The Applications of NASA Mission Technologies to the Greening of Human Impact
NASA Technical Reports Server (NTRS)
Sims, Michael H.
2009-01-01
I will give an overview talk about flight software systems, robotics technologies and modeling for energy minimization as applied to vehicles and buildings infrastructures. A dominant issue in both design and operations of robotic spacecraft is the minimization of energy use. In the design and building of spacecraft increased power is acquired only at the cost of additional mass and volumes and ultimately cost. Consequently, interplanetary spacecrafts are designed to have the minimum essential power and those designs often incorporate careful timing of all power use. Operationally, the availability of power is the most influential constraint for the use of planetary surface robots, such as the Mars Exploration Rovers. The amount of driving done, the amount of science accomplished and indeed the survivability of the spacecraft itself is determined by the power available for use. For the Mars Exploration Rovers there are four tools which are used: (1) models of the rover and it s thermal and power use (2) predictive environmental models of power input and thermal environment (3) fine grained manipulation of power use (4) optimization modeling and planning tools. In this talk I will discuss possible applications of this methodology to minimizing power use on Earth, especially in buildings.
ERIC Educational Resources Information Center
Arita, A.; Hiraki, K.; Kanda, T.; Ishiguro, H.
2005-01-01
As technology advances, many human-like robots are being developed. Although these humanoid robots should be classified as objects, they share many properties with human beings. This raises the question of how infants classify them. Based on the looking-time paradigm used by [Legerstee, M., Barna, J., & DiAdamo, C., (2000). Precursors to the…
Lan, Yuan-Tzu; Huang, Kuo-Hung; Chen, Ping-Hsien; Liu, Chien-An; Lo, Su-Shun; Wu, Chew-Wun; Shyr, Yi-Ming; Fang, Wen-Liang
2017-01-01
Robotic gastrectomy has become increasingly popular in the treatment of gastric cancer, especially in Asian countries. The use of indocyanine green fluorescence has been reported in lymphatic mapping for gastric cancer in laparoscopic gastrectomy; however, there have been few reports regarding the use of indocyanine green in robotic gastrectomy. From January 2011 to March 2016, a total of 79 patients underwent robotic gastrectomy for gastric cancer. Among them, intraoperative subserosal injection (n = 9) or preoperative submucosal injection (n = 5) of indocyanine green with near-infrared imaging was performed in 14 patients, and the other 65 patients underwent robotic gastrectomy without the use of indocyanine green. There was no significant difference in the operative time, total number of retrieved lymph nodes, operative blood loss, and postoperative hospital stay between the patients who underwent robotic gastrectomy with or without indocyanine green fluorescence. For each lymph node station, there was significantly more number of retrieved lymph nodes in the indocyanine green group than in the no-indocyanine green group at the greater curvature side of the low body (#4d) to the infrapyloric region (#6) of the stomach. Five of the 14 patients who received an indocyanine green injection for lymphatic mapping had lymph node metastasis, and metastatic lymph nodes were located in the lymph node stations as detected by indocyanine green fluorescence during surgery. Indocyanine green fluorescence with near-infrared imaging is feasible and is a promising method of lymphatic mapping in robotic gastrectomy for gastric cancer. In future studies, larger patient numbers and long-term follow-up are required.
Soft Robots: Manipulation, Mobility, and Fast Actuation
NASA Astrophysics Data System (ADS)
Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George
2012-02-01
Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.
Physics and Robotic Sensing -- the good, the bad, and approaches to making it work
NASA Astrophysics Data System (ADS)
Huff, Brian
2011-03-01
All of the technological advances that have benefited consumer electronics have direct application to robotics. Technological advances have resulted in the dramatic reduction in size, cost, and weight of computing systems, while simultaneously doubling computational speed every eighteen months. The same manufacturing advancements that have enabled this rapid increase in computational power are now being leveraged to produce small, powerful and cost-effective sensing technologies applicable for use in mobile robotics applications. Despite the increase in computing and sensing resources available to today's robotic systems developers, there are sensing problems typically found in unstructured environments that continue to frustrate the widespread use of robotics and unmanned systems. This talk presents how physics has contributed to the creation of the technologies that are making modern robotics possible. The talk discusses theoretical approaches to robotic sensing that appear to suffer when they are deployed in the real world. Finally the author presents methods being used to make robotic sensing more robust.
GreenTalks at Boston Green Academy: Student Reflections on Performance Assessment
ERIC Educational Resources Information Center
Kuriacose, Christina
2017-01-01
In spring 2017, for the third year running, 10th graders at Boston Green Academy (BGA) presented GreenTalks, a showcase of research on food justice issues. The day Christina Kuriacose visited the school, students were presenting the PowerPoints they had put together. All of them included a map plotting out the proximity of their neighborhood or…
2009-07-19
MoonFest: From Apollo to LCROSS and Beyond public event at NASA'S Ames Researc Center, Moffett Field, Calif. The day included scientific talks, model rocket launches on the flight line, musical performances, family-friendly activities and more. Robot '971 Spartan Robotics' from the FIRST Robotic competition, demo their abilities.
NASA Technical Reports Server (NTRS)
Utz, Hans Heinrich
2011-01-01
This talk gives an overview of the the Robot Applications Programmers Interface Delegate (RAPID) as well as the distributed systems middleware Data Distribution Service (DDS). DDS is an open software standard, RAPID is cleared for open-source release under NOSA. RAPID specifies data-structures and semantics for high-level telemetry published by NASA robotic software. These data-structures are supported by multiple robotic platforms at Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC), providing high-level interoperability between those platforms. DDS is used as the middleware for data transfer. The feature set of the middleware heavily influences the design decision made in the RAPID specification. So it is appropriate to discuss both in this introductory talk.
Sample Return Robot Centennial Challenge
2012-06-16
Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Human-Robot Teaming for Hydrologic Data Gathering at Multiple Scales
NASA Astrophysics Data System (ADS)
Peschel, J.; Young, S. N.
2017-12-01
The use of personal robot-assistive technology by researchers and practitioners for hydrologic data gathering has grown in recent years as barriers to platform capability, cost, and human-robot interaction have been overcome. One consequence to this growth is a broad availability of unmanned platforms that might or might not be suitable for a specific hydrologic investigation. Through multiple field studies, a set of recommendations has been developed to help guide novice through experienced users in choosing the appropriate unmanned platforms for a given application. This talk will present a series of hydrologic data sets gathered using a human-robot teaming approach that has leveraged unmanned aerial, ground, and surface vehicles over multiple scales. The field case studies discussed will be connected to the best practices, also provided in the presentation. This talk will be of interest to geoscience researchers and practitioners, in general, as well as those working in fields related to emerging technologies.
Kim, Jin Cheon; Lee, Jong Lyul; Park, Seong Ho
2017-04-01
Since the introduction of indocyanine green angiography more than 25 years ago, few studies have presented interpretative guidelines for indocyanine green fluorescent imaging. We aimed to provide interpretative guidelines for indocyanine green fluorescent imaging through quantitative analysis and to suggest possible indications for indocyanine green fluorescent imaging during robot-assisted sphincter-saving operations. This is a retrospective observational study. This study was conducted at a single center. A cohort of 657 patients with rectal cancer who consecutively underwent curative robot-assisted sphincter-saving operations was enrolled between 2010 and 2016, including 310 patients with indocyanine green imaging (indocyanine green fluorescent imaging+ group) and 347 patients without indocyanine green imaging (indocyanine green fluorescent imaging- group). We tried to quantitatively define the indocyanine green fluorescent imaging findings based on perfusion (mesocolic and colic) time and perfusion intensity (5 grades) to provide probable indications. The anastomotic leakage rate was significantly lower in the indocyanine green fluorescent imaging+ group than in the indocyanine green fluorescent imaging- group (0.6% vs 5.2%) (OR, 0.123; 95% CI, 0.028-0.544; p = 0.006). Anastomotic stricture was closely correlated with anastomotic leakage (p = 0.002) and a short descending mesocolon (p = 0.003). Delayed perfusion (>60 s) and low perfusion intensity (1-2) were more frequently detected in patients with anastomotic stricture and marginal artery defects than in those without these factors (p ≤ 0.001). In addition, perfusion times greater than the mean were more frequently observed in patients aged >58 years, whereas low perfusion intensity was seen more in patients with short descending mesocolon and high ASA classes (≥3). The 300 patients in the indocyanine green fluorescent imaging- group underwent operations 3 years before indocyanine green fluorescent imaging. Quantitative analysis of indocyanine green fluorescent imaging may help prevent anastomotic complications during robot-assisted sphincter-saving operations, and may be of particular value in high-class ASA patients, older patients, and patients with a short descending mesocolon.
Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond
NASA Technical Reports Server (NTRS)
Fong, Terrence W.
2010-01-01
In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.
Pre-Schoolers' Interest and Caring Behaviour around a Humanoid Robot
ERIC Educational Resources Information Center
Ioannou, Andri; Andreou, Emily; Christofi, Maria
2015-01-01
This exploratory case study involved a humanoid robot, NAO, and four pre-schoolers. NAO was placed in an indoor playground together with other toys and appeared as a peer who played, talked, danced and said stories. Analysis of video recordings focused on children's behaviour around NAO and how the robot gained children's attention and…
Teachers' Talk about Robotics: Where Is the Mathematics?
ERIC Educational Resources Information Center
Savard, Annie; Highfield, Kate
2015-01-01
Programming and the use of robotics present affordances for mathematics learning with application across a broad range of ages. However, realising these affordances in the classroom requires educators to recognise and build apron these potential opportunities for learning. This paper reports one component of a larger study, examining teacher…
Suitability of healthcare robots for a dementia unit and suggested improvements.
Robinson, Hayley; MacDonald, Bruce A; Kerse, Ngaire; Broadbent, Elizabeth
2013-01-01
To investigate the suitability of a new eldercare robot (Guide) for people with dementia and their caregivers compared with one that has been successfully used before (Paro), and to generate suggestions for improved robot enhanced dementia care. Cross-sectional study. A researcher demonstrated both robots in a random order to each staff member alone, or to each resident together with his/her relative(s). The researcher encouraged the participants to interact with each robot and asked staff and relatives a series of open ended questions about each robot. A secure dementia residential facility in Auckland, New Zealand. Ten people with dementia and 11 of their relatives, and five staff members. Each robot interaction was video-taped and coded for the number of times the resident looked at, smiled, touched, and talked to and about each robot, as well as relative interactions with the resident. Qualitative analysis was used to code the open ended questions. Residents smiled, touched and talked to Paro significantly more than Guide. Paro was found to be more acceptable to family members, staff, and residents, although many acknowledged that Guide had the potential to be useful if adapted for this population in terms of ergonomics and simplification. Healthcare robots in dementia settings have to be simple and easy to use as well as stimulating and entertaining. This research highlights how eldercare robots may be adapted to have the best effects in dementia settings. It is concluded that Paro's sounds could be modified to be more acceptable to this population. The ergonomic design of Guide could be reviewed and the software application could be simplified and targeted to people with dementia. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
The psychosocial effects of a companion robot: a randomized controlled trial.
Robinson, Hayley; Macdonald, Bruce; Kerse, Ngaire; Broadbent, Elizabeth
2013-09-01
To investigate the psychosocial effects of the companion robot, Paro, in a rest home/hospital setting in comparison to a control group. Randomized controlled trial. Residents were randomized to the robot intervention group or a control group that attended normal activities instead of Paro sessions. Sessions took place twice a week for an hour over 12 weeks. Over the trial period, observations were conducted of residents' social behavior when interacting as a group with the robot. As a comparison, observations were also conducted of all the residents during general activities when the resident dog was or was not present. A residential care facility in Auckland, New Zealand. Forty residents in hospital and rest home care. Residents completed a baseline measure assessing cognitive status, loneliness, depression, and quality of life. At follow-up, residents completed a questionnaire assessing loneliness, depression, and quality of life. During observations, behavior was noted and collated for instances of talking and stroking the dog/robot. In comparison with the control group, residents who interacted with the robot had significant decreases in loneliness over the period of the trial. Both the resident dog and the seal robot made an impact on the social environment in comparison to when neither was present. Residents talked to and touched the robot significantly more than the resident dog. A greater number of residents were involved in discussion about the robot in comparison with the resident dog and conversation about the robot occurred more. Paro is a positive addition to this environment and has benefits for older people in nursing home care. Paro may be able to address some of the unmet needs of older people that a resident animal may not, particularly relating to loneliness. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
NOSC/ONR Robotics Bibliography (1961-1981).
1982-09-01
28, 6 Dec., 1979 @, p4 "DEFENSE EQUIPMENT FIRM TRAINS ROBOT TO PERFORM CRAFTSMAN-SKILLED TASK", Industrial Engineering, vol 13, no 5, May 1981 @, p90...1974 @, pCI-I-8 Gupton, J. A. Jr., "BUILD THIS UNICORN -i ROBOT PART I", Radio-Electronics, vol 51, no 8, 1980 @, p 3 7 ,4 1 ,76 Gupton, J. A. Jr...34BUILD THIS UNICORN -i ROBOT PART II", Radio-Electronics, vol 51, no 9, Sept. 1980 @, p55-8 Gupton, J. A., Jr., "TALK TO A TURTLE; BUILD A COMPUTER
Las Cumbres Observatory Followup of Gravitational Waves - Part 3
NASA Astrophysics Data System (ADS)
McCully, Curtis; Arcavi, Iair; Howell, D. Andrew
2018-01-01
Las Cumbres Observatory (LCO) is a unique followup facility for gravitational-wave detections. It consists of 20 telescopes at 6 sites around the world, working as one robotic, dynamically scheduled global network. This has proven to be extremely useful for gravitational-wave followup during observing run 2 (O2). Given the robotic nature of our network, we are capable of receiving gravitational wave alerts, selecting and prioritizing galaxies to be observed in the localization region, and submitting the observations to the LCO scheduler - all within seconds. Observations can then begin within minutes. We will present our experience employing this strategy during O2, as well as the extensive followup data obtained for one of the triggers. This is talk 3 in a series of three talks (the details of the division of topics between these three talks is embargoed at the time of abstract submission).
Las Cumbres Observatory Followup of Gravitational Waves - Part 1
NASA Astrophysics Data System (ADS)
Arcavi, Iair; Howell, D. Andrew; McCully, Curtis
2018-01-01
Las Cumbres Observatory (LCO) is a unique followup facility for gravitational-wave detections. It consists of 20 telescopes at 6 sites around the world, working as one robotic, dynamically scheduled global network. This has proven to be extremely useful for gravitational-wave followup during observing run 2 (O2). Given the robotic nature of our network, we are capable of receiving gravitational wave alerts, selecting and prioritizing galaxies to be observed in the localization region, and submitting the observations to the LCO scheduler - all within seconds. Observations can then begin within minutes. We will present our experience employing this strategy during O2, as well as the extensive followup data obtained for one of the triggers. This is talk 1 in a series of three talks (the details of the division of topics between these three talks is embargoed at the time of abstract submission).
Las Cumbres Observatory Followup of Gravitational Waves - Part 2
NASA Astrophysics Data System (ADS)
Howell, D. Andrew; Arcavi, Iair; McCully, Curtis
2018-01-01
Las Cumbres Observatory (LCO) is a unique followup facility for gravitational-wave detections. It consists of 20 telescopes at 6 sites around the world, working as one robotic, dynamically scheduled global network. This has proven to be extremely useful for gravitational-wave followup during observing run 2 (O2). Given the robotic nature of our network, we are capable of receiving gravitational wave alerts, selecting and prioritizing galaxies to be observed in the localization region, and submitting the observations to the LCO scheduler - all within seconds. Observations can then begin within minutes. We will present our experience employing this strategy during O2, as well as the extensive followup data obtained for one of the triggers. This is talk 2 in a series of three talks (the details of the division of topics between these three talks is embargoed at the time of abstract submission).
Human-Robot Teaming: From Space Robotics to Self-Driving Cars
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
In this talk, I describe how NASA Ames has been developing and testing robots for space exploration. In our research, we have focused on studying how human-robot teams can increase the performance, reduce the cost, and increase the success of space missions. A key tenet of our work is that humans and robots should support one another in order to compensate for limitations of manual control and autonomy. This principle has broad applicability beyond space exploration. Thus, I will conclude by discussing how we have worked with Nissan to apply our methods to self-driving cars, enabling humans to support autonomous vehicles operating in unpredictable and difficult situations.
Scalable fabric tactile sensor arrays for soft bodies
NASA Astrophysics Data System (ADS)
Day, Nathan; Penaloza, Jimmy; Santos, Veronica J.; Killpack, Marc D.
2018-06-01
Soft robots have the potential to transform the way robots interact with their environment. This is due to their low inertia and inherent ability to more safely interact with the world without damaging themselves or the people around them. However, existing sensing for soft robots has at least partially limited their ability to control interactions with their environment. Tactile sensors could enable soft robots to sense interaction, but most tactile sensors are made from rigid substrates and are not well suited to applications for soft robots which can deform. In addition, the benefit of being able to cheaply manufacture soft robots may be lost if the tactile sensors that cover them are expensive and their resolution does not scale well for manufacturability. This paper discusses the development of a method to make affordable, high-resolution, tactile sensor arrays (manufactured in rows and columns) that can be used for sensorizing soft robots and other soft bodies. However, the construction results in a sensor array that exhibits significant amounts of cross-talk when two taxels in the same row are compressed. Using the same fabric-based tactile sensor array construction design, two different methods for cross-talk compensation are presented. The first uses a mathematical model to calculate a change in resistance of each taxel directly. The second method introduces additional simple circuit components that enable us to isolate each taxel electrically and relate voltage to force directly. Fabric sensor arrays are demonstrated for two different soft-bodied applications: an inflatable single link robot and a human wrist.
2010-03-05
U.S. Senate Majority Leader Harry Reid, D-Nev., left, stands with Dean Kamen, the founder of First Robotics, as he talks about the importance of Science and Technology education during the First Robotics Competition, Friday March 5, 2010, in Washington. The student competition is called "For Inspiration and Recognition ofScience and Technology," or FIRST. The program was founded in 1989 by Kamen to inspire an appreciation of science and technology in young people, their schools and communities. Photo Credit: (NASA/Paul E. Alers)
ERIC Educational Resources Information Center
Nelson, Jacqueline M.
