly after injury, thus uncovering a key difference between the zebrafish and mammalian responses to hair cell injury. Taken together, our findings lay the foundation for identifying differences in signaling pathway regulation that could be exploited as potential therapeutic targets to promote either sensory epithelium or hair cell regeneration in mammals. PMID:24706903

  3. Application of an ETV-ICP system for the determination of elements in human hair*1

    NASA Astrophysics Data System (ADS)

    Plantikow-Voβgätter, F.; Denkhaus, E.

    1996-01-01

    When determining element contents in hair samples without sample digestion it is necessary to analyze large sample volumes in order to minimize problems of inhomogeneity of biological sample materials. Therefore an electrothermal vaporization system (ETV) is used for solid sample introduction into an inductively coupled plasma (ICP) for the determination of matrix and trace elements in hair. This paper concentrates on the instrumental aspects without time consuming sample preparation. The results obtained for optimization tests, ETV operating parameters and ICP operating parameters, are shown and discussed. Standard additions are used for calibration for the determination of Zn, Mg, and Mn in human hair. Studies including reproducibility and detection limits for chosen elements have been carried out on certified reference materials (CRMs). The determination of reproducibility (relative standard deviation (RSD) of n = 10) and detection limits (DLs) of Zn (RSD < 8.5%, DL < 0.8 μ g -1), Mn (RSD < 14.1%, DL < 0.3 μ g -1), and Mg (RSD < 7.4%, DL < 6.6 μ g -1) are satisfactory. The concentration values found show good agreement with the corresponding certified values. Further sample preparation steps, including hair sampling, washing procedure and homogenization for hair, relating to measurements of real hair samples are described.

  4. Activation of Arabidopsis Seed Hair Development by Cotton Fiber-Related Genes

    PubMed Central

    Pang, Mingxiong; Shi, Xiaoli; Stelly, David M.; Chen, Z. Jeffrey

    2011-01-01

    Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1) that is negatively regulated by TRIPTYCHON (TRY). Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2), a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0) activated fiber-like hair production in 4–6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs) in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular. PMID:21779324

  5. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Askew, Charles; Garrige, Suneetha; Gratton, Michael Anne; Rothermund-Franklin, Christie A.; Cosgrove, Dominic

    2009-01-01

    The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western-blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The sub-cellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia. PMID:19539019

  6. Hair--Curvy or Straight; Cosmetology 1: 9205.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Permanent curling and straightening require a thorough understanding of hair. Through diligent study and practice the student prepares for a profitable part of a beauty career. The course requires 135 hours of classroom-laboratory instruction. Those entering must have mastered the skills of shaping and conditioning hair. On completion of the…

  7. Icariin promotes mouse hair follicle growth by increasing insulin-like growth factor 1 expression in dermal papillary cells.

    PubMed

    Su, Y-S; Fan, Z-X; Xiao, S-E; Lin, B-J; Miao, Y; Hu, Z-Q; Liu, H

    2017-04-01

    Icariin is a major flavonoid isolated from Epimedium spp. leaves (Epimedium Herba), and has multiple pharmacological functions, including anti-angiogenesis, anti-oxidant, anti-inflammatory and immunoprotective effects. To investigate whether icariin can stimulate growth of hair follicles in mice and the underlying mechanism. In vitro, the effect of icariin on hair growth was assessed by using a vibrissae hair follicle (VHF) organ-culture model. The proliferation of hair matrix keratinocytes and the expression of insulin-like growth factor (IGF)-1 in follicles were examined by double immunostaining for 5-bromo-2'-deoxyuridine and IGF-1, in the presence or absence of icariin. Dermal papilla cells (DPCs) were cultured and IGF-1 level was measured by reverse transcription-PCR and ELISA after icariin treatment. In vivo, the effect of icariin on hair growth was examined by gavage feeding of icariin to mice whose backs had been depilated, and the conversion of telogen to anagen hair was observed. Treatment with icariin promoted hair shaft elongation, prolonged the hair cycle growth phase (anagen) in cultured VHFs, and accelerated transition of hair cycle from telogen to anagen phase in the dorsal skin of mice. There was significant proliferation of matrix keratinocytes and an increased level of IGF-1 in cultured VHFs. Moreover, icariin treatment upregulated IGF-1 mRNA expression in DPCs and increased IGF-1 protein content in the conditioned medium of DPCs. These results suggest that icariin can promote mouse hair follicle growth via stimulation of IGF-1 expression in DPCs. © 2017 British Association of Dermatologists.

  8. Body Hair

    MedlinePlus

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  9. Hair cell regeneration in the avian auditory epithelium.

    PubMed

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  10. Hair-cycle dependent differential expression of ADAM 10 and ADAM 12

    PubMed Central

    Cho, Baik-Kee; Schramme, Anja; Gutwein, Paul; Tilgen, Wolfgang; Reichrath, Jörg

    2009-01-01

    Background ADAM proteases play important roles in processes of development and differentiation. However, no report has been found in the literature addressing the expression and function of ADAM proteases during hair cycling. Results Cytoplasmic expression pattern of ADAM 10, 12 was similar between normal epidermis and hair infundibulum. In addition, cytoplasmic expression of ADAM 10 was observed in the hair bulb keratinocytes and fibroblasts of dermal papilla in anagen I–III hair follicles. In contrast, decreased ADAM 10 expression was observed in the hair matrix keratinocytes as compared to the hair bulb keratinocytes in anagen I–III hair follicles. Interestingly, ADAM 10 immunoreactivity was expressed weakly in the lower portion of outer root sheath (ORS) of anagen VI hair follicles, and strong ADAM 10 expression was detected in the ORS of catagen and telogen hair follicles. By contrast, ADAM 12 expression was not detected in the hair bulb keratinocytes of anagen I–III hair follicles. ADAM 12 immunoreactivity firstly appeared in the inner root sheath ( IRS ) of anagen IV—V hair follicles and was down-regulated in the IRS and hair cortex and medulla of catagen hair follicles, Strong ADAM 12 immunoreactivity was observed in the ORS of catagen and telogen hair follicles. Material and methods Samples of normal human skin (n = 30) were used. Immunohistochemical analysis was performed using ADAM 10, 12 specific polyclonal antibodies and a sensitive streptavidin-peroxidase technique. Conclusion Our study demonstrates a comparable staining pattern of decreased ADAM 10 immunoreactivity in hair matrix keratinocytes and the basal cell layer of normal epidermis and hair infundibulum. Expression of ADAM 10 in dermal papilla cells may imply a role in the induction and development of anagen hair follicles. In addition, expression of ADAM 10 in the ORS and hair bulb assume the involvment of ADAM 10 in the downward migration of anagen hair follicles. Furthermore ADAM 12

  11. Ion flow in cochlear hair cells and the regulation of hearing sensitivity.

    PubMed

    Patuzzi, Robert

    2011-10-01

    This paper discusses how ion transport proteins in the hair cells of the mammalian cochlea work to produce a sensitive but stable hearing organ. The transport proteins in the inner and outer hair cells are summarized (including their current voltage characteristics), and the roles of these proteins in determining intracellular Ca(2+), membrane potential, and ultimately cochlear sensitivity are discussed. The paper also discusses the role of the Ca(2+) sequestration sacs in outer hair cells in the autoregulation of hair cell membrane potential and cochlear gain, and how the underdamped control of Ca(2+) within these sacs may produce the observed slow oscillations in cochlear sensitivity and otoacoustic emissions after cochlear perturbations, including perilymphatic perfusions and prolonged low-frequency tones. The relative insensitivity of cochlear gain to short-term changes in the endocochlear potential is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    PubMed

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  13. Hair transplant

    MedlinePlus

    ... this procedure: Scarring Unnatural-looking tufts of new hair growth It is possible that the transplanted hair will ... Most hair transplants result in excellent hair growth within several ... may be needed to create best results. The replaced hairs are ...

  14. OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice.

    PubMed

    Huang, Jin; Kim, Chul Min; Xuan, Yuan-hu; Park, Soon Ju; Piao, Hai Long; Je, Byoung Il; Liu, Jingmiao; Kim, Tae Ho; Kim, Bo-Kyeong; Han, Chang-Deok

    2013-05-01

    Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.

  15. Hair Follicle Miniaturization in a Woolly Hair Nevus: A Novel "Root" Perspective for a Mosaic Hair Disorder.

    PubMed

    Veraitch, Ophelia; Perez, Alfonso; Hoque, Shamali R; Vizcay-Barrena, Gema; Fleck, Roland A; Fenton, David A; Stefanato, Catherine M

    2016-03-01

    Woolly hair nevus is a mosaic disorder characterized by unruly, tightly curled hair in a circumscribed area of the scalp. This condition may be associated with epidermal nevi. We describe an 11-year-old boy who initially presented with multiple patches of woolly hair and with epidermal nevi on his left cheek and back. He had no nail, teeth, eye, or cardiac abnormalities. Analysis of plucked hairs from patches of woolly hair showed twisting of the hair shaft and an abnormal hair cuticle. Histopathology of a woolly hair patch showed diffuse hair follicle miniaturization with increased vellus hairs.

  16. Integral lipids of mammalian hair.

    PubMed

    Wertz, P W; Downing, D T

    1989-01-01

    1. It has been demonstrated that hair contains lipids which cannot be removed by extensive extraction with chloroform-methanol mixtures. These integral lipids can be extracted only after the hair has been subjected to alkaline hydrolysis. 2. Integral hair lipids include cholesterol sulfate (0.7-2.9 mg/g hair), ceramides (0.6-1.4 mg/g), cholesterol (0.3-1.4 mg/g), fatty alcohols (trace-0.2 mg/g) and fatty acids (2.3-4.0 mg/g). 3. One of the major integral hair lipids, representing 38.4-47.6% of the total fatty acids, is the anteisobranched 18-methyleicosanoic acid. 4. The species examined included human (Homo sapiens), pig (Sus scrofa), dog (Canis familiaris), sheep (Ovis ammon aries) and cow (Bos taurus).

  17. Use of hair products containing hormone or placenta by US military personnel.

    PubMed

    Tiwary, Chandra M; Ward, John A

    2003-09-01

    We surveyed 2,097 subjects stationed at a US Army School to study the use of commercial hair products whose labeled ingredients included hormone or placenta. Use of some of these products is associated with premature sexual development. Use by demographics is: All = 14.8%, whites = 6.3%, non-whites = 27.0%; males = 8.7%, females = 24.6%; officers = 7.3%, enlisted = 18.7%. Frequency of use was highest among non-white female enlisted personnel (43 +/- 6.4%) and lowest among white male commissioned officers (2.0 +/- 1.7%). Regardless of ethnicity, 13.4% of respondents' children used the hair product. Use is about four times higher for non-whites than for whites. Females and enlisted personnel are more likely to use the hair product than males or officers. The use of hormonal hair products among children parallels use by their parents. In spite of federal regulation, the use of these hair products is still common.

  18. Post-mortem quetiapine concentrations in hair segments of psychiatric patients - Correlation between hair concentration, dose and concentration in blood.

    PubMed

    Günther, Kamilla Nyborg; Johansen, Sys Stybe; Nielsen, Marie Katrine Klose; Wicktor, Petra; Banner, Jytte; Linnet, Kristian

    2018-04-01

    Drug analysis in hair is useful when seeking to establish drug intake over a period of months to years. Segmental hair analysis can also document whether psychiatric patients are receiving a stable intake of antipsychotics. This study describes segmental analysis of the antipsychotic drug quetiapine in post-mortem hair samples from long-term quetiapine users by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The aim was to obtain more knowledge on quetiapine concentrations in hair and to relate the concentration in hair to the administered dose and the post-mortem concentration in femoral blood. We analyzed hair samples from 22 deceased quetiapine-treated individuals, who were divided into two groups: natural hair colour and dyed/bleached hair. Two to six 1cm long segments were analyzed per individual, depending on the length of the hair, with 6cm corresponding to the last six months before death. The average daily quetiapine dose and average concentration in hair for the last six months prior to death were examined for potential correlation. Estimated doses ranged from 45 to 1040mg quetiapine daily over the period, and the average concentration in hair ranged from 0.18 to 13ng/mg. A significant positive correlation was observed between estimated daily dosage of quetiapine and average concentration in hair for individuals with natural hair colour (p=0.00005), but statistical significance was not reached for individuals with dyed/bleached hair (p=0.31). The individual coefficient of variation (CV) of the quetiapine concentrations between segments ranged from 3 to 34% for individuals with natural hair colour and 22-62% for individuals with dyed/bleached hair. Dose-adjusted concentrations in hair were significantly lower in females with dyed/bleached hair than in individuals with natural hair colour. The quetiapine concentrations in post-mortem femoral blood and in the proximal hair segment, segment 1 (S1), representing

  19. Physiological Maturation of Regenerating Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    2003-01-01

    between ion channel clustering and synaptic formation in hair cells and afferent neurons. In future studies, we will determine when hair cell precursors acquire electrical tuning, and, using whole-cell patch-clamp techniques, identify and characterize their L-VGCC and BK currents. We will also use biophysical techniques to determine the number of L-VGCC and BK channels and the size and gating kinetics of their underlying L-VGCC and BK conductances, correlating these variables with the amplitude and frequency of membrane oscillations produced by intracellular current steps. We expect these studies to determine how hair cells regulate ion channel expression to achieve specific physiological responses.

  20. Determination of fumonisin B1 levels in body fluids and hair from piglets fed fumonisin B1-contaminated diets.

    PubMed

    Souto, Pollyana C M C; Jager, Alessandra V; Tonin, Fernando G; Petta, Tânia; Di Gregório, Mayra C; Cossalter, Anne-Marie; Pinton, Philippe; Oswald, Isabelle P; Rottinghaus, George E; Oliveira, Carlos A F

    2017-10-01

    The levels of fumonisin B 1 (FB 1 ) residues in plasma, urine, feces and hair from 24 piglets fed FB 1 -contaminated diets containing 3.1, 6.1 or 9.0 μg FB 1 .g -1 for 28 days were determined using liquid chromatography coupled to mass spectrometry (LC-MS/MS). The levels of FB 1 in plasma, urine, feces and pooled hair (n = 3) samples varied from 0.15 to 1.08 μg.L -1 , 16.09-75.01 μg.L -1 , 1.87-13.89 μg.g -1 and 2.08-8.09 ng.g -1 , respectively. Significant correlations (r = 0.808-0.885; P < 0.001; N = 18) were found between FB 1 intake and plasma FB 1 on days 7, 14, 21 and 28. However, urinary FB 1 correlated with FB 1 intake only on days 7 and 14 (r = 0.561-572; P = 0.02; N = 18). A significant correlation (r = 0.509; P = 0.02; N = 24) was also found for the first time between FB 1 in hair samples and FB 1 intake. Plasma and urinary FB 1 are good biomarkers of early exposure of pigs to low dietary FB 1 levels, although plasma is recommended to assess prolonged exposure (>14 days). The possibility to evaluate hair as a biomarker of fumonisin exposure was established, although further studies are needed to provide physiologically based toxicokinetics of residual FB 1 in the pig hair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hair transplantation.

    PubMed

    Avram, Marc R

    2012-12-01

    Hair transplantation is a purely dermatologic surgical procedure that dermatologists should be able to perform in appropriate candidates with hair loss. Hair transplantation techniques performed in the 1960s through the 1990s utilized large grafts that created an unfortunate public image of unnatural-appearing transplanted hair. Over the last 15 years, hair transplantation has been performed using follicular units to create consistently natural-looking transplanted hair in both men and women. This article provides an overview of candidate selection and state-of-the-art techniques for performing hair transplantation.

  2. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome.

    PubMed

    Hey, Stefan; Baldauf, Jutta; Opitz, Nina; Lithio, Andrew; Pasha, Asher; Provart, Nicholas; Nettleton, Dan; Hochholdinger, Frank

    2017-04-01

    Root hairs are tubular extensions of epidermis cells. Transcriptome profiling demonstrated that the single cell-type root hair transcriptome was less complex than the transcriptome of multiple cell-type primary roots without root hairs. In total, 831 genes were exclusively and 5585 genes were preferentially expressed in root hairs [false discovery rate (FDR) ≤1%]. Among those, the most significantly enriched Gene Ontology (GO) functional terms were related to energy metabolism, highlighting the high energy demand for the development and function of root hairs. Subsequently, the maize homologs for 138 Arabidopsis genes known to be involved in root hair development were identified and their phylogenetic relationship and expression in root hairs were determined. This study indicated that the genetic regulation of root hair development in Arabidopsis and maize is controlled by common genes, but also shows differences which need to be dissected in future genetic experiments. Finally, a maize root view of the eFP browser was implemented including the root hair transcriptome of the present study and several previously published maize root transcriptome data sets. The eFP browser provides color-coded expression levels for these root types and tissues for any gene of interest, thus providing a novel resource to study gene expression and function in maize roots. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Numerical simulation of the hair formation -modeling of hair cycle

    NASA Astrophysics Data System (ADS)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  4. Hair analysis for drugs of abuse. XVI. Disposition of fenethylline and its metabolite into hair and discrimination between fenethylline use and amphetamine use by hair analysis.

    PubMed

    Kikura, R; Nakahara, Y

    1997-01-01

    The incorporation tendency of fenethylline (FNT) and its metabolite into rat hair and the discrimination between FNT use and amphetamine (AP) use by hair analysis using gas chromatography-mass spectrometry with selected ion monitoring are described. After the intraperitoneal administrations of FNT to pigmented hairy rats (5 mg/kg/day, 10 days, n = 3), concentrations of FNT and its metabolite, AP, in the rat hair newly grown over 4 weeks were compared with area under the concentration versus time curves (AUCs) of the drugs in the rat plasma. The hair concentrations of FNT and AP were 52 +/- 1.4 and 4.9 +/- 0.6 ng/mg, whereas those of plasma AUCs were 55.9 +/- 23.1 and 22.3 +/- 4.9 micrograms.min/mL, respectively. The ratios of the hair concentrations to the AUCs of FNT tends to be highly incorporated into hair from suggests that FNT tends to be highly incorporated into hair from blood. The analytical method was applied to the determination of the metabolites in scalp hair of humans who were given FNT orally in multiple doses (50 mg/day, 3 days, n = 5) or in a single dose (50 mg/day, 1 day, n = 1). FNT and AP were detected at 0.51 +/- 0.23 and 0.35 +/- 0.12 ng/mg, respectively, in the proximal 1-cm hair segments from subjects given FNT orally for 3 days and 0.25 and 0.11 ng/mg, respectively, in the single-dose sample. In addition, it was found that the concentrations of FNT were 1.2 to 2.7 times greater than those of AP in the human hair samples, except for one sample, although FNT rapidly disappeared from the urine compared with AP. It was concluded that hair would be a good specimen for disclosure of drug history of FNT and for discrimination between FNT use and AP abuse.

  5. Control of the actin cytoskeleton in root hair development.

    PubMed

    Pei, Weike; Du, Fei; Zhang, Yi; He, Tian; Ren, Haiyun

    2012-05-01

    The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development. © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Repositioning Of Tak-475 In Mevalonate Kinase Disease: Translating Theory Into Practice.

    PubMed

    Marcuzzi, Annalisa; Loganes, Claudia; Celeghini, Claudio; Kleiner, Giulio

    2017-09-11

    Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK), due to a mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects lead to a complex multisystem inflammatory and metabolic syndrome. Although biologic therapies aimed at blocking the inflammatory cytokine interleukin-1 (IL-1) can significantly reduce inflammation, they cannot completely control the clinical symptoms that affects the nervous system. For this reason, MKD can still be considered an orphan drug disease. Cellular models for MKD can be obtained by biochemical inhibition of mevalonate-derived isoprenoids. Of note, these cells present an exaggerated response to inflammatory stimuli that can be reduced by treatment with zaragozic acid, an inhibitor of squalene synthase (SQS) able to increase the availability of isoprenoids intermediates upstream the enzymatic block. A similar action might be obtained by lapaquistat acetate (TAK-475, Takeda), a drug that underwent extensive clinical trials as a cholesterol lowering agent 10 years ago, with a good safety profile. Here we describe the preclinical evidence supporting the possible repositioning of TAK-475 from its originally intended use to the treatment of MKD and discuss its potential to modulate the mevalonate pathway in inflammatory diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice

    PubMed Central

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-01-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth. PMID:28810552

  8. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice.

    PubMed

    Guan, Wen; Yu, Xiaolan; Li, Jingjing; Deng, Qing; Zhang, Yang; Gao, Jing; Xia, Peng; Yuan, Yunsheng; Gao, Jin; Zhou, Liang; Han, Wei; Yu, Yan

    2017-08-01

    Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth.

  9. Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion

    PubMed Central

    Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin

    2010-01-01

    Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399

  10. Hair Transplants

    MedlinePlus

    ... Search Skin Experts Skin Treatments Hair Transplants Share » HAIR TRANSPLANTS Before (left) and after (right) - front of ... transplant. Photo courtesy of N. Sadick What are hair transplants? In punch transplanting, a plug containing hair ...

  11. From Hair in India to Hair India.

    PubMed

    Trüeb, Ralph M

    2017-01-01

    In all cultures, human hair and hairdo have been a powerful metaphor. Tracing back the importance and significance of human hair to the dawn of civilization on the Indian subcontinent, we find that all the Vedic gods are depicted as having uncut hair in mythological stories as well as in legendary pictures. The same is true of the Hindu avatars, and the epic heroes of the Ramayana, and the Mahabharata. Finally, there are a number of hair peculiarities in India pertinent to the creed and religious practices of the Hindu, the Jain, and the Sikh. Shiva Nataraja is a depiction of the Hindu God Shiva as the cosmic dancer who performs his divine dance as creator, preserver, and destroyer of the universe and conveys the Indian conception of the never-ending cycle of time. The same principle manifests in the hair cycle, in which perpetual cycles of growth, regression, and resting underly the growth and shedding of hair. Finally, The Hair Research Society of India was founded as a nonprofit organisation dedicated to research and education in the science of hair. Notably, the HRSI reached milestones in the journey of academic pursuit with the launch of the International Journal of Trichology, and with the establishment of the Hair India conference. Ultimately, the society aims at saving the public from being taken for a ride by quackery, and at creating the awareness that the science of hair represents a subspecialty of Dermatology. In analogy again, the dwarf on which the Nataraja dances represents the demon of egotism, and thus symbolizes Shiva's, respectively, the HRSI's victory over ignorance.

  12. From Hair in India to Hair India

    PubMed Central

    Trüeb, Ralph M

    2017-01-01

    In all cultures, human hair and hairdo have been a powerful metaphor. Tracing back the importance and significance of human hair to the dawn of civilization on the Indian subcontinent, we find that all the Vedic gods are depicted as having uncut hair in mythological stories as well as in legendary pictures. The same is true of the Hindu avatars, and the epic heroes of the Ramayana, and the Mahabharata. Finally, there are a number of hair peculiarities in India pertinent to the creed and religious practices of the Hindu, the Jain, and the Sikh. Shiva Nataraja is a depiction of the Hindu God Shiva as the cosmic dancer who performs his divine dance as creator, preserver, and destroyer of the universe and conveys the Indian conception of the never-ending cycle of time. The same principle manifests in the hair cycle, in which perpetual cycles of growth, regression, and resting underly the growth and shedding of hair. Finally, The Hair Research Society of India was founded as a nonprofit organisation dedicated to research and education in the science of hair. Notably, the HRSI reached milestones in the journey of academic pursuit with the launch of the International Journal of Trichology, and with the establishment of the Hair India conference. Ultimately, the society aims at saving the public from being taken for a ride by quackery, and at creating the awareness that the science of hair represents a subspecialty of Dermatology. In analogy again, the dwarf on which the Nataraja dances represents the demon of egotism, and thus symbolizes Shiva's, respectively, the HRSI's victory over ignorance. PMID:28761257

  13. Usher protein functions in hair cells and photoreceptors

    PubMed Central

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. PMID:24239741

  14. Usher protein functions in hair cells and photoreceptors.

    PubMed

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Your Hair

    MedlinePlus

    ... Safe Videos for Educators Search English Español Your Hair KidsHealth / For Kids / Your Hair What's in this ... eyes from sweat dripping down from your forehead. Hair Comes From Where? Whether hair is growing out ...

  16. Hair Loss

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hair Loss KidsHealth / For Teens / Hair Loss What's in ... after the problem that causes it is corrected. Hair Basics Hair is made of a kind of ...

  17. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion

    PubMed Central

    Tong, Xuemei; Coulombe, Pierre A.

    2006-01-01

    Mammalian hair follicles cycle between stages of rapid growth (anagen) and metabolic quiescence (telogen) throughout life. Transition from anagen to telogen involves an intermediate stage, catagen, consisting of a swift, apoptosis-driven involution of the lower half of the follicle. How catagen is coordinated, and spares the progenitor cells needed for anagen re-entry, is poorly understood. Keratin 17 (K17)-null mice develop alopecia in the first week post-birth, correlating with hair shaft fragility and untimely apoptosis in the hair bulb. Here we show that this abnormal apoptosis reflects premature entry into catagen. Of the proapoptotic challenges tested, K17-null skin keratinocytes in primary culture are selectively more sensitive to TNFα. K17 interacts with TNF receptor 1 (TNFR1)-associated death domain protein (TRADD), a death adaptor essential for TNFR1-dependent signal relay, suggesting a functional link between this keratin and TNFα signaling. The activity of NF-κB, a downstream target of TNFα, is increased in K17-null skin. We also find that TNFα is required for a timely anagen–catagen transition in mouse pelage follicles, and that its ablation partially rescues the hair cycling defect of K17-null mice. These findings identify K17 and TNFα as two novel and interdependent regulators of hair cycling. PMID:16702408

  18. Estrone sulfate source of estrone and estradiol formation in isolated human hair roots: identification of a pathway linked to hair growth phase and subject to site-, gender-, and age-related modulations.