2011-01-01
In looking at the interesting shapes and sizes of old computer parts, creating robots quickly came to the author's mind. In this article, she describes how computer parts can be used creatively. Students will surely enjoy creating their very own robots while learning about the importance of recycling in the society. (Contains 1 online resource.)
Automation and Robotics for Space-Based Systems, 1991
NASA Technical Reports Server (NTRS)
Williams, Robert L., II (Editor)
1992-01-01
The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.
Human-Robot Teaming: Communication, Coordination, and Collaboration
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
In this talk, I will describe how NASA Ames has been studying how human-robot teams can increase the performance, reduce the cost, and increase the success of a variety of endeavors. The central premise of our work is that humans and robots should support one another in order to compensate for limitations of automation and manual control. This principle has broad applicability to a wide range of domains, environments, and situations. At the same time, however, effective human-robot teaming requires communication, coordination, and collaboration -- all of which present significant research challenges. I will discuss some of the ways that NASA Ames is addressing these challenges and present examples of our work involving planetary rovers, free-flying robots, and self-driving cars.
NASA hosts FIRST Robotics kickoff for regional schools
NASA Technical Reports Server (NTRS)
2008-01-01
Master of ceremonies Steve Culivan, an employee of Penn State University and aerospace education specialist at NASA's Stennis Space Center, talked to a crowd of more than 300 who attended the Jan. 5 kickoff of the 2008 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. The students, coaches and mentors from three states who attended also watched a live broadcast from FIRST's Manchester, N.H., headquarters that revealed this year's competition challenge, and received parts kits from which they built robots to meet the challenge.
NASA hosts FIRST Robotics kickoff for regional schools
2008-01-05
Master of ceremonies Steve Culivan, an employee of Penn State University and aerospace education specialist at NASA's Stennis Space Center, talked to a crowd of more than 300 who attended the Jan. 5 kickoff of the 2008 FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition season. The students, coaches and mentors from three states who attended also watched a live broadcast from FIRST's Manchester, N.H., headquarters that revealed this year's competition challenge, and received parts kits from which they built robots to meet the challenge.
ERIC Educational Resources Information Center
Tunnicliffe, Sue Dale
A visit to the natural history museum is part of many pupils' educational program. One way of investigating what children learn about animals is to examine the mental models they reveal through their talk when they come face to face with animal representations. In this study, representations were provided by: (1) robotic models in a museum; (2)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, David
A irreverent non-technical review of the history of surprisingly animate machines, from ancient Egypt to current times. Areas include teleoperators for hazardous environments, assembly systems, medical applications, entertainment, and science fiction. The talk has over 100 slides, covering such varied topics as Memnon son of Dawn, Droz's automata, Vaucanson's duck, cathedral clocks, Von Kempelen's chess player, household robots, Asimov's laws, Disneyland, dinosaurs, and movie droids and cyborgs.
"Green" Classes Flourish in Schools
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
Courses focused on renewable and alternative energy are taking hold across the country as educators seek to channel students' concerns about the environment and conservation into classroom lessons. This article talks about the rising interest in "green" curriculum. Here, the author describes the Green Tech class that introduces students to the…
A robotic voice simulator and the interactive training for hearing-impaired people.
Sawada, Hideyuki; Kitani, Mitsuki; Hayashi, Yasumori
2008-01-01
A talking and singing robot which adaptively learns the vocalization skill by means of an auditory feedback learning algorithm is being developed. The robot consists of motor-controlled vocal organs such as vocal cords, a vocal tract and a nasal cavity to generate a natural voice imitating a human vocalization. In this study, the robot is applied to the training system of speech articulation for the hearing-impaired, because the robot is able to reproduce their vocalization and to teach them how it is to be improved to generate clear speech. The paper briefly introduces the mechanical construction of the robot and how it autonomously acquires the vocalization skill in the auditory feedback learning by listening to human speech. Then the training system is described, together with the evaluation of the speech training by auditory impaired people.
Creating Good Schools--What if?
ERIC Educational Resources Information Center
Sanders, Tim
2010-01-01
Done right, green is not only the right thing to do, it's a good business move. During the past year, the author has talked with quite a few school business officials. Some are on board with "going green," whereas others are still leery. Some aren't quite sure what "green schools" are. Some say that it doesn't matter to the community how green the…
Astronaut David Brown talks to FIRST team members
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown talks with FIRST team members, Baxter Bomb Squad, from Mountain Home High School, Mountain Home, Ariz., during the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Robotic insects: Manufacturing, actuation, and power considerations
NASA Astrophysics Data System (ADS)
Wood, Robert
2015-12-01
As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.
Robotic Mining Competition - Activities
2018-05-16
A volunteer talks with a mining judge near the mining arena on the third day of NASA's 9th Robotic Mining Competition, May 16, at NASA's Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Lunar soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.
The utility of indocyanine green fluorescence imaging during robotic adrenalectomy.
Colvin, Jennifer; Zaidi, Nisar; Berber, Eren
2016-08-01
Indocyanine green (ICG) has been used for medical imaging since 1950s, but has more recently become available for use in minimally invasive surgery owing to improvements in technology. This study investigates the use of ICG florescence to guide an accurate dissection by delineating the borders of adrenal tumors during robotic adrenalectomy (RA). This prospective study compared conventional robotic view with ICG fluorescence imaging in 40 consecutive patients undergoing RA. Independent, non-blinded observers assessed how accurately ICG fluorescence delineated the borders of adrenal tumors compared to conventional robotic view. A total of 40 patients underwent 43 adrenalectomies. ICG imaging was superior, equivalent, or inferior to conventional robotic view in 46.5% (n = 20), 25.6% (n = 11), and 27.9% (n = 12) of the procedures. On univariate analysis, the only parameter that predicted the superiority of ICG imaging over conventional robotic view was the tumor type, with adrenocortical tumors being delineated more accurately on ICG imaging compared to conventional robotic view. This study demonstrates the utility of ICG to guide the dissection and removal of adrenal tumors during RA. A simple reproducible method is reported, with a detailed description of the utility based on tumor type, approach and side. J. Surg. Oncol. 2016;114:153-156. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.
2004-01-01
Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095
ERIC Educational Resources Information Center
Tunnicliffe, Sue Dale
2008-01-01
The story from the museum may not be read by visitors, who come with their own knowledge and understanding and read a different story in the animals. The visitors read a story which makes sense to them and builds on what they already know and interests them. Increasingly, robotics models are being used in natural history museums, science centers,…
The Color Green: A "Go" for Peace Education
ERIC Educational Resources Information Center
Wilson, Ruth A.
2009-01-01
This article talks about the "Green Approach" to peace education. This approach to early childhood education is not only good for the environment but also good for young children and society, as "going green" gives children many opportunities to experience and practice peace in a way that matches their level of development. Caring for simple…
2017-05-04
Canadian Minister of Science, Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-REx and JWST then visited Robotic Operations Center.
Green Supercomputing at Argonne
Pete Beckman
2017-12-09
Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputingâeverything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.
Biomimetics and the Development of Humanlike Robots as the Ultimate Challenge
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2011-01-01
Evolution led to effective solutions to nature's challenges and they were improved over millions of years. Humans have always made efforts to use nature as a model for innovation and problems solving. These efforts became more intensive in recent years where systematic studies of nature are being made towards better understanding and applying more sophisticated capabilities. Making humanlike robots, including the appearance, functions and intelligence, poses the ultimate challenges to biomimetics. For many years, making such robots was considered science fiction, but as a result of significant advances in biologically inspired technologies, such robots are increasingly becoming an engineering reality. There are already humanlike robots that walk, talk, interpret speech, make eye-contact and facial expressions, as well as perform many other humanlike functions. In this paper, the state-of-the-art of humanlike robots, potential applications and issues of concern will be reviewed.
Evolving technologies in robotic surgery for minimally invasive treatment of gynecologic cancers.
Levinson, Kimberly L; Auer, Melinda; Escobar, Pedro F
2013-09-01
Since the introduction of robotic technology, there have been significant changes to the field of gynecologic oncology. The number of minimally invasive procedures has drastically increased, with robotic procedures rising remarkably. With recent evidence suggesting that minimally invasive techniques should be the standard of care for early endometrial and cervical cancers, the push for new technology and advancements has continued. Several emerging robotic technologies have significant potential in the field of gynecologic oncology. The single-site robotic platform enables robotic surgery through a single incision; the Firefly camera detects the fluorescent dye indocyanine green, which may improve sensitivity in sentinel lymph node biopsy; and a robotic vessel-sealing device and stapler will continue to improve efficiency of the robotic surgeon.
2017-05-04
Canadian Minister of Science Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-Rex and JWST and had overview of Robotic Operations Center.
2017-05-04
Canadian Minister of Science Honourable Kirsty Duncan and staff visited Goddard on May 4, 2017. They toured Hyperwall with talks on Terra, CloudSat, OSIRIS-REx and JWST and had an overview of Robotic Operations Center.
Using a robot to personalise health education for children with diabetes type 1: a pilot study.
Blanson Henkemans, Olivier A; Bierman, Bert P B; Janssen, Joris; Neerincx, Mark A; Looije, Rosemarijn; van der Bosch, Hanneke; van der Giessen, Jeanine A M
2013-08-01
Assess the effects of personalised robot behaviours on the enjoyment and motivation of children (8-12) with diabetes, and on their acquisition of health knowledge, in educational play. Children (N=5) played diabetes quizzes against a personal or neutral robot on three occasions: once at the clinic, twice at home. The personal robot asked them about their names, sports and favourite colours, referred to these data during the interaction, and engaged in small talk. Fun, motivation and diabetes knowledge was measured. Child-robot interaction was observed. Children said the robot and quiz were fun, but this appreciation declined over time. With the personal robot, the children looked more at the robot and spoke more. The children mimicked the robot. Finally, an increase in knowledge about diabetes was observed. The study provides strong indication for how a personal robot can help children to improve health literacy in an enjoyable way. Children mimic the robot. When the robot is personal, they follow suit. Our results are positive and establish a good foundation for further development and testing in a larger study. Using a robot in health care could contribute to self-management in children and help them to cope with their illness. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Interactive Exploration Robots: Human-Robotic Collaboration and Interactions
NASA Technical Reports Server (NTRS)
Fong, Terry
2017-01-01
For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.
2004-03-12
KENNEDY SPACE CENTER, FLA. - While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO™ League (FLL). Considered the "little league" of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO™ Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.
2004-03-12
KENNEDY SPACE CENTER, FLA. - While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO™ League (FLL). Considered the "little league" of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO™ Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Florida Gov. Jeb Bush talks to students competing with their robot at the 2004 Florida Regional FIRST competition, held at the University of Central Florida. Bush and Center Director Jim Kennedy were among observers at the annual event that hosted 41 teams from Canada, Brazil, Great Britain and the United States. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting gladiator robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations.
Payr, Sabine; Skowron, Marcin; Dobrosovestnova, Anna; Trapp, Martin; Trappl, Robert
2017-01-01
Conversational robots and agents are being designed for educational and/or persuasive tasks, e.g., health or fitness coaching. To pursue such tasks over a long time, they will need a complex model of the strategic goal, a variety of strategies to implement it in interaction, and the capability of strategic talk. Strategic talk is incipient ongoing conversation in which at least one participant has the objective of changing the other participant's attitudes or goals. The paper is based on the observation that strategic talk can stretch over considerable periods of time and a number of conversational segments. Film dialogues are taken as a source to develop a model of the strategic talk of mentor characters. A corpus of film mentor utterances is annotated on the basis of the model, and the data are interpreted to arrive at insights into mentor behavior, especially into the realization and sequencing of strategies.
Payr, Sabine; Skowron, Marcin; Dobrosovestnova, Anna; Trapp, Martin; Trappl, Robert
2017-01-01
ABSTRACT Conversational robots and agents are being designed for educational and/or persuasive tasks, e.g., health or fitness coaching. To pursue such tasks over a long time, they will need a complex model of the strategic goal, a variety of strategies to implement it in interaction, and the capability of strategic talk. Strategic talk is incipient ongoing conversation in which at least one participant has the objective of changing the other participant’s attitudes or goals. The paper is based on the observation that strategic talk can stretch over considerable periods of time and a number of conversational segments. Film dialogues are taken as a source to develop a model of the strategic talk of mentor characters. A corpus of film mentor utterances is annotated on the basis of the model, and the data are interpreted to arrive at insights into mentor behavior, especially into the realization and sequencing of strategies. PMID:29375243
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
2008-09-23
Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'
Group sessions with Paro in a nursing home: Structure, observations and interviews.
Robinson, Hayley; Broadbent, Elizabeth; MacDonald, Bruce
2016-06-01
We recently reported that a companion robot reduced residents' loneliness in a randomised controlled trial at an aged-care facility. This report aims to provide additional, previously unpublished data about how the sessions were run, residents' interactions with the robot and staff perspectives. Observations were conducted focusing on engagement, how residents treated the robot and if the robot acted as a social catalyst. In addition, 16 residents and 21 staff were asked open-ended questions at the end of the study about the sessions and the robot. Observations indicated that some residents engaged on an emotional level with Paro, and Paro was treated as both an agent and an artificial object. Interviews revealed that residents enjoyed sharing, interacting with and talking about Paro. This study supports other research showing Paro has psychosocial benefits and provides a guide for those wishing to use Paro in a group setting in aged care. © 2015 AJA Inc.
Beaming into the News: A System for and Case Study of Tele-Immersive Journalism.
Kishore, Sameer; Navarro, Xavi; Dominguez, Eva; de la Pena, Nonny; Slater, Mel
2016-05-25
We show how a combination of virtual reality and robotics can be used to beam a physical representation of a person to a distant location, and describe an application of this system in the context of journalism. Full body motion capture data of a person is streamed and mapped in real time, onto the limbs of a humanoid robot present at the remote location. A pair of cameras in the robot's 'eyes' stream stereoscopic video back to the HMD worn by the visitor, and a two-way audio connection allows the visitor to talk to people in the remote destination. By fusing the multisensory data of the visitor with the robot, the visitor's 'consciousness' is transformed to the robot's body. This system was used by a journalist to interview a neuroscientist and a chef 900 miles distant, about food for the brain, resulting in an article published in the popular press.
Beaming into the News: A System for and Case Study of Tele-Immersive Journalism.
Kishore, Sameer; Navarro, Xavi; Dominguez, Eva; De La Pena, Nonny; Slater, Mel
2018-03-01
We show how a combination of virtual reality and robotics can be used to beam a physical representation of a person to a distant location, and describe an application of this system in the context of journalism. Full body motion capture data of a person is streamed and mapped in real time, onto the limbs of a humanoid robot present at the remote location. A pair of cameras in the robots eyes stream stereoscopic video back to the HMD worn by the visitor, and a two-way audio connection allows the visitor to talk to people in the remote destination. By fusing the multisensory data of the visitor with the robot, the visitors consciousness is transformed to the robots body. This system was used by a journalist to interview a neuroscientist and a chef 900 miles distant, about food for the brain, resulting in an article published in the popular press.
Robotic Mining Competition - Media Day
2017-05-25
NASA Kennedy Space Center Director Bob Cabana, at right, talks with Ken Kremer, Universe Today, during media day at the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Cabana shared his thoughts about the competition and the progress made to make Kennedy a multi-user spaceport. Teams from colleges and universities around the U.S. used their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, Francois G.; Love, Lonnie L.; Jung, David L.
2004-03-29
Contrary to the repetitive tasks performed by industrial robots, the tasks in most DOE missions such as environmental restoration or Decontamination and Decommissioning (D&D) can be characterized as ''batches-of-one'', in which robots must be capable of adapting to changes in constraints, tools, environment, criteria and configuration. No commercially available robot control code is suitable for use with such widely varying conditions. In this talk we present our development of a ''generic code'' to allow real time (at loop rate) robot behavior adaptation to changes in task objectives, tools, number and type of constraints, modes of controls or kinematics configuration. Wemore » present the analytical framework underlying our approach and detail the design of its two major modules for the automatic generation of the kinematics equations when the robot configuration or tools change and for the motion planning under time-varying constraints. Sample problems illustrating the capabilities of the developed system are presented.« less
NASA Astrophysics Data System (ADS)
Spinney, Laura
2017-09-01
Computer scientist Luc Steels uses artificial intelligence to explore the origins and evolution of language. He is best known for his 1999-2001 Talking Heads Experiment, in which robots had to construct a language from scratch to communicate with each other. Now Steels, who works at the Free University of Brussels (VUB), has composed an opera based on the legend of Faust, with a twenty-first-century twist. He talks about Mozart as a nascent computer programmer, how music maps onto language, and the blurred boundaries of a digitized world.
Nasa's Ant-Inspired Swarmie Robots
NASA Technical Reports Server (NTRS)
Leucht, Kurt W.
2016-01-01
As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.
NASA Technical Reports Server (NTRS)
Benavides, Jose; Smith, Marion F; Wheeler, Dawn; Fluckiger, Lorenzo
2017-01-01
The Astrobee Research Facility will maintain three identical free-flying Astrobee robots on the ISS. After the Astrobees are launched and commissioned in 2018, they will replace the SPHERES robots that have been operating on the ISS since 2006 (Fig. 2). Over the years, the SPHERES have been among the most-used payloads on the ISS, supporting dozens of experiments from a variety of guest scientists. In the next section, we'll talk about past SPHERES experiments as possible inspiration for your future research on Astrobee. Compared to SPHERES, the Astrobee robots will offer many new capabilities and will require less astronaut time to support, so we hope the new facility will be able to fly experiments much more often.
Robotic Mining Competition - Media Day
2017-05-25
NASA Kennedy Space Center Director Bob Cabana, at right, talks with Kurt Leucht, event emcee, during media day at the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. At the mining arena, Cabana shared his thoughts about the competition and the progress made to make Kennedy a multi-user spaceport. Teams from colleges and universities around the U.S. used their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Robots with AI: A retrospective on the AAAI robot competitions and exhibitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonasso, P.; Dean, T.
1996-12-31
There have been five years of robot competitions and exhibitions since the inception of this annual event in 1992. Since that first show we have seen 30 different teams compete and almost that many more exhibit their robots. These teams ranged from universities to industry and government research labs to one or two inventors working out of garages. Their composition ranged from seasoned AI researchers to eager undergraduates, and they hailed from the United States, Canada, Europe and the Far East. Despite the concerns of some about the relevance and even the appropriateness of such an event, the robots havemore » become a key attraction of the national and international conferences. In this talk, we look back on the form and function of the five years of exhibitions and competitions and attempt to draw some lessons in retrospect as well as future implications for the AI community and our society at large.« less
Tree fruit orchard of the future: An overview
USDA-ARS?s Scientific Manuscript database
Mechanization has been prevailing in row crops over the past decades, and now gradually in some fruit crops, with integration of innovative computers, robotics, mechanics, and precision orchard management. This talk will give an overview of challenges facing commercial fruit industries and needs of ...
STS-114: Discovery TCDT Flight Crew Test Media Event at Pad 39-B
NASA Technical Reports Server (NTRS)
2005-01-01
The STS-114 Space Shuttle Discovery Terminal Countdown Demonstration Test (TCDT) flight crew is shown at Pad 39-B. Eileen Collins, Commander introduces the astronauts. Andrew Thomas, mission specialist talks about his primary responsibility of performing boom inspections, Wendy Lawrence, Mission Specialist 4 (MS4) describes her role as the robotic arm operator supporting Extravehicular Activities (EVA), Stephen Robinson, Mission Specialist 3 (MS3) talks about his role as flight engineer, Charlie Camarda, Mission Specialist 5 (MS5) says that his duties are to perform boom operations, transfer operations from the space shuttle to the International Space Station and spacecraft rendezvous. Soichi Noguchi, Mission Specialist 1 (MS1) from JAXA, introduces himself as Extravehicular Activity 1 (EVA1), and Jim Kelley, Pilot will operate the robotic arm and perform pilot duties. Questions from the news media about the safety of the external tank, going to the International Space Station and returning, EVA training, and thoughts about the Space Shuttle Columbia crew are answered.
Indocyanine green for intraoperative localization of ureter.
Siddighi, Sam; Yune, Junchan Joshua; Hardesty, Jeffrey
2014-10-01
Intraurethral injection of indocyanine green (ICG; Akorn, Lake Forest, IL) and visualization under near-infrared (NIR) light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Patients were scheduled to undergo robot-assisted laparoscopic sacrocolpopexy. Before the robotic surgery started, the tip of a 6-F ureteral catheter was inserted into the ureteral orifice. Twenty-five milligrams of ICG was dissolved in 10-mL of sterile water and injected through the open catheter. The same procedure was repeated on the opposite side. The ICG reversibly stained the inside lining of the ureter by binding to proteins on urothelial layer. During the course of robotic surgery, the NIR laser on the da Vinci Si surgical robot (Intuitive Surgical, Inc, Sunnyvale, CA) was used to excite ICG molecules, and infrared emission was captured by the da Vinci filtered lens system and electronically converted to green color. Thus, the ureter fluoresced green, which allowed its definitive identification throughout the entire case. In all cases of >10 patients, we were able to visualize bilateral ureters with this technology, even though there was some variation in brightness that depended on the depth of the ureter from the peritoneal surface. For example, in a morbidly obese patient, the ureters were not as bright green. There were no intraoperative or postoperative adverse effects attributable to ICG administration for up to 2 months of observation. In our experience, this novel method of intraurethral ICG injection was helpful to identify the entire course of ureter and allowed a safe approach to tissues that were adjacent to the urinary tract. The advantage of our technique is that it requires the insertion of just the tip of ureteral catheter. Despite our limited cohort of patients, our findings are consistent with previous reports of the excellent safety profile of intravenous and intrabiliary ICG. Intraurethral injection of ICG and visualization under NIR light allows for real-time delineation of the ureter. This technology can be helpful to prevent iatrogenic ureteral injury during pelvic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyer, Frederic; Porez, Mathieu; Renda, Federico
This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.
2014-05-22
CAPE CANAVERAL, Fla. – A mining competition participant talks with a representative at the Ground Systems Development and Operations booth during NASA’s 2014 Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 35 teams from colleges and universities around the U.S. have designed and built remote-controlled robots for the mining competition. The competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in science, technology, engineering and mathematics, or STEM, fields by expanding opportunities for student research and design. Teams use their remote-controlled robotics to maneuver and dig in a supersized sandbox filled with a crushed material that has characteristics similar to Martian soil. The objective of the challenge is to see which team’s robot can collect and move the most regolith within a specified amount of time. For more information, visit www.nasa.gov/nasarmc. Photo credit: NASA/Kim Shiflett
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Green Supercomputing at Argonne
Beckman, Pete
2018-02-07
Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputingâeverything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently. Argonne was recognized for green computing in the 2009 HPCwire Readers Choice Awards. More at http://www.anl.gov/Media_Center/News/2009/news091117.html Read more about the Argonne Leadership Computing Facility at http://www.alcf.anl.gov/
Are You Talking to Me? Dialogue Systems Supporting Mixed Teams of Humans and Robots
NASA Technical Reports Server (NTRS)
Dowding, John; Clancey, William J.; Graham, Jeffrey
2006-01-01
This position paper describes an approach to building spoken dialogue systems for environments containing multiple human speakers and hearers, and multiple robotic speakers and hearers. We address the issue, for robotic hearers, of whether the speech they hear is intended for them, or more likely to be intended for some other hearer. We will describe data collected during a series of experiments involving teams of multiple human and robots (and other software participants), and some preliminary results for distinguishing robot-directed speech from human-directed speech. The domain of these experiments is Mars-analogue planetary exploration. These Mars-analogue field studies involve two subjects in simulated planetary space suits doing geological exploration with the help of 1-2 robots, supporting software agents, a habitat communicator and links to a remote science team. The two subjects are performing a task (geological exploration) which requires them to speak with each other while also speaking with their assistants. The technique used here is to use a probabilistic context-free grammar language model in the speech recognizer that is trained on prior robot-directed speech. Intuitively, the recognizer will give higher confidence to an utterance if it is similar to utterances that have been directed to the robot in the past.
Environmental Education: Going Green Is a Library-Wide Effort
ERIC Educational Resources Information Center
Helmer, Jodi
2010-01-01
Going green is a hot topic. Everyone from Hollywood to the White House is talking about the need to reduce, reuse, and recycle. Often, the messages are targeted to making changes at home: taking canvas bags to the supermarket, installing low flow showerheads and starting a compost pile. While these changes can make a big difference, such…
Effect of a human-type communication robot on cognitive function in elderly women living alone.
Tanaka, Masaaki; Ishii, Akira; Yamano, Emi; Ogikubo, Hiroki; Okazaki, Masatsugu; Kamimura, Kazuro; Konishi, Yasuharu; Emoto, Shigeru; Watanabe, Yasuyoshi
2012-09-01
Considering the high prevalence of dementia, it would be of great value to develop effective tools to improve cognitive function. We examined the effects of a human-type communication robot on cognitive function in elderly women living alone. In this study, 34 healthy elderly female volunteers living alone were randomized to living with either a communication robot or a control robot at home for 8 weeks. The shape, voice, and motion features of the communication robot resemble those of a 3-year-old boy, while the control robot was not designed to talk or nod. Before living with the robot and 4 and 8 weeks after living with the robot, experiments were conducted to evaluate a variety of cognitive functions as well as saliva cortisol, sleep, and subjective fatigue, motivation, and healing. The Mini-Mental State Examination score, judgement, and verbal memory function were improved after living with the communication robot; those functions were not altered with the control robot. In addition, the saliva cortisol level was decreased, nocturnal sleeping hours tended to increase, and difficulty in maintaining sleep tended to decrease with the communication robot, although alterations were not shown with the control. The proportions of the participants in whom effects on attenuation of fatigue, enhancement of motivation, and healing could be recognized were higher in the communication robot group relative to the control group. This study demonstrates that living with a human-type communication robot may be effective for improving cognitive functions in elderly women living alone.
Space Exploration: Oh, the Materials You'll Need!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space exploration has many challenges and materials are critical for many of the systems required to enable robotic or human space exploration. This talk will highlight challenges for materials with an emphasis on thermal protection materials and systems. Solving the materials issues will require thinking about materials in the systems and environments where are they to be used. In many cases the materials must be designed for the application, and the system needs to be designed with the materials in mind. The talk will conclude with some thoughts on the skills needed for materials scientists and engineers working on materials for space.
Robotics, Ethics, and Nanotechnology
NASA Astrophysics Data System (ADS)
Ganascia, Jean-Gabriel
It may seem out of character to find a chapter on robotics in a book about nanotechnology, and even more so a chapter on the application of ethics to robots. Indeed, as we shall see, the questions look quite different in these two fields, i.e., in robotics and nanoscience. In short, in the case of robots, we are dealing with artificial beings endowed with higher cognitive faculties, such as language, reasoning, action, and perception, whereas in the case of nano-objects, we are talking about invisible macromolecules which act, move, and duplicate unseen to us. In one case, we find ourselves confronted by a possibly evil double of ourselves, and in the other, a creeping and intangible nebula assails us from all sides. In one case, we are faced with an alter ego which, although unknown, is clearly perceptible, while in the other, an unspeakable ooze, the notorious grey goo, whose properties are both mysterious and sinister, enters and immerses us. This leads to a shift in the ethical problem situation: the notion of responsibility can no longer be worded in the same terms because, despite its otherness, the robot can always be located somewhere, while in the case of nanotechnologies, myriad nanometric objects permeate everywhere, disseminating uncontrollably.
Strategy for robot motion and path planning in robot taping
NASA Astrophysics Data System (ADS)
Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor
2016-06-01
Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human–robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human–robot interaction experiments. For that, we analyzed 201 videos of five human–robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human–robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies. PMID:26217266
Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics
NASA Astrophysics Data System (ADS)
Hanson, David F.; White, Victor
2004-07-01
The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.
Lee, Ziho; Simhan, Jay; Parker, Daniel C; Reilly, Christopher; Llukani, Elton; Lee, David I; Mydlo, Jack H; Eun, Daniel D
2013-09-01
To present a novel method to intraoperatively localize ureteral strictures during robot-assisted ureteroureterostomy via indocyanine green (ICG) visualization under near-infrared (NIR) light. Seven patients underwent robot-assisted ureteroureterostomy for ureteral stricture by a single surgeon (D.D.E.). Intraoperative localization of ureteral stricture involved instilling ICG (25 mg in 10 mL distilled water) above and below the level of stenosis through a ureteral catheter or a percutaneous nephrostomy tube, or both. The fluorescent tracer was detected as a green color using the NIR modality on the da Vinci Si (Intuitive Surgical, Sunnyvale, CA). All patients consented to off-label use of ICG after full disclosure. Intraoperative ICG injection and visualization under NIR light assisted in the performance of a tension-free anastomosis in all patients. At the time of surgery, mean age was 55.7 ± 12.4 years and mean body mass index was 30.3 ± 5.8 kg/m(2). Mean operative time was 171.3 ± 52.4 minutes, mean estimated blood loss was 175.0 ± 146.5 mL, and mean length of ureteral excision on pathologic analysis was 1.6 ± 0.7 cm. There were no immediate or delayed adverse effects attributable to intraureteral ICG administration. Mean hospital length of stay was 1.6 ± 1.5 days, with no postoperative complications. Mean follow-up was 5.9 ± 1.5 months, and all cases were clinically and radiographically successful at last follow-up. Intraureteral injection of ICG with visualization under NIR light allows for real-time delineation of the ureter. Additionally, ICG administration aids in discerning healthy ureter from diseased tissue, further assisting successful robotic ureteral repair. Copyright © 2013 Elsevier Inc. All rights reserved.
2014-06-17
NASA is investing in a number of technologies to extend Entry, Descent and Landing (EDL) capabilities to enable Human Missions to Mars. These technologies will also enable robotic Science missions. Human missions will require landing payloads of 10?s of metric tons, not possible with today's technology. Decelerating from entry speeds around 15,000 miles per hour to landing in a matter of minutes will require very large drag or deceleration. The one way to achieve required deceleration is to deploy a large surface that can be stowed during launch and deployed prior to entry. This talk will highlight a simple concept similar to an umbrella. Though the concept is simple, the size required for human Mars missions and the heating encountered during entry are significant challenges. The mechanically deployable system can also enable robotic science missions to Venus and is also equally applicable for bringing back cube-satellites and other small payloads. The scalable concept called Adaptive Deployable Entry and Placement Technology (ADEPT) is under development and is the focus of this talk.
Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)
NASA Astrophysics Data System (ADS)
Shepherd, Robert
2014-03-01
Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.
Kuwamura, Kaiko; Nishio, Shuichi; Sato, Shinichi
2016-01-01
This work presents a case study on fieldwork in a group home for the elderly with dementia using a teleoperated robot called Telenoid. We compared Telenoid-mediated and face-to-face conditions with three residents with Alzheimer's disease (AD). The result indicates that two of the three residents with moderate AD showed a positive reaction to Telenoid. Both became less nervous while communicating with Telenoid from the time they were first introduced to it. Moreover, they started to use more body gestures in the face-to-face condition and more physical interactions in the Telenoid-mediated condition. In this work, we present all the results and discuss the possibilities of using Telenoid as a tool to provide opportunities for seniors to communicate over the long term.
Astronaut David Brown talks with team members from South Carolina
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown looks over the robot named 'L'il Max' with members of the team The Bot Kickers! from Northwestern High School, Rock Hill, S.C. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition being held March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co- sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Deploying the ODIS robot in Iraq and Afghanistan
NASA Astrophysics Data System (ADS)
Smuda, Bill; Schoenherr, Edward; Andrusz, Henry; Gerhart, Grant
2005-05-01
The wars in Iraq and Afghanistan have shown the importance of robotic technology as a force multiplier and a tool for moving soldiers out of harms way. Situations on the ground make soldiers performing checkpoint operations easy targets for snipers and suicide bombers. Robotics technology reduces risk to soldiers and other personnel at checkpoints. Early user involvement in innovative and aggressive development and acquisition strategies are the key to moving robotic and associated technology into the hands of the user. This paper updates activity associated with rapid development of the Omni-Directional Inspection System (ODIS) robot for under vehicle inspection and reports on our field experience with robotics in Iraq and Afghanistan. In February of 2004, two TARDEC Engineers departed for a mission to Iraq and Afghanistan with ten ODIS Robots. Six robots were deployed in the Green Zone in Baghdad. Two Robots were deployed at Kandahar Army Airfield and two were deployed at Bagram Army Airfield in Afghanistan. The TARDEC Engineers who performed this mission trained the soldiers and provided initial on site support. They also trained Exponent employees assigned to the Rapid Equipping Force in ODIS repair. We will discuss our initial deployment, lessons learned and future plans.
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-01-01
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843
A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.
Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im
2017-11-25
Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Center Director Jim Kennedy (right, back to camera) talks to members of the KSC-sponsored “Pink” team at the 2004 Florida Regional FIRST competition, held at the University of Central Florida. The annual event is hosting 41 teams from Canada, Brazil, Great Britain and the United States. FIRST is a nonprofit organization, For Inspiration and Recognition of Science and Technology, that sponsors the event pitting robots against each other in an athletic-style competition. The FIRST robotics competition is designed to provide students with a hands-on, inside look at engineering and other professional careers, pairing high school students with engineer mentors and corporations.
Eclipse of the Floating Orbs: Controlling Robots on the International Space Station
NASA Technical Reports Server (NTRS)
Wheeler, D. W.
2017-01-01
I will describe the Control Station for a free-flying robot called Astrobee. Astrobee will serve as a mobile camera, sensor platform, and research testbed when it is launched to the International Space Station (ISS)in 2017. Astronauts on the ISS as well as ground-based users will control Astrobee using the Eclipse-based Astrobee Control Station. Designing theControl Station for use in space presented unique challenges, such as allowing the intuitive input of 3D information without a mouse or trackpad. Come to this talk to learn how Eclipse is used in an environment few humans have the chance to visit.
New Frontiers in NanoBiotechnology: Monitoring the Protein Function With Single Protein Resolution
2005-03-29
Protein (GFP) is a spontaneously fluorescent polypeptide of 27 kD from the jellyfish Aequorea victoria that absorbs UV-blue light and emits in the...will have vast applications in science. Relationship between structure and optical properties in Green Fluorescent Proteins : A quantum mechanical study...RESEARCH AND DEVELOPMENT Invited talks Folding, stability and fluorescence efficiency of the Green and Red Fluorescent Proteins Saverio Alberti Lab.
Boris, Ronald S; Eun, Daniel; Bhandari, Akshay; Lyall, Kathryn; Bhandari, Mahendra; Rogers, Craig; Alassi, Osama; Menon, Mani
2007-01-01
A potassium-titanyl-phosphate (KTP) laser through robotic endo-wrist instrument has been evaluated as an ablative and hemostatic tool in robotic assisted laparoscopic partial nephrectomy (RALPN). Ten RALPN were performed in five domestic female pigs. The partial nephrectomies were performed with bulldog clamping of the pedicle. Flexible glass fiber carrying 532-nm green light laser was used through a robotic endowrist instrument in two cases. Power usage from 4 to 10 W was tested. The laser probe was explored both as a cutting knife and for hemostasis. The pelvicalyceal system was closed with a running suture. Partial nephrectomies using KTP laser were performed without complications. Mean operative times and warm ischemia times for laser cases were 96 and 18 min, respectively. Mean estimated blood loss was 60 ml compared with 50 ml for non-laser cases. Complete hemostasis with the laser alone could be achieved with a power of 4 W and was found to be effective. In our hands the laser fiber powered up to 10 W was not effective as a quick cutting agent. Histopathologic analysis of the renal remnant revealed a cauterized surface effect with average laser penetration depth less than 1 mm and minimal surrounding cellular injury. The new robotic endowrist instrument carrying flexible glass fiber transmitting 532-nm green light laser is a useful addition to the armamentarium of the robotic urologic setup. Its control by the console surgeon enables quicker and more complete hemostasis of the cut surface in renal sparing surgery using a porcine model. Histologically proven lased depth of less than 1 mm suggests minimal parenchyma damage in an acute setting. Laser application as a cutting agent, however, requires further investigation with interval power settings beyond the limits of this preliminary study. We estimate that effective cutting should be possible with a setting lower than traditionally recommended for solid organs.