    PubMed

    Wehner, Gabriele; Schweikert, Hans-Udo

    2014-04-01

    The present study investigated the metabolism of estrone sulfate into bioactive estrogens in the human hair root, including the effects of hair growth phase, anatomical site, gender, and age. Healthy male (n = 18) and female (n = 20) subjects were investigated. Growing (anagen) and resting (telogen) hair roots were collected from selected scalp and body sites. Estrone sulfate metabolism in the hair root yielded substantial levels of estrone and estradiol. Estrogen synthesis exceeded that associated with aromatization of androgens in a previous study. In subjects <50 years old, estrogen synthesis in scalp hair was lower in men than in women. Comparable levels of estrogen formation were observed in 1) male and female axillary and pubic hair and 2) male beard hair. These levels were higher than the estrogen levels detected in the in scalp hair of men <50 years old. With increasing age, estrogen synthesis increased in men and decreased in women. In telogen hair from all body sites, the capacity to form estrone from estrone sulfate remained unaffected, whereas the ability to form estradiol decreased by 62% and 86% in men and women, respectively. Estrogen formation from estrone sulfate in sexually dimorphic hair is linked to the hair growth phase and is subject to gender- and age-related modulations. The magnitude of the in situ estrogen synthesis from estrone sulfate and the selective arrest of estradiol synthesis at the end of the hair cycle suggest that this pathway plays a crucial role in the regulation of human hair growth.

  19. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  20. Diversification of Root Hair Development Genes in Vascular Plants1[OPEN

    PubMed Central

    Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui

    2017-01-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis (Arabidopsis thaliana). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. PMID:28487476

  1. 6-Gingerol inhibits hair shaft growth in cultured human hair follicles and modulates hair growth in mice.

    PubMed

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal.

  2. 6-Gingerol Inhibits Hair Shaft Growth in Cultured Human Hair Follicles and Modulates Hair Growth in Mice

    PubMed Central

    Miao, Yong; Sun, Yabin; Wang, Wenjun; Du, Benjun; Xiao, Shun-e; Hu, Yijue; Hu, Zhiqi

    2013-01-01

    Ginger (Zingiber officinale) has been traditionally used to check hair loss and stimulate hair growth in East Asia. Several companies produce shampoo containing an extract of ginger claimed to have anti-hair loss and hair growth promotion properties. However, there is no scientific evidence to back up these claims. This study was undertaken to measure 6-gingerol, the main active component of ginger, on hair shaft elongation in vitro and hair growth in vivo, and to investigate its effect on human dermal papilla cells (DPCs) in vivo and in vitro. 6-Gingerol suppressed hair growth in hair follicles in culture and the proliferation of cultured DPCs. The growth inhibition of DPCs by 6-gingerol in vitro may reflect a decrease in the Bcl-2/Bax ratio. Similar results were obtained in vivo. The results of this study showed that 6-gingerol does not have the ability to promote hair growth, on the contrary, can suppress human hair growth via its inhibitory and pro-apoptotic effects on DPCs in vitro, and can cause prolongation of telogen phase in vivo. Thus, 6-gingerol rather than being a hair growth stimulating drug, it is a potential hair growth suppressive drug; i.e. for hair removal. PMID:23437345

  3. Effects of gamma rays on the regeneration of murine hair follicles in the natural hair cycle.

    PubMed

    Sugaya, Kimihiko

    2017-09-01

    This review evaluates the effects of γ-rays on the regeneration of murine hair follicles in the natural hair cycle. A series of studies were performed to investigate this issue, in which the whole bodies of C57BL/10JHir mice in the 1st telogen phase of the hair cycle were irradiated with γ-rays. The dermis of the irradiated skin showed a decrease in hair follicle density and induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs in the 2nd and 3rd anagen phases. An increased frequency of hypopigmented hair bulbs was still observed in the later hair cycle at postnatal day 200. There was no significant difference in the number of stem cells in the hair bulge region between control and irradiated skin. These results show that the effects of γ-rays on the pigmentation of murine hair follicles are persistently carried over to later hair cycles, although those on the number and structure of hair follicles appear to be hidden by the effects of aging. Our findings may be important for understanding the mechanisms of the actions of stem cells on hair regeneration in connection with age-related phenotypes.

  4. Tyurin gives Lopez-Alegria a hair cut in Node 1 module

    NASA Image and Video Library

    2007-02-20

    ISS014-E-14031 (20 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, trims commander Michael E. Lopez-Alegria's hair in the Unity node of the International Space Station. Tyurin used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  5. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    PubMed

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  6. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: a randomized controlled trial.

    PubMed

    Berger, R S; Fu, J L; Smiles, K A; Turner, C B; Schnell, B M; Werchowski, K M; Lammers, K M

    2003-08-01

    Recent studies of antidandruff shampoos or tonics containing antifungal or antibacterial agents produced effects suggestive of a potential hair growth benefit. The purpose of this 6-month, 200-patient, randomized, investigator-blinded, parallel-group clinical study was to assess the hair growth benefits of a 1% pyrithione zinc shampoo. The efficacy of a 1% pyrithione zinc shampoo (used daily), was compared with that of a 5% minoxidil topical solution (applied twice daily), a placebo shampoo and a combination of the 1% pyrithione zinc shampoo and the 5% minoxidil topical solution. Two hundred healthy men between the ages of 18 and 49 years (inclusive) exhibiting Hamilton-Norwood type III vertex or type IV baldness were enrolled. Total hair counts, the primary efficacy measure, were obtained using fibre-optic microscopy and a computer-assisted, manual hair count method. Secondary measures of efficacy included assessments of hair diameter, as well as patient and investigator global assessments of improvement in hair growth. These were based on photographs of the scalp using both midline and vertex views. Hair count results showed a significant (P < 0.05) net increase in total visible hair counts for the 1% pyrithione zinc shampoo, the 5% minoxidil topical solution, and the combination treatment groups relative to the placebo shampoo after 9 weeks of treatment. The relative increase in hair count for the 1% pyrithione zinc shampoo was slightly less than half that for the minoxidil topical solution and was essentially maintained throughout the 26-week treatment period. No advantage was seen in using both the 5% minoxidil topical solution and the 1% pyrithione zinc shampoo. A small increase in hair diameter was observed for the minoxidil-containing treatment groups at week 17. Assessments of global improvements by the patients and investigator generally showed the benefit of 5% minoxidil. The benefit of the 1% pyrithione zinc shampoo used alone tended (P < 0.1) to be

  7. Calbindin and parvalbumin are early markers of non-mitotically regenerating hair cells in the bullfrog vestibular otolith organs

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Burton, M.; Hawkins, J. R.; Schuff, N. R.; Baird, R. A.

    1997-01-01

    Earlier studies have demonstrated hair cell regeneration in the absence of cell proliferation, and suggested that supporting cells could phenotypically convert into hair cells following hair cell loss. Because calcium-binding proteins are involved in gene up-regulation, cell growth, and cell differentiation, we wished to determine if these proteins were up-regulated in scar formations and regenerating hair cells following gentamicin treatment. Calbindin and parvalbumin immunolabeling was examined in control or gentamicin-treated (GT) bullfrog saccular and utricular explants cultured for 3 days in amphibian culture medium or amphibian culture medium supplemented with aphidicolin, a blocker of nuclear DNA replication in eukaryotic cells. In control cultures, calbindin and parvalbumin immunolabeled the hair bundles and, less intensely, the cell bodies of mature hair cells. In GT or mitotically-blocked GT (MBGT) cultures, calbindin and parvalbumin immunolabeling was also seen in the hair bundles, cuticular plates, and cell bodies of hair cells with immature hair bundles. Thus, these antigens were useful markers for both normal and regenerating hair cells. Supporting cell immunolabeling was not seen in control cultures nor in the majority of supporting cells in GT cultures. In MBGT cultures, calbindin and parvalbumin immunolabeling was up-regulated in the cytosol of single supporting cells participating in scar formations and in supporting cells with hair cell-like characteristics. These data provide further evidence that non-mitotic hair cell regeneration in cultures can be accomplished by the conversion of supporting cells into hair cells.

  8. Hair shafts in trichoscopy: clues for diagnosis of hair and scalp diseases.

    PubMed

    Rudnicka, Lidia; Rakowska, Adriana; Kerzeja, Marta; Olszewska, Małgorzata

    2013-10-01

    Trichoscopy (hair and scalp dermoscopy) analyzes the structure and size of growing hair shafts, providing diagnostic clues for inherited and acquired causes of hair loss. Types of hair shaft abnormalities observed include exclamation mark hairs (alopecia areata, trichotillomania, chemotherapy-induced alopecia), Pohl-Pinkus constrictions (alopecia areata, chemotherapy-induced alopecia, blood loss, malnutrition), comma hairs (tinea capitis), corkscrew hairs (tinea capitis), coiled hairs (trichotillomania), flame hairs (trichotillomania), and tulip hairs (in trichotillomania, alopecia areata). Trichoscopy allows differential diagnosis of most genetic hair shaft disorders. This article proposes a classification of hair shaft abnormalities observed by trichoscopy. Copyright © 2013. Published by Elsevier Inc.

  9. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  10. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    PubMed

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  11. Alternative Method for Creating Fine Hairs with Hair Removal Laser in Hair Transplantation for Hairline Correction

    PubMed Central

    Park, Hyun Sun; Kim, Jin Yong; Choe, Yun Seon; Han, Wonseok; An, Jee Soo

    2015-01-01

    Background Foremost fine hairs in the frontal hairline region are critical in hair transplantation for hairline correction (HTHC) in women. However, there are few studies on a nonsurgical revisionary method for improving an unnatural foremost hairline with thick donor hairs resulting from a previous HTHC. Objective To investigate the efficacy and safety of using a hair removal laser (HRL) system to create fine hairs in Asian women with thick donor hairs. Methods Through a retrospective chart review, the HRL parameters, hair diameter (measured with a micrometer before and after the procedures), subjective results after the procedures, adverse effects, and the number of procedures were investigated. The reduction rate of the hair diameter was calculated. Results Twenty-four women who received long-pulse Neodymium-Doped:Yttrium Aluminum Garnet therapy after HTHC were included. The parameters were as follows: delivered laser energy, 35~36 J/cm2; pulse duration, 6 ms; and spot size, 10 mm. The mean number of laser sessions was 2.6. The mean hair diameter significantly decreased from 80.0±11.5 µm to 58.4±13.2 µm (p=0.00). The mean rate of hair diameter reduction was -25.7% (range, -44.6% to 5.7%). The number of laser sessions and the hair diameter after the procedures showed a negative correlation (r=-0.410, p=0.046). Most of the patients (87.5%) reported subjective improvement of their hairlines. Most complications were transient and mild. Conclusion HRL can be an alternative method for creating fine hairs and revising foremost hairline in Asian women with thick donor hairs. PMID:25673927

  12. The Effects of CSCOPE on Student Achievement as Measured by Both TAKS and STAAR Test Results

    ERIC Educational Resources Information Center

    Helm, Maricela Robledo

    2013-01-01

    The purpose of this study was to examine the effects of CSCOPE curriculum on student achievement. CSCOPE is a curriculum management system used in 750 of the 1,039 school districts in the state of Texas. Student achievement is based on the results acquired from the Texas Assessment of Knowledge and Skills (TAKS) and the new version of the state…

  13. Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice.

    PubMed

    Liu, Nan; Wang, Lin-Hui; Guo, Ling-Ling; Wang, Guo-Qing; Zhou, Xi-Ping; Jiang, Yan; Shang, Jing; Murao, Koji; Chen, Jing-Wei; Fu, Wen-Qing; Zhang, Guo-Xing

    2013-01-01

    Solid evidence has demonstrated that psychoemotional stress induced alteration of hair cycle through neuropeptide substance P (SP) mediated immune response, the role of reactive oxygen species (ROS) in brain-skin-axis regulation system remains unknown. The present study aims to investigate possible mechanisms of ROS in regulation of SP-mast cell signal pathway in chronic restraint stress (CRS, a model of chronic psychoemotional stress) which induced abnormal of hair cycle. Our results have demonstrated that CRS actually altered hair cycle by inhibiting hair follicle growth in vivo, prolonging the telogen stage and delaying subsequent anagen and catagen stage. Up-regulation of SP protein expression in cutaneous peripheral nerve fibers and activation of mast cell were observed accompanied with increase of lipid peroxidation levels and reduction of the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in CRS mice skin. In addition, SP receptor antagonist (RP67580) reduced mast cell activations and lipid peroxidation levels as well as increased GSH-Px activity and normalized hair cycle. Furthermore, antioxidant Tempol (a free radical scavenger) also restored hair cycle, reduced SP protein expression and mast cell activation. Our study provides the first solid evidence for how ROS play a role in regulation of psychoemotional stress induced SP-Mast cell pathway which may provide a convincing rationale for antioxidant application in clinical treatment with psychological stress induced hair loss.

  14. 36 CFR 13.1114 - May I collect goat hair?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I collect goat hair? 13.1114 Section 13.1114 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1114 May I collect goat...

  15. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  16. YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

    PubMed Central

    Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.

    2012-01-01

    Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637

  17. Hair Transplantation Controversies.

    PubMed

    Avram, Marc R; Finney, Robert; Rogers, Nicole

    2017-11-01

    Hair transplant surgery creates consistently natural appearing transplanted hair for men. It is increasingly popular procedure to restore natural growing hair for men with hair loss. To review some current controversies in hair transplant surgery. Review of the English PubMed literature and specialty literature in hair transplant surgery. Some of the controversies in hair transplant surgery include appropriate donor harvesting technique including elliptical donor harvesting versus follicular unit extraction whether manual versus robotic, the role of platelet-rich plasma and low-level light surgery in hair transplant surgery. Hair transplant surgery creates consistently natural appearing hair. As with all techniques, there are controversies regarding the optimal method for performing the procedure. Some of the current controversies in hair transplant surgery include optimal donor harvesting techniques, elliptical donor harvesting versus follicular unit extraction, the role of low-level light therapy and the platelet-rich plasma therapy in the procedure. Future studies will further clarify their role in the procedure.

  18. Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner

    PubMed Central

    Kazmierczak, Piotr; Harris, Suzan L.; Shah, Prahar; Puel, Jean-Luc; Lenoir, Marc

    2017-01-01

    Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function. SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants. PMID:28209736

  19. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: A view from integrated analysis of long non-coding and coding RNAs.

    PubMed

    Ge, Wei; Wang, Shan-He; Sun, Bing; Zhang, Yue-Lang; Shen, Wei; Khatib, Hasan; Wang, Xin

    2018-06-12

    The role of melatonin in promoting the yield of Cashmere goat wool has been demonstrated for decades though there remains a lack of knowledge regarding melatonin mediated hair follicle growth. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are widely transcribed in the genome and play ubiquitous roles in regulating biological processes. However, the role of lncRNAs in regulating melatonin mediated hair follicle growth remains unclear. In this study, we established an in vitro Cashmere goat secondary hair follicle culture system, and demonstrated that 500 ng/L melatonin exposure promoted hair follicle fiber growth. Based on long intergenic RNA sequencing, we demonstrated that melatonin promoted hair follicle elongation via regulating genes involved in focal adhesion and extracellular matrix receptor pathways and further cis predicting of lncRNAs targeted genes indicated that melatonin mediated lncRNAs mainly targeted vascular smooth muscle contraction and signaling pathways regulating the pluripotency of stem cells. We proposed that melatonin exposure not only perturbed key signals secreted from hair follicle stem cells to regulate hair follicle development, but also mediated lncRNAs mainly targeted to pathways involved in the microvascular system and extracellular matrix, which constitute the highly orchestrated microenvironment for hair follicle stem cell. Taken together, our findings here provide a profound view of lncRNAs in regulating Cashmere goat hair follicle circadian rhythms and broaden our knowledge on melatonin mediated hair follicle morphological changes.

  20. Hair cell specific NTPDase6 immunolocalisation in vestibular end organs: potential role of purinergic signaling in vestibular sensory transduction.

    PubMed

    O'Keeffe, Mary G; Thorne, Peter R; Housley, Gary D; Robson, Simon C; Vlajkovic, Srdjan M

    2012-01-01

    A complex extracellular nucleotide signalling system acting on P2 receptors is involved in regulation of cochlear function in the mammalian inner ear. Ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are ectonucleotidases that regulate P2 receptor signalling pathways in mammalian tissues by hydrolysing extracellular nucleotides to the respective nucleosides. All enzymes from the CD39/ENTPD family (NTPDase1-8) are expressed in the adult rat cochlea, but their expression and distribution in the vestibular end organ is unknown. This report demonstrates selective expression of NTPDase6 by rat vestibular hair cells. Hair cells transducing both angular acceleration (crista ampullaris) and static head position (maculae of the utricle and saccule) exhibited strong immunolabelling with a bias towards the sensory pole and in particular, the hair cell bundle. NTPDase6 is an intracellular enzyme that can be released in a soluble form from cell cultures and shows an enzymatic preference for nucleoside 5'-diphosphates, such as guanosine 5'-diphosphate (GDP) and uridine 5'-diphosphate (UDP). The main function of NTPDase6 may be the regulation of nucleotide levels in cellular organelles by regulating the conversion of nucleotides to nucleosides. NTPDase6 immunolocalisation in the vestibular end organ could be linked to the regulation of P2 receptor signalling and sensory transduction, including maintenance of vestibular hair bundles.

  1. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Hair Shaft Damage from Heat and Drying Time of Hair Dryer

    PubMed Central

    Lee, Yoonhee; Kim, Youn-Duk; Hyun, Hye-Jin; Pi, Long-quan; Jin, Xinghai

    2011-01-01

    Background Hair dryers are commonly used and can cause hair damage such as roughness, dryness and loss of hair color. It is important to understand the best way to dry hair without causing damage. Objective The study assessed changes in the ultra-structure, morphology, moisture content, and color of hair after repeated shampooing and drying with a hair dryer at a range of temperatures. Methods A standardized drying time was used to completely dry each hair tress, and each tress was treated a total of 30 times. Air flow was set on the hair dryer. The tresses were divided into the following five test groups: (a) no treatment, (b) drying without using a hair dryer (room temperature, 20℃), (c) drying with a hair dryer for 60 seconds at a distance of 15 cm (47℃), (d) drying with a hair dryer for 30 seconds at a distance of 10 cm (61℃), (e) drying with a hair dryer for 15 seconds at a distance of 5 cm (95℃). Scanning and transmission electron microscopy (TEM) and lipid TEM were performed. Water content was analyzed by a halogen moisture analyzer and hair color was measured with a spectrophotometer. Results Hair surfaces tended to become more damaged as the temperature increased. No cortex damage was ever noted, suggesting that the surface of hair might play a role as a barrier to prevent cortex damage. Cell membrane complex was damaged only in the naturally dried group without hair dryer. Moisture content decreased in all treated groups compared to the untreated control group. However, the differences in moisture content among the groups were not statistically significant. Drying under the ambient and 95℃ conditions appeared to change hair color, especially into lightness, after just 10 treatments. Conclusion Although using a hair dryer causes more surface damage than natural drying, using a hair dryer at a distance of 15 cm with continuous motion causes less damage than drying hair naturally. PMID:22148012

  3. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  4. Macroenvironmental regulation of hair cycling and collective regenerative behavior.

    PubMed

    Plikus, Maksim V; Chuong, Cheng-Ming

    2014-01-01

    The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements.

  5. Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior

    PubMed Central

    Plikus, Maksim V.; Chuong, Cheng-Ming

    2014-01-01

    The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements. PMID:24384813

  6. [Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth].

    PubMed

    Chen, Jian; Qi, Hui; Li, Jin-Biao; Yi, Yan-Qun; Chen, Dan; Hu, Xiao-Hong; Wang, Mei-Ling; Sun, Xing-Li; Wei, Xiao-Yong

    2014-01-01

    To observe the effect and mechanism of Dendrobium candidum polysaccharides (DCP) in promoting hair growth, in order to lay a foundation for the development and utilization of D. candidum. The water-extraction and alcohol-precipitation method was adopted to extract DCP, and the phenol-sulphuric acid method was used to determine its content. Thirty C57BL6J mice were collected to establish the hair loss model with hair removal cream. They were randomly divided into the control group, the positive control group and the DCP group, and given 0.2 mL of ultra-pure water, minoxidil tincture and DCP (5.0 g x L(-1)) 21 days. The mice hair growth scoring standard was adopted to evaluate the hair growth of C57BL/6J mice at 7, 14 d. The hairs in unit hair-losing areas of treated C57BL/6J mice at 21 d were weighed to evaluate the effect of DCP on the promotion of hair growth. MTT assay and RT-PCR method were used to evaluate the effect of DCP on the proliferatin of HaCaT cells and the mRNA expression of VEGF in HaCaT cells. The extraction percent of DCP was 29.87%, and its content was 79.65%. The average scores for the hair growth and weight of C57BL/6J mice of DCP group were much higher than the control group. The survival rate and mRNA expression of VEGF of HaCaT cells were much higher than the control group. DCP has the effect in promoting hair growth. Its mechanism may be related to the up-regulation of the mRNA expression of VEGF.

  7. Molecular genetics of the hair follicle: the state of the art.

    PubMed

    Van Steensel, M A; Happle, R; Steijlen, P M

    2000-01-01

    For those who are interested in the biology of skin and its derivatives, these are interesting times indeed. In a mere 5 years, the field has been revolutionized by the application of molecular genetics to human congenital skin disorders. Where dermatology first was limited to observation and empirics, there are now DNA-diagnostics, rational drug design, and perhaps even gene therapy available soon. In particular, the study of rare human syndromes involving abnormalities of hair growth and structure has yielded new insights into the regulation of cell growth and differentiation in the hair follicle. As this structure shows a cyclic pattern of differentiation, it may give new information concerning the regulation of cell differentiation in general. This review covers the recent developments in this fast-moving field. First, we will give a short introduction to (structural) hair biology. Next, we will try to fit these data into the framework of what is already known and attempt to present a unified model for hair follicle growth and differentiation.

  8. Comparative Hair Restorer Efficacy of Medicinal Herb on Nude (Foxn1nu) Mice

    PubMed Central

    Begum, Shahnaz; Lee, Mi Ra; Gu, Li Juan; Hossain, Md. Jamil; Kim, Hyun Kyoung; Sung, Chang Keun

    2014-01-01

    Eclipta alba (L.) Hassk, Asiasarum sieboldii (Miq.) F. Maek (Asiasari radix), and Panax ginseng C. A. Mey (red ginseng) are traditionally acclaimed for therapeutic properties of various human ailments. Synergistic effect of each standardized plant extract was investigated for hair growth potential on nude mice, as these mutant mice genetically lack hair due to abnormal keratinization. Dried plant samples were ground and extracted by methanol. Topical application was performed on the back of nude mice daily up to completion of two hair growth generations. The hair density and length of Eclipta alba treated mice were increased significantly (P > 0.001) than control mice. Hair growth area was also distinctly visible in Eclipta alba treated mice. On the other hand, Asiasari radix and Panax ginseng treated mice developing hair loss were recognized from the abortive boundaries of hair coverage. Histomorphometric observation of nude mice skin samples revealed an increase in number of hair follicles (HFs). The presence of follicular keratinocytes was confirmed by BrdU labeling, S-phase cells in HFs. Therefore, Eclipta alba extract and/or phytochemicals strongly displayed incomparability of hair growth promotion activity than others. Thus, the standardized Eclipta alba extract can be used as an effective, alternative, and complementary treatment against hair loss. PMID:25478567

  9. [Hair growth effect of minoxidil].

    PubMed

    Otomo, Susumu

    2002-03-01

    The length and size of hair are depend on the anagen term in its hair cycle. It has been reported that the some cell growth factors, such as VEGF, FGF-5S, IGF-1 and KGF, induce the proliferation of cells in the matrix, dermal papilla and dermal papillary vascular system and increase the amount of extra cellular matrix in dermal papilla and then maintain follicles in the anagen phase. On the other hand, negative factors, like FGF-5, thrombospondin, or still unknown ones, terminate the anagen phase. If the negative factors become dominant against cell proliferation factors according to fulfilling some time set by the biological clock for hair follicles, TGF beta induced in the matrix tissues evokes apoptosis of matrix cells and shifts the follicles from anagen to catagen. Androgenetic alopecia is caused by miniaturizing of hair follicles located in the frontal or crown part of scalp and are hereditarily more sensitive to androgen. In their hair cycles, the androgen shortens the anagen phase of follicles and shifts them to the catagen phase earlier than usual. The mode of action of hair growth effect of minoxidil is not completely elucidated, but the most plausible explanation proposed here is that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: minoxidil (1) induces cell growth factors such as VEGF, HGF, IGF-1 and potentiates HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (2) inhibits of TGF beta induced apoptosis of hair matrix cells by opening the Kir 6.0 channel pore coupled with SUR on the mitochondrial inner membrane, and (3) dilates hair follicle arteries and increases blood flow in dermal papilla by opening the Kir 6.0 channel pore coupled with SUR on the plasma membrane of vascular smooth muscle cells.

  10. Thymosin Beta-4 Induces Mouse Hair Growth.

    PubMed

    Gao, Xiaoyu; Liang, Hao; Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.

  11. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  12. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  13. Advances and challenges in hair restoration of curly Afrocentric hair.

    PubMed

    Rogers, Nicole E; Callender, Valerie D

    2014-04-01

    Although the biochemical composition of hair is similar among racial and ethnic groups, the hair structure between them varies, and individuals with curly hair pose specific challenges and special considerations when a surgical option for alopecia is considered. Hair restoration in this population should therefore be approached with knowledge on the clinical characteristics of curly hair, hair grooming techniques that may influence the management, unique indications for the procedure, surgical instrumentation used, and the complications that may arise. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Ethyl glucuronide: unusual distribution between head hair and pubic hair.

    PubMed

    Kintz, Pascal; Villain, Marion; Vallet, Emilie; Etter, Mathieu; Salquebre, Guillaume; Cirimele, Vincent

    2008-03-21

    Ethyl glucuronide (EtG) is a minor metabolite of ethanol that can be detected in hair. In some specific situations, head hair can be missing, and therefore, alternative anatomical locations of hair are of interest. In this study, paired hair specimens (head hair and pubic hair) from eight social drinkers were analyzed for EtG. Each sample was decontaminated by two dichloromethane bathes (5 ml) for 2 min. After cutting into small pieces, about 50 mg of hair was incubated in 2 ml water in the presence of 10 ng of EtG-d5, used as internal standard and submitted to ultra-sonication for 2 h. The aqueous phase was extracted by SPE using Oasis MAX columns. The hair extract was separated on an ACQUITY BEH HILIC column using a gradient of acetonitrile and formate buffer. Detection was based on two daughter ions: transitions m/z 221-85 and 75 and m/z 226-75 for EtG and the IS, respectively. This laboratory is using a positive cut-off at 50 pg/mg. All eight head hair specimens were negative for EtG at a limit of quantitation fixed at 10 pg/mg. Surprisingly, EtG was identified at high concentrations in pubic hair, in the range 12-1370 pg/mg. It appears, therefore, that it is not possible to document the drinking status of a subject by simply switching from head hair to pubic hair.

  15. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Hair care products. 3201.70 Section 3201.70... Designated Items § 3201.70 Hair care products. (a) Definitions. (1) Personal hygiene products specifically formulated for hair cleaning and treating applications, including shampoos and conditioners. (2) Hair care...

  16. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Hair care products. 3201.70 Section 3201.70... Designated Items § 3201.70 Hair care products. (a) Definitions. (1) Personal hygiene products specifically formulated for hair cleaning and treating applications, including shampoos and conditioners. (2) Hair care...

  17. 7 CFR 3201.70 - Hair care products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Hair care products. 3201.70 Section 3201.70... Designated Items § 3201.70 Hair care products. (a) Definitions. (1) Personal hygiene products specifically formulated for hair cleaning and treating applications, including shampoos and conditioners. (2) Hair care...

  18. Dark Matter Hairs Around Earth

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20176

  19. Hair loss

    MedlinePlus

    ... that is applied to the scalp to stimulate hair growth. Other medicines, such as hormones, may be prescribed to decrease hair loss and promote hair growth. Drugs such as finasteride and dutasteride can be ...

  20. Normal and aging hair biology and structure 'aging and hair'.

    PubMed

    Goodier, Molly; Hordinsky, Maria

    2015-01-01

    Much like an individual's hairstyle, hair fibers along the scalp see a number of changes over the course of one's lifetime. As the decades pass, the shine and volume synonymous with youthful hair may give way to thin, dull, and brittle hair commonly associated with aging. These changes are a result of a compilation of genetic and environmental elements influencing the cells of the hair follicle, specifically the hair follicle stem cells and melanocytes. Telomere shortening, decrease in cell numbers, and particular transcription factors have all been implicated in this process. In turn, these molecular alterations lead to structural modifications of the hair fiber, decrease in melanin production, and lengthening of the telogen phase of the hair cycle. Despite this inevitable progression with aging, there exists an array of treatments such as light therapy, minoxidil, and finasteride which have been designed to mitigate the effects of aging, particularly balding and thinning hair. Although each works through a different mechanism, all aim to maintain or potentially restore the youthful quality of hair. © 2015 S. Karger AG, Basel.

  1. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration. PMID:25383178

  2. Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Sato, Shusei; Wada, Takuji

    2013-01-01

    In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homologous genes from the tomato genome and named them SlTRY and SlGL3, respectively. Phylogenic analyses revealed a close relationship between the tomato and Arabidopsis genes. Real-time reverse transcription PCR analyses showed that SlTRY and SlGL3 were predominantly expressed in aerial parts of developing tomato. After transformation into Arabidopsis, CPC::SlTRY inhibited trichome formation and enhanced root-hair differentiation by strongly repressing GL2 expression. On the other hand, GL3::SlGL3 transformation did not show any obvious effect on trichome or non-hair cell differentiation. These results suggest that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant trichome and root-hair development. PMID:23326563

  3. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis.

    PubMed

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-04-20

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.

  4. A Single Amino Acid Substitution in IIIf Subfamily of Basic Helix-Loop-Helix Transcription Factor AtMYC1 Leads to Trichome and Root Hair Patterning Defects by Abolishing Its Interaction with Partner Proteins in Arabidopsis*

    PubMed Central

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-01-01

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or WEREWOLF (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors. PMID:22334670

  5. Removing Hair Safely

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  6. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  7. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea.

    PubMed

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-06-03

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter's cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs.

  8. Hair Loss

    MedlinePlus

    Hair loss Overview Hair loss can affect just your scalp or your entire body. It can be the result of heredity, hormonal changes, medical conditions or medications. Anyone can experience hair loss, but it's more common in men. Baldness ...

  9. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  10. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    PubMed

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  11. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    PubMed

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene.

    PubMed

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N

    2012-07-11

    Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.

  13. Clinical and molecular diagnosis of a cartilage-hair hypoplasia with IGF-1 deficiency.

    PubMed

    Castilla-Cortázar, Inma; Rodríguez De Ita, Julieta; Martín-Estal, Irene; Castorena, Fabiola; Aguirre, Gabriel A; García de la Garza, Rocío; Elizondo, Martha I

    2017-02-01

    Cartilage-hair hypoplasia syndrome (CHH) is a rare autosomal recessive condition characterized by metaphyseal chondrodysplasia and characteristic hair, together with a myriad of other symptoms, being most common immunodeficiency and gastrointestinal complications. A 15-year-old Mexican male initially diagnosed with Hirschsprung disease and posterior immunodeficiency, presents to our department for genetic and complementary evaluation for suspected CHH. Physical, biochemical, and genetic studies confirmed CHH together with IGF-1 deficiency. For this reason, we propose IGF-1 replacement therapy for its well-known actions on hematopoiesis, immune function and maturation, and metabolism. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs

    PubMed Central

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2012-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312

  15. Module-based complexity formation: periodic patterning in feathers and hairs.

    PubMed

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  16. Analysis of human hair to assess exposure to organophosphate flame retardants: Influence of hair segments and gender differences.

    PubMed

    Qiao, Lin; Zheng, Xiao-Bo; Zheng, Jing; Lei, Wei-Xiang; Li, Hong-Fang; Wang, Mei-Huan; He, Chun-Tao; Chen, She-Jun; Yuan, Jian-Gang; Luo, Xiao-Jun; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian

    2016-07-01

    Hair is a promising, non-invasive, human biomonitoring matrix that can provide insight into retrospective and integral exposure to organic pollutants. In the present study, we measured the concentrations of organophosphate flame retardants (PFRs) in hair and serum samples from university students in Guangzhou, China, and compared the PFR concentrations in the female hair segments using paired distal (5~10cm from the root) and proximal (0~5cm from the root) samples. PFRs were not detected in the serum samples. All PFRs except tricresyl phosphate (TMPP) and tri-n-propyl phosphate (TPP) were detected in more than half of all hair samples. The concentrations of total PFRs varied from 10.1 to 604ng/g, with a median of 148ng/g. Tris(chloroisopropyl) phosphate (TCIPP) and tri(2-ethylexyl) phosphate (TEHP) were the predominant PFRs in hair. The concentrations of most PFRs in the distal segments were 1.5~8.6 times higher than those in the proximal segments of the hair (t-test, p<0.05), which may be due to the longer exposure time of the distal segments to external sources. The values of log (PFR concentrations-distal/PFR concentrations-proximal) were positively and significantly correlated with log KOA of PFRs (p<0.05, r=0.68), indicating that PFRs with a higher log KOA tend to accumulate in hair at a higher rate than PFRs with a lower log KOA. Using combined segments of female hair, significantly higher PFR concentrations were observed in female hair than in male hair. In contrast, female hair exhibited significantly lower PFR concentrations than male hair when using the same hair position for both genders (0-5cm from the scalp). The controversial results regarding gender differences in PFRs in hair highlight the importance of segmental analysis when using hair as an indicator of human exposure to PFRs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cytoplasm localization of aminopeptidase M1 and its functional activity in root hair cells and BY-2 cells.

    PubMed

    Lee, Ok Ran; Cho, Hyung-Taeg

    2012-12-01

    Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.

  18. Hair disorders.

    PubMed

    Jackson, E A

    2000-06-01

    Disorders of the hair are commonplace in the primary care practice. Among these disorders are male pattern baldness, Telogen effluvium, alopecia areata, Trichotillomania, and fungal infections involving the hair shaft. A review of the normal anatomy and life cycle of hair also is presented.

  19. Wooly hair nevus.

    PubMed

    Fernandes, Karen de Almeida Pinto; Fernandes, Karina de Almeida Pinto; Vargas, Thiago Jeunon de Sousa; Melo, Daniel Fernandes

    2017-01-01

    Woolly hair nevus is a rare condition characterized by a structural anomaly of the hair, restricted to certain areas of the scalp. The hair becomes coiled and slightly hypopigmented. The term woolly hair refers to changes that affect all the scalp and has a hereditary character. We present a case of woolly hair nevus, that developed at the age of 2 years, associated with dental diastema and verrucous epidermal nevus.

  20. The influence of hair lipids in ethnic hair properties.

    PubMed

    Martí, M; Barba, C; Manich, A M; Rubio, L; Alonso, C; Coderch, L

    2016-02-01

    Biochemical studies have mainly focused on the composition of hair. African hair exhibited lower moisturization and less radial swelling when flushing with water compared with Asian or Caucasian hair, and they assumed a possible lipid differentiation among human populations. This study consists in the lipid characterization of different ethnic hairs (Caucasian, Asian and African hairs) and the influence of these lipids in different hair properties such as humidity and mechanical properties. Evaluation of water sorption and desorption of the different ethnic hairs and with and without lipids is also studied mainly to determine permeation changes of the keratin fibres. Extractions of exogenous and endogenous lipids with different organic solvents were performed; lipid analysis and its quantification using thin-layer chromatography coupled to an automated flame ionization detector (TLC/FID) were performed. Absorption and desorption curves were obtained in a thermogravimetric balance equipped with a controlled humidity chamber, the Q5000SA Sorption Analyzer (TA Instruments, New Castle, IL, U.S.A.). Also, mechanical properties (breaking stress and breaking elongation) were analysed using a computer programmable dynamometer (Instron 5500R). Lipid extraction showed the highest amount of total lipids for the African hair which may come from external sebaceous lipids compared with Asian or Caucasian hair. Caucasian fibres were found to be the most hydrated fibre, and a decrease in moisture was found in the extracted fibres, again, which is more important for the Caucasian hair. A superior lineal mass was found for the Asian fibres which supported their higher strength. The results obtained from the analysis of the mechanical properties of delipidized fibres indicate a surprising increase in the strength of African and Caucasian fibres. Perhaps this increase in strength could be related to the humidity decrease in lipid-extracted hair fibres. Results of water uptake and

  1. Promotion of hair growth by newly synthesized ceramide mimetic compound.

    PubMed

    Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung

    2017-09-09

    Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Parental Perceptions of the Effects of the High-Stakes TAKS Test on the Home Lives of At-Risk Fifth Grade Students

    ERIC Educational Resources Information Center

    Westfall, Dawn M.

    2010-01-01

    In Texas, fifth grade students are required to pass both the reading and math sections of the Texas Assessment of Knowledge and Skills, or TAKS test, in order to be promoted to the next grade level. The purpose of this study is to describe parents' perceptions of the influence of the high-stakes TAKS test on the family lives of at-risk fifth grade…

  3. Blocking RhoA/ROCK inhibits the pathogenesis of pemphigus vulgaris by suppressing oxidative stress and apoptosis through TAK1/NOD2-mediated NF-κB pathway.

    PubMed

    Liang, Junqin; Zeng, Xuewen; Halifu, Yilinuer; Chen, Wenjing; Hu, Fengxia; Wang, Peng; Zhang, Huan; Kang, Xiaojing

    2017-12-01

    Oxidative stress and apoptosis play critical roles in pemphigus vulgaris (PV). The main aim of the present study was to investigate the effects of RhoA/ROCK signaling on UVB-induced oxidative damage, and to delineate the molecular mechanisms involved in the UVB-mediated inflammatory and apoptotic response. In HaCaT cells, we observed that blockage of RhoA/ROCK signaling with the inhibitor CT04 or Y27632 greatly inhibited the UVB-mediated increase in intracellular reactive oxygen species (ROS). Additionally, inhibition of RhoA/ROCK signaling reduced UVB-induced apoptosis, as exemplified by a reduction in DNA fragmentation, and also elevated anti-apoptotic Bcl-2 protein, concomitant with reduced levels of pro-apoptotic protein Bax, caspase-3 cleavage and decreased PARP-1 protein. The release of inflammatory mediators TNF-α, IL-1β, and IL-6 was also attenuated. Mechanically, we observed that blockage of RhoA/ROCK repressed the TAK1/NOD2-mediated NF-κB pathway in HaCaT cells exposed to UVB. Taken together, these data reveal that RhoA/ROCK signaling is one of the regulators contributing to oxidative damage and apoptosis in human keratinocytes, suggesting that RhoA/ROCK signaling has strong potential to be used as a useful therapeutic target in skin diseases including PV.

  4. Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation

    PubMed Central

    Zheng, Kaijie; Tian, Hainan; Hu, Qingnan; Guo, Hongyan; Yang, Li; Cai, Ling; Wang, Xutong; Liu, Bao; Wang, Shucai

    2016-01-01

    In Arabidopsis, a MYB-bHLH-WD40 (MBW) transcriptional activator complex activates the homeodomain protein gene GLABRA2 (GL2), leading to the promotion of trichome formation and inhibition of root hair formation. The same MBW complex also activates single-repeat R3 MYB genes. R3 MYBs in turn, play a negative feedback role by competing with R2R3 MYB proteins for binding bHLH proteins, thus blocking the formation of the MBW complex. By BLASTing the rice (Oryza sativa) protein database using the entire amino acid sequence of Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1), we found that there are two genes in rice genome encoding R3 MYB transcription factors, namely Oryza sativa TRICHOMELESS1 (OsTCL1) and OsTCL2. Expressing OsTCL1 in Arabidopsis inhibited trichome formation and promoted root hair formation, and OsTCL1 interacted with GL3 when tested in Arabidopsis protoplasts. Consistent with these observations, expression levels of GL2, R2R3 MYB transcription factor gene GLABRA1 (GL1) and several R3 MYB genes were greatly reduced, indicating that OsTCL1 is functional R3 MYB. However, trichome and root hair formation in transgenic rice plants overexpressing OsTCL1 remained largely unchanged, and elevated expression of OsGL2 was observed in the transgenic rice plants, indicating that rice may use different mechanisms to regulate trichome formation. PMID:26758286

  5. Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases

    PubMed Central

    Cheng, Yinwei; Zhu, Wenjiao; Chen, Yuxiao; Ito, Shinsaku; Asami, Tadao; Wang, Xuelu

    2014-01-01

    In Arabidopsis, root hair and non-hair cell fates are determined by a MYB-bHLH-WD40 transcriptional complex and are regulated by many internal and environmental cues. Brassinosteroids play important roles in regulating root hair specification by unknown mechanisms. Here, we systematically examined root hair phenotypes in brassinosteroid-related mutants, and found that brassinosteroid signaling inhibits root hair formation through GSK3-like kinases or upstream components. We found that with enhanced brassinosteroid signaling, GL2, a cell fate marker for non-hair cells, is ectopically expressed in hair cells, while its expression in non-hair cells is suppressed when brassinosteroid signaling is reduced. Genetic analysis demonstrated that brassinosteroid-regulated root epidermal cell patterning is dependent on the WER-GL3/EGL3-TTG1 transcriptional complex. One of the GSK3-like kinases, BIN2, interacted with and phosphorylated EGL3, and EGL3s mutated at phosphorylation sites were retained in hair cell nuclei. BIN2 phosphorylated TTG1 to inhibit the activity of the WER-GL3/EGL3-TTG1 complex. Thus, our study provides insights into the mechanism of brassinosteroid regulation of root hair patterning. DOI: http://dx.doi.org/10.7554/eLife.02525.001 PMID:24771765

  6. Hair cortisol reflects socio-economic factors and hair zinc in preschoolers

    PubMed Central

    Vaghri, Ziba; Guhn, Martin; Weinberg, Joanne; Grunau, Ruth E.; Yu, Wayne; Hertzman, Clyde

    2016-01-01

    Summary This study examined the relationship between children’s hair cortisol and socioeconomic status of the family, as measured by parental education and income. Low family socioeconomic status has traditionally been considered a long-term environmental stressor. Measurement of hair cortisol provides an integrated index of cumulative stress exposure across an extended period of time. The present study is the first to examine the relationship between hair cortisol and parental education as well as parental income in a representative sample of preschoolers. Data on hair cortisol, family income, and parental education were collected for a representative sample of 339 children (Mean age = 4.6 years; SD = .5 years) from across 23 neighbourhoods of the city of Vancouver, Canada. As maternal education was shown previously to be associated with hair zinc level, hair zinc measurements were included as well in order to explore potential relationships between hair zinc and hair cortisol. The relationship between hair cortisol and parental education was examined using hierarchical regression, with hair zinc, gender, age, and single parenthood included as covariates. Maternal and paternal education both were correlated significantly with hair cortisol (r = −0.18; p = .001). The relationship remained statistically significant even after controlling for all demographic covariates as well as for hair zinc and after taking the neighbourhood-level clustering of the data into account. Parental income, on the other hand, was not related significantly to children’s hair cortisol. This study provides evidence that lower maternal and paternal education are associated with higher hair cortisol levels. As hair cortisol provides an integrated index of cortisol exposure over an extended time period, these findings suggest a possibly stable influence of SES on the function of the hypothalamic–pituitary–adrenal (HPA) axis. Cumulative exposure to cortisol during early childhood may

  7. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis.

    PubMed

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B

    2008-08-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.

  8. Wooly hair nevus*

    PubMed Central

    Fernandes, Karen de Almeida Pinto; Fernandes, Karina de Almeida Pinto; Vargas, Thiago Jeunon de Sousa; Melo, Daniel Fernandes

    2017-01-01

    Woolly hair nevus is a rare condition characterized by a structural anomaly of the hair, restricted to certain areas of the scalp. The hair becomes coiled and slightly hypopigmented. The term woolly hair refers to changes that affect all the scalp and has a hereditary character. We present a case of woolly hair nevus, that developed at the age of 2 years, associated with dental diastema and verrucous epidermal nevus. PMID:29267480

  9. Thymosin Beta-4 Induces Mouse Hair Growth

    PubMed Central

    Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts. PMID:26083021

  10. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis[W

    PubMed Central

    Bai, Ling; Ma, Xiaonan; Zhang, Guozeng; Song, Shufei; Zhou, Yun; Gao, Lijie; Miao, Yuchen; Song, Chun-Peng

    2014-01-01

    Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients. PMID:24769480

  11. Hair cut

    NASA Image and Video Library

    2012-11-10

    ISS033-E-018991 (10 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 33 flight engineer, trims the hair of Russian cosmonaut Evgeny Tarelkin, flight engineer, in the Tranquility node of the International Space Station. Novitskiy used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  12. Ultrastructure study of hair damage after ultraviolet irradiation.

    PubMed

    Zuel-Fakkar, Nehal Mohamed; El Khateeb, Ekramy Ahmed; Cousha, Hala Sobhi; Hamed, Dina Mohamed

    2013-12-01

    Natural ultraviolet exposure induces hair damage, which is difficult to avoid. Most of the research work is focused on the effect of ultraviolet on the epidermis, dermis as well as the immune system, whereas the long-term effect of ultraviolet on hair has not been investigated. we performed our experiment to find out the changes induced in hair follicle and shaft in those patients exposed to high doses of ultraviolet (A and B) during treatment of other skin conditions. Light and transmission electron microscopy examination of scalp hair follicles and shafts of 10 patients with vitiligo under psoralen plus ultraviolet A (group 1) and 10 patients with vitiligo under narrow band ultraviolet B (group 2) was carried out and compared with those of 10 healthy volunteers (group 3). Physical changes in the appearance of hair were more in groups 1 and 2 than control. Reduced hair follicle thickness and perifollicular infiltrate and hyaline disorganized perifollicular collagen were observed more in group 1 than in group 2 with the absence of these changes in group 3. Transmission electron microscopy showed nonspecific cell injury in hair follicles in group 1 more than the other 2 groups, while the damaging effect on hair was more in the second group than the others. Due to the damaging effect of ultraviolet on hair, patients under treatment with this modality should be cautious to protect their hair during treatment. © 2013 Wiley Periodicals, Inc.

  13. Hair cosmetics.

    PubMed

    O'Donoghue, M N

    1987-07-01

    Porosity, elasticity, and texture influence the hair's ability to be changed. The types of color--temporary, gradual, natural, semipermanent, and permanent--depend upon the size of the "coloring" molecule to determine whether they penetrate the cortex (permanent) or precipitate on the cuticle. Different types of hair--thick or coarse, fine or thin--have varying affinity for different products and coloring/waving methods. Damaged hair is treated differently from hair with healthy, less porous shafts. Because so many people have color-treated hair today, dermatologists should be aware of all the latest changes and improvements, in order to assist patients with damaged or congenitally deformed hair. Acid-based permanents are becoming the most commonly used. Daily care with shampooing and conditioning has attained its most sophisticated level with the use of anionic and cationic surfactants in all hair-care products. It is also important for the dermatologist to be aware of what help is available for his or her patients. Cosmetic companies are eager to help any patient with severe problems with texture, dullness, over-fine or congenitally defective hair. The physician should send the patient with a severe problem directly to the nearest company headquarters or major city office to have a hair analysis, and receive suggestions from the experts of that company. For patients with moderate to mild problems, the dermatologist should be able to recommend three or four good salons in the local area with which he or she is familiar. Our main goal as physicians is to take care of the entire patient and to enable him or her to have a good self-image.

  14. Hair organ regeneration via the bioengineered hair follicular unit transplantation

    PubMed Central

    Asakawa, Kyosuke; Toyoshima, Koh-ei; Ishibashi, Naoko; Tobe, Hirofumi; Iwadate, Ayako; Kanayama, Tatsuya; Hasegawa, Tomoko; Nakao, Kazuhisa; Toki, Hiroshi; Noguchi, Shotaro; Ogawa, Miho; Sato, Akio; Tsuji, Takashi

    2012-01-01

    Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia. PMID:22645640

  15. Biomonitoring the Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in Hair: Impact of Exposure, Pigmentation and Cytochrome P450 1A2 Phenotype

    PubMed Central

    Turesky, Robert J.; Liu, Lin; Gu, Dan; Yonemori, Kim M.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loic Le

    2013-01-01

    Background Hair is a promising tissue to assess exposure to 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogen formed in cooked meats. However, an understanding of how dietary exposure to PhIP, cytochrome P450 1A2 activity - a key enzyme involved in PhIP metabolism, and hair pigmentation affect the level of PhIP accrued in hair is required in order to determine the reliability of the PhIP hair level as a biomarker of exposure to this carcinogen. Methods We examined the impact of PhIP exposure, cytochrome P450 1A2 activity, and hair pigmentation on the levels of PhIP accumulated in the hair of volunteers on a 4-week semi-controlled diet of cooked meat containing known quantities of PhIP. Results The amount of PhIP in hair increased, on average, 15-fold in light- and dark-haired individuals during consumption of cooked meat. PhIP levels in hair were correlated to PhIP intake (ρ = 0.53; p < 0.001), and the relationship was strengthened when PhIP levels were normalized for the melanin content of hair (ρ = 0.71; p < 0.001). However, PhIP accrual in hair was not correlated to cytochrome P450 1A2 activity, as assessed by the caffeine test, or to the levels of unmetabolized PhIP in urine, or to the metabolic ratio of the major urinary metabolite N2-(ß-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine to unmetabolized PhIP. Conclusions The employment of the PhIP hair biomarker should take hair pigmentation into account for accurate exposure assessment. Impact PhIP hair levels can serve as a biomarker in epidemiological studies investigating the association of HAAs, cooked meat and cancer risk. PMID:23329727

  16. DAPT mediates atoh1 expression to induce hair cell-like cells.

    PubMed

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  17. The color(s) of human hair--forensic hair analysis with SpectraCube.

    PubMed

    Birngruber, Christoph; Ramsthaler, Frank; Verhoff, Marcel A

    2009-03-10

    Human hair is among the most common kind of evidence secured at crime scenes. Although DNA analysis through STR-typing is possible in principle, it is not very promising for telogenic hair or single hairs. For the mixed traces frequently found in practice, composed of different hair from an unknown number of individuals, mtDNA sequencing of each individual hair seems to be the only possible, even if technically elaborate, solution. If it were possible to pool all hair belonging to an individual prior to DNA analysis, then this effort could not only be reduced, but the number of hair for an STR-approach could also be increased. Although it is possible to examine hair microscopically, this method must be considered unsuitable for pooling, since the results depend strongly on examiner experience, and the hair cannot always be correctly attributed to an individual. The goal of this study was to develop an objective non-DNA-contaminative pooling method for hair. To this end, the efficacy of spectral imaging as a method of obtaining information--beyond that obtained from a purely microscopic and morphological approach--for the identification of individuals was investigated. Three hairs each from 25 test persons (female: 18; male: 7) were examined with a SpectraCube-System and a light microscope. Six spectra were calculated for each hair, and the hairs from each individual were not only compared to each other, but also to those of the other individuals. From a forensic vantage, the examination showed, in particular, that individuals, whose hair could not be distinguished on the basis of morphology, could also not be accurately distinguished with the SpectraCube. The intra-individual differences were, in part, greater than the inter-individual differences. Altogether, the study shows that a person's hair color, as perceived, is composed of many naturally different, individual colors.