Japan: Land of Samurai and Robots. Young Discovery Library Series: 11.
ERIC Educational Resources Information Center
Ottenheimer, Laurence
Part of an international series of amply illustrated, colorful, small size books designed for children ages 5 to 10, this volume talks about Japanese culture, modern life style, geography, music, arts, sports, and traditions. There is a brief description of how Japanese children learn to read and write. Japanese hot baths, school books, the…
2006-03-10
KENNEDY SPACE CENTER, FLA. - During the 2006 FIRST Robotics Regional Competition held March 9-11 at the University of Central Florida in Orlando, Kennedy Space Center Director Jim Kennedy and his intern Neil Berger talk with students on the Cocoa Beach High School-Rockledge High School robotic team known as the "Pink Team," which was co-sponsored by NASA KSC. The team's robot, at right, is called Roccobot. At least four teams in the competition were sponsored by KSC, NASA and contractors. The FIRST Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions. FIRST, which is based on "For Inspiration and Recognition of Science and Technology," redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. NASA and the University of Central Florida are co-sponsors of the regional event, which this year included more than 50 teams. Photo credit: NASA/Kim Shiflett
Parisi, Domenico
2010-01-01
Trying to understand human language by constructing robots that have language necessarily implies an embodied view of language, where the meaning of linguistic expressions is derived from the physical interactions of the organism with the environment. The paper describes a neural model of language according to which the robot's behaviour is controlled by a neural network composed of two sub-networks, one dedicated to the non-linguistic interactions of the robot with the environment and the other one to processing linguistic input and producing linguistic output. We present the results of a number of simulations using the model and we suggest how the model can be used to account for various language-related phenomena such as disambiguation, the metaphorical use of words, the pervasive idiomaticity of multi-word expressions, and mental life as talking to oneself. The model implies a view of the meaning of words and multi-word expressions as a temporal process that takes place in the entire brain and has no clearly defined boundaries. The model can also be extended to emotional words if we assume that an embodied view of language includes not only the interactions of the robot's brain with the external environment but also the interactions of the brain with what is inside the body.
2006-03-10
KENNEDY SPACE CENTER, FLA. - During opening ceremonies of the 2006 FIRST Robotics Regional Competition held March 9-11 at the University of Central Florida in Orlando, Kennedy Space Center Director Jim Kennedy talks to the participants. The FIRST Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions. FIRST, which is based on "For Inspiration and Recognition of Science and Technology," redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. NASA and the University of Central Florida are co-sponsors of the regional event, which this year included more than 50 teams. Photo credit: NASA/Kim Shiflett
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to The Wolverines team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from the Foshay Learning Center located in Los Angeles. NASA is a sponsor of the team. About 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. The team took home the Industrial Safety Award sponsored by Underwriters Laboratories. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to The Wolverines team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from the Foshay Learning Center located in Los Angeles. NASA is a sponsor of the team. About 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. The team took home the Industrial Safety Award sponsored by Underwriters Laboratories. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-10-03
Pipistrel-USA Team Lead Jack Langelaan talks after his team won the 2011 Green Flight Challenge, sponsored by Google, on Monday, Oct. 3, 2011 at the NASA Ames Research Center, Mountain View, Calif. The all electric Taurus G4 aircraft achieved the equivalency of more than 400 miles per gallon. NASA and CAFE Foundation held the challenge to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Lif and Raman Spectroscopy in Undergraduate Labs Using Green Diode-Pumped Solid-State Lasers
NASA Astrophysics Data System (ADS)
Gray, Jeffrey A.
2015-06-01
Electronic spectroscopy of molecular iodine vapor has long been studied in undergraduate physical chemistry teaching laboratories, but the effectiveness of emission work has typically been limited by availability of instrumentation. This talk shows how to make inexpensive green diode-pumped solid-state (DPSS) lasers easily tunable for efficient, selective excitation of I2. Miniature fiber-optic spectrometers then enable rotationally resolved fluorescence spectroscopy up to v" = 42 near 900 nm with acquisition times of less than one minute. DPSS lasers are also versatile excitation sources for vibrational Raman spectroscopy, which is another common exercise that has been limited by lack of proper instrumentation in the teaching laboratory. This talk shows how to construct a simple accessory for commercial fluorimeters to record vibrational Raman spectra and depolarization ratios for CCl4 and C2Cl4 as part of a lab exercise featuring molecular symmetry.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- During the FIRST robotics event held at the University of Central Florida Arena March 8-10, Center Director Bill Parsons (left) talks to students from Titusville, Fla., about their robot. The team is cosponsored by ASRC Aerospace and The Boeing Company, and represents Astronaut and Titusville High Schools. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
Finding Your Scientific Voice - Theatre Techniques for Physicists
NASA Astrophysics Data System (ADS)
Dreyer-Lude, Melanie
Research talks can be dull. Scientists may be making important, ground-breaking discoveries, but their audience is often missing the message. Whether presenting a conference talk, pitching a congressman for funding, or participating in a job interview, scientists must learn how to tell their stories. Conducting research and talking about that research are separate skill sets. The curse of knowledge, too much information, or the inability to speak and move properly may all be standing in the way of turning a talk into a memorable event. Building on initiatives like those of the Alan Alda Center and Bruce Greenes theatrical productions, our workshop helps researchers connect performing skills to the reality of presenting complex research subjects. This talk reviews key aspects of the Finding Your Scientific Voice workshop. Using digital recordings of pre and post workshop presentations, we will demonstrate what is exceptional about our workshop process and how it uses theatrical tools like Great Beginnings, the Dramatic Arc, the Core Message and Strong Endings to transform a humdrum presentation into a dynamic speaking event.
2016 Summer Series - Alan Stern - The Exploration of Pluto by New Horizons
2016-08-11
Interplanetary exploration is essential for the long-term survival of our species. Robotic space exploration allows us to advance our knowledge of our solar system and beyond. Dr. Alan Stern will talk about the New Horizons mission to Pluto and the scientific knowledge gained through the exploration of the icy worlds at the edge of our solar system.
2016 Summer Series - Bethany Ehlmann - Early Mars: A View from Rovers and Orbiters
2016-08-18
Water signatures include geological changes and life. Surface and orbital interplanetary robotic missions are critical for obtaining knowledge on atmospheric, surface and subsurface conditions of planets in our solar system. Ehlmann will talk about Mars data collected from orbital and rover missions and their implication for our understating of Mars past and present water environments.
STEM Mentor Breakfast at Debus Center
2017-05-25
Kim Stratton, at left, with Caterpillar, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
STEM Mentor Breakfast at Debus Center
2017-05-25
Gioia Massa, at left, a NASA payload scientist, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2011-09-27
The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-25
CAFE Foundation Weights Chief Wayne Cook, left, talks with the e-Genius aircraft crew about their weigh-in during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Teaching human poses interactively to a social robot.
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A
2013-09-17
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.
Object schemas for grounding language in a responsive robot
NASA Astrophysics Data System (ADS)
Hsiao, Kai-Yuh; Tellex, Stefanie; Vosoughi, Soroush; Kubat, Rony; Roy, Deb
2008-12-01
An approach is introduced for physically grounded natural language interpretation by robots that reacts appropriately to unanticipated physical changes in the environment and dynamically assimilates new information pertinent to ongoing tasks. At the core of the approach is a model of object schemas that enables a robot to encode beliefs about physical objects in its environment using collections of coupled processes responsible for sensorimotor interaction. These interaction processes run concurrently in order to ensure responsiveness to the environment, while co-ordinating sensorimotor expectations, action planning and language use. The model has been implemented on a robot that manipulates objects on a tabletop in response to verbal input. The implementation responds to verbal requests such as 'Group the green block and the red apple', while adapting in real time to unexpected physical collisions and taking opportunistic advantage of any new information it may receive through perceptual and linguistic channels.
Gravitational radiation during plunge - a Green's function approach
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh; Price, Richard; Khanna, Gaurav
2015-04-01
During the merger of binary compact objects, an important stage is the plunge. A short part of the Gravitational waveform, it marks the end of early inspiral and determines the quasinormal ringing (QNR) of the final product of the merger. In this talk, we describe the approach of using the Fourier domain Green's function in the particle perturbation approximation to understand the excitation of QNR. We show that the resulting understanding is successful in explaining QNR in toy models and in the Schwarzschild background.
Materials for Space: It's Challenging!
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Space environments place tremendous demands on materials that must perform with exceptional reliability to realize the goals of human or robotic space exploration missions. Materials are subjected to extremes of temperature, pressure, radiation and mechanical loads during all phases of use, including takeoff and ascent, exposure to space or entry into an atmosphere, and operation in a planetary atmosphere. Space materials must be robust and enable the formation of lightweight structures or components that perform the required functions; materials that perform multiple functions are of particular interest. This talk will review the unique challenges for materials in space and some of the specific material capabilities that will be needed for future exploration missions. A description of needs and trends in thermal protection materials and systems will complete the talk.
STEM Mentor Breakfast at Debus Center
2017-05-25
Jonette Stecklein (in the blue shirt), a flight systems engineer from Johnson Space Center in Houston, talks to students during a Women in STEM mentoring breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
Towards a greener labour market: occupational health and safety implications.
Valenti, Antonio; Gagliardi, Diana; Fortuna, Grazia; Iavicoli, Sergio
2016-01-01
Climate change and environmental degradation are seriously jeopardizing the future environmental and economic sustainability at the global level prompting urgent calls for a shift towards more sustainable development and greener economies. The use of the so called green jobs is a key strategy to overcome economic and ecological crisis. The present study discusses the implications for employment and decent work of green jobs in order to identify information/training measures to enhance skills of employees protecting their working conditions. Despite all the emphasis laid today on the green economy, occupational health and safety (OHS) issues have still been talked only limited, as already noted in previous studies and literature reviews. It is needed to assess traditional and new OHS risks within green jobs in order to facilitate the transfer of OHS knowledge to green technologies as well as identifying OHS training needs.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- During the FIRST robotics event held at the University of Central Florida Arena March 8-10, Center Director Bill Parsons talks to the NASA-sponsored team, known as the Pink Team, from Rockledge, Cocoa Beach and Viera High Schools in Central Florida. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks to teams that are participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- Former space shuttle launch directors, Bob Sieck, left, and Mike Leinbach, right, talk with high school teams that are competing in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Members of team Mountaineers pose with officials from the 2014 NASA Centennial Challenges Sample Return Robot Challenge on Saturday, June 14, 2014 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineer was the only team to complete the level one challenge this year. Team Mountaineer members, from left (in blue shirts) are: Ryan Watson, Marvin Cheng, Scott Harper, Jarred Strader, Lucas Behrens, Yu Gu, Tanmay Mandal, Alexander Hypes, and Nick Ohi Challenge judges and competition staff (in white and green polo shirts) from left are: Sam Ortega, NASA Centennial Challenge program manager; Ken Stafford, challenge technical advisor, WPI; Colleen Shaver, challenge event manager, WPI. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Manny, Ted B; Hemal, Ashok K
2014-04-01
To describe the initial feasibility of fluorescence-enhanced robotic radical cystectomy (FERRC) using real-time cystoscopic injection of unconjugated indocyanine green (ICG) for tumor marking and identification of sentinel lymphatic drainage with additional intravenous injection for mesenteric angiography. Ten patients with clinically localized high-grade bladder cancer underwent FERRC. Before robot docking, rigid cystoscopy was performed, during which a 2.5-mg/mL ICG solution was injected in the bladder submucosa and detrusor circumferentially around the tumor. After robot docking, parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent lymph nodes were considered the sentinel drainage. Eight patients underwent intracorporeal ileal conduit urinary diversion, during which an additional 2-mL ICG solution was given intravenously for mesenteric angiography, allowing maximal preservation of bowel vascularity to the conduit and remaining bowel segments. Bladder tumor marking and identification of sentinel drainage were achieved in 9 of 10 (90%) patients. The area of bladder tumor was identified at a median of 15 minutes after injection, whereas sentinel drainage was visualized at a median of 30 minutes. Mesenteric angiography was successful in 8 of 8 (100%) patients at a median time of <1 minutes after intravenous injection and enabled identification of bowel arcades before intracorporeal bowel stapling. FERRC using combined cystoscopic and intravenous injection of ICG is safe and feasible. FERRC allows for reliable bladder tumor marking, identification of sentinel lymphatic drainage, and identification of mesenteric vasculature in most patients. Copyright © 2014 Elsevier Inc. All rights reserved.
PREFACE: Progress in Nonequilibrium Green's Functions V (PNGF V)
NASA Astrophysics Data System (ADS)
van Leeuwen, Robert; Tuovinen, Riku; Bonitz, Michael
2013-03-01
(The PDF contains: an obituary and in memoriam for David C. Langreth, a list of the conference participants, a complete list of the conference talks and posters and several photographs taken during the conference. ) The fifth interdisciplinary conference 'Progress in Nonequilibrium Green's Functions' (PNGF5) was held at the University of Jyväskylä, Finland, on 27--31 August 2012. The conference continued the successful tradition of its predecessors (Rostock 1999, Dresden 2002, Kiel 2005 and Glasgow 2009) to bring together different communities for an interdisciplinary exchange of recent results and theoretical concepts. The conference focused on recent developments, current challenges and future perspectives in nonequilibrium Green's functions theory in various fields of physics but included also other many-body methods. Roughly 20 invited talks were given by some of the top scientists in the field, accompanied by 10 contributed talks. (Slides of several presentations can be found online at www.jyu.fi/physics/pngf5.) Also a poster session was set up to enhance scientific discussions, building up new collaborations and enriching views and ideas. As at the previous meetings, the atmosphere was interactive and stimulating, benefitting both experienced scientists and young researchers and students. The present volume contains 14 articles based on works presented at this conference. The articles partly have review character so they should be of use for an interdisciplinary community working or interested in nonequilibrium Green's functions. All papers were refereed according to high scientific standards. The conference would not have been possible without financial support from the Federation of Finnish Learned Societies, Finnish Academy of Science and Letters and Nanoscience Center of the university of Jyväskylä which are greatly acknowledged. The local organizing committee is also grateful to the administration personnel, Marjut Hilska and Riitta-Liisa Kuittinen, for assistance. We further thank professor Antti-Pekka Jauho for invaluable help and advice during the organization of the conference. The editors of the present conference proceedings acknowledge the authors for their excellent papers and all the referees for participating in a thorough peer-reviewing of the manuscripts. Finally, it is our pleasure to announce that the sixth conference 'Progress in Nonequilibrium Green's Functions' (PNGF6) will be held in August 2015 at the University of Lund, Sweden. Riku Tuovinen and Robert van Leeuwen University of Jyväskylä Michael Bonitz University of Kiel February 2013
Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors
NASA Astrophysics Data System (ADS)
Majidi, Carmel
2012-02-01
In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.
2011-09-27
Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
2011-09-27
CAFE Foundation Security Chief and Event Manager Bruno Mombrinie, left, talks with CAFE Foundation eCharging Chief Alan Soule as flight crews prepare for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)
Astronaut David Brown talks with team members from Lake Buena Vista, Fla
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown chats with members of the Explorers team, from Lake Buena Vista, Fla., during the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition held March 9-11 in the KSC Visitor Complex Rocket Garden. Teams of high school students from all over the country are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing at the Southeast Regional event, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
STEM Mentor Breakfast at Debus Center
2017-05-25
Barbara Brown, center at the table, strategic implementation manager with the Exploration Research and Technology Programs at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
STEM Mentor Breakfast at Debus Center
2017-05-25
Hortense Diggs, at right, the deputy director of the Communication and Public Engagement Directorate at NASA's Kennedy Space Center in Florida, talks to students during a Women in STEM breakfast inside the Debus Conference Center at the Kennedy Space Center Visitor Complex in Florida. STEM is science, technology, engineering and math. The special event gave students competing in NASA's 8th Annual Robotic Mining Competition the chance to learn from female NASA scientists, engineers and professionals about their careers and the paths they took to working at Kennedy. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.
2000-03-10
Astronaut David Brown talks with FIRST team members, Baxter Bomb Squad, from Mountain Home High School, Mountain Home, Ariz., during the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
2000-03-10
Astronaut David Brown talks with FIRST team members, Baxter Bomb Squad, from Mountain Home High School, Mountain Home, Ariz., during the FIRST competition. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville
Tip-over Prevention Through Heuristic Reactive Behaviors for Unmanned Ground Vehicles
2014-05-01
Systems Center Pacific Unmanned Systems Group 53406 Woodward Road San Diego, CA 92152 ABSTRACT Skid-steer teleoperated robots are commonly used by...Reactive Behaviors Further author information: (Send correspondence to K.T.) K.T.: E-mail: kurt.talke@navy.mil, SPIE Proc. 9084: Unmanned Systems ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Space and Naval Warfare Systems Center
Sound, Sara; Okoh, Alexis K; Bucak, Emre; Yigitbas, Hakan; Dural, Cem; Berber, Eren
2016-02-01
To investigate the feasibility of a method for intraoperative tumor localization and tissue distinction during robotic adrenalectomy (RA) via indocyanine green (ICG) imaging under near-infrared light. Ten patients underwent RA. After exposure of the retroperitoneal space, but before adrenal dissection was started, ICG was given intravenously (IV). Fluorescence Firefly™ imaging was performed at 1-, 5-, 10-, and 20-min time points. The precision with which the borders of the adrenal tissue were distinguished with ICG imaging was compared to that with the conventional robotic view. The number and the total volume of injections for each patient were recorded. There were six male and four female patients. Diagnosis was primary hyperaldosteronism in four patients and myelolipoma, adrenocortical neoplasm, adrenocortical hyperplasia, Cushing's syndrome, pheochromocytoma, and metastasis in one patient each. Procedures were done through a robotic lateral transabdominal approach in nine and through a robotic posterior retroperitoneal approach in one patient. Dose per injection ranged between 2.5 and 6.3 mg and total dose per patient 7.5-18.8 mg. The adrenal gland took up the dye in 1 min, with contrast between adrenal mass and surrounding retroperitoneal fat becoming most distinguished at 5 min. Fluorescence of adrenal tissue lasted up to 20 min after injection. Overall, ICG imaging was felt to help with the conduct of operation in 8 out of 10 procedures. There were no conversions to open or morbidity. There were no immediate or delayed adverse effects attributable to IV ICG administration. In this pilot study, we demonstrated the feasibility and safety of ICG imaging in a small group of patients undergoing RA. We described a method that enabled an effective fluorescence imaging to localize the adrenal glands and guide dissection. Future research is necessary to study how this imaging affects perioperative outcomes.
Buildings That Think Green (LBNL Science at the Theater)
Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
Buildings are the SUVs of U.S. energy consumption, gobbling up 71 percent of the nation's electricity. In this Sept. 22, 2008 talk, Arun Majumdar, Director of Berkeley Lab's Environmental Energy Technologies Division, discusses how scientists are creating a new generation of net-zero energy, carbon-neutral buildings.
NASA in Silicon Valley Live - Episode 01 - We're Going Back to the Moon!
2018-01-12
We’ve launched a live video show on Twitch called NASA in Silicon Valley Live! This is our premiere episode streamed on Jan. 12. In it, we talk about going back to the Moon with NASA rock stars Jim Green and Greg Schmidt.
Developing Technological Fluency through Creative Robotics
ERIC Educational Resources Information Center
Bernstein, Debra Lynn
2010-01-01
Children have frequent access to technologies such as computers, game systems, and mobile phones (Sefton-Green, 2006). But it is useful to distinguish between engaging with technology as a "consumer" and engaging as a "creator" or designer (Resnick & Rusk, 1996). Children who engage as the former can use technology efficiently, while those who…
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons (right) talks with students of another NASA-sponsored robotic team during the FIRST robotics event held at the University of Central Florida Arena March 8-10. Next to Parsons is Lisa Malone, director of External Relations at Kennedy Space Center. The students of team 1592, the Bionic Tigers, represent the cosponsors Analex Corporation and NASA Launch Services Program and Cocoa High School in Central Florida. Participating since 2005, this is the first year for this team to receive NASA financial support. They were mentored by the Pink Team. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 1056 "The Moose," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is from Kissimmee, Fla., and consists of students from Osceola High School. More than 60 high school teams from took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 3132, called "Thunder Down Under," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Sydney, Australia. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 4024, which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Trinity Preparatory School in Winter Park, Fla. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 4064, which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Vanguard High School in Ocala, Fla. More than 60 high school teams from throughout the country took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- Former space shuttle launch director, Bob Sieck, left, and NASA Kennedy Space Center Associate Director Kelvin Manning, right, talk amongst high school teams that are competing in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA
Ferm, Ulrika M; Claesson, Britt K; Ottesjö, Cajsa; Ericsson, Stina
2015-06-01
This study explores children with complex communication needs, their peers and adult support persons in play with the talking and moving robot LekBot. Two triads were filmed playing with LekBot at pre-school. LekBot was developed to facilitate independent and enjoyable play on equal terms for children with significant communication disabilities and their peers. Using Conversation Analysis, participatory symmetry and enjoyment were investigated in relation to spoken and gestural communication, embodied stance, gaze, and affective display. Data originated from three video-recorded sessions that were approximately 2 hours long. Four different interaction situations were identified and explored: Participatory Asymmetry, Adult Facilitation, Greater Participatory Symmetry and Creativity, and Turn-taking and Enjoyable Play with LekBot. Neither participatory symmetry nor enjoyment were easily achieved in the play sessions and may require considerable effort, including adult involvement, but creative, spontaneous and highly enjoyable play, correlating with participatory symmetry to various degrees, was observed in a few instances. The findings are discussed with regard to play, AAC and the future development of robots to facilitate play.
Towards next generation 3D cameras
NASA Astrophysics Data System (ADS)
Gupta, Mohit
2017-03-01
We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons talks to guests at the VIP luncheon held during the FIRST robotics event held at the University of Central Florida Arena March 8-10. This was Parsons' first year attending the event as center director. An alumnus of UCF, Parsons also serves on the FIRST Executive Advisory Board. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
2007-03-09
KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons talks to an audience primarily of students during the FIRST robotics event held at the University of Central Florida Arena March 8-10. This was Parsons' first year attending the event as center director. An alumnus of UCF, Parsons also serves on the FIRST Executive Advisory Board. The FIRST, or For Inspiration and Recognition of Science and Technology, Robotics Competition challenges teams of young people and their mentors to solve a common problem in a six-week timeframe using a standard "kit of parts" and a common set of rules. Teams build robots from the parts and enter them in a series of competitions designed by FIRST founder Dean Kamen and Dr. Woodie Flowers, chairman and vice chairman of the Executive Advisory Board respectively, and a committee of engineers and other professionals. FIRST redefines winning for these students. Teams are rewarded for excellence in design, demonstrated team spirit, gracious professionalism and maturity, and ability to overcome obstacles. Scoring the most points is a secondary goal. Winning means building partnerships that last. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Stocke, John T.
1998-01-01
This grant has contributed to one of the original goals of the NAS/LTSA program, the goal of junior faculty development. Below I briefly summarize the following major results on BL Lacertae Objects that we have obtained. An invited talk on BL Lac Objects at IAU 175 "Extragalactic Radio Sources" at Bologna Italy in October 1995 summarized some of these results. A second invited talk in Oct 1998 at Green Bamk, WVA presented other BL Lac results at the conference entitled: "Highly Redshifted Radio Lines". We have used the EMSS sample to measure the X-ray luminosity function and cosmological evolution of BL Lacs. A new large sample of XBLs has been discovered.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Plant features measurements for robotics
NASA Technical Reports Server (NTRS)
Miles, Gaines E.
1989-01-01
Initial studies of the technical feasibility of using machine vision and color image processing to measure plant health were performed. Wheat plants were grown in nutrient solutions deficient in nitrogen, potassium, and iron. An additional treatment imposed water stress on wheat plants which received a full complement of nutrients. The results for juvenile (less than 2 weeks old) wheat plants show that imaging technology can be used to detect nutrient deficiencies. The relative amount of green color in a leaf declined with increased water stress. The absolute amount of green was higher for nitrogen deficient leaves compared to the control plants. Relative greenness was lower for iron deficient leaves, but the absolute green values were higher. The data showed patterns across the leaf consistent with visual symptons. The development of additional color image processing routines to recognize these patterns would improve the performance of this sensor of plant health.
A "Greenprint" for a Healthier World
ERIC Educational Resources Information Center
Eisenberg, Larry
2008-01-01
This article talks about how the Los Angeles Community College District (LACCD) embraced a precedent-setting green policy that would forever change its approach to education. The "greenprint" for how environmental design and construction could be done mandates that all new buildings funded with at least half of the funds from its $2.2…
Students Dig for Real School Gardens
ERIC Educational Resources Information Center
Reeves, Lacey; Emeagwali, N. Susan
2010-01-01
There's a lot of talk about saving the environment and going green these days. But the challenge is to turn the words into action, and that includes getting young students to become part of the discussion about sustainability. The Texas-based Rainwater Environmental Alliance for Learning (REAL) School Gardens is cultivating success by providing…
Promoting water hydraulics in Malaysia: A green educational approach
NASA Astrophysics Data System (ADS)
Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie
2014-10-01
In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.
Fabrication of porous silicon nitride ceramics using binder jetting technology
NASA Astrophysics Data System (ADS)
Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.
2016-07-01
This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.
Recent results in visual servoing
NASA Astrophysics Data System (ADS)
Chaumette, François
2008-06-01
Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.
Robotic liver surgery: technical aspects and review of the literature
Bianco, Francesco Maria; Daskalaki, Despoina; Gonzalez-Ciccarelli, Luis Fernando; Kim, Jihun; Benedetti, Enrico
2016-01-01
Minimally invasive surgery for liver resections has a defined role and represents an accepted alternative to open techniques for selected cases. Robotic technology can overcome some of the disadvantages of the laparoscopic technique, mainly in the most complex cases. Precise dissection and microsuturing is possible, even in narrow operative fields, allowing for a better dissection of the hepatic hilum, fine lymphadenectomy, and biliary reconstruction even with small bile ducts and easier bleeding control. This technique has the potential to allow for a greater number of major resections and difficult segmentectomies to be performed in a minimally invasive fashion. The implementation of near-infrared fluorescence with indocyanine green (ICG) also allows for a more accurate recognition of vascular and biliary anatomy. The perspectives of this kind of virtually implemented imaging are very promising and may be reflected in better outcomes. The overall data present in current literature suggests that robotic liver resections are at least comparable to both open and laparoscopic surgery in terms of perioperative and postoperative outcomes. This article provides technical details of robotic liver resections and a review of the current literature. PMID:27500143
Measurements Required to Understand the Lunar Dust Environment and Transport Mechanism
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Abbas, Mian
2006-01-01
Going back to the lunar surface offers an opportunity to understand the dust environment and associated transport mechanisms. This talk will explore what measurements are required to understand and characterize the dust-plasma environment in which robotic and human activities will be conducted. The understanding gained with the measurements can be used to make informed decisions on engineering solutions and follow-on investigations. Particular focus will be placed on required measurements of the size, spatial and charge distribution of the suspended lunar regolith.
Modernizing Our Industrial Base: The National Security Challenge of Our Time
2015-08-01
situational awareness tools and applications, au- tonomy and robotics that we need to harness and fully develop for DoD missions . With this type of...to work for the DoD or its industrial base; rather they go to work in the commercial industry for companies such as Facebook, Google and Tesla . This...partnership with industry. The DoD continues talking to indus- try, communicating our vision for the future, to facilitate the best business decisions that
NASA Technical Reports Server (NTRS)
1981-01-01
Maps of the four aerodromes and the results of polls taken in those areas are presented. The Guttman scale and the Green and Loevinger criteria were reviewed. The weighting factors and matrices of correlation are described. Extracts of the talks in one district and the questionnaire used are presented.
Propulsion Technologies for Future Commercial Aircraft
NASA Technical Reports Server (NTRS)
Follen, Gregory J.
2013-01-01
Mr. Follen has been invited talk on subject of Greening of Aerospace and Aviation Canada-Ohio Aerospace Summit 2013, February 25-26, 2013. This two-day, bi-national aerospace and aviation conference will focus on identifying business and research opportunities providing meaningful industry updates with ample opportunity to network and scheduled business-to-business and researcher-to-researcher meetings.
Respecting the Struggle: Deciding What to Research and Why
ERIC Educational Resources Information Center
Rex, Lesley A.
2010-01-01
In this paper, the author addresses the circumstances of education research knowledge at this time in history. She begins by referring to the keynote talks by Erika McWilliams and Bill Green, who take up the issue of knowledge-building through research in education and how to regard it productively and hopefully as researchers move forward. She…
Livin' off the Grid: Solar Decathlon Is as Green as It Gets!
ERIC Educational Resources Information Center
Peckham, Susanne
2009-01-01
In this article, the author talks about the Solar Decathlon, a competition in which 20 teams of college and university students compete to design, build, and operate the most attractive, effective, and energy-efficient solar-powered house. Previously held in 2002, 2005, and 2007, the Solar Decathlon has grown into one of the most highly…
R. C. Kellison
1995-01-01
The perception exists that the forest industry in the United States is the antithesis of the green revolution. For instance, I recently saw the results of a poll that listed three forest products companies among the 10 worst polluters in the United States. That's all there was; their names splashed across the T V screen on the early morning news. That very...
Valenti, Antonio; Buresti, Giuliana; Rondinone, Bruna Maria; Persechino, Benedetta; Boccuni, Fabio; Fortuna, Grazia; Iavicoli, Sergio
2015-01-01
Despite all the emphasis laid today on the green economy, occupational health and safety (OHS) issues have still been talked only limitedly, as already noted in previous studies and literature reviews. The Department of Occupational and Environmental Medicine, Epidemiology and Hygiene of the Italian Workers' Compensation Authority (INAIL) has conducted a survey among some Italian stakeholders, social partners, institutions and "green" businesses to gather their perceptions of the potential effects of green jobs on OHS, particularly in the renewable energy sector. The survey involved a sample of 61 stakeholders in the following categories: institutions (11), trade unions (11), employers' organizations (13), businesses (11), research (15). Participation in this survey of national stakeholders who have a central role in the development and management of policies on renewable energy and OHS, allowed to analyze in depth the fundamental aspects for a fair transition towards green economy. Also, the good agreement among respondents brought to light quite clearly the main critical points as regards the OHS implications of green work in Italy, and pointed to the principal policies to be adopted to safeguard workers' health and safety.
Dielectric elastomer actuators for facial expression
NASA Astrophysics Data System (ADS)
Wang, Yuzhe; Zhu, Jian
2016-04-01
Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.
2011-03-11
ORLANDO, Fla. – Robotics Engineer Michael Garrett from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., talks about the Mars Science Laboratory mission's Curiosity rover at the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. JPL unveiled an inflatable, full-size model of the rover at the competition. The rover is scheduled to launch from Cape Canaveral Air Force Station in Florida aboard an Atlas V later this year. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 233, "The Pink Team," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. Kennedy is a sponsor of the team. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with a member of Team 3502, called "The Octo Pie-Rates," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from the School for Arts and Innovative Learning SAIL High School in Tallahassee. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with a member of Team 233, "The Pink Team," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. Kennedy is a sponsor of the team. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 3502, called "The Octo Pie-Rates," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from the School for Arts and Innovative Learning SAIL High School in Tallahassee. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of the "12 Volt Bolt Team," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is from Eustis, Fla., and consists of students from many Lake County schools, including Mt. Dora High, Eustis High, Tavares High, Mt. Dora Bible and homeschooled students. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
Collaborative autonomous sensing with Bayesians in the loop
NASA Astrophysics Data System (ADS)
Ahmed, Nisar
2016-10-01
There is a strong push to develop intelligent unmanned autonomy that complements human reasoning for applications as diverse as wilderness search and rescue, military surveillance, and robotic space exploration. More than just replacing humans for `dull, dirty and dangerous' work, autonomous agents are expected to cope with a whole host of uncertainties while working closely together with humans in new situations. The robotics revolution firmly established the primacy of Bayesian algorithms for tackling challenging perception, learning and decision-making problems. Since the next frontier of autonomy demands the ability to gather information across stretches of time and space that are beyond the reach of a single autonomous agent, the next generation of Bayesian algorithms must capitalize on opportunities to draw upon the sensing and perception abilities of humans-in/on-the-loop. This work summarizes our recent research toward harnessing `human sensors' for information gathering tasks. The basic idea behind is to allow human end users (i.e. non-experts in robotics, statistics, machine learning, etc.) to directly `talk to' the information fusion engine and perceptual processes aboard any autonomous agent. Our approach is grounded in rigorous Bayesian modeling and fusion of flexible semantic information derived from user-friendly interfaces, such as natural language chat and locative hand-drawn sketches. This naturally enables `plug and play' human sensing with existing probabilistic algorithms for planning and perception, and has been successfully demonstrated with human-robot teams in target localization applications.
Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F
2013-01-01
The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.
Polarization of Light by Leaves and Plant Canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.
2006-01-01
This talk will focus first on the information contained in the surface-scattered light from leaves, plant canopies and surface waters. This light is in general polarized and depends upon surface roughness. Thus, for example, - The surface reflection from shiny green leaves measured in the specular direction shows no chlorophyll absorption bands, no 'red edge.' - Conversely, the degree of linear polarization of such light displays marked variation with wavelength having local maxima in the chlorophyll absorption bands and an inverted red edge. - Plant canopies with shiny leaves distributed in angle like the area on a sphere, specularly reflect sunlight in the subsolar or specular direction- but also in every other view direction. - Canopies of green plants may appear white not green when viewed obliquely toward the sun. - In a light to moderate wind, the often blindingly bright glitter of sunlight off smooth water surfaces provides a strong, angularly narrow signature reflection characteristic of inundated vegetated areas that are big sources of atmospheric methane, a climatically important greenhouse gas. (Conversely, a blindingly bright glitter-type reflection is uncharacteristic of upland or wind ruffled open water areas that are poor sources of atmospheric methane.) Because some of these results may be 'head scratchers,' it's always important to properly calibrate ones instruments. Indeed, as the second portion of the talk will show, the characteristics of the light measuring instrument, particularly its entrance aperture, may affect the results and should be taken into account during across-instrument data comparisons.
Hopkins during SPHERES Slosh Run
2014-01-22
ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
JPRS Report Science & Technology Europe.
1992-09-17
9 Jul 92] 48 HERA Project Gets Green Light for Quark Structure Analysis [DuesseldorfVDI NACHRICHTEN, 12 Jul 92] .... 48 TELECOMMUNICATIONS...communicating with the control station. The demonstrator is the product of research performed at the Robot and Artificial Intel - ligence Unit of...from the microphones, speedometers, or tachometers. Each board is linked to a Motorola DSP [digital signal processor ]. Although the system has been
NASA Astrophysics Data System (ADS)
Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.
2001-08-01
The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.