  18. Cornu cervi pantotrichum Pharmacopuncture Solution Facilitate Hair Growth in C57BL/6 Mice

    PubMed Central

    Lee, Seon-Yong; Lee, Dong-Jin; Kwon, Kang; Lee, Chang-Hyun; Shin, Hyun Jong; Kim, Jai Eun; Ha, Ki-Tae; Jeong, Han-Sol

    2016-01-01

    Objectives: Cornu cervi pantotrichum (CCP) has been widely used in Korean and China, as an anti-fatigue, anti-aging, and tonic agent to enhance the functions of the reproductive and the immune systems. Because CCP has various growth factors that play important roles in the development of hair follicles, we examined whether CCP pharmacopuncture solution (CCPPS) was capable of promoting hair growth in an animal model. Methods: One day after hair depilation, CCPPS were topically applied to the dorsal skin of C57BL/6 mice once a day for 15 days. Hair growth activity was evaluated by using macro- and microscopic observations. Dorsal skin tissues were stained with hematoxylin and eosin. Expressions of bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (PCNA), and fibroblast growth factor (FGF)-7 were examined by using immunohistochemical staining. A reverse transcription polymerase chain reaction (RT-PCR) analysis was also conducted to measure the messenger RNA (mRNA) expression of FGF-7. Results: CCPPS induced more active hair growth than normal saline. Histologic analysis showed enlargement of the dermal papilla, elongation of the hair shaft, and expansion of hair thickness in CCPPS treated mice, indicating that CCPPS effectively induced the development of anagen. CCPPS treatment markedly increased the expressions of BrdU and PCNA in the hair follicles of C57BL/6 mice. In addition, CCPPS up regulated the expression of FGF-7, which plays an important role in the development of hair follicles. Conclusion: These results reveal that CCPPS facilitates hair re-growth by proliferation of hair follicular cells and up-regulation of FGF-7 and suggest that CCPPS can potentially be applied as an alternative treatment for patients with alopecia. PMID:27386145

  19. Methodological Considerations for Hair Cortisol Measurements in Children

    PubMed Central

    Slominski, Radomir; Rovnaghi, Cynthia R.; Anand, Kanwaljeet J. S.

    2015-01-01

    Background Hair cortisol levels are used increasingly as a measure for chronic stress in young children. We propose modifications to the current methods used for hair cortisol analysis to more accurately determine reference ranges for hair cortisol across different populations and age groups. Methods The authors compared standard (finely cutting hair) vs. milled methods for hair processing (n=16), developed a 4-step extraction process for hair protein and cortisol (n=16), and compared liquid chromatography-mass spectrometry (LCMS) vs. ELISA assays for measuring hair cortisol (n=28). The extraction process included sequential incubations in methanol and acetone, repeated twice. Hair protein was measured via spectrophotometric ratios at 260/280 nm to indicate the hair dissolution state using a BioTek® plate reader and dedicated software. Hair cortisol was measured using an ELISA assay kit. Individual (n=13), pooled hair samples (n=12) with high, intermediate, and low cortisol values and the ELISA assay internal standards (n=3) were also evaluated by LCMS. Results Milled and standard methods showed highly correlated hair cortisol (rs=0.951, p<0.0001) and protein values (rs=0.902, p=0.0002), although higher yields of cortisol and protein were obtained from the standard method in 13/16 and 14/16 samples respectively (p<0.05). Four sequential extractions yielded additional amounts of protein (36.5%, 27.5%, 30.5%, 3.1%) and cortisol (45.4%, 31.1%, 15.1%, 0.04%) from hair samples. Cortisol values measured by LCMS and ELISA were correlated (rs=0.737; p<0.0001), although cortisol levels (median [IQR]) detected in the same samples by LCMS (38.7 [14.4, 136] ng/ml) were lower than by ELISA (172.2 [67.9, 1051] ng/ml). LCMS also detected cortisone, which comprised 13.4% (3.7%, 25.9%) of the steroids detected. Conclusion Methodological studies suggest that finely cutting hair with sequential incubations in methanol and acetone, repeated twice, extracts greater yields of cortisol

  20. Light Microscopy of the Hair: A Simple Tool to “Untangle” Hair Disorders

    PubMed Central

    Adya, Keshavmurthy A; Inamadar, Arun C; Palit, Aparna; Shivanna, Ragunatha; Deshmukh, Niranjan S

    2011-01-01

    Light microscopy of the hair forms an important bedside clinical tool for the diagnosis of various disorders affecting the hair. Hair abnormalities can be seen in the primary diseases affecting the hair or as a secondary involvement of hair in diseases affecting the scalp. Hair abnormalities also form a part of various genodermatoses and syndromes. In this review, we have briefly highlighted the light microscopic appearance of various infectious and non-infectious conditions affecting the hair. PMID:21769242

  1. Hair Cosmetics: An Overview

    PubMed Central

    Gavazzoni Dias, Maria Fernanda Reis

    2015-01-01

    Hair cosmetics are an important tool that helps to increase patient's adhesion to alopecia and scalp treatments. This article reviews the formulations and the mode of action of hair cosmetics: Shampoos, conditioners, hair straightening products, hair dyes and henna; regarding their prescription and safetiness. The dermatologist's knowledge of hair care products, their use, and their possible side effects can extend to an understanding of cosmetic resources and help dermatologists to better treat hair and scalp conditions according to the diversity of hair types and ethnicity. PMID:25878443

  2. Hair cut

    NASA Image and Video Library

    2012-11-10

    ISS033-E-018986 (10 Nov. 2012) --- Russian cosmonaut Evgeny Tarelkin, Expedition 33 flight engineer, trims the hair of Russian cosmonaut Oleg Novitskiy, flight engineer, in the Tranquility node of the International Space Station. Tarelkin used hair clippers fashioned with a vacuum device to garner freshly cut hair. NASA astronaut Kevin Ford, flight engineer, is visible in the background.

  3. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases.

  4. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  5. Beam shaping for cosmetic hair removal

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Tuttle, Tracie

    2007-09-01

    Beam shaping has the potential to provide comfort to people who require or seek laser based cosmetic skin procedures. Of immediate interest is the procedure of aesthetic hair removal. Hair removal is performed using a variety of wavelengths from 480 to 1200 nm by means of filtered Xenon flash lamps (pulsed light) or 810 nm diode lasers. These wavelengths are considered the most efficient means available for hair removal applications, but current systems use simple reflector designs and plane filter windows to direct the light to the surface being exposed. Laser hair removal is achieved when these wavelengths at sufficient energy levels are applied to the epidermis. The laser energy is absorbed by the melanin (pigment) in the hair and hair follicle which in turn is transformed into heat. This heat creates the coagulation process, which causes the removal of the hair and prevents growth of new hair [1]. This paper outlines a technique of beam shaping that can be applied to a non-contact based hair removal system. Several features of the beam shaping technique including beam uniformity and heat dispersion across its operational treatment area will be analyzed. A beam shaper design and its fundamental testing will be discussed in detail.

  6. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  7. Hair and bare skin discrimination for laser-assisted hair removal systems.

    PubMed

    Cayir, Sercan; Yetik, Imam Samil

    2017-07-01

    Laser-assisted hair removal devices aim to remove body hair permanently. In most cases, these devices irradiate the whole area of the skin with a homogenous power density. Thus, a significant portion of the skin, where hair is not present, is burnt unnecessarily causing health risks. Therefore, methods that can distinguish hair regions automatically would be very helpful avoiding these unnecessary applications of laser. This study proposes a new system of algorithms to detect hair regions with the help of a digital camera. Unlike previous limited number of studies, our methods are very fast allowing for real-time application. Proposed methods are based on certain features derived from histograms of hair and skin regions. We compare our algorithm with competing methods in terms of localization performance and computation time and show that a much faster real-time accurate localization of hair regions is possible with the proposed method. Our results show that the algorithm we have developed is extremely fast (around 45 milliseconds) allowing for real-time application with high accuracy hair localization ( 96.48 %).

  8. Healthy hair: what is it?

    PubMed

    Sinclair, Rodney D

    2007-12-01

    Shiny hair with a smooth texture and clean-cut ends or tapered tips is generally perceived to be healthy. Hair texture and shine relate to hair surface properties, whereas the integrity of hair ends relates to the hair cortex. Hair can be straight, wavy or curly, blonde, black, brown, red, gray white, and its natural variations are important to our identity. Manipulation of the normal structure of the hair shaft is epidemic and dictated by culture, fashion, and above all, celebrity. Although cosmetic procedures are intrinsically safe, there is potential for damage to the hair. Loss of lustre, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with hair that is intrinsically weak. This may be due to individual or racial variation or less commonly an inherited structural abnormality in hair fiber formation. Hair health is also affected by common afflictions of the scalp as well as age-related phenomena such as graying and androgenetic alopecia. Hair products that improve the structural integrity of hair fibers and increase tensile strength are available, as are products that increase hair volume, reduce frizz, improve hair manageability, and stimulate new hair growth.

  9. Discovery of a tetrahydropyrimidin-2(1H)-one derivative (TAK-442) as a potent, selective, and orally active factor Xa inhibitor.

    PubMed

    Fujimoto, Takuya; Imaeda, Yasuhiro; Konishi, Noriko; Hiroe, Katsuhiko; Kawamura, Masaki; Textor, Garret P; Aertgeerts, Kathleen; Kubo, Keiji

    2010-05-13

    Coagulation enzyme factor Xa (FXa) is a particularly promising target for the development of new anticoagulant agents. We previously reported the imidazo[1,5-c]imidazol-3-one derivative 1 as a potent and orally active FXa inhibitor. However, it was found that 1 predominantly undergoes hydrolysis upon incubation with human liver microsomes, and the human specific metabolic pathway made it difficult to predict the human pharmacokinetics. To address this issue, our synthetic efforts were focused on modification of the imidazo[1,5-c]imidazol-3-one moiety of the active metabolite 3a, derived from 1, which resulted in the discovery of the tetrahydropyrimidin-2(1H)-one derivative 5k as a highly potent and selective FXa inhibitor. Compound 5k showed no detectable amide bond cleavage in human liver microsomes, exhibited a good pharmacokinetic profile in monkeys, and had a potent antithrombotic efficacy in a rabbit model without prolongation of bleeding time. Compound 5k is currently under clinical development with the code name TAK-442.

  10. Dermatotoxicologic clinical solutions: hair dying in hair dye allergic patients?

    PubMed

    Edwards, Ashley; Coman, Garrett; Blickenstaff, Nicholas; Maibach, Howard

    2015-03-01

    This article describes how to identify allergic contact dermatitis resulting from hair dye, and outlines interventions and prevention principles for those who wish to continue dyeing their hair despite being allergic. Hair dye chemicals thought to be the most frequent sensitizers are discussed with instructions for health care providers on how to counsel patients about techniques to minimize exposure to allergenic substances. This framework should allow many patients to continue dyeing their hair without experiencing adverse side effects.

  11. Hair Loss Myths.

    PubMed

    DiMarco, Gabriella; McMichael, Amy

    2017-07-01

    INTRODUCTION: Hair loss is a common complaint seen in dermatology clinics. From frustration and attempts at self-help, patients with hair loss may present to the dermatologist with false beliefs, or myths, about the causes of their condition and what treatments are effective.

    METHODS: We identified 12 common myths about hair loss, categorized as myths about minoxidil treatment, vitamin and mineral supplements, natural topical treatments, and hair care practices. We performed a PubMed search to find evidence to support or refute each myth.

    RESULTS: We found that there is little evidence to support many of these common hair loss myths. In some cases, randomized controlled trials have investigated the effects of particular therapies and point to the effectiveness of certain hair loss treatments.

    DISCUSSION: In many cases, there have not been sufficient randomized controlled trials to evaluate the effect of different therapies and hair care practices on hair loss. It is best to guide patients toward treatments with a long track record of efficacy and away from those where little is known scientifically.

    J Drugs Dermatol. 2017;16(7):690-694.

    .

  12. Hair Treatments and Pregnancy

    MedlinePlus

    ... Common chemicals in hair dyes include hydrogen peroxide, ammonia, and alcohols. Hair curling or permanent wave chemicals include ammonium thioglycolate and ammonia. Hair bleaching chemicals include hydrogen peroxide. Hair straighteners ( ...

  13. To grow or not to grow: Hair morphogenesis and human genetic hair disorders

    PubMed Central

    Duverger, Olivier; Morasso, Maria I.

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. PMID:24361867

  14. To grow or not to grow: hair morphogenesis and human genetic hair disorders.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.

  15. Cryopreservation of Hair-Follicle Associated Pluripotent (HAP) Stem Cells Maintains Differentiation and Hair-Growth Potential.

    PubMed

    Hoffman, Robert M; Kajiura, Satoshi; Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C. After thawing and culture of the cryopreserved whisker follicles, growing HAP stem cells formed hair spheres. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. We have also previously demonstrated that cryopreserved mouse whisker hair follicles maintain their hair-growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. DMSO-cryopreserved hair follicles also maintained the HAP stem cells, evidenced by P75 ntr expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair-shaft growth of cryopreserved hair follicles. HAP stem cells can be used for nerve and spinal-cord repair. This biobanking of hair follicles can allow each patient the potential for their own stem cell use for regenerative medicine or hair transplantation.

  16. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    PubMed

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  17. Hair Pulling (Trichotillomania)

    MedlinePlus

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  18. The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene

    PubMed Central

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.

    2012-01-01

    Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034

  19. A Study on Scalp Hair Health and Hair Care Practices among Malaysian Medical Students.

    PubMed

    Nayak, B Satheesha; Ann, Chua Yuet; Azhar, Azeldeen Bin; Ling, Emily Chan Su; Yen, Wong Hui; Aithal, P Ashwini

    2017-01-01

    Scalp care is essential because it determines the health and condition of the hair and prevents the diseases of scalp and hair. The objectives of our study were to correlate race and hair types, to determine the awareness of hair care among Malaysian medical students, and to distinguish the factors that affect the health of hair and scalp. It was a cross-sectional study wherein validated questionnaires were given to 240 medical undergraduate students who belonged to three ethnic races of Malaysia, i.e., Chinese, Malay, and Malaysian Indians after their informed consent. The results were then analyzed using percentage statistics. Chinese students had comparatively healthier scalp without dandruff. Most Chinese and Indians had silky type of hair while Malay had dry, rough hair. Chinese and Indians colored their hair and used various styling methods; while among the Malays, this percentage was very less. Regarding hair care practices, males used only shampoo and females used shampoo and conditioner for hair wash. Students also faced dietary and examination-related stress. Results indicate that there exist morphological differences in hair among the studied population. Since most students color their hair and employ various hairstyling methods, they should be educated regarding best hair care practices to improve their scalp hair condition and health.

  20. Diguanoside tetraphosphate (Gp₄G) is an epithelial cell and hair growth regulator.

    PubMed

    Severino, Divinomar; Zorn, Telma M T; Micke, Gustavo A; Costa, Ana C O; Silva, José Roberto M C; Nogueira, Leandro F; Kowaltowski, Alicia J; Kowaltowski, Alica J; Baptista, Maurício S

    2011-01-01

    Our goal was to study the effect of Gp₄G on skin tissues and unravel its intracellular action mechanisms. The effects of Gp₄G formulation, a liposomic solution of Artemia salina extract, on several epidermal, depmal, and hair follicle structures were quantified. A 50% increase in hair length and a 30% increase in the number of papilla cells were explained by the changes in the telogen/anagen hair follicle phases. Increasing skin blood vessels and fibroblast activation modified collagen arrangement in dermal tissues. Imunohistochemical staining revealed expressive increases of versican (VER) deposition in the treated animals (68%). Hela and fibroblast cells were used as in vitro models. Gp₄G enters both cell lines, with a hyperbolic saturation profile inducing an increase in the viabilities of Hela and fibroblast cells. Intracellular ATP and other nucleotides were quantified in Hela cells showing a 38% increase in intracellular ATP concentration and increases in the intracellular concentration of tri- , di- , and monophosphate nucleosides, changing the usual quasi-equilibrium state of nucleotide concentrations. We propose that this change in nucleotide equilibrium affects several biochemical pathways and explains the cell and tissue activations observed experimentally.

  1. Expression profiling and bioinformatic analyses suggest new target genes and pathways for human hair follicle related microRNAs.

    PubMed

    Hochfeld, Lara M; Anhalt, Thomas; Reinbold, Céline S; Herrera-Rivero, Marisol; Fricker, Nadine; Nöthen, Markus M; Heilmann-Heimbach, Stefanie

    2017-02-22

    Human hair follicle (HF) cycling is characterised by the tight orchestration and regulation of signalling cascades. Research shows that micro(mi)RNAs are potent regulators of these pathways. However, knowledge of the expression of miRNAs and their target genes and pathways in the human HF is limited. The objective of this study was to improve understanding of the role of miRNAs and their regulatory interactions in the human HF. Expression levels of ten candidate miRNAs with reported functions in hair biology were assessed in HFs from 25 healthy male donors. MiRNA expression levels were correlated with mRNA-expression levels from the same samples. Identified target genes were tested for enrichment in biological pathways and accumulation in protein-protein interaction (PPI) networks. Expression in the human HF was confirmed for seven of the ten candidate miRNAs, and numerous target genes for miR-24, miR-31, and miR-106a were identified. While the latter include several genes with known functions in hair biology (e.g., ITGB1, SOX9), the majority have not been previously implicated (e.g., PHF1). Target genes were enriched in pathways of interest to hair biology, such as integrin and GnRH signalling, and the respective gene products showed accumulation in PPIs. Further investigation of miRNA expression in the human HF, and the identification of novel miRNA target genes and pathways via the systematic integration of miRNA and mRNA expression data, may facilitate the delineation of tissue-specific regulatory interactions, and improve our understanding of both normal hair growth and the pathobiology of hair loss disorders.

  2. Familial Uncombable Hair Syndrome: Ultrastructural Hair Study and Response to Biotin.

    PubMed

    Boccaletti, V; Zendri, E; Giordano, G; Gnetti, L; De Panfilis, G

    2007-01-01

    We report a family affected to the fourth generation by uncombable hair syndrome. This syndrome is characterized by unruly, dry, blond hair with a tangled appearance. The family pedigree strongly supports the hypothesis of autosomal dominant inheritance; some members of the family had, apart from uncombable hair, minor signs of atopy and ectodermal dysplasia, such as abnormalities of the nails. The diagnosis was confirmed by means of extensive scanning electron microscopy. A trial with oral biotin 5 mg/day was started on two young patients with excellent results as regards the hair appearance, although scanning electron microscopy did not show structural changes in the hair. After a 2-year-period of follow-up, hair normality was maintained without biotin, while nail fragility still required biotin supplementation for control.

  3. Help! It's Hair Loss!

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hair Loss KidsHealth / For Kids / Hair Loss What's in ... is alopecia (say: al-uh-PEE-shuh). The Hair-y Story The hair on your head is ...

  4. Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice

    PubMed Central

    Shimshek, Derya R.; Jacobson, Laura H.; Kolly, Carine; Zamurovic, Natasa; Balavenkatraman, Kamal Kumar; Morawiec, Laurent; Kreutzer, Robert; Schelle, Juliane; Jucker, Mathias; Bertschi, Barbara; Theil, Diethilde; Heier, Annabelle; Bigot, Karine; Beltz, Karen; Machauer, Rainer; Brzak, Irena; Perrot, Ludovic; Neumann, Ulf

    2016-01-01

    Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and γ-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The β-secretase (BACE1) is responsible for the generation of amyloid-β (Aβ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer’s disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-β peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2+/− and bace2−/− mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice. PMID:26912421

  5. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. 1: Responses to intracellular current

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog sacculus are specifically adapted to sense small-amplitude, high-frequency linear accelerations. These hair cells display many properties that are undesirable or inappropriate for hair cells that must provide static gravity sensitivity. This study resulted in part due to an interest in seeing how the transduction mechanisms of hair cells in a gravity-sensing otolith endorgan would differ from those in the bullfrog sacculus. The bullfrog utriculus is an appropriate model for these studies, because its structure is representative of higher vertebrates in general and its function as a sensor of static gravity and dynamic linear acceleration is well known. Hair cells in the bullfrog utriculus, classifiable as Type 2 by cell body and synapse morphology, differ markedly in hair bundle morphology from those in the bullfrog sacculus. Moreover, the hair bundle morphologies of utricular hair cells, unlike those in the sacculus, differ in different membrane regions.

  6. Ethnic hair disorders.

    PubMed

    Lindsey, Scott F; Tosti, Antonella

    2015-01-01

    The management of hair and scalp conditions is difficult in any patient, especially given the emotional and psychological implications of hair loss. This undertaking becomes even more challenging in the ethnic patient. Differences in hair care practices, hair shaft morphology, and follicular architecture add complexity to the task. It is imperative that the physician be knowledgeable about these practices and the phenotypic differences seen in ethnic hair in order to appropriately diagnose and treat these patients. In this chapter, we will discuss cultural practices and morphologic differences and explain how these relate to the specific disorders seen in ethnic populations. We will also review the most prominent of the ethnic hair conditions including acquired trichorrhexis nodosa, traction alopecia, central centrifugal cicatricial alopecia, pseudofolliculitis barbae, dissecting cellulitis, and acne keloidalis nuchae. © 2015 S. Karger AG, Basel.

  7. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival

    NASA Technical Reports Server (NTRS)

    Wallis, Deeann; Hamblen, Melanie; Zhou, Yi; Venken, Koen J T.; Schumacher, Armin; Grimes, H. Leighton; Zoghbi, Huda Y.; Orkin, Stuart H.; Bellen, Hugo J.

    2003-01-01

    Gfi1 was first identified as causing interleukin 2-independent growth in T cells and lymphomagenesis in mice. Much work has shown that Gfi1 and Gfi1b, a second mouse homolog, play pivotal roles in blood cell lineage differentiation. However, neither Gfi1 nor Gfi1b has been implicated in nervous system development, even though their invertebrate homologues, senseless in Drosophila and pag-3 in C. elegans are expressed and required in the nervous system. We show that Gfi1 mRNA is expressed in many areas that give rise to neuronal cells during embryonic development in mouse, and that Gfi1 protein has a more restricted expression pattern. By E12.5 Gfi1 mRNA is expressed in both the CNS and PNS as well as in many sensory epithelia including the developing inner ear epithelia. At later developmental stages, Gfi1 expression in the ear is refined to the hair cells and neurons throughout the inner ear. Gfi1 protein is expressed in a more restricted pattern in specialized sensory cells of the PNS, including the eye, presumptive Merkel cells, the lung and hair cells of the inner ear. Gfi1 mutant mice display behavioral defects that are consistent with inner ear anomalies, as they are ataxic, circle, display head tilting behavior and do not respond to noise. They have a unique inner ear phenotype in that the vestibular and cochlear hair cells are differentially affected. Although Gfi1-deficient mice initially specify inner ear hair cells, these hair cells are disorganized in both the vestibule and cochlea. The outer hair cells of the cochlea are improperly innervated and express neuronal markers that are not normally expressed in these cells. Furthermore, Gfi1 mutant mice lose all cochlear hair cells just prior to and soon after birth through apoptosis. Finally, by five months of age there is also a dramatic reduction in the number of cochlear neurons. Hence, Gfi1 is expressed in the developing nervous system, is required for inner ear hair cell differentiation, and its loss

  8. Inhibition of hair follicle growth by a laminin-1 G-domain peptide, RKRLQVQLSIRT, in an organ culture of isolated vibrissa rudiment.

    PubMed

    Hayashi, Kazuhiro; Mochizuki, Mayumi; Nomizu, Motoyoshi; Uchinuma, Eijyu; Yamashina, Shohei; Kadoya, Yuichi

    2002-04-01

    We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.

  9. 36 CFR 13.1114 - May I collect goat hair?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false May I collect goat hair? 13... General Provisions § 13.1114 May I collect goat hair? The collection of naturally shed goat hair is... conditions for collecting goat hair is prohibited. ...

  10. 36 CFR 13.1114 - May I collect goat hair?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false May I collect goat hair? 13... General Provisions § 13.1114 May I collect goat hair? The collection of naturally shed goat hair is... conditions for collecting goat hair is prohibited. ...

  11. 36 CFR 13.1114 - May I collect goat hair?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false May I collect goat hair? 13... General Provisions § 13.1114 May I collect goat hair? The collection of naturally shed goat hair is... conditions for collecting goat hair is prohibited. ...

  12. 36 CFR 13.1114 - May I collect goat hair?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false May I collect goat hair? 13... General Provisions § 13.1114 May I collect goat hair? The collection of naturally shed goat hair is... conditions for collecting goat hair is prohibited. ...

  13. Contact allergy to common ingredients in hair dyes.

    PubMed

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida; Bruze, Magnus; Goossens, An; Giménez-Arnau, Ana M; Le Coz, Christophe J; White, Ian R; Diepgen, Thomas L; Andersen, Klaus E; Agner, Tove; Maibach, Howard; Menné, Torkil; Johansen, Jeanne D

    2013-07-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed. To examine whether PPD is an optimal screening agent for diagnosing hair dye allergy or whether other clinically important sensitizers exist. Two thousand nine hundred and thirty-nine consecutive patients in 12 dermatology clinics were patch tested with five hair dyes available from patch test suppliers. Furthermore, 22 frequently used hair dye ingredients not available from patch test suppliers were tested in subgroups of ~500 patients each. A positive reaction to PPD was found in 4.5% of patients, and 2.8% reacted to toluene-2,5-diamine (PTD), 1.8% to p-aminophenol, 1% to m-aminophenol, and 0.1% to resorcinol; all together, 5.3% (n = 156). Dying hair was the most frequently reported cause of the allergy (55.4%); so-called 'temporary henna' tattoos were the cause in 8.5% of the cases. p-Methylaminophenol gave a reaction in 20 patients (2.2%), 3 of them with clinical relevance, and no co-reaction with the above five well-known hair dyes. Hair dyes are the prime cause of PPD allergy. PPD identifies the majority of positive reactions to PTD, p-aminophenol and m-aminophenol, but not all, which justifies additional testing with hair dye ingredients from the used product. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. A Study of the Relationship between Levels of Technology Implementation (LoTi) and Student Performance on Texas Assessment of Knowledge and Skills (TAKS) Scores

    ERIC Educational Resources Information Center

    Berkeley-Jones, Catherine Spotswood

    2012-01-01

    The purpose of this study was to examine teacher Levels of Technology Implementation (LoTi) self-ratings and student Texas Assessment of Knowledge and Skills (TAKS) scores. The study assessed the relationship between LoTi ratings and TAKS scores of 6th, 7th, and 8th grade students as reported in student records at Alamo Heights Independent School…

  15. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata).

    PubMed

    Siebenhaar, Frank; Sharov, Andrey A; Peters, Eva M J; Sharova, Tatyana Y; Syska, Wolfgang; Mardaryev, Andrei N; Freyschmidt-Paul, Pia; Sundberg, John P; Maurer, Marcus; Botchkarev, Vladimir A

    2007-06-01

    Alopecia areata (AA) is an autoimmune disorder of the hair follicle characterized by inflammatory cell infiltrates around actively growing (anagen) hair follicles. Substance P (SP) plays a critical role in the cutaneous neuroimmune network and influences immune cell functions through the neurokinin-1 receptor (NK-1R). To better understand the role of SP as an immunomodulatory neuropeptide in AA, we studied its expression and effects on immune cells in a C3H/HeJ mouse model for AA. During early stages of AA development, the number of SP-immunoreactive nerve fibers in skin is increased, compared to non-affected mice. However, during advanced stages of AA, the number of SP-immunoreactive nerves and SP protein levels in skin are decreased, whereas the expression of the SP-degrading enzyme neutral endopeptidase (NEP) is increased, compared to control skin. In AA, NK-1R is expressed on CD8+ lymphocytes and macrophages accumulating around affected hair follicles. Additional SP supply to the skin of AA-affected mice leads to a significant increase of mast cell degranulation and to accelerated hair follicle regression (catagen), accompanied by an increase of CD8+ cells-expressing granzyme B. These data suggest that SP, NEP, and NK-1R serve as important regulators in the molecular signaling network modulating inflammatory response in autoimmune hair loss.

  16. The current status of microscopical hair comparisons.

    PubMed

    Rowe, W F

    2001-12-08

    Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation) leads to three conclusions: (1) microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2) the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3) forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court's Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  17. Hair Growth Promoting and Anticancer Effects of p21-activated kinase 1 (PAK1) Inhibitors Isolated from Different Parts of Alpinia zerumbet.

    PubMed

    Taira, Nozomi; Nguyen, Binh Cao Quan; Tawata, Shinkichi

    2017-01-14

    PAK1 (p21-activated kinase 1) is an emerging target for the treatment of hair loss (alopecia) and cancer; therefore, the search for PAK1 blockers to treat these PAK1-dependent disorders has received much attention. In this study, we evaluated the anti-alopecia and anticancer effects of PAK1 inhibitors isolated from Alpinia zerumbet (alpinia) in cell culture. The bioactive compounds isolated from alpinia were found to markedly promote hair cell growth. Kaempferol-3- O -β-d-glucuronide (KOG) and labdadiene, two of the isolated compounds, increased the proliferation of human follicle dermal papilla cells by approximately 117%-180% and 132%-226%, respectively, at 10-100 μM. MTD (2,5-bis(1 E ,3 E ,5 E )-6-methoxyhexa-1,3,5-trien-1-yl)-2,5-dihydrofuran) and TMOQ (( E )-2,2,3,3-tetramethyl-8-methylene-7-(oct-6-en-1-yl)octahydro-1 H -quinolizine) showed growth-promoting activity around 164% and 139% at 10 μM, respectively. The hair cell proliferation induced by these compounds was significantly higher than that of minoxidil, a commercially available treatment for hair loss. Furthermore, the isolated compounds from alpinia exhibited anticancer activity against A549 lung cancer cells with IC 50 in the range of 67-99 μM. Regarding the mechanism underlying their action, we hypothesized that the anti-alopecia and anticancer activities of these compounds could be attributed to the inhibition of the oncogenic/aging kinase PAK1.

  18. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms.

    PubMed

    Choi, Hye-In; Kim, Dong Young; Choi, Soon-Jin; Shin, Chang-Yup; Hwang, Sungjoo Tommy; Kim, Kyu Han; Kwon, Ohsang

    2018-07-01

    Cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, increases the intracellular level of cyclic adenosine monophosphate to cause vasodilation. Topical application of cilostazol is reported to improve local blood flow and enhance wound healing; however, its effect on human hair follicles is unknown. The purpose of this study was to determine the effect of cilostazol on hair growth. We investigated the expression of PDE3 in human dermal papilla cells (DPCs), outer root sheath cells (ORSCs), and hair follicles. The effects of cilostazol on DPC and ORSC proliferation were evaluated using BrdU and WST-1 assays. The expression of various growth factors in DPCs was investigated by growth factor antibody array. Additionally, hair shaft elongation was measured using ex vivo hair follicle organ cultures, and anagen induction was evaluated in C57BL/6 mice. Finally, the effects of cilostazol on vessel formation and activation of the mitogen-activated protein kinase pathway were evaluated. We confirmed high mRNA and protein expression of PDE3 in human DPCs. Cilostazol not only enhanced the proliferation of human DPCs but also regulated the secretion of several growth factors responsible for hair growth. Furthermore, it promoted hair shaft elongation ex vivo, with increased proliferation of matrix keratinocytes. Cilostazol also accelerated anagen induction by stimulating vessel formation and upregulating the levels of phosphorylated extracellular signal-regulated kinase, c-Jun N-terminal kinase, and P38 after its topical application in C57BL/6 mice. Our results show that cilostazol promotes hair growth and may serve as a therapeutic agent for the treatment of alopecia. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  20. Female Pattern Hair Loss

    MedlinePlus

    ... Category: Share: Yes No, Keep Private Female Pattern Hair Loss Share | The most common type of hair loss seen in women is androgenetic alopecia, also ... men, it does not have to be complete hair loss. This is seen as hair thinning predominantly ...

  1. Daple coordinates organ-wide and cell-intrinsic polarity to pattern inner-ear hair bundles

    PubMed Central

    Siletti, Kimberly; Hudspeth, A. J.

    2017-01-01

    The establishment of planar polarization by mammalian cells necessitates the integration of diverse signaling pathways. In the inner ear, at least two systems regulate the planar polarity of sensory hair bundles. The core planar cell polarity (PCP) proteins coordinate the orientations of hair cells across the epithelial plane. The cell-intrinsic patterning of hair bundles is implemented independently by the G protein complex classically known for orienting the mitotic spindle. Although the primary cilium also participates in each of these pathways, its role and the integration of the two systems are poorly understood. We show that Dishevelled-associating protein with a high frequency of leucine residues (Daple) interacts with PCP and cell-intrinsic signals. Regulated by the cell-intrinsic pathway, Daple is required to maintain the polarized distribution of the core PCP protein Dishevelled and to position the primary cilium at the abneural edge of the apical surface. Our results suggest that the primary cilium or an associated structure influences the domain of cell-intrinsic signals that shape the hair bundle. Daple is therefore essential to orient and pattern sensory hair bundles. PMID:29229865

  2. Laron syndrome (primary growth hormone insensitivity): a unique model to explore the effect of insulin-like growth factor 1 deficiency on human hair.

    PubMed

    Lurie, R; Ben-Amitai, D; Laron, Z

    2004-01-01

    Classical Laron syndrome is a recessive disease of primary insulin-like growth factor 1 (IGF-1) deficiency and primary growth hormone insensitivity. Affected children have, among other defects, sparse hair growth and frontal recessions. The hair is thin and easy to pluck. Young adults have various degrees of alopecia, more pronounced in males. The aim of the present study was to investigate the effect of primary IGF-1 deficiency on hair structure. The study sample included 11 patients with Laron syndrome--5 children (2 untreated) and 6 adults (5 untreated). Hairs were examined by light and electron microscopy. The most significant structured defect, pili torti et canaliculi, was found in 2 young, untreated patients. Grooving, tapered hair and trichorrhexis nodosa were found in the remainder. IGF-1-treated patients had either none or significantly fewer pathological changes compared to the untreated patients. This is the first documentation of the role of primary IGF-1 deficiency on hair structure in human beings. Copyright 2004 S. Karger AG, Basel

  3. Preclinical and Clinical Studies Demonstrate That the Proprietary Herbal Extract DA-5512 Effectively Stimulates Hair Growth and Promotes Hair Health.

    PubMed

    Yu, Jae Young; Gupta, Biki; Park, Hyoung Geun; Son, Miwon; Jun, Joon-Ho; Yong, Chul Soon; Kim, Jeong Ah; Kim, Jong Oh

    2017-01-01

    The proprietary DA-5512 formulation comprises six herbal extracts from traditional oriental plants historically associated with therapeutic and other applications related to hair. Here, we investigated the effects of DA-5512 on the proliferation of human dermal papilla cells (hDPCs) in vitro and on hair growth in C57BL/6 mice and conducted a clinical study to evaluate the efficacy and safety of DA-5512. DA-5512 significantly enhanced the viability of hDPCs in a dose-dependent manner ( p < 0.05), and 100 ppm of DA-5512 and 1  μ M minoxidil (MXD) significantly increased the number of Ki-67-positive cells, compared with the control group ( p < 0.05). MXD (3%) and DA-5512 (1%, 5%) significantly stimulated hair growth and increased the number and length of hair follicles (HFs) versus the controls (each p < 0.05). The groups treated with DA-5512 exhibited hair growth comparable to that induced by MXD. In clinical study, we detected a statistically significant increase in the efficacy of DA-5512 after 16 weeks compared with the groups treated with placebo or 3% MXD ( p < 0.05). In conclusion, DA-5512 might promote hair growth and enhance hair health and can therefore be considered an effective option for treating hair loss.

  4. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  5. In vitro influence of light radiation on hair steroid concentrations.

    PubMed

    Grass, Juliane; Miller, Robert; Carlitz, Esther H D; Patrovsky, Fabian; Gao, Wei; Kirschbaum, Clemens; Stalder, Tobias

    2016-11-01

    Hair cortisol concentrations (hairF) are considered to be relatively robust to various confounding influences. However, a potentially important covariate factor that has received little attention in this context is hair exposure to ultraviolet/sunlight radiation. We conducted a detailed experimental investigation to examine the effects of light exposure on hair cortisol. In study I, a hydrocortisone-containing solution was subjected to short-term artificial light irradiation for 1, 3, 5, 10, 15, or 30min to evaluate the stability of cortisol molecules due to radiant energy. In study II, hair samples (N=12) were subjected to single short-term artificial light irradiation for 0, 1, or 5h to examine light-induced effects in the hair matrix. In study III, hair samples (N=25) were subjected to long-term naturalistic sunlight radiation over a period of two months (during summer) with daily exposure times of 0, 1, 3, or 6h, respectively. Besides cortisol, studies II & III also examined concentrations of cortisone (hairE), dehydroepiandrosterone (hairDHEA) and progesterone (hairP) in hair, quantified using LC-MS/MS technology. Results across the three studies consistently revealed effects of light irradiation on hair steroid concentrations: Longer light exposure resulted in a decrease of dissolved hydrocortisone (study I) as well as of hairF and hairE (studies II and III). Conversely, hairDHEA and hairP increased with longer natural sunlight exposure times (study III), while this effect was not observed for short-term artificial light irradiation (study II). Combined, our findings imply sunlight exposure as a potential confound in hair steroid research. Given the experimental character of this investigation, the magnitude of this effect under real-life testing conditions is difficult to estimate. To support future investigation into this, we designed a 'sunlight-exposure' questionnaire to share with the research community. The assessment and statistical accounting for

  6. The use of personal hair dye and its implications for human health.

    PubMed

    Kim, Ki-Hyun; Kabir, Ehsanul; Jahan, Shamin Ara

    2016-01-01

    Hair dye products now represent one of the most rapidly growing beauty and personal care industries as both men and women commonly change hair color to enhance youth and beauty and to follow fashion trends. Irrespective of economic and education status, people dye their hair to emphasize the importance given to appearance. Despite adverse reactions, many people continue dyeing mainly for cosmetic purposes. This paper provides a comprehensive review on various aspects of hair dying products, especially with respect to the hair-coloring process, classification, chemical ingredients, possible human health impacts, and regulations. Permanent hair dye, which is the most commonly used product type, is formed by an oxidative process involving arylamines to bring about concerns with long-term exposure. Hence, significant efforts have been put to understand the possible side effects of such exposure including cancer risk. However, hair dyes and their ingredients are mainly identified to have moderate to low acute toxicity such as the cause of allergic contact dermatitis. Although some hair dye components are reported to be carcinogenic in animals, such evidence is not consistent enough in the case of human studies. Consequently, further research is desirable to critically address the significance of this issue, especially with respect to the safety of hair dye ingredients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential

    PubMed Central

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-01-01

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin–mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458

  8. Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure.

    PubMed

    Spoon, Corrie; Moravec, W J; Rowe, M H; Grant, J W; Peterson, E H

    2011-12-01

    Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.

  9. Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure

    PubMed Central

    Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.

    2011-01-01

    Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003

  10. Hair and Salivary Testosterone, Hair Cortisol, and Externalizing Behaviors in Adolescents.

    PubMed

    Grotzinger, Andrew D; Mann, Frank D; Patterson, Megan W; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige

    2018-05-01

    Although testosterone is associated with aggression in the popular imagination, previous research on the links between testosterone and human aggression has been inconsistent. This inconsistency might be because testosterone's effects on aggression depend on other moderators. In a large adolescent sample ( N = 984, of whom 460 provided hair samples), we examined associations between aggression and salivary testosterone, hair testosterone, and hair cortisol. Callous-unemotional traits, parental monitoring, and peer environment were examined as potential moderators of hormone-behavior associations. Salivary testosterone was not associated with aggression. Hair testosterone significantly predicted increased aggression, particularly at low levels of hair cortisol (i.e., Testosterone × Cortisol interaction). This study is the first to examine the relationship between hair hormones and externalizing behaviors and adds to the growing literature that indicates that androgenic effects on human behavior are contingent on aspects of the broader endocrine environment-in particular, levels of cortisol.

  11. Gene miles-apart is required for formation of otic vesicle and hair cells in zebrafish.

    PubMed

    Hu, Z-y; Zhang, Q-y; Qin, W; Tong, J-w; Zhao, Q; Han, Y; Meng, J; Zhang, J-p

    2013-10-31

    Hearing loss is a serious burden to physical and mental health worldwide. Aberrant development and damage of hearing organs are recognized as the causes of hearing loss, the molecular mechanisms underlining these pathological processes remain elusive. Investigation of new molecular mechanisms involved in proliferation, differentiation, migration and maintenance of neuromast primordium and hair cells will contribute to better understanding of hearing loss pathology. This knowledge will enable the development of protective agents and mechanism study of drug ototoxicity. In this study, we demonstrate that the zebrafish gene miles-apart, a homolog of sphingosine-1-phosphate receptor 2 (s1pr2) in mammals, has an important role in the development of otic vesicle, neuromasts and survival of hair cells. Whole-mount in situ hybridization of embryos showed that miles-apart expression occurred mainly in the encephalic region and the somites at 24 h.p.f. (hour post fertilization), in the midbrain/hindbrain boundary, the brainstem and the pre-neuromast of lateral line at 48 h.p.f. in a strict spatiotemporal regulation. Both up- and downregulation of miles-apart led to abnormal otoliths and semicircular canals, excess or few hair cells and neuromasts, and their disarranged depositions in the lateral lines. Miles-apart (Mil) dysregulation also caused abnormal expression of hearing-associated genes, including hmx2, fgf3, fgf8a, foxi1, otop1, pax2.1 and tmieb during zebrafish organogenesis. Moreover, in larvae miles-apart gene knockdown significantly upregulated proapoptotic gene zBax2 and downregulated prosurvival gene zMcl1b; in contrast, the level of zBax2 was decreased and of zMcl1b enhanced by miles-apart overexpression. Collectively, Mil activity is linked to organization and number decision of hair cells within a neuromast, also to deposition of neuromasts and formation of otic vesicle during zebrafish organogenesis. At the larva stage, Mil as an upstream regulator of bcl-2

  12. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation.

    PubMed

    Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun

    2017-07-01

    Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.

  13. Nutrition of women with hair loss problem during the period of menopause

    PubMed Central

    2016-01-01

    During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol) thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic's and hairdresser's treatments. PMID:27095961

  14. Nutrition of women with hair loss problem during the period of menopause.

    PubMed

    Goluch-Koniuszy, Zuzanna Sabina

    2016-03-01

    During the period of menopause as an effect of changes in hormone status, one of the most common ailments for women is hair loss. Taking into consideration fact that the ingredients of diet contained in various groups of consumed food products are both precursors in steroid hormones synthesis as well as have direct impact on structure, growth and keeping hair in skin integument, this is the reason why nourishing support for women during this period of life as well as during the hair loss therapy is reasonable. Standard value proteins containing Sulphur amino-acids: cysteine and methionine as precursor to keratin hair protein synthesis are basic element of diet conditioning of hair building. Irreplaceable having impact on keeping hair in skin integument is exogenous L-lysine, mainly present in the inner part of hair root is responsible for hair shape and volume. Fats present in the diet take part in steroid hormones synthesis (from cholesterol) thus have influence on keeping hair in skin integument. Women diet should contain products rich in complex carbohydrates, with low glycemic index and load containing fiber regulating carbohydrate-lipid metabolism of the body. Vitamins also have impact on the state of hair: C vitamin, group B and A vitamins. Minerals which influence hair growth are: Zn, Fe, Cu, Se, Si, Mg and Ca. It is worthwhile to pay closer attention to diet in women who besides hormone changes and undertaken pharmacotherapy are additionally exposed to chronic stress and improperly conducted cosmetic's and hairdresser's treatments.

  15. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José

    2017-11-01

    We are hairy inside: beds of passive fibers anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. Such hairs are soft enough to deform in response to stresses from fluid flows. Fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem which is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear- driven Stokes flows. We characterize this system with a theoretical model which accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers toward the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter which controls nonlinear behavior. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps. J.A. acknowledges support the U. S. Army Research Office under Grant Number W911NF-14-1-0396.

  16. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+)-dependence of a transient K+ current.

    PubMed

    Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N

    2011-01-01

    Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.

  17. MRI of human hair.

    PubMed

    Mattle, Eveline; Weiger, Markus; Schmidig, Daniel; Boesiger, Peter; Fey, Michael

    2009-06-01

    Hair care for humans is a major world industry with specialised tools, chemicals and techniques. Studying the effect of hair care products has become a considerable field of research, and besides mechanical and optical testing numerous advanced analytical techniques have been employed in this area. In the present work, another means of studying the properties of hair is added by demonstrating the feasibility of magnetic resonance imaging (MRI) of the human hair. Established dedicated nuclear magnetic resonance microscopy hardware (solenoidal radiofrequency microcoils and planar field gradients) and methods (constant time imaging) were adapted to the specific needs of hair MRI. Images were produced at a spatial resolution high enough to resolve the inner structure of the hair, showing contrast between cortex and medulla. Quantitative evaluation of a scan series with different echo times provided a T*(2) value of 2.6 ms for the cortex and a water content of about 90% for hairs saturated with water. The demonstration of the feasibility of hair MRI potentially adds a new tool to the large variety of analytical methods used nowadays in the development of hair care products.

  18. Hair cell ribbon synapses

    PubMed Central

    Brandt, Andreas; Lysakowski, Anna

    2010-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca2+ signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses. PMID:16944206

  19. [Hair and their environment].

    PubMed

    Piérard-Franchimont, C; Piérard, G E

    2015-02-01

    Hair is influenced by the effects of the daily environment. Some toxic xenobiotics slow down or block the cell renewal of the hair matrix, thus inhibiting hair growth. The ultraviolet light obviously influences the physical structure and physiology of the hair follicle. Tobacco is similarly responsible for negative influences on the evolution of various alopecias. Several cosmetic procedures for maintaining and making hair more attractive are not always harmless, and they occasionally represent a possible origin for alopecia.

  20. Hair cell regeneration

    PubMed Central

    Edge, Albert SB; Chen, Zheng-Yi

    2017-01-01

    The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells. PMID:18929656

  1. Dark Matter Hairs Around Earth -- Close-up

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20177

  2. Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators

    PubMed Central

    Tasseff, Ryan; Bheda-Malge, Anjali; DiColandrea, Teresa; Bascom, Charles C.; Isfort, Robert J.; Gelinas, Richard

    2014-01-01

    The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative

  3. An Integrated Learning System: Impact on At-Risk Students' Ninth Grade TAKS Mathematics Achievement

    ERIC Educational Resources Information Center

    Harris, Tina D.

    2011-01-01

    The purpose of this study was to determine the impact of an integrated learning system on students who were considered at-risk of academic failure on the Texas Assessment of Knowledge and Skills (TAKS) mathematics assessment. Voyager Math (VMath), an integrated learning system had been implemented to address the needs of students at-risk of…

  4. Facial hair restoration: hair transplantation to eyebrows, beard, sideburns, and eyelashes.

    PubMed

    Epstein, Jeffrey

    2013-08-01

    Refinements in hair transplantation techniques allow the experienced surgeon to create natural-appearing facial hair transplants. Restoring eyebrows, beards/goatees, and sideburns have all become popular procedures, and the results can be outstanding. This article provides a comprehensive review of hair grafting techniques to achieve the best results in restoring various hair-bearing areas of the face, including the eyebrows, beard/goatee, and sideburns, and repairing the alopecic scarring from prior facial plastic surgery. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The biology of hair diversity.

    PubMed

    Westgate, Gillian E; Botchkareva, Natalia V; Tobin, Desmond J

    2013-08-01

    Hair diversity, its style, colour, shape and growth pattern is one of our most defining characteristics. The natural versus temporary style is influenced by what happens to our hair during our lifetime, such as genetic hair loss, sudden hair shedding, greying and pathological hair loss in the various forms of alopecia because of genetics, illness or medication. Despite the size and global value of the hair care market, our knowledge of what controls the innate and within-lifetime characteristics of hair diversity remains poorly understood. In the last decade, drivers of knowledge have moved into the arena of genetics where hair traits are obvious and measurable and genetic polymorphisms are being found that raise valuable questions about the biology of hair growth. The recent discovery that the gene for trichohyalin contributes to hair shape comes as no surprise to the hair biologists who have believed for 100 years that hair shape is linked to the structure and function of the inner root sheath. Further conundrums awaiting elucidation include the polymorphisms in the androgen receptor (AR) described in male pattern alopecia whose location on the X chromosome places this genetic contributor into the female line. The genetics of female hair loss is less clear with polymorphisms in the AR not associated with female pattern hair loss. Lifestyle choices are also implicated in hair diversity. Greying, which also has a strong genetic component, is often suggested to have a lifestyle (stress) influence and hair follicle melanocytes show declining antioxidant protection with age and lowered resistance to stress. It is likely that hair research will undergo a renaissance on the back of the rising information from genetic studies as well as the latest contributions from the field of epigenetics. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  6. Transcription factor specificity protein 1 modulates TGFβ1/Smad signaling to negatively regulate SIGIRR expression by human M1 macrophages stimulated with substance P.

    PubMed

    Yamaguchi, Rui; Sakamoto, Arisa; Yamaguchi, Reona; Haraguchi, Misa; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2018-08-01

    The stimuli inducing expression of single immunoglobulin IL-1-related receptor (SIGIRR) and the relevant regulatory mechanisms are not well defined. Transforming growth factor β1 (TGFβ1) delays internalization of neurokinin-1 receptor (NK1R) and subsequently enhances cellular signaling. This study investigated the effect of TGFβ1 on SIGIRR protein production by human M1 macrophages in response to stimulation with substance P (SP). SP caused upregulation of SIGIRR expression in a concentration-dependent manner, whereas aprepitant (an NK1R inhibitor) blunted this response. Silencing p38γMAPK or TAK-1 partially attenuated the response to SP stimulation, while TGFβ1/2/3 siRNA dramatically diminished it. SP induced much greater SIGIRR protein production than either lipopolysaccharide (a TLR4 agonist) or resiquimod (a TLR7/8 agonist). Unexpectedly, silencing of transcription factor specificity protein 1 (Sp1) led to significant upregulation of SIGIRR expression after SP stimulation, while KLF2 siRNA only partially enhanced it and Fli-1 siRNA reduced it. SP also upregulated TGFβ1 expression, along with a corresponding increase of SIGIRR protein, whereas silencing TGFβ1/2/3 blunted these responses. Sp1 siRNA or mithramycin (a gene-selective Sp1 inhibitor) significantly enhanced the expression of TGFβ1 and SIGIRR by macrophages after SP stimulation. Importantly, this effect of Sp1 siRNA on TGFβ1 and SIGIRR was blunted by siRNA for Smad2, Smad3, or Smad4, but not by TAK-1 siRNA. Next, we investigated the influence of transcription factor cross-talk on SIGIRR expression in response to SP. Co-transfection of macrophages with Sp1 siRNA and C/EBPβ or TIF1β siRNA attenuated the upregulation of SIGIRR by SP, while a combination of Sp1 siRNA and Fli-1 siRNA dramatically diminished it. In conclusion, TGFβ1 may be an intermediary between SP/NK1R activation and SIGIRR expression in Sp1 siRNA-transfected macrophages. In addition, Sp1 modulates TGFβ1/Smad signaling and

  7. Ingrown Hair

    MedlinePlus

    ... needed to determine whether a single- or multiple-blade razor is best for preventing ingrown hair. See ... in the direction of hair growth. Rinse the blade after each stroke. Rinse your skin and apply ...