Tiong, Ho Yee; Goh, Benjamin Yen Seow; Chiong, Edmund; Tan, Lincoln Guan Lim; Vathsala, Anatharaman
2018-03-31
Robotic-assisted kidney transplantation (RKT) with the Da Vinci (Intuitive, USA) platform has been recently developed to improve outcomes by decreasing surgical site complications and morbidity, especially in obese patients. This potential paradigm shift in the surgical technique of kidney transplantation is performed in only a few centers. For wider adoption of this high stake complex operation, we aimed to develop a procedure-specific simulation platform in a porcine model for the training of robotic intracorporeal vascular anastomosis and evaluating vascular anastomoses patency. This paper describes the requirements and steps developed for the above training purpose. Over a series of four animal ethics' approved experiments, the technique of robotic-assisted laparoscopic autotransplantation of the kidney was developed in Amsterdam live pigs (60-70 kg). The surgery was based around the vascular anastomosis technique described by Menon et al. This non-survival porcine training model is targeted at transplant surgeons with robotic surgery experience. Under general anesthesia, each pig was placed in lateral decubitus position with the placement of one robotic camera port, two robotic 8 mm ports and one assistant port. Robotic docking over the pig posteriorly was performed. The training platform involved the following procedural steps. First, ipsilateral iliac vessel dissection was performed. Second, robotic-assisted laparoscopic donor nephrectomy was performed with in situ perfusion of the kidney with cold Hartmann's solution prior to complete division of the hilar vessels, ureter and kidney mobilization. Thirdly, the kidney was either kept in situ for orthotopic autotransplantation or mobilized to the pelvis and orientated for the vascular anastomosis, which was performed end to end or end to side after vessel loop clamping of the iliac vessels, respectively, using 6/0 Gore-Tex sutures. Following autotransplantation and release of vessel loops, perfusion of the graft was assessed using intraoperative indocyanine green imaging and monitoring urine output after unclamping. This training platform demonstrates adequate face and content validity. With practice, arterial anastomotic time could be improved, showing its construct validity. This porcine training model can be useful in providing training for robotic intracorporeal vascular anastomosis and may facilitate confident translation into a transplant human recipient.
Thermal Protection Systems: Past, Present and Future
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2015-01-01
Thermal protection materials and systems (TPS) have been critical to fulfilling humankinds desire to explore space. Composite and ceramic materials have enabled the early missions to orbit, the moon, the space station, Mars with robots, and sample return. Crewed missions to Mars are being considered, and this places even more demands on TPS materials. This talk will give some history on the materials used for earth and planetary entry and the demands placed upon such materials. TPS needs for future missions, especially to Mars, will be identified and potential solutions discussed.
Intelligent Systems: Shaping the Future of Aeronautics and Space Exploration
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Lohn, Jason; Kaneshige, John
2004-01-01
Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become important for NASA's future roles in Aeronautics and Space Exploration. Intelligent systems will enable safe, cost and mission-effective approaches to air& control, system design, spacecraft autonomy, robotic space exploration and human exploration of Moon, Mars, and beyond. In this talk, we will discuss intelligent system technologies and expand on the role of intelligent systems in NASA's missions. We will also present several examples of which some are highlighted m this extended abstract.
Deodorant Characteristics of Breath Odor Occurred from Favorite Foods Using Metal Oxide Gas Sensors
NASA Astrophysics Data System (ADS)
Seto, Shuichi; Oyabu, Takashi; Cai, Kuiqian; Katsube, Teruaki
Three types of metal oxide gas sensors were adopted to detect the degree of breath odor. Various sorts of information are included in the odor. Each sensor has different sensitivities to gaseous chemical substances and the sensitivities also differ according to human behaviors, for example taking a meal, teeth-brushing and drinking something. There is also a possibility that the sensor can detect degrees of daily fatigue. Sensor sensitivities were low for the expiration of the elderly when the subject drank green tea. In this study, it is thought that the odor system can be incorporated into a healing robot. The robot can communicate with the elderly using several words and also connect to Internet. As for the results, the robot can identify basic human behaviors and recognize the living conditions of the resident. Moreover, it can also execute a kind of information retrieval through the Internet. Therefore, it has healing capability for the aged, and can also receive and transmit information.
A Robotics-Based Approach to Modeling of Choice Reaching Experiments on Visual Attention
Strauss, Soeren; Heinke, Dietmar
2012-01-01
The paper presents a robotics-based model for choice reaching experiments on visual attention. In these experiments participants were asked to make rapid reach movements toward a target in an odd-color search task, i.e., reaching for a green square among red squares and vice versa (e.g., Song and Nakayama, 2008). Interestingly these studies found that in a high number of trials movements were initially directed toward a distractor and only later were adjusted toward the target. These “curved” trajectories occurred particularly frequently when the target in the directly preceding trial had a different color (priming effect). Our model is embedded in a closed-loop control of a LEGO robot arm aiming to mimic these reach movements. The model is based on our earlier work which suggests that target selection in visual search is implemented through parallel interactions between competitive and cooperative processes in the brain (Heinke and Humphreys, 2003; Heinke and Backhaus, 2011). To link this model with the control of the robot arm we implemented a topological representation of movement parameters following the dynamic field theory (Erlhagen and Schoener, 2002). The robot arm is able to mimic the results of the odd-color search task including the priming effect and also generates human-like trajectories with a bell-shaped velocity profile. Theoretical implications and predictions are discussed in the paper. PMID:22529827
ERIC Educational Resources Information Center
Anderson, Daniel
2010-01-01
I'm talking about the ways we represent ourselves and our world. I've put some thoughts on the topic together here--a gathering that enacts new media creating and takes up conceptual layers like metaphors, models, and composing. The primary sources are videos from the Get a Mac campaign, aka I'm a Mac; I'm a PC ads. Posthuman concepts blending…
VALENTI, Antonio; BURESTI, Giuliana; RONDINONE, Bruna Maria; PERSECHINO, Benedetta; BOCCUNI, Fabio; FORTUNA, Grazia; IAVICOLI, Sergio
2015-01-01
Despite all the emphasis laid today on the green economy, occupational health and safety (OHS) issues have still been talked only limitedly, as already noted in previous studies and literature reviews. The Department of Occupational and Environmental Medicine, Epidemiology and Hygiene of the Italian Workers’ Compensation Authority (INAIL) has conducted a survey among some Italian stakeholders, social partners, institutions and “green” businesses to gather their perceptions of the potential effects of green jobs on OHS, particularly in the renewable energy sector. The survey involved a sample of 61 stakeholders in the following categories: institutions (11), trade unions (11), employers’ organizations (13), businesses (11), research (15). Participation in this survey of national stakeholders who have a central role in the development and management of policies on renewable energy and OHS, allowed to analyze in depth the fundamental aspects for a fair transition towards green economy. Also, the good agreement among respondents brought to light quite clearly the main critical points as regards the OHS implications of green work in Italy, and pointed to the principal policies to be adopted to safeguard workers’ health and safety. PMID:25810446
Novel Cause of 'Black Thyroid': Intraoperative Use of Indocyanine Green.
Chernock, Rebecca D; Jackson, Ryan S
2017-09-01
The antibiotic minocycline is virtually pathognomonic for brown-black discoloration of the thyroid gland referred to as 'black thyroid'. Black thyroid' is an incidental finding in patients taking the drug who undergo thyroid surgery for another indication and is not of known clinical significance. However, its recognition is important so as not to raise concern for a disease process. Here, we present the first case of 'black thyroid' attributable to the iodine-containing compound indocyanine green. Intraoperative indocyanine green was administered as part of a research protocol transoral robotic-assisted surgery for a base of tongue cancer in a 44-year-old man. Hemithyroidectomy was subsequently performed during the same operation for further evaluation of an indeterminate thyroid nodule. The resected thyroid lobe was dark, nearly black in color, and histologically showed extensive brown pigment deposition in the follicular epithelial cells and colloid, mimicking minocycline-induced 'black thyroid'. In this case, however, the patient was not taking minocycline; instead the 'black thyroid' was attributed to the iodine-containing compound indocyanine green. Indocyanine green is a hereto unreported cause of 'black thyroid' with histopathologic features that are remarkably similar to that induced by minocycline. Indocyanine green should be included the differential diagnosis of 'black thyroid'. Clinical history is important so as not to raise concern for a disease process.
Straight talk with... Eric Green. Interview by Erica Westly.
Green, Eric
2010-01-01
Eric Green, the new head of the US National Human Genome Research Institute (NHGRI), has been involved with genomics since the term was first coined in the 1980s. He started at the US National Institutes of Health (NIH) as a postdoc and was a key contributor to the Human Genome Project. Nearly a decade ago, when Green was part of a team that produced one of the first human genome sequences, the potential for genomics-related medical applications seemed limitless. But most disorders have proved to be too complex to benefit from our current understanding of genomics, and some critics have argued that researchers have put too much emphasis on uncovering the genetic underpinnings of diseases. Recent demand for comparative effectiveness research in medicine has further complicated the debate, leading former head of NHGRI Francis Collins to worry that genomic differences could get "lost in the wash." Erica Westly spoke with Green about where he sees the genomics field heading and what role he thinks the NHGRI should have in the American health care system.
Sávio, Luís Felipe; Panizzutti Barboza, Marcelo; Alameddine, Mahmoud; Ahdoot, Michael; Alonzo, David; Ritch, Chad R
2018-03-01
To describe our novel technique for performing a combined partial penectomy and bilateral robotic inguinal lymphadenectomy using intraoperative near-infrared (NIR) fluorescence guidance with indocyanine green (ICG) and the DaVinci Firefly camera system. A 58-year-old man presented status post recent excisional biopsy of a 2-cm lesion on the left coronal aspect of the glans penis. Pathology revealed "invasive squamous cell carcinoma of the penis with multifocal positive margins." His examination was suspicious for cT2 primary and his inguinal nodes were cN0. He was counseled to undergo partial penectomy with possible combined vs staged bilateral robotic inguinal lymphadenectomy. Preoperative computed tomography scan was negative for pathologic lymphadenopathy. Before incision, 5 mL of ICG was injected subcutaneously beneath the tumor. Bilateral thigh pockets were then developed simultaneously and a right, then left robotic modified inguinal lymphadenectomy was performed using NIR fluorescence guidance via the DaVinci Firefly camera. A partial penectomy was then performed in the standard fashion. The combined procedure was performed successfully without complication. Total operative time was 379 minutes and total robotic console time was 95 minutes for the right and 58 minutes to the left. Estimated blood loss on the right and left were 15 and 25 mL, respectively. A total of 24 lymph nodes were retrieved. This video demonstrates a safe and feasible approach for combined partial penectomy and bilateral inguinal lymphadenectomy with NIR guidance using ICG and the DaVinci Firefly camera system. The combined robotic approach has minimal morbidity and avoids the need for a staged procedure. Furthermore, use of NIR guidance with ICG during robotic inguinal lymphadenectomy is feasible and may help identify sentinel lymph nodes and improve the quality of dissection. Further studies are needed to confirm the utility of NIR guidance for robotic sentinel lymph node dissection. Copyright © 2017 Elsevier Inc. All rights reserved.
Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging
Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M.; Fujita, Katsumasa; Mimori-Kiyosue, Yuko
2013-01-01
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to “pinhole cross-talk,” which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging. PMID:23401517
Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging.
Shimozawa, Togo; Yamagata, Kazuo; Kondo, Takefumi; Hayashi, Shigeo; Shitamukai, Atsunori; Konno, Daijiro; Matsuzaki, Fumio; Takayama, Jun; Onami, Shuichi; Nakayama, Hiroshi; Kosugi, Yasuhito; Watanabe, Tomonobu M; Fujita, Katsumasa; Mimori-Kiyosue, Yuko
2013-02-26
A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.
LCOGT: A World-Wide Network of Robotic Telescopes
NASA Astrophysics Data System (ADS)
Brown, T.
2013-05-01
Las Cumbres Observatory Global Telescope (LCOGT) is an organization dedicated to time-domain astronomy. To carry out the necessary observations in fields such as supernovae, extrasolar planets, small solar-system bodies, and pulsating stars, we have developed and are now deploying a set of robotic optical telescopes at sites around the globe. In this talk I will concentrate on the core of this network, consisting of up to 15 identical 1m telescopes deployed across multiple sites in both the northern and southern hemispheres. I will summarize the technical and performance aspect of these telescopes, including both their imaging and their anticipated spectroscopic capabilities. But I will also delve into the network organization, including communication among telescopes (to assure that observations are properly carried out), interactions among the institutions and scientists who will use the network (to optimize the scientific returns), and our funding model (which until now has relied entirely on one private donor, but will soon require funding from outside sources, if the full potential of the network is to be achieved).
Pulsating star research from Antarctica
NASA Astrophysics Data System (ADS)
Chadid, Merieme
2017-09-01
This invited talk discusses the pulsating star research from the heart of Antarctica and the scientific polar challenges in the extreme environment of Antarctica, and how the new polar technology could cope with unresolved stellar pulsation enigmas and evolutionary properties challenges towards an understanding of the mysteries of the Universe. PAIX, the first robotic photometer Antarctica program, has been successfully launched during the polar night 2007. This ongoing program gives a new insight to cope with unresolved stellar enigmas and stellar oscillation challenges with a great opportunity to benefit from an access to the best astronomical site on Earth, Dome C. PAIX achieves astrophysical measurement time-series of stellar fields, challenging photometry from space. A continuous and an uninterrupted series of multi-color photometric observations has been collected each polar night - 150 days - without regular interruption, Earth's rotation effect. PAIX shows the first light curve from Antarctica and first step for the astronomy in Antarctica giving new insights in remote polar observing runs and robotic instruments towards a new technology.
Robotics and dynamic image analysis for studies of gene expression in plant tissues.
Hernandez-Garcia, Carlos M; Chiera, Joseph M; Finer, John J
2010-05-05
Gene expression in plant tissues is typically studied by destructive extraction of compounds from plant tissues for in vitro analyses. The methods presented here utilize the green fluorescent protein (gfp) gene for continual monitoring of gene expression in the same pieces of tissues, over time. The gfp gene was placed under regulatory control of different promoters and introduced into lima bean cotyledonary tissues via particle bombardment. Cotyledons were then placed on a robotic image collection system, which consisted of a fluorescence dissecting microscope with a digital camera and a 2-dimensional robotics platform custom-designed to allow secure attachment of culture dishes. Images were collected from cotyledonary tissues every hour for 100 hours to generate expression profiles for each promoter. Each collected series of 100 images was first subjected to manual image alignment using ImageReady to make certain that GFP-expressing foci were consistently retained within selected fields of analysis. Specific regions of the series measuring 300 x 400 pixels, were then selected for further analysis to provide GFP Intensity measurements using ImageJ software. Batch images were separated into the red, green and blue channels and GFP-expressing areas were identified using the threshold feature of ImageJ. After subtracting the background fluorescence (subtraction of gray values of non-expressing pixels from every pixel) in the respective red and green channels, GFP intensity was calculated by multiplying the mean grayscale value per pixel by the total number of GFP-expressing pixels in each channel, and then adding those values for both the red and green channels. GFP Intensity values were collected for all 100 time points to yield expression profiles. Variations in GFP expression profiles resulted from differences in factors such as promoter strength, presence of a silencing suppressor, or nature of the promoter. In addition to quantification of GFP intensity, the image series were also used to generate time-lapse animations using ImageReady. Time-lapse animations revealed that the clear majority of cells displayed a relatively rapid increase in GFP expression, followed by a slow decline. Some cells occasionally displayed a sudden loss of fluorescence, which may be associated with rapid cell death. Apparent transport of GFP across the membrane and cell wall to adjacent cells was also observed. Time lapse animations provided additional information that could not otherwise be obtained using GFP Intensity profiles or single time point image collections.
1984-08-15
continuing to coexist in peace. The tough talk about red and black bourgeoisie was absent. Savonlinna was the site of green bourgeoisie , who...revolutionaries, those members of the working class on whom Marxism -Leninism based its theory. To the . evidence of the high standard of living have been added...those who make fortunes from EC grants and European tourism, voted for Marxism and the PASOK: Crete, the Dodecanese and Corfu... 12278 CSO: 3521/295
STS-114: Discovery Impromptu Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Dr. Griffin, NASA Administrator, is accompanied by members of The U.S. House of Representatives in this STS-114 Discovery Impromptu briefing. The U.S. House of Representatives present include: Sherwood Boehlert, House Science Committee Chairman, Senator Hutchinson, Sheila Jackson, 18th Congressional District Texas, Al Green, 9th Congressional District, Representative Jim Davis, Florida, and Gene Green, 29th District, Texas. Griffin talks about the problem that occurred with the external fuel tank sensor of the Space Shuttle Discovery and the effort NASA is pursuing to track the problem, and identify the root cause. He answers questions from the news media about the next steps for the Space Shuttle Discovery, time frame for the launch, and activities for the astronauts for the next few days.
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to high school students taking part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to high school students taking part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Thermal Protection Materials and Systems: Where Have We Been, Where are We Going?
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2016-01-01
Thermal protection materials and systems (TPS) have been critical to fulfilling humankind's desire to explore space. Composite and ceramic materials have enable the early missions to orbit, the moon, the space station, Mars with robots, and sample return. Crewed missions to Mars are being considered, and this places even more demands on TPS materials. This talk will give some history on the materials used for earth and planetary entry and the demands placed upon such materials. TPs needs for future missions, especially to Mars, will be identified and potential solutions discussed.
Agarwal, Rahul; Levinson, Adam W; Allaf, Mohamad; Makarov, Danil; Nason, Alex; Su, Li-Ming
2007-11-01
Remote presence is the ability of an individual to project himself from one location to another to see, hear, roam, talk, and interact just as if that individual were actually there. The objective of this study was to evaluate the efficacy and functionality of a novel mobile robotic telementoring system controlled by a portable laptop control station linked via broadband Internet connection. RoboConsultant (RemotePresence-7; InTouch Health, Sunnyvale, CA) was employed for the purpose of intraoperative telementoring and consultation during five laparoscopic and endoscopic urologic procedures. Robot functionality including navigation, zoom capability, examination of external and internal endoscopic camera views, and telestration were evaluated. The robot was controlled by a senior surgeon from various locations ranging from an adjacent operating room to an affiliated hospital 5 miles away. The RoboConsultant performed without connection failure or interruption in each case, allowing the consulting surgeon to immerse himself and navigate within the operating room environment and provide effective communication, mentoring, telestration, and consultation. RoboConsultant provided clear, real-time, and effective telementoring and telestration and allowed the operator to experience remote presence in the operating room environment as a surgical consultant. The portable laptop control station and wireless connectivity allowed the consultant to be mobile and interact with the operating room team from virtually any location. In the future, the remote presence provided by the RoboConsultant may provide useful and effective intraoperative consultation by expert surgeons located in remote sites.