  8. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication.

    PubMed

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-03

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes.

  9. Biologic Rhythms Derived from Siberian Mammoths' Hairs

    PubMed Central

    Spilde, Mike; Lanzirotti, Antonio; Qualls, Clifford; Phillips, Genevieve; Ali, Abdul-Mehdi; Agenbroad, Larry; Appenzeller, Otto

    2011-01-01

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna. PMID:21747920

  10. Biologic rhythms derived from Siberian mammoths' hairs.

    PubMed

    Spilde, Mike; Lanzirotti, Antonio; Qualls, Clifford; Phillips, Genevieve; Ali, Abdul-Mehdi; Agenbroad, Larry; Appenzeller, Otto

    2011-01-01

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  11. Activating Hair Follicle Stem Cells via R-spondin2 to Stimulate Hair Growth.

    PubMed

    Smith, Andrew A; Li, Jingtao; Liu, Bo; Hunter, Daniel; Pyles, Malcolm; Gillette, Martin; Dhamdhere, Girija R; Abo, Arie; Oro, Anthony; Helms, Jill A

    2016-08-01

    Wnt signaling is required for the development of the hair follicle, and for inciting the growth (anagen) phase of the hair cycle. Most strategies to enhance Wnt signaling for hair growth create a state of constitutive Wnt activation, which leads to neoplastic transformation of the epithelial hair matrix. Using Axin2(LacZ/+) and Axin2(Cre/+)R26R(mTmG/+) reporter mice and RNA analyses, we show that Wnt signaling is elevated during anagen, is reduced at the onset of catagen, and can be reamplified in the skin and surrounding hair follicles via intradermal injection of recombinant R-spondin2 protein. Using Lgr5(LacZ/+) reporter mice, we demonstrate that this amplified Wnt environment leads to activation of leucine-rich repeat-containing G-protein coupled receptor 5-positive stem cells in the hair follicle. The onset of catagen is repressed by R-spondin2 injection, and the anagen phase persists. As a consequence, hair shafts grow longer. We conclude that R-spondin2 treatment activates hair follicle stem cells and therefore may have therapeutic potential to promote hair growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Interventions for female pattern hair loss.

    PubMed

    van Zuuren, Esther J; Fedorowicz, Zbys; Schoones, Jan

    2016-05-26

    Female pattern hair loss (FPHL), or androgenic alopecia, is the most common type of hair loss affecting women. It is characterised by progressive shortening of the duration of the growth phase of the hair with successive hair cycles, and progressive follicular miniaturisation with conversion of terminal to vellus hair follicles (terminal hairs are thicker and longer, while vellus hairs are soft, fine, and short). The frontal hair line may or may not be preserved. Hair loss can have a serious psychological impact on women. To determine the efficacy and safety of the available options for the treatment of female pattern hair loss in women. We updated our searches of the following databases to July 2015: the Cochrane Skin Group Specialised Register, CENTRAL in the Cochrane Library (2015, Issue 6), MEDLINE (from 1946), EMBASE (from 1974), PsycINFO (from 1872), AMED (from 1985), LILACS (from 1982), PubMed (from 1947), and Web of Science (from 1945). We also searched five trial registries and checked the reference lists of included and excluded studies. We included randomised controlled trials that assessed the efficacy of interventions for FPHL in women. Two review authors independently assessed trial quality, extracted data and carried out analyses. We included 47 trials, with 5290 participants, of which 25 trials were new to this update. Only five trials were at 'low risk of bias', 26 were at 'unclear risk', and 16 were at 'high risk of bias'.The included trials evaluated a wide range of interventions, and 17 studies evaluated minoxidil. Pooled data from six studies indicated that a greater proportion of participants (157/593) treated with minoxidil (2% and one study with 1%) reported a moderate to marked increase in their hair regrowth when compared with placebo (77/555) (risk ratio (RR) = 1.93, 95% confidence interval (CI) 1.51 to 2.47; moderate quality evidence). These results were confirmed by the investigator-rated assessments in seven studies with 1181

  13. Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer.

    PubMed

    Magerl, Markus; Paus, Ralf; Farjo, Nilofer; Müller-Röver, Sven; Peters, Eva M J; Foitzik, Kerstin; Tobin, Desmond J

    2004-10-01

    Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators.

  14. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance.

    PubMed

    Ciganović, Nikola; Wolde-Kidan, Amanuel; Reichenbach, Tobias

    2017-06-15

    The mammalian sense of hearing relies on two types of sensory cells: inner hair cells transmit the auditory stimulus to the brain, while outer hair cells mechanically modulate the stimulus through active feedback. Stimulation of a hair cell is mediated by displacements of its mechanosensitive hair bundle which protrudes from the apical surface of the cell into a narrow fluid-filled space between reticular lamina and tectorial membrane. While hair bundles of inner hair cells are of linear shape, those of outer hair cells exhibit a distinctive V-shape. The biophysical rationale behind this morphology, however, remains unknown. Here we use analytical and computational methods to study the fluid flow across rows of differently shaped hair bundles. We find that rows of V-shaped hair bundles have a considerably reduced resistance to crossflow, and that the biologically observed shapes of hair bundles of outer hair cells are near-optimal in this regard. This observation accords with the function of outer hair cells and lends support to the recent hypothesis that inner hair cells are stimulated by a net flow, in addition to the well-established shear flow that arises from shearing between the reticular lamina and the tectorial membrane.

  15. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected].

    PubMed

    Liang, Jin; Wang, Dongmei; Renaud, Gabriel; Wolfsberg, Tyra G; Wilson, Alexander F; Burgess, Shawn M

    2012-08-01

    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing.

  16. Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs ofSetcreasea purpurea.

    PubMed

    Tucker, E B

    1988-06-01

    pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.

  17. "I think gorilla-like back effusions of hair are rather a turn-off": 'Excessive hair' and male body hair (removal) discourse.

    PubMed

    Terry, Gareth; Braun, Virginia

    2016-06-01

    Men's hair removal practices are becoming mainstream, seen as a consequence of changing masculine norms and men's relationships to their bodies. This is often presented as a straightforward 'shift' from men's ideal bodies as naturally hairy, to increased hairlessness, and the consequence on men's body concerns as inevitable. This paper analyses qualitative survey data from Aotearoa/New Zealand using critical thematic analysis, and describes three themes. Two themes capture contradictory ideas: that men's body hair is natural, and that men's body hair is unpleasant. A third theme introduces the concept of 'excess' hair, which allowed sense-making of this contradiction, mandating men's grooming of 'excessive' hair. However its vagueness as a concept may provoke anxiety for men resulting in hair removal. This paper adds to a body of research demonstrating a cultural transition: the ways changing masculinities, increased commodification of male bodies, and shifting gender roles impact on men's hair removal practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Forensic species identification of elephant (Elephantidae) and giraffe (Giraffidae) tail hair using light microscopy.

    PubMed

    Yates, Bonnie C; Espinoza, Edgard O; Baker, Barry W

    2010-09-01

    Here we present methods for distinguishing tail hairs of African elephants (Loxodonta africana), Asian elephants (Elephas maximus), and giraffes (Giraffa camelopardalis) from forensic contexts. Such hairs are commonly used to manufacture jewelry artifacts that are often sold illegally in the international wildlife trade. Tail hairs from these three species are easily confused macroscopically, and morphological methods for distinguishing African and Asian tail hairs have not been published. We used cross section analysis and light microscopy to analyze the tail hair morphology of 18 individual African elephants, 18 Asian elephants, and 40 giraffes. We found that cross-sectional shape, pigment placement, and pigment density are useful morphological features for distinguishing the three species. These observations provide wildlife forensic scientists with an important analytical tool for enforcing legislation and international treaties regulating the trade in elephant parts.

  19. Adenosine increases anagen hair growth and thick hairs in Japanese women with female pattern hair loss: a pilot, double-blind, randomized, placebo-controlled trial.

    PubMed

    Oura, Hajimu; Iino, Masato; Nakazawa, Yosuke; Tajima, Masahiro; Ideta, Ritsuro; Nakaya, Yutaka; Arase, Seiji; Kishimoto, Jiro

    2008-12-01

    Adenosine upregulates the expression of vascular endothelial growth factor and fibroblast growth factor-7 in cultured dermal papilla cells. It has been shown that, in Japanese men, adenosine improves androgenetic alopecia due to the thickening of thin hair due to hair follicle miniaturization. To investigate the efficacy and safety of adenosine treatment to improve hair loss in women, 30 Japanese women with female pattern hair loss were recruited for this double-blind, randomized, placebo-controlled study. Volunteers used either 0.75% adenosine lotion or a placebo lotion topically twice daily for 12 months. Efficacy was evaluated by dermatologists and by investigators and in phototrichograms. As a result, adenosine was significantly superior to the placebo according to assessments by dermatologists and investigators and by self-assessments. Adenosine significantly increased the anagen hair growth rate and the thick hair rate. No side-effects were encountered during the trial. Adenosine improved hair loss in Japanese women by stimulating hair growth and by thickening hair shafts. Adenosine is useful for treating female pattern hair loss in women as well as androgenetic alopecia in men.

  20. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    PubMed

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  1. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration

    PubMed Central

    Obholzer, Nikolaus D.; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A.; Megason, Sean G.; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration. PMID:27351484

  2. Hair cycle in dogs with different hair types in a tropical region of Brazil.

    PubMed

    Favarato, Evandro S; Conceição, Lissandro Gonçalves

    2008-02-01

    Hair cycle activity has been extensively studied in humans, sheep and laboratory animals, but there is a lack of information in dogs. Besides varying according to species, breed, sex and general health, hair growth is mainly affected by climatic variations. The aim of the study was to evaluate the follicle activity in three breeds of dogs with different hair types, in the city of Viçosa, Minas Gerais (latitude 20 degrees 45'S), Brazil. Twenty-one male dogs of boxer, labrador and schnauzer breeds were trichographically analysed monthly over 12 consecutive months. Hair percentage of telogen and anagen hairs at the different stages of the hair cycle in boxers and labradors was not significantly different, but both differed from the schnauzers. A significant correlation between hair follicle cycle and environmental temperature and photoperiod was noted in the boxers and labradors. In these breeds, a larger number of telogen hairs were observed during the hottest months of the year, and an increase in anagen hairs during the coldest months. The mean percentage of telogen hairs was 93, 90 and 55.3% for boxer, labrador and schnauzer, respectively.

  3. The influence of hair bleach on the ultrastructure of human hair with special reference to hair damage.

    PubMed

    Imai, Takehito

    2011-05-01

    The influence of human hair bleaching agents with different bleaching strength on the ultrastructure of human hair was studied using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer equipped with TEM (EDS-TEM). Two kinds of bleaching agents were used: a lightener agent with a weak bleaching effect and a powder-bleach with a stronger bleaching effect. From the comparison of the bleaching properties obtained by the electronic staining of black and white hair samples, it was suggested that the permeability of hair was increased by bleaching, and there was an increase of the stainability of hair subjected to electronic staining. The bleaching action provoked the decomposition of melanin granules and the flow out of granular contents into the intermacrofibrillar matrix. Some metal elements were detected in the melanin granular matrix by EDS-TEM. As a result, the diffusion of metal elements into the intermacrofibrillar matrix promoted further damage to the hair by catalytic action with the hydrogen peroxide in the bleaching agents outside the melanin granules. Further study will lead us to the edge of the development of a new bleaching agent, which reacts only with melanin granules and causes the minimum of damage to outside the melanin granules.

  4. Association between Nitrogen Stable Isotope Ratios in Human Hair and Serum Levels of Leptin.

    PubMed

    Ahn, Song Vogue; Koh, Sang-Baek; Lee, Kwang-Sik; Bong, Yeon-Sik; Park, Jong-Ku

    2017-10-01

    Stable isotope ratios have been reported to be potential biomarkers of dietary intake and nutritional status. High serum levels of leptin, a hormone which regulates energy metabolism and food intake, are associated with insulin resistance and metabolic syndrome. However, little is known about the association between stable isotope ratios and the metabolic risk in humans. We investigated whether the carbon and nitrogen stable isotope ratios in hair are associated with serum leptin levels. Hair samples were collected from 399 healthy adults (233 men and 166 women) aged 40 to 70 years of a community-based cohort in Korea and the bulk stable isotope ratios of carbon (δ 13 C) and nitrogen (δ 15 N) were measured for all hair samples. Serum leptin levels were analyzed by radioimmunoassay. δ 15 N showed positive correlations with serum leptin levels. In multivariate models, increasing δ 15 N were associated with elevated serum leptin levels (defined as ≥ the median values), whereas δ 13 C were not significantly associated with serum leptin levels. The odds ratio (95% confidence interval) per 1‰ increase in δ 15 N for an elevated serum leptin level was 1.58 (1.11-2.26). In participants with high body mass index, δ 15 N showed positive associations with serum leptin levels, whereas these associations were not seen in participants with low body mass index. The nitrogen stable isotopic ratio in hair is positively associated with serum leptin levels. The hair δ 15 N could be used as a clinical marker to estimate metabolic risk.

  5. Comparison of hair shaft damage after chemical treatment in Asian, White European, and African hair.

    PubMed

    Lee, Yoonhee; Kim, Youn-Duk; Pi, Long-Quan; Lee, Sung Yul; Hong, Hannah; Lee, Won-Soo

    2014-09-01

    Diverse causes of extrinsic damage to the hair shaft have been documented and can be roughly divided into physical and chemical causes. Chemical causes of hair damage include bleaching, hair dyeing, and perming. The goal of this study was to investigate differences in patterns of serial damage in Asian, White European (WE), and African hair after chemical stress imposed by straightening and coloring treatments. Hairs were divided into control and treatment groups (straightening, coloring, and a combination of straightening and coloring). At 24 hours after the final treatment, patterns of hair damage were evaluated using transmission electron microscopy (TEM) and lipid TEM. Grades of hair cuticle and cortex damage were evaluated by three dermatologists. In the TEM examination, the cuticle of Asian hair proved to be resistant to damage caused by straightening treatments, whereas the WE hair cuticle and cortex were relatively susceptible to stress imposed by coloring treatments. In the combination treatment of straightening and coloring, African hair emerged as the most resistant to stress. In the lipid TEM examination, no notable differences in cell membrane complex damage were observed among the three groups of hairs. The present study suggests that WE hair is relatively susceptible and African hair is more resistant to chemical stresses, such as those imposed by straightening and coloring. © 2013 The International Society of Dermatology.

  6. Expression and function of glycogen synthase kinase-3 in human hair follicles.

    PubMed

    Yamauchi, Koichi; Kurosaka, Akira

    2010-05-01

    Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.

  7. The hair follicle enigma.

    PubMed

    Bernard, Bruno A

    2017-06-01

    The hair follicle is a mini-organ endowed with a unique structure and cyclic behaviour. Despite the intense research efforts which have been devoted at deciphering the hair follicle biology over the past 70 years, one must admit that hair follicle remains an enigma. In this brief review, various aspects of hair follicle biology will be addressed, and more importantly, unsolved questions and new possible research tracks will be highlighted, including hair follicle glycobiology and exosome-mediated cell-cell interactions. Even though bricks of knowledge are solidly being acquired, an integrative picture remains to emerge. One can predict that computer science, algorithms and bioinformatics will assist in fostering our understanding hair biology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Gel network shampoo formulation and hair health benefits.

    PubMed

    Marsh, J M; Brown, M A; Felts, T J; Hutton, H D; Vatter, M L; Whitaker, S; Wireko, F C; Styczynski, P B; Li, C; Henry, I D

    2017-10-01

    The objective of this work was to create a shampoo formula that contains a stable ordered gel network structure that delivers fatty alcohols inside hair. X-ray diffraction (SAXS and WAXS), SEM and DSC have been used to confirm formation of the ordered Lβ gel network with fatty alcohol (cetyl and stearyl alcohols) and an anionic surfactant (SLE1S). Micro-autoradiography and extraction methods using GC-MS were used to confirm penetration of fatty alcohols into hair, and cyclic fatigue testing was used to measure hair strength. In this work, evidence of a stable Lβ ordered gel network structure created from cetyl and stearyl alcohols and anionic surfactant (SLE1S) is presented, and this is confirmed via scanning electron microscopy images showing lamella layers and differential scanning calorimetry (DSC) showing new melting peaks vs the starting fatty alcohols. Hair washed for 16 repeat cycles with this shampoo showed penetration of fatty alcohols from the gel network into hair as confirmed by a differential extraction method with GC-MS and by radiolabelling of stearyl alcohol and showing its presence inside hair cross-sections. The gel network role in delivering fatty alcohol inside hair is demonstrated by comparing with a shampoo with added fatty alcohol not in an ordered gel network structure. The hair containing fatty alcohol was measured via the Dia-stron cyclic fatigue instrument and showed a significantly higher number of cycles to break vs control. The formation of a stable gel network was confirmed in the formulated shampoo, and it was demonstrated that this gel network is important to deliver cetyl and stearyl alcohols into hair. The presence of fatty alcohol inside hair was shown to deliver a hair strength benefit via cyclic fatigue testing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Issues about axial diffusion during segmental hair analysis.

    PubMed

    Kintz, Pascal

    2013-06-01

    The detection of a single drug exposure in hair (doping offence, drug-facilitated crime) is based on the presence of the compound of interest in the segment corresponding to the period of the alleged event. However, in some cases, the drug is detected in consecutive segments. As a consequence, interpretation of the results is a challenge that deserves particular attention. Literature evaluation and data obtained from the 20-year experience in drug testing in hair of the author are used as the basis to establish a theory to validate the concept of single exposure in authentic forensic cases where the drug is detected in 2 or 3 segments. The gained experience recommends to wait for 4-5 weeks after the alleged event and then to collect strands of hair. Assuming normal hair growth rate (1 cm/mo), it is advisable to cut the strand into 3 segments of 2 cm to document eventual exposure. Administration of a single dose would be confirmed by the presence of the drug in the proximal 2-cm segment (root), whereas not detected in the 2 other segments. However, in the daily experience of the author, it was noticed that sometimes (about 1 case from 10 examinations), the drug can be detected in 2 or 3 consecutive segments. Such a disposition was even observed in volunteer experiments in the literature. As it was also described for cocaine in early 1996, there is considerable variability in the area over which incorporated drug can be distributed in the hair shaft and in the rate of axial distribution of drug along the hair shaft. This can explain why a small amount of drug, as compared with the concentration in the proximal segment, can be measured in the second segment, as a result of an irregular movement. Another explanation for broadening the band of positive hair from a single dose is that drugs and metabolites are incorporated into hair during formation of the hair shaft via diffusion from sweat and other secretions. The presence of confounding interferences in the hair

  10. Regulation of the nuclear factor (NF)-kappaB pathway by ISGylation.

    PubMed

    Minakawa, Miki; Sone, Takayuki; Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-12-01

    Post-translational modification with ISG15 (interferon-stimulated gene 15 kDa) (ISGylation) is mediated by a sequential reaction similar to ubiquitination, and various target proteins for ISGylation have been identified. We previously reported that ISGylation of the E2 ubiquitin-conjugating enzyme Ubc13 suppresses its E2 activity. Ubc13 forms a heterodimer with Uev1A, a ubiquitin-conjugating enzyme variant, and the Ubc13-Uev1A complex catalyzes the assembly of a Lys63-linked polyubiquitin chain, which plays a non-proteolytic role in the nuclear factor (NF)-kappaB pathway. In this study, we examined the effect of ISGylation on tumor necrosis factor receptor-associated factor (TRAF)-6/transforming growth factor beta-activated kinase (TAK)-1-dependent NF-kappaB activation. We found that expression of the ISGylation system suppresses NF-kappaB activation via TRAF6 and TAK1 and that the level of polyubiquitinated TRAF6 is reduced by expression of the ISGylation system. Taken together, the results suggest that the NF-kappaB pathway is negatively regulated by ISGylation.

  11. Optical hair removal.

    PubMed

    Ort, R J; Anderson, R R

    1999-06-01

    Traditional methods of hair removal have proven unsatisfactory for many individuals with excessive or unwanted hair. In the last few years, several lasers and xenon flashlamps have been developed that promise to fulfill the need for a practical, safe, and long-lasting method of hair removal. Aggressive marketing of these has contributed to their popularity among patients and physicians. However, significant controversy and confusion surrounds this field. This article provides a detailed explanation of the scientific underpinnings for optical hair removal and explores the advantages and disadvantages of the various devices currently available (Nd:YAG, ruby, alexandrite, diode lasers, and xenon flashlamp). Treatment and safety guidelines are provided to assist the practitioner in the use of these devices. Although the field of optical hair removal is still in its infancy, initial reports of long-term efficacy are encouraging.

  12. Biomimetic model systems of rigid hair beds: Part II - Experiment

    NASA Astrophysics Data System (ADS)

    Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.

  13. Fourier transform infrared attenuated total reflection analysis of human hair: comparison of hair from breast cancer patients with hair from healthy subjects.

    PubMed

    Lyman, Donald J; Murray-Wijelath, Jacqueline

    2005-01-01

    A comparative study of Fourier transform infrared attenuated total reflection (FTIR-ATR) spectra of 32 scalp and pubic hair samples from individuals diagnosed with breast cancer and those who were negative for breast cancer showed increases in the beta-sheet/disorder structures (relative to alpha-helix structures) and C-H lipid content of hair from breast cancer patients. Thus, the presence of breast cancer appears to alter the hair growth process, resulting in changes in the composition and conformation of cell membrane and matrix materials of hair fiber. These appear to be consistent with the changes observed in X-ray diffraction patterns for hair from breast cancer patients. A blind study of 12 additional hair samples using these FTIR-ATR spectral differences as markers correctly identified all four hair samples from cancer patients (100%). Two of these samples were from breast cancer patients. Of the remaining two samples analyzing positive for cancer, one was from a prostate cancer patient and one from a lung cancer patient. Thus, it appears that the mechanism that alters hair fiber synthesis in the three types of cancer may be similar. The blind study incorrectly identified as positive for cancer three hair samples from two apparently healthy individuals and one patient considered cured from prostate cancer.

  14. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipidinduced inflammation and insulin resistance in muscle cells

    PubMed Central

    Hussey, Sophie E.; Liang, Hanyu; Costford, Sheila R.; Klip, Amira; DeFronzo, Ralph A.; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-01-01

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action. PMID:23050932

  15. Characterization of human scalp hairs by optical low-coherence reflectometry

    NASA Astrophysics Data System (ADS)

    Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.

    1995-03-01

    Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.

  16. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway

    PubMed Central

    Ahmed, Mohammed I.; Alam, Majid; Emelianov, Vladimir U.; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A.; Mardaryev, Andrei N.

    2014-01-01

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging. PMID:25422376

  17. l-Ascorbic acid 2-phosphate promotes elongation of hair shafts via the secretion of insulin-like growth factor-1 from dermal papilla cells through phosphatidylinositol 3-kinase.

    PubMed

    Kwack, M H; Shin, S H; Kim, S R; Im, S U; Han, I S; Kim, M K; Kim, J C; Sung, Y K

    2009-06-01

    l-Ascorbic acid 2-phosphate (Asc 2-P), a derivative of l-ascorbic acid, promotes elongation of hair shafts in cultured human hair follicles and induces hair growth in mice. To investigate whether the promotion of hair growth by Asc 2-P is mediated by insulin-like growth factor-1 (IGF-1) and, if so, to investigate the mechanism of the Asc 2-P-induced IGF-1 expression. Dermal papilla (DP) cells were cultured and IGF-1 level was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay after Asc 2-P treatment in the absence or presence of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Also, hair shaft elongation in cultured human scalp hair follicles and proliferation of cocultured keratinocytes were examined after Asc 2-P treatment in the absence or presence of neutralizing antibody against IGF-1. In addition, keratinocyte proliferation in cultured hair follicles after Asc 2-P treatment in the absence or presence of LY294002 was examined by Ki-67 immunostaining. IGF-1 mRNA in DP cells was upregulated and IGF-1 protein in the conditioned medium of DP cells was significantly increased after treatment with Asc 2-P. Immunohistochemical staining showed that IGF-1 staining is increased in the DP of cultured human hair follicles by Asc 2-P. The neutralizing antibody against IGF-1 significantly suppressed the Asc 2-P-mediated elongation of hair shafts in hair follicle organ culture and significantly attenuated Asc 2-P-induced growth of cocultured keratinocytes. LY294002 significantly attenuated Asc 2-P-inducible IGF-1 expression and proliferation of follicular keratinocytes in cultured hair follicles. These data show that Asc 2-P-inducible IGF-1 from DP cells promotes proliferation of follicular keratinocytes and stimulates hair follicle growth in vitro via PI3K.

  18. Pubic hair of infancy: endocrinopathy or enigma?

    PubMed

    Nebesio, Todd D; Eugster, Erica A

    2006-03-01

    Pubic hair of infancy is a rare condition that has not been well-characterized. A retrospective chart review of infants <12 months of age who presented to our pediatric endocrine clinics with isolated pubic hair over the last 5 years was performed. Eleven patients were identified (6 male and 5 female). The average age at diagnosis was 8.3 +/- 2.0 months. The majority of patients (73%) had pubic hair in an atypical location. Growth pattern, laboratory evaluation, and bone-age radiographs were unremarkable for all the infants. Of the infants that returned for follow-up, pubic hair resolved by the age of 11.0 +/- 1.5 months. From our experience and review of the literature, we suggest that isolated pubic hair of infancy is a benign entity. However, long-term follow-up needs to be done to determine if pubic hair of infancy is an atypical variant of premature adrenarche, which may place these patients at risk for later adult disease.

  19. Segmental Analysis of Chlorprothixene and Desmethylchlorprothixene in Postmortem Hair.

    PubMed

    Günther, Kamilla Nyborg; Johansen, Sys Stybe; Wicktor, Petra; Banner, Jytte; Linnet, Kristian

    2018-06-26

    Analysis of drugs in hair differs from their analysis in other tissues due to the extended detection window, as well as the opportunity that segmental hair analysis offers for the detection of changes in drug intake over time. The antipsychotic drug chlorprothixene is widely used, but few reports exist on chlorprothixene concentrations in hair. In this study, we analyzed hair segments from 20 deceased psychiatric patients who had undergone chronic chlorprothixene treatment, and we report hair concentrations of chlorprothixene and its metabolite desmethylchlorprothixene. Three to six 1-cm long segments were analyzed per individual, corresponding to ~3-6 months of hair growth before death, depending on the length of the hair. We used a previously published and fully validated liquid chromatography-tandem mass spectrometry method for the hair analysis. The 10th-90th percentiles of chlorprothixene and desmethylchlorprothixene concentrations in all hair segments were 0.05-0.84 ng/mg and 0.06-0.89 ng/mg, respectively, with medians of 0.21 and 0.24 ng/mg, and means of 0.38 and 0.43 ng/mg. The estimated daily dosages ranged from 28 mg/day to 417 mg/day. We found a significant positive correlation between the concentration in hair and the estimated daily doses for both chlorprothixene (P = 0.0016, slope = 0.0044 [ng/mg hair]/[mg/day]) and the metabolite desmethylchlorprothixene (P = 0.0074). Concentrations generally decreased throughout the hair shaft from proximal to distal segments, with an average reduction in concentration from segment 1 to segment 3 of 24% for all cases, indicating that most of the individuals had been compliant with their treatment. We have provided some guidance regarding reference levels for chlorprothixene and desmethylchlorprothixene concentrations in hair from patients undergoing long-term chlorprothixene treatment.

  20. Hair camouflage: A comprehensive review.

    PubMed

    Saed, Stephanie; Ibrahim, Omer; Bergfeld, Wilma F

    2016-12-01

    Hair is venerated, cherished, and desired in societies throughout the world. Both women and men express their individual identities through their hairstyles. Healthy hair contributes to successful social assimilation, employment, and overall quality of life. Therefore, hair loss can have detrimental effects on almost every aspect of a person's life. In this review, we discuss the myriad of options that aid in concealing and camouflaging hair loss to facilitate a healthier-appearing scalp. Camouflage options for patients who suffer from hair loss include full or partial wigs, hair extensions, concealing powders and sprays, surgical tattoos, and hair transplants. We describe these modalities in detail and discuss their respective advantages and disadvantages.

  1. Hair camouflage: A comprehensive review.

    PubMed

    Saed, Stephanie; Ibrahim, Omer; Bergfeld, Wilma F

    2017-03-01

    Hair is venerated, cherished, and desired in societies throughout the world. Both women and men express their individual identities through their hairstyles. Healthy hair contributes to successful social assimilation, employment, and overall quality of life. Therefore, hair loss can have detrimental effects on almost every aspect of a person's life. In this review, we discuss the myriad of options that aid in concealing and camouflaging hair loss to facilitate a healthier-appearing scalp. Camouflage options for patients who suffer from hair loss include full or partial wigs, hair extensions, concealing powders and sprays, surgical tattoos, and hair transplants. We describe these modalities in detail and discuss their respective advantages and disadvantages.

  2. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  3. Voltage-Gated Calcium Influx Modifies Cholinergic Inhibition of Inner Hair Cells in the Immature Rat Cochlea.

    PubMed

    Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert

    2018-06-20

    Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons

  4. Hair cortisol and cortisone are decreased by natural sunlight.

    PubMed

    Wester, Vincent L; van der Wulp, Nils R P; Koper, Jan W; de Rijke, Yolanda B; van Rossum, Elisabeth F C

    2016-10-01

    Hair glucocorticoids (cortisol and cortisone) are increasingly used as measures of long-term integrated exposure to glucocorticoid hormones. Glucocorticoids gradually disappear from the hair shaft, which may result from exposure to ultraviolet (UV) radiation in natural sunlight. We aimed to study the influence of sun exposure on hair glucocorticoids. Scalp hair samples were obtained from nine volunteers (median age 33 [range 21-81], 7 females), and part of each hair sample was exposed to three experimental conditions: repeated exposure to natural sunlight for 40h (natural UV), exposure to a high amount of artificial UV radiation, and storage in the dark (control). Hair cortisol (HairF) and cortisone (HairE) were quantified by liquid chromatography-tandem mass spectrometry. When compared to control, HairF was decreased in 9 out of 9 hair samples after natural sunlight exposure (median decrease -3.1pg/mg or -54%, P<0.001) and artificial UV radiation (-4.7pg/mg or -75%, P=0.003). HairE decreased in 8 out of 9 samples, both after natural sunlight (-7.6pg/mg or -32%, P=0.012) and artificial UV (-10.7pg/mg or -52%, P=0.026). Exposure to natural sunlight decreases the glucocorticoid content of scalp hair, apparently through UV radiation, and is therefore an important confounder that should be considered in studies involving the measurement of hair glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis.

    PubMed

    Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro

    2009-01-01

    Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.

  6. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  7. Static length changes of cochlear outer hair cells can tune low-frequency hearing

    PubMed Central

    Ciganović, Nikola; Warren, Rebecca L.; Keçeli, Batu; Jacob, Stefan

    2018-01-01

    The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ’s motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings. PMID:29351276

  8. The proteomic profile of hair damage.

    PubMed

    Sinclair, R; Flagler, M J; Jones, L; Rufaut, N; Davis, M G

    2012-06-01

    Monilethrix is a congenital hair shaft disorder with associated fragility. Many of the changes seen in monilethrix hair on light microscopy and scanning electron microscopy are also seen in hair weathering and cosmetic damage to hair. We used monilethrix as a model to investigate the relationship between hair protein structure and hair strength and resistance to cosmetic insult. We applied proteomic techniques to identify novel peptide damage markers for chemical oxidative damage to hair. The findings suggest that specific sites in the protein structure of hair are targeted during oxidative damage from bleaching, a unique insight into how chemical damage compromises the structural integrity of the hair shaft at the molecular level. Applying proteomics to the study of congenital and acquired hair shaft disorders can deliver new insights into hair damage and novel strategies to strengthen hair. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  9. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    PubMed

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  10. Light Sheet Fluorescence Microscopy Quantifies Calcium Oscillations in Root Hairs of Arabidopsis thaliana.

    PubMed

    Candeo, Alessia; Doccula, Fabrizio G; Valentini, Gianluca; Bassi, Andrea; Costa, Alex

    2017-07-01

    Calcium oscillations play a role in the regulation of the development of tip-growing plant cells. Using optical microscopy, calcium oscillations have been observed in a few systems (e.g. pollen tubes, fungal hyphae and algal rhizoids). High-resolution, non-phototoxic and rapid imaging methods are required to study the calcium oscillation in root hairs. We show that light sheet fluorescence microscopy is optimal to image growing root hairs of Arabidopsis thaliana and to follow their oscillatory tip-focused calcium gradient. We describe a protocol for performing live imaging of root hairs in seedlings expressing the cytosol-localized ratiometric calcium indicator Yellow Cameleon 3.6. Using this protocol, we measured the calcium gradient in a large number of root hairs. We characterized their calcium oscillations and correlated them with the rate of hair growth. The method was then used to screen the effect of auxin on the properties of the growing root hairs. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NASA Astrophysics Data System (ADS)

    Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.

    2005-07-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.

  12. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea.

    PubMed

    Tucker, E B

    1990-08-01

    The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca(2+) had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5-10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30-120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.

  13. Biologic Rhythms Derived from Siberian Mammoths Hairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Spilde; A Lanzirotti; C Qualls

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending onmore » location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.« less

  14. Polar lipid composition of mammalian hair.

    PubMed

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  15. Telogen Effluvium Hair Loss

    MedlinePlus

    ... pillow. This is the result of the normal hair growth cycle. Hairs will grow for a few years, ... the name for the resting stage of the hair growth cycle. A telogen effluvium is when some stress ...

  16. Taking Care of Your Hair

    MedlinePlus

    ... Educators Search English Español Taking Care of Your Hair KidsHealth / For Teens / Taking Care of Your Hair ... role in how healthy it looks. Caring for Hair How you take care of your hair depends ...

  17. Hair transplantation update.

    PubMed

    Rogers, Nicole E

    2015-06-01

    Contemporary hair transplant surgery offers results that are natural and undetectable. It is an excellent treatment option for male and female pattern hair loss. Patients are encouraged to also use medical therapy to help protect their surgical results and prevent ongoing thinning of the surrounding hairs. The two major techniques of donor elliptical harvesting and follicular unit extraction are discussed here. ©2015 Frontline Medical Communications.

  18. An evaluation of distal hair cortisol concentrations collected at delivery.

    PubMed

    Orta, Olivia R; Tworoger, Shelley S; Terry, Kathryn L; Coull, Brent A; Gelaye, Bizu; Kirschbaum, Clemens; Sanchez, Sixto E; Williams, Michelle A

    2018-04-04

    Distal hair segments collected at delivery may allow for the assessment of maternal cortisol secretion in early pregnancy, an important time window for fetal development. Therefore, an investigation of the validity of distal hair cortisol concentrations is warranted. We examined the concordance between proximal and distal hair cortisol concentrations (HCC), both representing the first trimester of pregnancy. The study population was comprised of a random sample of 97 women participating in the Pregnancy Outcomes Maternal and Infant Study, a prospective cohort study of pregnant women attending prenatal clinics in Lima, Peru. Each participant provided two hair samples: once at enrollment [mean gestational age (GA) = 13.1 weeks] and again at full-term delivery (mean GA = 39.0 weeks). Hair segments reflecting the first trimester were: 3 cm hair segments closest to the scalp on the first hair sample (proximal) and 6-9 cm from the scalp on the second hair sample (distal). HCC was determined using Luminescence Immunoassay. A subset (N = 28) had both hair segments additionally analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). HCC values were log-transformed (logHCC), and proximal-distal differences tested using paired sample t-tests. Concordance was evaluated within and across assay types. LogHCC, measured using immunoassay, in distal hair segments was lower compared to proximal hair segments (1.35 versus 1.64 respectively; p = .02). No difference was observed using LC-MS/MS (1.99 versus 1.83, respectively; p=.33). Proximal-distal concordance was low within assay (immunoassay: Pearson = 0.27 and κ = 0.10; LC-MS/MS: Pearson = 0.37 and κ = 0.07). High correlation was observed across assays for both distal (Pearson = 0.78, p < .001; κ = 0.64) and proximal segments (Pearson = 0.96, p < .001; κ = 0.75). In conclusion, distal first-trimester hair segments collected at delivery have lower

  19. Molecular Dissection of Mesenchymal–Epithelial Interactions in the Hair Follicle

    PubMed Central

    Rendl, Michael; Lewis, Lisa

    2005-01-01

    De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP) cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal–epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type–specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells). By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal–epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states. PMID:16162033

  20. Abnormalities of hair structure and skin histology derived from CRISPR/Cas9-based knockout of phospholipase C-delta 1 in mice.

    PubMed

    Liu, Yu-Min; Liu, Wei; Jia, Jun-Shuang; Chen, Bang-Zhu; Chen, Heng-Wei; Liu, Yu; Bie, Ya-Nan; Gu, Peng; Sun, Yan; Xiao, Dong; Gu, Wei-Wang

    2018-05-25

    Hairless mice have been widely applied in skin-related researches, while hairless pigs will be an ideal model for skin-related study and other biomedical researches because of the similarity of skin structure with humans. The previous study revealed that hairlessness phenotype in nude mice is caused by insufficient expression of phospholipase C-delta 1 (PLCD1), an essential molecule downstream of Foxn1, which encouraged us to generate PLCD1-deficient pigs. In this study, we plan to firstly produce PLCD1 knockout (KO) mice by CRISPR/Cas9 technology, which will lay a solid foundation for the generation of hairless PLCD1 KO pigs. Generation of PLCD1 sgRNAs and Cas 9 mRNA was performed as described (Shao in Nat Protoc 9:2493-2512, 2014). PLCD1-modified mice (F0) were generated via co-microinjection of PLCD1-sgRNA and Cas9 mRNA into the cytoplasm of C57BL/6J zygotes. Homozygous PLCD1-deficient mice (F1) were obtained by intercrossing of F0 mice with the similar mutation. PLCD1-modified mice (F0) showed progressive hair loss after birth and the genotype of CRISPR/Cas9-induced mutations in exon 2 of PLCD1 locus, suggesting the sgRNA is effective to cause mutations that lead to hair growth defect. Homozygous PLCD1-deficient mice (F1) displayed baldness in abdomen and hair sparse in dorsa. Histological abnormalities of the reduced number of hair follicles, irregularly arranged and curved hair follicles, epidermal hyperplasia and disturbed differentiation of epidermis were observed in the PLCD1-deficient mice. Moreover, the expression level of PLCD1 was significantly decreased, while the expression levels of other genes (i.e., Krt1, Krt5, Krt13, loricrin and involucrin) involved in the differentiation of hair follicle were remarkerably increased in skin tissues of PLCD1-deficient mice. In conclusion, we achieve PLCD1 KO mice by CRISPR/Cas9 technology, which provide a new animal model for hair development research, although homozygotes don't display completely hairless

  1. Trichotillomania (Hair-Pulling Disorder)

    MedlinePlus

    Trichotillomania (hair-pulling disorder) Overview Trichotillomania (trik-o-til-o-MAY-nee-uh), also called hair-pulling disorder, is a mental disorder that involves recurrent, irresistible urges to pull out hair from your scalp, eyebrows or other areas of ...

  2. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans

    PubMed Central

    2013-01-01

    Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss. PMID:23394579

  3. Pharmacologic interventions in aging hair

    PubMed Central

    Trüeb, Ralph M

    2006-01-01

    The appearance of hair plays an important role in people’s overall physical appearance and self-perception. With today’s increasing life-expectations, the desire to look youthful plays a bigger role than ever. The hair care industry has become aware of this and is delivering active products directed towards meeting this consumer demand. The discovery of pharmacological targets and the development of safe and effective drugs also indicate strategies of the drug industry for maintenance of healthy and beautiful hair. Hair aging comprises weathering of the hair shaft, decrease of melanocyte function, and decrease in hair production. The scalp is subject to intrinsic and extrinsic aging. Intrinsic factors are related to individual genetic and epigenetic mechanisms with interindividual variation: prototypes are familial premature graying, and androgenetic alopecia. Currently available pharmacologic treatment modalities with proven efficacy for treatment of androgenetic alopecia are topical minoxidil and oral finasteride. Extrinsic factors include ultraviolet radiation and air pollution. Experimental evidence supports the hypothesis that oxidative stress also plays a role in hair aging. Topical anti-aging compounds include photoprotectors and antioxidants. In the absence of another way to reverse hair graying, hair colorants remain the mainstay of recovering lost hair color. Topical liposome targeting for melanins, genes, and proteins selectively to hair follicles are currently under investigation. PMID:18044109

  4. Reciprocal role of vitamin D receptor on β-catenin regulated keratinocyte proliferation and differentiation.

    PubMed

    Hu, Lizhi; Bikle, Daniel D; Oda, Yuko

    2014-10-01

    The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), suppresses the proliferation while promoting the differentiation of keratinocytes through the vitamin D receptor (VDR). β-Catenin, on the other hand, promotes proliferation and blocks epidermal differentiation, although it stimulates hair follicle differentiation. In intestinal epithelia VDR binds β-catenin and blocks its proliferative effects. In this study we investigated the role of 1,25(OH)2D3/VDR on β-catenin regulated gene transcription during keratinocyte proliferation and differentiation. 1,25(OH)2D3 suppressed promoter reporter activity driven by synthetic and natural TCF/β-catenin response elements. Over-expression of VDR further suppressed these TCF/β-catenin promoter activities. 1,25(OH)2D3 also suppressed the mRNA expression of the β-catenin regulated gene Gli1 through VDR. These data were consistent with our previous observations that VDR silencing resulted in keratinocyte hyperproliferation with increased expression of Gli1 in vitro, whereas VDR null skin showed hyperproliferation in vivo. In contrast, 1,25(OH)2D3 induced expression of another β-catenin regulated gene, PADI1, important for both epidermal and hair follicle differentiation. Deletion of VDR resulted in defects in hair differentiation in vivo, with decreased expression of β-catenin regulated hair differentiation genes such as PADI1, hair keratin KRT31 and calcium binding protein S100a3. These genes possess vitamin D response elements (VDRE) adjacent to TCF/β-catenin response elements and are regulated by both VDR and β-catenin signaling. Therefore, we propose that VDR and β-catenin interact reciprocally to promote VDR stimulation of genes involved with differentiation that contain both VDR and β-catenin response elements while inhibiting β-catenin stimulation of genes involved with proliferation. Thus the major finding of this study is that while 1,25(OH)2D3/VDR inhibits the actions of β-catenin to

  5. Peppermint Oil Promotes Hair Growth without Toxic Signs

    PubMed Central

    Park, Min Ah; Kim, Young Chul

    2014-01-01

    Peppermint (Mentha piperita) is a plant native to Europe and has been widely used as a carminative and gastric stimulant worldwide. This plant also has been used in cosmetic formulations as a fragrance component and skin conditioning agent. This study investigated the effect of peppermint oil on hair growth in C57BL/6 mice. The animals were randomized into 4 groups based on different topical applications: saline (SA), jojoba oil (JO), 3% minoxidil (MXD), and 3% peppermint oil (PEO). The hair growth effects of the 4-week topical applications were evaluated in terms of hair growth, histological analysis, enzymatic activity of alkaline phosphatase (ALP), and gene expression of insulin-like growth factor-1 (IGF-1), known bio-markers for the enhanced hair growth. Of the 4 experimental groups, PEO group showed the most prominent hair growth effects; a significant increase in dermal thickness, follicle number, and follicle depth. ALP activity and IGF-1 expression also significantly increased in PEO group. Body weight gain and food efficiency were not significantly different between groups. These results suggest that PEO induces a rapid anagen stage and could be used for a practical agent for hair growth without change of body weight gain and food efficiency. PMID:25584150

  6. An ultrastructural study on corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis.

    PubMed

    Lu, Mao; Ran, Yuping; Dai, Yaling; Lei, Song; Zhang, Chaoliang; Zhuang, Kaiwen; Hu, Wenying

    2016-01-01

    This study was aimed to explain the formation mechanisms of corkscrew hairs and cigarette-ash-shaped hairs observed by dermoscopy of tinea capitis. In the present work, the ultrastructure of the involved hairs collected from a girl with tinea capitis caused by Trichophyton violaceum was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). SEM observation of the corkscrew hair revealed bent hair shaft and asymmetrically disrupted cuticle layer. TEM findings demonstrated the hair shaft became weak. The corkscrew hairs closely covered by scales on the scalp were observed under dermoscopy. We speculate that the formation of corkscrew hairs is a result of a combination of internal damage due to hair degradation by T. violaceum and external resistance due to scales covering the hair. SEM observation of the cigarette-ash-shaped hair revealed irregularly disrupted and incompact end, which might represent the stump of the broken corkscrew hair after treatment. © Wiley Periodicals, Inc.

  7. Identification of differentially expressed genes affecting hair and cashmere growth in the Laiwu black goat by microarray.

    PubMed

    Zhao, Jinshan; Li, Hegang; Liu, Kaidong; Zhang, Baoxun; Li, Peipei; He, Jianning; Cheng, Ming; De, Wei; Liu, Jifeng; Zhao, Yaofeng; Yang, Lihua; Liu, Nan

    2016-10-01

    Goats are an important source of fibers. In the present study microarray technology was used to investigate the potential genes primarily involved in hair and cashmere growth in the Laiwu black goat. A total of 655 genes differentially expressed in body (hair‑growing) and groin (hairless) skin were identified, and their potential association with hair and cashmere growth was analyzed. The majority of genes associated with hair growth regulation could be assigned to intracellular, intracellular organelle, membrane‑bound vesicle, cytoplasmic vesicle, pattern binding, heparin binding, polysaccharide binding, glycosaminoglycan binding and cytoplasmic membrane‑bound vesicle categories. Numerous genes upregulated in body compared with groin skin contained common motifs for nuclear factor 1A, Yi, E2 factor (E2F) and cyclic adenosine monophosphate response element binding (CREB)/CREBβ binding sites in their promoter region. The promoter region of certain genes downregulated in body compared with groin skin contained three common regions with LF‑A1, Yi, E2F, Collier/Olfactory‑1/early B‑cell factor 1, peroxisome proliferator‑activated receptor α or U sites. Thus, the present study identified molecules in the cashmere‑bearing skin area of the Laiwu black goat, which may contribute to hair and cashmere traits.

  8. Mutations in the Cholesterol Transporter Gene ABCA5 Are Associated with Excessive Hair Overgrowth

    PubMed Central

    DeStefano, Gina M.; Kurban, Mazen; Anyane-Yeboa, Kwame; Dall'Armi, Claudia; Di Paolo, Gilbert; Feenstra, Heather; Silverberg, Nanette; Rohena, Luis; López-Cepeda, Larissa D.; Jobanputra, Vaidehi; Fantauzzo, Katherine A.; Kiuru, Maija; Tadin-Strapps, Marija; Sobrino, Antonio; Vitebsky, Anna; Warburton, Dorothy; Levy, Brynn; Salas-Alanis, Julio C.; Christiano, Angela M.

    2014-01-01

    Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5′ donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth. PMID:24831815

  9. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  10. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells.

    PubMed

    Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R; Klip, Amira; DeFronzo, Ralph A; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-11-30

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.

  11. Hair dye poisoning

    MedlinePlus

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  12. Splitting hairs: differentiating between entomological activity, taphonomy, and sharp force trauma on hair.

    PubMed

    Mazzarelli, Debora; Vanin, Stefano; Gibelli, Daniele; Maistrello, Lara; Porta, Davide; Rizzi, Agostino; Cattaneo, Cristina

    2015-03-01

    The analysis of hair can provide useful information for the correct evaluation of forensic cases, but studies of trauma on hair are extremely rare. Hair may present lesions caused by traumatic events or by animals: in fact, signs of sharp force weapons on hair may provide important information for the reconstruction of the manner of death, and, for example, may suggest fetishist practice. This study stemmed from a judicial case where it was fundamental to distinguish between sharp force lesions and insect activity on hair. In order to highlight differences between sharp force lesions and insect feeding activity, different experiments were performed with high power microscopy: hair samples were subjected to several lesions by blunt and sharp force trauma; then samples were used as pabulum for two taxa of insects: the common clothes moth (Tineola bisselliella Lepidoptera, Tineidae) and the carpet beetle (Anthrenus sp., Coleoptera, Dermestidae). Hairs were examined from a macroscopic and microscopic point of view by stereomicroscopy and scanning electron microscopy (SEM): the morphological characteristics of the lesions obtained from the different experimental samples were compared. Results show that sharp force trauma produces lesions with regular edges, whereas insects leave concave lesions caused by their "gnawing" activity. These two types of lesions are easily distinguishable from breaking and tearing using SEM. This study demonstrates that insect activity leaves very specific indications on hair and sheds some light on different hair lesions that may be found in forensic cases.

  13. Creeping hair: an isolated hair burrowing in the uppermost dermis resembling larva migrans.

    PubMed

    Sakai, Rie; Higashi, Kushio; Ohta, Miyuki; Sugimoto, Yasushi; Ikoma, Yukiko; Horiguchi, Yuji

    2006-01-01

    A 55-year-old Japanese male presented with a slowly moving linear erythema that looked like an eruption of creeping disease, or cutaneous larva migrans. The eruption extended linearly along Langer's line of the lateral side of the abdomen to the lower back, leaving wave-like erythema. In the top third of the erythematous eruption, close examination demonstrated a black thin line, which was revealed to be a hair shaft by a shallow incision of the skin. After removal of the hair, the eruption diminished immediately, leaving a slight pigmentation. An ingrown pubic hair seemed to have migrated with the lower end forward along Langer's line, because of the arrangement of hair cuticle and the force of body motion. Linearly moving erythematous eruptions that look like that of larva migrans should be differentiated from creeping hair by close examination detecting burrowing hair.

  14. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    NASA Astrophysics Data System (ADS)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  15. Female Pattern Hair Loss

    MedlinePlus

    ... susceptible women, but is most commonly seen after menopause. In female pattern hair loss some excess loss of hair is noted, but ... all. Spironolactone pills help many women, especially whose hair loss starts before menopause but takes many months. Hormone replacement pills, such ...