Martian Soil Ready for Robotic Laboratory Analysis
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander scooped up this Martian soil on the mission's 11th Martian day, or sol, after landing (June 5, 2008) as the first soil sample for delivery to the laboratory on the lander deck. The material includes a light-toned clod possibly from crusted surface of the ground, similar in appearance to clods observed near a foot of the lander. This approximately true-color view of the contents of the scoop on the Robotic Arm comes from combining separate images taken by the Robotic Arm Camera on Sol 11, using illumination by red, green and blue light-emitting diodes on the camera. The scoop loaded with this sample was poised over an open sample-delivery door of Thermal and Evolved-Gas Analyzer at the end of Sol 11, ready to be dumped into the instrument on the next sol. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Bae, Sung Uk; Min, Byung Soh; Kim, Nam Kyu
2015-07-01
By integrating intraoperative near infrared fluorescence imaging into a robotic system, surgeons can identify the vascular anatomy in real-time with the technical advantages of robotics that is useful for meticulous lymphovascular dissection. Herein, we report our initial experience of robotic low ligation of the inferior mesenteric artery (IMA) with real-time identification of the vascular system for rectal cancer using the Firefly technique. The study group included 11 patients who underwent a robotic total mesorectal excision with preservation of the left colic artery for rectal cancer using the Firefly technique between July 2013 and December 2013. The procedures included five low anterior resections and six ultra-low anterior resections with loop ileostomy. The median total operation time was 327 min (226-490). The low ligation time was 10 min (6-20), and the time interval between indocyanine green injection and division of the sigmoid artery was 5 min (2-8). The estimated blood loss was 200 mL (100-500). The median time to soft diet was 4 days (4-5), and the median length of stay was 7 days (5-9). Three patients developed postoperative complications; one patients developed anal stricture, one developed ileus, and one developed non-complicated intraabdominal fluid collection. The median total number of lymph nodes harvested was 17 (9-29). Robotic low ligation of the IMA with real-time identification of the vascular system for rectal cancer using the Firefly technique is safe and feasible. This technique can allow for precise lymph node dissection along the IMA and facilitate the identification of the left colic branch of the IMA.
Manny, Ted B; Patel, Manish; Hemal, Ashok K
2014-06-01
Pilot studies have demonstrated the utility of indocyanine green (ICG) sentinel lymphadenectomy for prostate cancer. Prior work has used ICG with radiocontrast agents injected at a separate procedure and relied on assistant-controlled fluorescence systems, making the technique costly and cumbersome. To describe the initial optimization and feasibility of fluorescence-enhanced robotic radical prostatectomy (FERRP) using real-time injection of ICG for tissue marking and identification of sentinel lymphatic drainage visualized by a fully integrated surgeon-controlled system. Patients with clinically localized prostate cancer at a tertiary referral center were offered FERRP. Ten patients participated in a pilot arm in which ICG dosing and injection technique were optimized. Fifty consecutive patients then underwent FERRP. After development of the space of Retzius, 0.4 ml of a 2.5 mg/ml ICG solution were injected into each lobe of the prostate using a robotically guided percutaneous needle. After ICG was allowed to travel through the pelvic lymphatics, lymphadenectomy was performed from the endopelvic fascia to the aortic bifurcation. Parameters describing the time course of tissue fluorescence and pelvic lymphangiography were systematically recorded. Lymphatic packets containing fluorescent nodes were considered sentinel. Percutaneous, robotic-guided ICG injection proved superior to cystoscope or transrectal delivery. Tissue marking was achieved in all patients, positively identifying the prostate with uniform fluorescence relative to the obturator nerve, seminal vesicles, vas deferens, and neurovascular pedicles at a mean time of 10 min postinjection. Sentinel nodes were identified in 76% of patients at a mean time of 30 min postinjection and had 100% sensitivity, 75.4% specificity, 14.6% positive predictive value, and 100% negative predictive value for the detection of nodal metastasis. FERRP is safe, feasible, and allows for reliable prostate tissue marking and identification of sentinel lymphatic drainage in the majority of patients. ICG sentinel nodes are highly sensitive but relatively nonspecific for the detection of nodal metastasis. Copyright © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bradshaw, John; Martin, Brian; Siegel, Edward Carl-Ludwig; Euclid, Alexandria; Young, Frederic; Clay, London; CarlZimmer/NYTimes/ReedElsevier/YoungsuckChi/Alcatel-Lucent/Thale Group/ThompsonCSF/PhalesGrope/KFAZ Collaboration; artin Correidora./Carlos Perelman Collaboration; Grigory Perelman/Richard Hamilton/Linda Naser/David Gruber Collaboration; Alexander Dewedney/Massimo Pigliucci Collaboration; Orrin Pilkey/Linda Pilkey-Jarvis/Robert Parks/Simon Levay Collaboration
2013-03-01
Bradshaw[''Healing Shame That Binds You'']-''Brian Martin'' SD ToA is via constant interminable media-hype spin-doctoring show-biz popularity promotion, witness ubiquitous talking-heads: ''Kuku'' sci.-guy(knows everything about everything), Green,Tyson, Alda,,,, ad infinitum, ad nauseum!!!; worse still ''scientific''-societies&apos seizing conferences/journals agendas, perverted into mere SEANCES:
2016-10-22
The scientific knowledge and technologies needed to make human exploration of Mars happen are within our reach. NASA 360 joins Dr. Jim Green, Director of NASA’s Planetary Science Division, as he discusses how NASA is preparing for human exploration of the Red Planet. This video was created from a live recording at the Viking 40th Anniversary Symposium in July 2016. To watch the original talk please visit: http://bit.ly/2bk1PGk
ERIC Educational Resources Information Center
Barnett, Claire L.
2007-01-01
This paper presents a transcript of the speech delivered by the author at the US Senate Environment and Public Works Committee Hearing, Washington, DC, May 15, 2007. The author talked about how the Healthy Schools Network works to ensure that every child will have an environmentally healthy school that is clean and in good repair. The organization…
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong
2017-01-01
Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041
Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert
2015-04-01
Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.
Multi-scale monitoring of a remarkable green roof: the Green Wave of Champs-sur-Marne
NASA Astrophysics Data System (ADS)
Stanic, Filip; Versini, Pierre-Antoine; Schertzer, Daniel; Delage, Pierre; Tchiguirinskaia, Ioulia; Cui, Yu-Jun; Baudoin, Genevieve
2017-04-01
The installation of green infrastructures on existing or new roofs has become very popular in recent years (more than 2 km2 of green roofs is implemented each year in France) for many reasons. Among all of the green roofs' advantages, those related to storm water management are often pushed forward, since it has been pointed out that urban runoff peak can be significantly reduced and delayed thanks to the green roofs' retention and detention capabilities. Microclimate can also be affected by decreasing the temperature in the surrounding green area. However, dynamic physical processes involved in green roofs are highly non linear and variable. In order to accurately assess their performances, detailed monitoring experiments are required, both in situ and in the lab, so as to better understand the thermo-hydric behaviour of green roofs and to capture the related spatio-temporal variability at different scales. Based on these considerations, the 1 ha area wavy-form green roof of a section of the Bienvenüe building, called the Green Wave, is currently being monitored in Champs-sur-Marne (France), in front of Ecole des Ponts ParisTech. Initiated in the "Blue Green Dream" European project, detailed measurements systems have been implemented for studying all components of the water balance. Among others, a wireless network of water content and temperature sensors has been especially installed for characterizing spatial and temporal variability of infiltration, retention and evapotranspiration processes. In parallel, some laboratory tests have been conducted to better characterize the hydro-mechanical properties of the substrate. Moreover, at the Green Wave scale, some discharge measurements are carried out in the storm-water pipes that are collecting drained water, to determine runoff flow. This talk will present the current monitoring campaigns and analyze the data collected in the Universal Multifractal framework. This work represents the initial stage for developing a model capable to simulate reliable hydrological responses of different kinds of green roofs. Such a tool could be used to quantify hydrological impacts and interfere with the stormwater policies at the lot scale.
Souto, Leonardo A V; Castro, André; Gonçalves, Luiz Marcos Garcia; Nascimento, Tiago P
2017-08-08
Natural landmarks are the main features in the next step of the research in localization of mobile robot platforms. The identification and recognition of these landmarks are crucial to better localize a robot. To help solving this problem, this work proposes an approach for the identification and recognition of natural marks included in the environment using images from RGB-D (Red, Green, Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that are present in the environment is performed. The extraction of edge points of these landmarks is done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed through the S l 0 algorithm, which minimizes the standard deviation of the normals at each point. Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to the filtered edges and determines to which structure they belong to in the current scenario: stairs or doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified. The approach proposed here has been validated with real robot experiments. The performed tests verify the efficacy of our proposed approach.
Castro, André; Nascimento, Tiago P.
2017-01-01
Natural landmarks are the main features in the next step of the research in localization of mobile robot platforms. The identification and recognition of these landmarks are crucial to better localize a robot. To help solving this problem, this work proposes an approach for the identification and recognition of natural marks included in the environment using images from RGB-D (Red, Green, Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that are present in the environment is performed. The extraction of edge points of these landmarks is done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed through the Sl0 algorithm, which minimizes the standard deviation of the normals at each point. Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to the filtered edges and determines to which structure they belong to in the current scenario: stairs or doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified. The approach proposed here has been validated with real robot experiments. The performed tests verify the efficacy of our proposed approach. PMID:28786925
2008-03-27
CAPE CANAVERAL, Fla. --- STS-123 Mission Specialist Takao Doi talks to the media about his experiences on the mission to the International Space Station. Doi represents the Japan Aerospace Exploration Agency. The crew landed at Kennedy aboard space shuttle Endeavour at 8:39 p.m. EDT March 26. Endeavour's 16-day flight was the longest shuttle mission to the International Space Station and included a record five spacewalks. The shuttle's seven astronauts worked with the three-member station crew and ground teams around the world to install the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, known as Dextre. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto
2017-04-01
The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.
Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1
Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique
2015-01-01
Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489
How flatbed scanners upset accurate film dosimetry
NASA Astrophysics Data System (ADS)
van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.
2016-01-01
Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.
Robotic Arm Camera on Mars, with Lights Off
NASA Technical Reports Server (NTRS)
2008-01-01
This approximate color image is a view of NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) as seen by the lander's Surface Stereo Imager (SSI). This image was taken on the afternoon of the 116th Martian day, or sol, of the mission (September 22, 2008). The RAC is about 8 centimeters (3 inches) tall. The SSI took images of the RAC to test both the light-emitting diodes (LEDs) and cover function. Individual images were taken in three SSI filters that correspond to the red, green, and blue LEDs one at a time. This yields proper coloring when imaging Phoenix's surrounding Martian environment. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.1987-04-16
as a political party in ScptcnW ber 1986 during a Metro Manila con- vention held by Joma Sison and Ber- nabe Buscayno. In a decision denying the...at plOO. The talks have become even more complicated because of two recent developments. UCPB Chairman Ramon Sy , recently appointed to the SMC board...for probability The Green Star or Yellow Star movement could be: !. A once-active „oop of T roraes » -JS^S-.’^fS.^Lfl S* relfstar which L th4 sy -ol
Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert
2013-03-01
Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute
The Rapid Gamma-ray Burst Response Campaign with ROTSE
NASA Astrophysics Data System (ADS)
Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Priedhorsky, W.; Szymanski, J.; Wren, J.; Akerlof, C.; Kehoe, R.; McKay, T.; Pawl, A.; Marshall, S.; Lee, B.; Barthelmy, S.; Butterworth, P.; Cline, T.
2000-04-01
The main goal of the Robotic Optical Transient Search Experiment (ROTSE) is to detect optical emission from Gamma-ray Bursts (GRBs) during and immediately following GRBs. The instruments comprising ROTSE consist of wide-field optics on rapidly slewing mounts optimized for quick response to GRBs localized to several degree regions. Thus far, only one prompt optical counterpart to a GRB has been discovered although simple scaling arguments suggest more should be easily detected. This talk will cover ROTSE responses to GRBs detected by the Burst and Transient Source Experiment and the soon-to-be-launched High Energy Transient Experiment. The expansion of ROTSE to a global network of identical telescopes will also be briefly discussed.
2014-04-02
CAPE CANAVERAL, Fla. – Paul Vona, operations engineer, NDT Services, with PaR Systems Inc., talks with members of the media about the automated X-ray system in the robotic inspection cell at Hangar N at Cape Canaveral Air Force Station in Florida. PaR Systems held an Open House to celebrate the one-year anniversary of a lease agreement with Kennedy. Under a 15-year lease, PaR Systems is utilizing Hangar N and its unique nondestructive testing equipment. The partnership agreement was established by Kennedy's Center Planning and Development Directorate. The agreement is just one example of the types of partnerships that Kennedy is seeking to create a multi-user spaceport. Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASAs Jet Propulsion Laboratory, and mobile robotic sensors from the Navys Mobile Diving and Salvage Unit.
Clinical application of indocyanine green-fluorescence imaging during hepatectomy
Ishizawa, Takeaki; Saiura, Akio
2016-01-01
In hepatobiliary surgery, the fluorescence and bile excretion of indocyanine green (ICG) can be used for real-time visualization of biological structure. Fluorescence cholangiography is used to obtain fluorescence images of the bile ducts following intrabiliary injection of 0.025−0.5 mg/mL ICG or intravenous injection of 2.5 mg ICG. Recently, the latter technique has been used in laparoscopic/robotic cholecystectomy. Intraoperative fluorescence imaging can be used to identify subcapsular hepatic tumors. Primary and secondary hepatic malignancy can be identified by intraoperative fluorescence imaging using preoperative intravenous injection of ICG through biliary excretion disorders that exist in cancerous tissues of hepatocellular carcinoma (HCC) and in non-cancerous hepatic parenchyma around adenocarcinoma foci. Intraoperative fluorescence imaging may help detect tumors to be removed, especially during laparoscopic hepatectomy, in which visual inspection and palpation are limited, compared with open surgery. Fluorescence imaging can also be used to identify hepatic segments. Boundaries of hepatic segments can be visualized following injection of 0.25−2.5 mg/mL ICG into the portal veins or by intravenous injection of 2.5 mg ICG following closure of the proximal portal pedicle toward hepatic regions to be removed. These techniques enable identification of hepatic segments before hepatectomy and during parenchymal transection for anatomic resection. Advances in imaging systems will increase the use of fluorescence imaging as an intraoperative navigation tool that can enhance the safety and accuracy of open and laparoscopic/robotic hepatobiliary surgery. PMID:27500144
NASA Astrophysics Data System (ADS)
Riedel-Kruse, Ingmar
Modern biotechnology gets increasingly powerful to manipulate and measure microscopic biophysical processes. Nevertheless, no platform exists to truly interact with these processes, certainly not with the convenience that we are accustomed to from our electronic smart devices. In my talk I will provide the rational for such Interactive Biotechnology and conceptualize its core component, the BPU (biotic processing unit), which is then connected to an according user interface. The biophysical phenomena currently featured on these platforms utilize the phototactic response of motile microorganisms, e.g., Euglena gracilis, resulting in spatio-temporal dynamics from the single cell to the self-organized multi-cellular scale. I will demonstrate multiple platforms, such as scalable biology cloud experimentation labs, tangible museum exhibits, biotic video games, low-cost interactive DIY kits using smartphones, and programming languages for swarm robotics. I will discuss applications for education as well as for professional and citizen science. Hence, we turn traditionally observational microscopy into an interactive experience. I was told that presenting in the educational section does not count against the ''one author - one talk policy'' - so I submit two abstracts. In case of conflict - please contact me: ingmar@stanford.edu.
Marano, Alessandra; Priora, Fabio; Lenti, Luca Matteo; Ravazzoni, Ferruccio; Quarati, Raoul; Spinoglio, Giuseppe
2013-12-01
The initial use of the indocyanine green fluorescence imaging system was for sentinel lymph node biopsy in patients with breast or colorectal cancer. Since then, application of this method has received wide acceptance in various fields of surgical oncology, and it has become a valid diagnostic tool for guiding cancer treatment. It has also been employed in numerous conventional surgical procedures with much success and benefit to the patient. The advent of minimally invasive surgery brought with it a new use for fluorescence in helping to improve the safety of these procedures, particularly for single-site procedures. In 2010, a near-infrared camera was integrated into the da Vinci Si System, creating a combination of technical and minimally invasive advantages that have been embraced by several experienced surgeons. The use of fluorescence, although useful, is considered challenging. Only a few studies are currently available on the use of fluorescence in robotic general surgery, whereas many articles have focused on its application in open and laparoscopic surgery. Many of these reports describe promising and satisfactory results, although with some shortcomings. The purpose of this article is to review the current status of the use of fluorescence in general surgery and particularly its role in robotic surgery. We also review potential uses in the future.
Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.
Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique
2015-09-01
Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. © 2015 American Society of Plant Biologists. All Rights Reserved.
2014-01-22
ISS038-E-033888 (22 Jan. 2014) --- A new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, already on the station, is featured in this image photographed by an Expedition 38 crew member in the International Space Station's Kibo laboratory. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding a plastic tank with green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
2014-01-22
ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.
2001-01-01
Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426
Robotic Arm Camera on Mars with Lights On
NASA Technical Reports Server (NTRS)
2008-01-01
This image is a composite view of NASA's Phoenix Mars Lander's Robotic Arm Camera (RAC) with its lights on, as seen by the lander's Surface Stereo Imager (SSI). This image combines images taken on the afternoon of Phoenix's 116th Martian day, or sol (September 22, 2008). The RAC is about 8 centimeters (3 inches) tall. The SSI took images of the RAC to test both the light-emitting diodes (LEDs) and cover function. Individual images were taken in three SSI filters that correspond to the red, green, and blue LEDs one at a time. When combined, it appears that all three sets of LEDs are on at the same time. This composite image is not true color. The streaks of color extending from the LEDs are an artifact from saturated exposure. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Optimal Sensor Layouts in Underwater Locomotory Systems
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Kanso, Eva
2015-11-01
Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.