  16. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls.

    PubMed

    Van Neste, D J J; Rushton, D H

    2016-08-01

    Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P < 0.006) and global thinning is associated with slower growth rates. Compared with hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    NASA Technical Reports Server (NTRS)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  18. Hair and Physiological Baldness

    PubMed Central

    Mercantini, Edward S.

    1965-01-01

    Human hair is one of the structures of the body about which little is generally known. Disease affecting the hair is often minimized or ignored by physicians because of lack of knowledge of this rudimentary organ. However, the patient's attitude toward hair loss is very different from the doctor's and he feels great concern about such loss. The development, growth and morphology of human hair are briefly presented. Experimental work which will increase our knowledge of hair growth and loss is reviewed. The various forms of physiological alopecia from birth onward are discussed, with special emphasis on the least-known type of physiological baldness, “male-pattern baldness” in the adult female. PMID:14312445

  19. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenström's macroglobulinemia.

    PubMed

    Ghobrial, Irene M; Siegel, David S; Vij, Ravi; Berdeja, Jesus G; Richardson, Paul G; Neuwirth, Rachel; Patel, Chirag G; Zohren, Fabian; Wolf, Jeffrey L

    2016-06-01

    The PI3K/AKT/mTOR signaling pathways are frequently dysregulated in multiple human cancers, including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and Waldenström's macroglobulinemia (WM). This was the first clinical study to evaluate the safety, tolerability, maximal-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics, and preliminary clinical activity of TAK-228, an oral TORC1/2 inhibitor, in patients with MM, NHL, or WM. Thirty-nine patients received TAK-228 once daily (QD) at 2, 4, 6, or 7 mg, or QD for 3 days on and 4 days off each week (QDx3d QW) at 9 or 12 mg, in 28-day cycles. The overall median age was 61.0 years (range 46-85); 31 patients had MM, four NHL, and four WM. Cycle 1 DLTs occurred in five QD patients (stomatitis, urticaria, blood creatinine elevation, fatigue, and nausea and vomiting) and four QDx3d QW patients (erythematous rash, fatigue, asthenia, mucosal inflammation, and thrombocytopenia). The MTDs were determined to be 4 mg QD and 9 mg QDx3d QW. Thirty-six patients (92%) reported at least one drug-related toxicity; the most common grade ≥3 drug-related toxicities were thrombocytopenia (15%), fatigue (10%), and neutropenia (5%). TAK-228 exhibited a dose-dependent increase in plasma exposure and no appreciable accumulation with repeat dosing; mean plasma elimination half-life was 6-8 hr. Of the 33 response-evaluable patients, one MM patient had a minimal response, one WM patient achieved partial response, one WM patient had a minor response, and 18 patients (14 MM, two NHL, and two WM) had stable disease. These findings encourage further studies including combination strategies. © 2016 Wiley Periodicals, Inc.

  20. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth.

    PubMed

    Li, Zheng Jun; Choi, Hye-In; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Lee, Young-Ho; Lee, Jeung-Hoon; Lee, Young

    2012-07-01

    Recently, autologous platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic and orthopedic surgery and dermatology, for its ability to promote wound healing. PRP has been tested during facelift and hair transplantation to reduce swelling and pain and to increase hair density. To investigate the effects of PRP on hair growth using in vivo and in vitro models. PRP was prepared using the double-spin method and applied to dermal papilla (DP) cells. The proliferative effect of activated PRP on DP cells was measured. To understand the mechanisms of activated PRP on hair growth, we evaluated signaling pathways. In an in vivo study, mice received subcutaneous injections of activated PRP, and their results were compared with control mice. Activated PRP increased the proliferation of DP cells and stimulated extracellular signal-regulated kinase (ERK) and Akt signaling. Fibroblast growth factor 7 (FGF-7) and beta-catenin, which are potent stimuli for hair growth, were upregulated in DP cells. The injection of mice with activated PRP induced faster telogen-to-anagen transition than was seen on control mice. Although few studies tested the effects of activated PRP on hair growth, this research provides support for possible clinical application of autologous PRP and its secretory factors for promotion of hair growth. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  1. Roles of GasderminA3 in Catagen-Telogen Transition During Hair Cycling.

    PubMed

    Bai, Xiufeng; Lei, Mingxing; Shi, Jiazhong; Yu, Yu; Qiu, Weiming; Lai, Xiangdong; Liu, Yingxin; Yang, Tian; Yang, Li; Widelitz, Randall B; Chuong, Cheng-Ming; Lian, Xiaohua

    2015-09-01

    Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen), and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles with a Gsdma3 mutation enter the second anagen simultaneously as WT mice. Hair follicles cannot enter the second anagen with ectopic WT Gsdma3 overexpression. A luciferase reporter assay proves that Gsdma3 directly suppresses Wnt signaling. Our findings suggest that Gsdma3 has an important role in catagen-telogen transition by balancing the Wnt signaling pathway and that morphologically typical telogen is not essential for the initiation of a new hair cycle.

  2. Roles of GasderminA3 in catagen- telogen transition during hair cycling

    PubMed Central

    Bai, Xiufeng; Lei, Mingxing; Shi, Jiazhong; Yu, Yu; Qiu, Weiming; Lai, Xiangdong; Liu, Yingxin; Yang, Tian; Yang, Li; Widelitz, Randall Bruce; Chuong, Cheng-Ming; Lian, Xiaohua

    2015-01-01

    Hair follicles undergo cyclic behavior through regression (catagen), rest (telogen) and regeneration (anagen) during postnatal life. The hair cycle transition is strictly regulated by the autonomous and extrinsic molecular environment. However, whether there is a switch controlling catagen-telogen transition remains largely unknown. Here we show that hair follicles cycle from catagen to the next anagen without transitioning through a morphologically typical telogen after Gsdma3 mutation. This leaves an ESLS (epithelial strand-like structure) during the time period corresponding to telogen phase in WT mice. Molecularly, Wnt10b is upregulated in Gsdma3 mutant mice. Restoration of Gsdma3 expression in AE (alopecia and excoriation) mouse skin rescues hair follicle telogen entry and significantly decreases the Wnt10b-mediated Wnt/β-catenin signaling pathway. Overexpression of Wnt10b inhibits telogen entry by increasing epithelial strand cell proliferation. Subsequently, hair follicles with a Gsdma3 mutation enter the second anagen simultaneously as WT mice. Hair follicles cannot enter the second anagen with ectopic WT Gsdma3 overexpression. A luciferase reporter assay proves Gsdma3 directly suppresses Wnt signaling. Our findings suggest Gsdma3 plays an important role in catagen-telogen transition by balancing the Wnt signaling pathway, and that morphologically typical telogen is not essential for the initiation of a new hair cycle. PMID:25860385

  3. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women.

    PubMed

    Helm, Jessica S; Nishioka, Marcia; Brody, Julia Green; Rudel, Ruthann A; Dodson, Robin E

    2018-08-01

    Personal care products are a source of exposure to endocrine disrupting and asthma-associated chemicals. Because use of hair products differs by race/ethnicity, these products may contribute to exposure and disease disparities. This preliminary study investigates the endocrine disrupting and asthma-associated chemical content of hair products used by U.S. Black women. We used gas chromatography/mass spectrometry (GC/MS) to test 18 hair products in 6 categories used by Black women: hot oil treatment, anti-frizz/polish, leave-in conditioner, root stimulator, hair lotion, and relaxer. We tested for 66 chemicals belonging to 10 chemical classes: ultraviolet (UV) filters, cyclosiloxanes, glycol ethers, fragrances, alkylphenols, ethanolamines, antimicrobials, bisphenol A, phthalates, and parabens. The hair products tested contained 45 endocrine disrupting or asthma-associated chemicals, including every targeted chemical class. We found cyclosiloxanes, parabens, and the fragrance marker diethyl phthalate (DEP) at the highest levels, and DEP most frequently. Root stimulators, hair lotions, and relaxers frequently contained nonylphenols, parabens, and fragrances; anti-frizz products contained cyclosiloxanes. Hair relaxers for children contained five chemicals regulated by California's Proposition 65 or prohibited by EU cosmetics regulation. Targeted chemicals were generally not listed on the product label. Hair products used by Black women and children contained multiple chemicals associated with endocrine disruption and asthma. The prevalence of parabens and DEP is consistent with higher levels of these compounds in biomonitoring samples from Black women compared with White women. These results indicate the need for more information about the contribution of consumer products to exposure disparities. A precautionary approach would reduce the use of endocrine disrupting chemicals in personal care products and improve labeling so women can select products consistent with

  4. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  5. Reversal of the hair loss phenotype by modulating the estradiol-ANGPT2 axis in the mouse model of female pattern hair loss.

    PubMed

    Endo, Yujiro; Obayashi, Yuko; Ono, Tomoji; Serizawa, Tetsushi; Murakoshi, Michiaki; Ohyama, Manabu

    2018-07-01

    Despite high demand for a remedy, the treatment options for female pattern hair loss (FPHL) are limited. FPHL is frequent in postmenopausal women. In ovariectomized (OVX) mice, which lack β-estradiol (E2) and manifest hair loss mimicking FPHL, E2 supplementation has been shown to increase hair density. However, the mechanism by which E2 exhibits its biological activity remains elusive. To identify the downstream targets of E2 in the context of FPHL pathophysiology and discover a potential therapeutic agent for the E2-dependent subtype of FPHL. Human dermal papilla cells (hDPCs) were cultured with E2, and a microarray analysis was performed to identify the genes regulated by E2. Using OVX mice, the identified gene product was intradermally administered and then quantitative image analysis of hair density was conducted. In silico analysis to link E2 and the identified gene was performed. Global gene expression and bioinformatics analyses revealed that the genes associated with the angiopoietin-2 (ANGPT2) pathway were upregulated by E2 in hDPCs. ANGPT2 was significantly downregulated in OVX mice than in sham-operated mice (P < 0.01). Importantly, hair density was higher in OVX mice treated with ANGPT2 than in control mice (P < 0.05). In silico analysis showed DNA sequences with high possibility of estrogen receptor binding in the promoter region of ANGPT2. The E2-ANGPT2 axis is present in hair follicles. ANGPT2 provides a strategy for the management of E2-dependent and postmenopausal subsets of FPHL. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  6. Human hair pigmentation--biological aspects.

    PubMed

    Tobin, D J

    2008-08-01

    Skin and hair colour contribute significantly to our overall visual appearance and to social/sexual communication. Despite their shared origins in the embryologic neural crest, the hair follicle and epidermal pigmentary units occupy distinct, although open, cutaneous compartments. They can be distinguished principally on the basis of the former's stringent coupling to the hair growth cycle compared with the latter's continuous melanogenesis. The biosynthesis of melanin and its subsequent transfer from melanocyte to hair bulb keratinocytes depend on the availability of melanin precursors and on a raft of signal transduction pathways that are both highly complex and commonly redundant. These signalling pathways can be both dependent and independent of receptors, act through auto-, para- or intracrine mechanisms and can be modified by hormonal signals. Despite many shared features, follicular melanocytes appear to be more sensitive than epidermal melanocytes to ageing influences. This can be seen most dramatically in hair greying/canities and this is likely to reflect significant differences in the epidermal and follicular microenvironments. The hair follicle pigmentary unit may also serve as an important environmental sensor, whereby hair pigment contributes to the rapid excretion of heavy metals, chemicals and toxins from the body by their selective binding to melanin; rendering the hair fibre a useful barometer of exposures. The recent availability of advanced cell culture methodologies for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture should provide the research tools necessary to elucidate the regulatory mechanisms of hair follicle pigmentation. In the longer term, it may be feasible to develop hair colour modifiers of a biological nature to accompany those based on chemicals.

  7. Ecabet sodium alleviates neomycin-induced hair cell damage.

    PubMed

    Rah, Yoon Chan; Choi, June; Yoo, Myung Hoon; Yum, Gunhwee; Park, Saemi; Oh, Kyoung Ho; Lee, Seung Hoon; Kwon, Soon Young; Cho, Seung Hyun; Kim, Suhyun; Park, Hae-Chul

    2015-12-01

    Ecabet sodium (ES) is currently applied to some clinical gastrointestinal disease primarily by the inhibition of the ROS production. In this study, the protective role of ES was evaluated against the neomycin-induced hair cell loss using zebrafish experimental animal model. Zebrafish larvae (5-7 dpf), were treated with each of the following concentrations of ES: 5, 10, 20, 40, and 80 μg/mL for 1 h, followed by 125 μM neomycin for 1h. The positive control group was established by 125 μM neomycin-only treatment (1h) and the negative control group with no additional chemicals was also established. Hair cells inside four neuromasts ( SO1, SO2, O1, OC1) were assessed using fluorescence microscopy (n = 10). Hair cell survival was calculated as the mean number of viable hair cells for each group. Apoptosis and mitochondrial damage were investigated using special staining (TUNEL and DASPEI assay, respectively), and compared among groups. Ultrastructural changes were evaluated using scanning electron microscopy. Pre-treatment group with ES increased the mean number of viable hair cells as a dose-dependent manner achieving almost same number of viable hair cells with 40 μM/ml ES treatment (12.98 ± 2.59 cells) comparing to that of the negative control group (14.15 ± 1.39 cells, p = 0.72) and significantly more number of viable hair cells than that of the positive control group (7.45 ± 0.91 cells, p < 0.01). The production of reactive oxygen species significantly increased by 183% with 125 μM neomycin treatment than the negative control group and significantly decreased down to 105% with the pre-treatment with 40 μM/ml ES (n = 40, p = 0.04). A significantly less number of TUNEL-positive cells (reflecting apoptosis, p < 0.01) and a significantly increased DASPEI reactivity (reflecting viable mitochondria, p < 0.01) were observed in 40 μM/ml ES pre-treatment group. Our data suggest that ES could protect against neomycin-induced hair cell loss possibly by reducing

  8. Hair-growth stimulation by conditioned medium from vitamin D3-activated preadipocytes in C57BL/6 mice.

    PubMed

    Jung, Min Kyung; Ha, Soogyeong; Huh, Scarlett Yoona; Park, Seung Beom; Kim, Sangyoon; Yang, Yoolhee; Kim, Daejin; Hur, Dae Young; Jeong, Hyuk; Bang, Sa Ik; Park, Hyunjeong; Cho, Daeho

    2015-05-01

    Recently, immature adipocyte lineage cells have been suggested as a potential hair-growth stimulator. Diverse studies have been attempted to find methods for the preconditioning of immature adipocyte lineage cells. The present study investigates the effect of conditioned medium (CM) from vitamin D3 (Vd3) pre-activated preadipocytes on hair-growth ability. To test the effect of CM from Vd3 pre-activated preadipocytes on hair-growth efficiency in mice, we compared the differences in hair regenerated after injecting CM from mouse preadipocytes pre-activated with or without Vd3. Next, to determine the regulating factors, the VEGF level was measured by ELISA and angiogenesis level was evaluated by IHC. Finally, the signaling mechanism was investigated by inhibitor kinase assay and western blotting. The CM from Vd3 pre-activated preadipocyte injection markedly promoted the ability of hair regeneration in mice. The VEGF levels were increased by Vd3 treatment in vitro and the CM from Vd3 pre-activated preadipocytes significantly increased the angiogenesis in vivo, suggesting the involvement of angiognensis in the hair regeneration induced by CM from pre-activated preadipocytes. In signaling study, Vd3-enhanced VEGF production was reduced by an ERK1/2 inhibitor and the level of ERK1/2 phosphorylation was increased by treatment with Vd3. This has been the first report on CM from Vd3 pre-activated preadipocyte displaying stimulatory effects on hair growth via the enhancement of angiogenesis in a hairless-induced C57BL/6 mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Female pattern hair loss.

    PubMed

    Ioannides, Dimitrios; Lazaridou, Elizabeth

    2015-01-01

    Female pattern hair loss, or female pattern androgenetic alopecia, is a nonscarring alopecia with a multi-factorial etiology that mostly affects postmenopausal women and is characterized by a reduction in hair density over the crown and frontal scalp. The clinical picture is characterized by a diffuse rarefaction of scalp hair over the mid-frontal scalp and a more-or-less intact frontal hairline without any signs of inflammation or scarring. Although the disease poses only a cosmetic concern, it is chronic and may have a significant negative psychological impact on the affected person. The aim of treating female pattern hair loss is to reduce hair loss and, to a certain extent, succeed in promoting hair regrowth. Various treatment methods are available, but it remains unclear which are the most effective. Early initiation of treatment and the combination of various modalities seem to be more efficacious than monotherapy. © 2015 S. Karger AG, Basel.

  10. Optical coherence tomography using images of hair structure and dyes penetrating into the hair.

    PubMed

    Tsugita, Tetsuya; Iwai, Toshiaki

    2014-11-01

    Hair dyes are commonly evaluated by the appearance of the hair after dyeing. However, this approach cannot simultaneously assess how deep the dye has penetrated into hair. For simultaneous assessment of the appearance and the interior of hair, we developed a visible-range red, green, and blue (RGB) (three primary colors)-optical coherence tomography (OCT) using an RGB LED light source. We then evaluated a phantom model based on the assumption that the sample's absorbability in the vertical direction affects the tomographic imaging. Consistent with theory, our device showed higher resolution than conventional OCT with far-red light. In the experiment on the phantom model, we confirmed that the tomographic imaging is affected by absorbability unique to the sample. Furthermore, we verified that permeability can be estimated from this tomographic image. We also identified for the first time the relationship between penetration of the dye into hair and characteristics of wavelength by tomographic imaging of dyed hair. We successfully simultaneously assessed the appearance of dyed hair and inward penetration of the dye without preparing hair sections. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hair treatment process providing dispersed colors by light diffraction

    DOEpatents

    Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi

    2015-12-22

    A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.

  12. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil.

    PubMed

    Shorter, Katie; Farjo, Nilofer P; Picksley, Steven M; Randall, Valerie A

    2008-06-01

    Hair disorders cause psychological distress but are generally poorly controlled; more effective treatments are required. Despite the long-standing use of minoxidil for balding, its mechanism is unclear; suggestions include action on vasculature or follicle cells. Similar drugs also stimulate hair, implicating ATP-sensitive potassium (K(ATP)) channels. To investigate whether K(ATP) channels are present in human follicles, we used organ culture, molecular biological, and immunohistological approaches. Minoxidil and tolbutamide, a K(ATP) channel blocker, opposed each other's effects on the growing phase (anagen) of scalp follicles cultured in media with and without insulin. Reverse transcriptase-polymerase chain reaction identified K(ATP) channel component gene expression including regulatory sulfonylurea receptors (SUR) SUR1 and SUR2B but not SUR2A and pore-forming subunits (Kir) Kir6.1 and Kir6.2. When hair bulb tissues were examined separately, epithelial matrix expressed SUR1 and Kir6.2, whereas both dermal papilla and sheath exhibited SUR2B and Kir6.1. Immunohistochemistry demonstrated similar protein distributions. Thus, human follicles respond biologically to K(ATP) channel regulators in culture and express genes and proteins for two K(ATP) channels, Kir6.2/SUR1 and Kir6.1/SUR2B; minoxidil only stimulates SUR2 channels. These findings indicate that human follicular dermal papillae contain K(ATP) channels that can respond to minoxidil and that tolbutamide may suppress hair growth clinically; novel drugs designed specifically for these channels could treat hair disorders.

  13. Effect of needle size and type, reuse of needles, insertion speed, and removal of hair on contamination of joints with tissue debris and hair after arthrocentesis.

    PubMed

    Adams, Stephen B; Moore, George E; Elrashidy, Mohammed; Mohamed, Ahmed; Snyder, Paul W

    2010-08-01

    To assess joint contamination with tissue and hair after arthrocentesis of equine fetlock joints. Experimental. Limb specimens from 8 equine cadavers. Soft tissues including the joint capsule were harvested from the dorsal aspect of the fetlock joints and mounted on a wooden frame. Needles inserted through the joint tissue preparation were flushed into tissue culture plates that were examined for tissue and hair debris. Variables evaluated were gauge and type of needle (16, 18, 20, and 22 G sharp disposable needles and 20 G disposable spinal needles with stylet), number of times each needle was used (1, 2, 3, 4), length of hair (unclipped, clipped, shaved with razor), and needle insertion speed (fast, slow). Descriptive and statistical evaluations were performed. Tissue contamination was identified in 1145 of 1260 wells and hair contamination was identified in 384 of 1260 wells. Twenty gauge needles inserted through unclipped hair resulted in the least amount of hair contamination. Compared with 20 G needles with fast insertion 1 time through unclipped hair the odds ratios for contamination with hair were significantly greater for 16 G sharp disposable needles, 20 G spinal needles, clipped hair, shaved hair, and reuse of the needles. Spinal needles inserted through unclipped hair transferred many long hairs into the joint space. Reuse of needles for arthrocentesis should be avoided. Removal of hair is not indicated for arthrocentesis with sharp injection needles but is recommended when using spinal needles with stylets. Joint contamination with hair and tissue debris will be decreased by specific needle insertion techniques. Decreased contamination of joints may reduce the frequency of joint infections after arthrocentesis.

  14. Effects of scalp dermatitis on chemical property of hair keratin

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  15. Dominant-negative Sox18 function inhibits dermal papilla maturation and differentiation in all murine hair types.

    PubMed

    Villani, Rehan; Hodgson, Samantha; Legrand, Julien; Greaney, Jessica; Wong, Ho Yi; Pichol-Thievend, Cathy; Adolphe, Christelle; Wainwight, Brandon; Francois, Mathias; Khosrotehrani, Kiarash

    2017-05-15

    SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types. © 2017. Published by The Company of Biologists Ltd.

  16. Keratins and lipids in ethnic hair.

    PubMed

    Cruz, C F; Fernandes, M M; Gomes, A C; Coderch, L; Martí, M; Méndez, S; Gales, L; Azoia, N G; Shimanovich, U; Cavaco-Paulo, A

    2013-06-01

    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically, the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools, such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation, lipids were shown to intercalate dimers of keratin, changing its structure. From those results, we assume that keratin structure may be influenced by higher concentration of lipids in African hair. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Hair straightener poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002706.htm Hair straightener poisoning To use the sharing features on this page, please enable JavaScript. Hair straightener poisoning occurs when someone swallows products that ...

  18. Hair spray poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  19. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice.

    PubMed

    Boisvert, William A; Yu, Miri; Choi, Youngbin; Jeong, Gi Hee; Zhang, Yi-Lin; Cho, Sunghun; Choi, Changsun; Lee, Sanghyun; Lee, Bog-Hieu

    2017-02-13

    Geranium sibiricum L. has been used as a medicinal plant to treat diarrhea, bacterial infection, and cancer in Bulgaria, Peru, and Korea. However, its hair growth-promoting effect was not investigated so far. This study examined the effects of Geranium sibiricum L. extract (GSE) on hair growth, using in vitro and in vivo models. Antioxidant, proliferation and migration assay of GSE was performed with human dermal papilla cells (hDPCs). Hair-growth promoting effect was measured in animal model. Relative expression of interleukin-1, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor beta 1 was determined by real time RT-PCR. Expression of Ki-67 and stem cell factor were analyzed by immunohistochemistry. GSE treatment proliferated and migrated human dermal papilla cells (hDPCs) more than treatment of 10 μM minoxidil. GSE significantly stimulated the expression of Ki-67 protein and the mRNA levels of hepatocyte growth factor and vascular endothelial growth factor in hDPCs. Topical application of 1,000 ppm GSE for 3 weeks promoted more significant hair growth on shaved C57BL/6 mice than did 5% minoxidil. The histological morphology of hair follicles demonstrated an active anagen phase with the induction of stem cell factor. GSE treatment significantly reduced the number of mast cells and the expression of transforming growth factor beta 1 in mouse skin tissues. These results demonstrated that GSE promotes hair growth in vitro and in vivo by regulating growth factors and the cellular response.

  20. Hair growth promoting effect of white wax and policosanol from white wax on the mouse model of testosterone-induced hair loss.

    PubMed

    Wang, Zhan-di; Feng, Ying; Ma, Li-Yi; Li, Xian; Ding, Wei-Feng; Chen, Xiao-Ming

    2017-05-01

    White wax (WW) has been traditionally used to treat hair loss in China. However there has been no reporter WW and its extract responsible for hair growth-promoting effect on androgenetic alopecia. In this paper, we examined the hair growth-promoting effects of WW and policosanol of white wax (WWP) on model animal of androgenetic alopecia and the potential target cell of WW and WWP. WW (1, 10 and 20%) and WWP (0.5, 1 and 2%) were applied topically to the backs of mice. Finasteride (2%) was applied topically as a positive control. MTS assays were performed to evaluate cell proliferation in culture human follicle dermal papilla cells (HFDPCs). The inhibition of WW and WWP for 5α- reductase were tested in Vitro. Results showed more lost hairs were clearly seen in mice treated with TP only and TP plus vehicle. Mice which received TP plus WW and WWP showed less hair loss. WW and WWP showed an outstanding hair growth-promoting activity as reflected by the follicular length, follicular density, A/T ratio, and hair bulb diameter. The optimal treatment effect was observed at 10% WW and 1% WWP, which were better than 2% finasteride treatment. MTS assay results suggested that WW and WWP remarkably increased the proliferation of HFDPCs. Inhibitor assay of 5α- reductase showed that WW and WWP inhibited significantly the conversion of testosterone to dihydrotesterone, and the IC 50 values of WW and WWP were higher than that of finasteride. In Conclusion, WW and WWP could act against testosterone-induced alopecia in mice, and they promoted hair growth by inhibiting 5α-reductase activity and HFDPCs proliferation. DPCs is the target cell of WW and WWP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.