2017-09-06
WASHINGTON, D.C.---S&T Partnership Forum In-Space Assembly Technical Interchange Meeting-On September 6th 2017, many of the United States government experts on In-Space Assembly met at the U.S. Naval Research Lab to discuss both technology development and in-space applications that would advance national capabilities in this area. Expertise from NASA, USAF, NRO, DARPA and NRL met in this meeting which was coordinated by the NASA Headquarters, Office of the Chief Technologist. This technical interchange meeting was the second meeting of the members of this Science and Technology Partnership Forum. Glen Henshaw of Code 8231 talks to the group in the Space Robotics Lab.
2017-09-06
WASHINGTON, D.C.---S&T Partnership Forum In-Space Assembly Technical Interchange Meeting-On September 6th 2017, many of the United States government experts on In-Space Assembly met at the U.S. Naval Research Lab to discuss both technology development and in-space applications that would advance national capabilities in this area. Expertise from NASA, USAF, NRO, DARPA and NRL met in this meeting which was coordinated by the NASA Headquarters, Office of the Chief Technologist. This technical interchange meeting was the second meeting of the members of this Science and Technology Partnership Forum. Glen Henshaw of Code 8231 talks to the group in the Space Robotics Lab.
Efimova, Marina V; Vankova, Radomira; Kusnetsov, Victor V; Litvinovskaya, Raisa P; Zlobin, Ilya E; Dobrev, Petre; Vedenicheva, Nina P; Savchuk, Alina L; Karnachuk, Raisa A; Kudryakova, Natalia V; Kuznetsov, Vladimir V
2017-04-01
In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes. Copyright © 2016 Elsevier Inc. All rights reserved.
Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
Lee, Donghwa; Myung, Hyun
2014-07-11
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system.
Strauss, Soeren; Woodgate, Philip J.W.; Sami, Saber A.; Heinke, Dietmar
2015-01-01
We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain’s attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO’s predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353
The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)
NASA Astrophysics Data System (ADS)
Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul
2013-09-01
Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails and therefore it will be engineered for simple operation by trained passengers. However, for certification by aviation authorities the vehicle may be operational with 3 passengers and a pilot. A specific operation considered for SOLVES is navaloperation where the suborbital vehicle will be operating from a seaborne spaceport, probably a superyacht with spacepad for the vertical launching and landing of the vehicle. Such naval operation enables the vehicle to fly above exotic locations reachable by sea. SOLVES is also planned for further development into reusable rocket booster to carry small suborbiter to 160km from sea level, enables the passengers aboard the suborbiter to experience longer zero gravity time and more effective suborbital flight.
Nadtochiy, Sergiy M.; Redman, Emily K.
2010-01-01
The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish, and enriched in food that contains saturated fat. In contrast, a number of epidemiological studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO•, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO•, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI. PMID:21454053
Tell your sustainability story, minus hype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madison, Alison L.
Monthly Economic Diversication column for the Tri-City Herald... By now, many of us are starting to slack off on our New Year’s resolutions to vigorously become healthier, happier, more productive superhumans. While our intentions are in the right place, we try to insert these lofty goals into already hectic lives wrought with engrained routines. We break them because they’re simply not sustainable unless they become integral to our daily operation. The same is true of businesses who still think going "green" is something to talk about rather than wholeheartedly do. The concept of being "green" started as a buzzword severalmore » years ago, something companies would attach to their advertising to convince customers they cared about more than just making a buck. Since that time, the concept now referred to as "sustainability" has evolved considerably and is becoming a fundamental part of how companies do business. As such, marketing efforts to tout sustainability, previously seen as fluffy, are now respected for their proven power to affect the bottom line.« less
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Doug Wheelock talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Doug Wheelock talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronaut Mike Massimino talks with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
Mechanically Compliant Electronic Materials for Wearable Photovoltaics and Human-Machine Interfaces
NASA Astrophysics Data System (ADS)
O'Connor, Timothy Francis, III
Applications of stretchable electronic materials for human-machine interfaces are described herein. Intrinsically stretchable organic conjugated polymers and stretchable electronic composites were used to develop stretchable organic photovoltaics (OPVs), mechanically robust wearable OPVs, and human-machine interfaces for gesture recognition, American Sign Language Translation, haptic control of robots, and touch emulation for virtual reality, augmented reality, and the transmission of touch. The stretchable and wearable OPVs comprise active layers of poly-3-alkylthiophene:phenyl-C61-butyric acid methyl ester (P3AT:PCBM) and transparent conductive electrodes of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and devices could only be fabricated through a deep understanding of the connection between molecular structure and the co-engineering of electronic performance with mechanical resilience. The talk concludes with the use of composite piezoresistive sensors two smart glove prototypes. The first integrates stretchable strain sensors comprising a carbon-elastomer composite, a wearable microcontroller, low energy Bluetooth, and a 6-axis accelerometer/gyroscope to construct a fully functional gesture recognition glove capable of wirelessly translating American Sign Language to text on a cell phone screen. The second creates a system for the haptic control of a 3D printed robot arm, as well as the transmission of touch and temperature information.
Harrop, Emily; Kelly, John; Griffiths, Gareth; Casbard, Angela; Nelson, Annmarie
2016-01-19
Surgical trials have typically experienced recruitment difficulties when compared with other types of oncology trials. Qualitative studies have an important role to play in exploring reasons for low recruitment, although to date few such studies have been carried out that are embedded in surgical trials. The BOLERO trial (Bladder cancer: Open versus Lapararoscopic or RObotic cystectomy) is a study to determine the feasibility of randomisation to open versus laparoscopic access/robotic cystectomy in patients with bladder cancer. We describe the results of a qualitative study embedded within the clinical trial that explored why patients decline randomisation. Ten semi-structured interviews with patients who declined randomisation to the clinical trial, and two interviews with recruiting research nurses were conducted. Data were analysed for key themes. The majority of patients declined the trial because they had preferences for a particular treatment arm, and in usual practice could choose which surgical method they would be given. In most cases the robotic option was preferred. Patients described an intuitive 'sense' that favoured the new technology and had carried out their own inquiries, including Internet research and talking with previous patients and friends and family with medical backgrounds. Medical histories and lifestyle considerations also shaped these personalised choices. Of importance too, however, were the messages patients perceived from their clinical encounters. Whilst some patients felt their surgeon favoured the robotic option, others interpreted 'indirect' cues such as the 'established' reputation of the surgeon and surgical method and comments made during clinical assessments. Many patients expressed a wish for greater direction from their surgeon when making these decisions. For trials where the 'new technology' is available to patients, there will likely be difficulties with recruitment. Greater attention could be paid to how messages about treatment options and the trial are conveyed across the whole clinical setting. However, if it is too difficult to challenge such messages, then questions should be asked about whether genuine and convincing equipoise can be presented and perceived in such trials. This calls for consideration of whether alternative methods of generating evidence could be used when evaluating surgical techniques which are established and routinely available. ISRCTN38528926 (11 December 2008).
What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics
NASA Astrophysics Data System (ADS)
Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj
Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.
Autonomous propulsion of nanorods trapped in an acoustic field
NASA Astrophysics Data System (ADS)
Sader, John; Collis, Jesse; Chakraborty, Debadi
2017-11-01
Recent measurements demonstrate that nanorods trapped in acoustic fields generate autonomous propulsion, with their direction and speed controlled by both the particle's shape and density distribution. In this talk, we investigate the physical mechanisms underlying this combined density/shape induced phenomenon by developing a simple yet rigorous mathematical framework for arbitrary axisymmetric particles. This only requires solution of the (linear) unsteady Stokes equations. Geometric and density asymmetries in the particle generate axial jets that can produce motion in either direction. Strikingly, the propulsion direction is found to reverse with increasing frequency, an effect that is yet to be reported experimentally. The general theory and mechanism described here enable the a priori design and fabrication of nano-motors in fluid for transport of small-scale payloads and robotic applications.
Performance of Adsorption - Based CO2 Acquisition Hardware for Mars ISRU
NASA Technical Reports Server (NTRS)
Finn, John E.; Mulloth, Lila M.; Borchers, Bruce A.; Luna, Bernadette (Technical Monitor)
2000-01-01
Chemical processing of the dusty, low-pressure Martian atmosphere typically requires conditioning and compression of the gases as first steps. A temperature-swing adsorption process can perform these tasks using nearly solid-state hardware and with relatively low power consumption compared to alternative processes. In addition, the process can separate the atmospheric constituents, producing both pressurized CO2 and a buffer gas mixture of nitrogen and argon. To date we have developed and tested adsorption compressors at scales appropriate for the near-term robotic missions that will lead the way to ISRU-based human exploration missions. In this talk we describe the characteristics, testing, and performance of these devices. We also discuss scale-up issues associated with meeting the processing demands of sample return and human missions.
Robotic vehicle uses acoustic sensors for voice detection and diagnostics
NASA Astrophysics Data System (ADS)
Young, Stuart H.; Scanlon, Michael V.
2000-07-01
An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Click on image for animation Fun, fairy-tale nicknames have been assigned to features in this animated view of the workspace reachable by the robotic arm of NASA's Phoenix Mars Lander. For example, 'Sleepy Hollow' denotes a trench and 'Headless' designates a rock. A 'National Park,' marked by purple text and a purple arrow, has been set aside for protection until scientists and engineers have tested the operation of the robotic scoop. First touches with the scoop will be to the left of the 'National Park' line. Scientists use such informal names for easy identification of features of interest during the mission. In this view, rocks are circled in yellow, other areas of interest in green. The images were taken by the lander's 7-foot mast camera, called the Surface Stereo Imager. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Krane, L Spencer; Manny, Theodore B; Hemal, Ashok K
2012-07-01
To compare a consecutive prospective cohort of patients who underwent robotic partial nephrectomy (RPN) with near infrared fluorescence (NIRF) imaging with indocyanine green dye (ICG) with a previous consecutive patient cohort. A total of 47 consecutive patients with renal masses suspicious for malignancy undergoing RPN were given 5-7.5 mg of ICG before hilar clamping or tumor excision. This cohort of patients was compared with 47 immediate previous consecutive patients who had undergone RPN without NIRF real-time imaging using ICG. The intraoperative, perioperative, and postoperative parameters were collected in an institutional review board-approved prospective database. The preoperative demographics and tumor complexity according to the nephrometry or preoperative aspects and dimensions used for an anatomic (PADUA) scores were similar. The mean warm ischemia time was significantly decreased in the ICG group (15 vs 17 minutes, P = .01). The median hospital stay was 2 days in both groups. No significant difference was seen in the positive margin rate (ICG, 6% vs control, 8.5%; P = .69) or observed Clavien grade III-IV complications in these 2 cohorts (ICG, 4% vs control, 15%; P = .07). No adverse events were associated with ICG dye administration. Differential ICG uptake was observed with selective clamping or in patients with cystic tumors, hypofluorescent tumors with exophytic components, and angiomyelolipomas, but these benefits could not be quantified. NIRF-ICG was transiently helpful to identify the vascular anatomy and not helpful at all for endophytic tumors. RPN using NIRF-ICG can be performed safely and effectively. A decreased warm ischemia time in the ICG cohort was observed without specific measured advantages. Differential ICG uptake by different tumors did not lead to significant differences in the positive margin rate. Copyright © 2012 Elsevier Inc. All rights reserved.
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay
2014-01-01
Background Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. Methods The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Results Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects’ personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Conclusions Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography. PMID:24739255
Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay.
Novak, Domen; Nagle, Aniket; Keller, Urs; Riener, Robert
2014-04-16
Several strategies have been proposed to improve patient motivation and exercise intensity during robot-aided stroke rehabilitation. One relatively unexplored possibility is two-player gameplay, allowing subjects to compete or cooperate with each other to achieve a common goal. In order to explore the potential of such games, we designed a two-player game played using two ARMin arm rehabilitation robots. The game was an air-hockey task displayed on a computer monitor and controlled using shoulder movements in the ARMin robot. Three game modes were tested: single-player (competing against computer), competitive (competing against human), and cooperative (cooperating with human against computer). All modes were played by 30 unimpaired subjects and 8 impaired chronic stroke subjects. The subjects filled out the Intrinsic Motivation Inventory questionnaire after each game mode, as well as a final questionnaire about game preferences and their personality. Nearly all unimpaired subjects preferred playing the two-player game modes to the single-player one, as they enjoyed talking and interacting with another person. However, there were two distinct player groups: one liked the competitive mode but not the cooperative mode while the other liked the cooperative but not the competitive mode. Unimpaired subjects who liked the competitive mode also put significantly more effort into it than into the other modes. Results from impaired subjects were similar, with even impaired subjects over 60 years old enjoying competitive gameplay. The subjects' personalities roughly predicted which mode they would prefer, which was especially evident in a poorly-matched impaired pair that preferred the single-player mode. Results indicate great potential for two-player rehabilitation games, in the form of greater enjoyment as well as potentially more intensive exercise compared to single-player games. However, the right game type needs to be chosen for each subject depending on skill and personality, along with selecting an appropriate co-player. Further studies with patients that are currently enrolled in rehabilitation programs are recommended, and the subjective measures used in our study should be augmented with objective measures such as electromyography.
[Robot-assisted atrial septal defect closure in adults: first experience in Russia].
Arkhipov, A N; Bogachev-Prokofiev, A V; Zubritskiy, A V; Khapaev, T S; Gorbatykh, Yu N; Pavlushin, P M; Karaskov, A M
To analyze immediate results of minimally invasive robot-assisted atrial septal defect (ASD) closure in adults. For the period from March 2012 to November 2016 sixty patients with contraindications to endovascular procedure have undergone robot-assisted atrial septal defect closure at Meshalkin Siberian Federal Biomedical Research Center. Mean age was 34.5±11.3 years, body mass index - 24.6±4.0 kg/m 2 . 48 (80%) patients had NYHA class II before surgery. In 37 (61.7%) patients isolated ASD with deficiency or absence of one edge was diagnosed, isolated ASD with primary septum aneurysm - in 16 (26.7%) cases, 7 (11.6%) patients had reticulate ASD. 5 (8.3%) patients had concomitant tricuspid valve insufficiency required surgical repair (suture annuloplasty). All operations were performed under cardiopulmonary bypass with peripheral cannulation. Right-sided anterolateral mini-thoracotomy was used in the first 43 patients. Following 17 patients underwent completely endoscopic procedure. Depending on the shape, size and anatomical features of the defect we performed suturing (14 patients, 23.3%) or repair with xenopericardial patch (46%, 76.6%). Mean CPB and aortic cross-clamping time was 89.1±28.7 and 24.8±9.5 min, respectively. Postoperative variables: mechanical ventilation 3.3±1.5 hours, ICU-stay - 18.2±3.7 hours, postoperative hospital-stay - 13.4±5.7 days. There were no mortality and any life-threatening intra- and postoperative complications. Cases of conversion to thoraco-/sternotomy and postoperative bleeding followed by redo surgery were also absent. 23 patients were followed-up within 1 year, 6 patients - within 2 years, 3 patients - within 3 years. All patients were in NYHA class I-II with 100% freedom from ASD recanalization and redo surgery. According to echocardiography data there were decreased right heart, pulmonary artery pressure and preserved left ventricular function in early postoperative period and 1 year after surgery. In view of favorable course of postoperative period, no significant specific complications and encouraging immediate results we can talk about endoscopic robot-assisted ASD closure in adults as a safe and effective alternative to surgical treatment.
Story telling and social action: engaging young people to act on climate change
NASA Astrophysics Data System (ADS)
Cordero, E.
2014-12-01
The realization that well designed graphs and clearly worded summaries were not enough to spur the public and policy makers towards an appropriate understanding of our planet encouraged me to search for other ways to share climate stories with the general public. After co-authoring a popular book on food and climate change and giving many talks to the general public, it struck me that young people were largely missing from the dialogue, and little meaningful progress was being made to design effective solutions. I then started working with faculty and students from the Film and Animation Departments at San Jose State University to develop stories about climate change that would be engaging to younger audiences. The result was the Green Ninja Project, based around the Green Ninja, a superhero who focuses on solutions to climate change using humor and silliness to soften what can be a somewhat challenging topic. The Project includes a) The Green Ninja Show - a series of YouTube videos (over 1,000,000 views) highlighting actions young people can take to reduce climate change, b) The Green Ninja Film Festival where students tell their own climate solutions stories, and c) a collection of educational resources that help teachers bring climate science topics into their classroom using hands-on activities. A key component to this work is promoting social action experiences, so that young people can understand how their actions can make a difference. Based on these experiences, I will provide my own reflections on the challenges and opportunities of communicating climate change with young people.
NASA Technical Reports Server (NTRS)
Thate, Robert
2012-01-01
The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.
STS-98 MS Ivins talks about her role in the mission
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- During a media briefing at Launch Pad 39A, STS-98 Mission Specialist Marsha Ivins (second from right) describes how the robotic arm will lift the payload from the orbiter'''s bay and maneuver it into position for attachment to the International Space Station. The other crew members are (left to right) Pilot Mark Polansky, Mission Specialist Thomas Jones, Commander Ken Cockrell and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.
Identification and tracking of particular speaker in noisy environment
NASA Astrophysics Data System (ADS)
Sawada, Hideyuki; Ohkado, Minoru
2004-10-01
Human is able to exchange information smoothly using voice under different situations such as noisy environment in a crowd and with the existence of plural speakers. We are able to detect the position of a source sound in 3D space, extract a particular sound from mixed sounds, and recognize who is talking. By realizing this mechanism with a computer, new applications will be presented for recording a sound with high quality by reducing noise, presenting a clarified sound, and realizing a microphone-free speech recognition by extracting particular sound. The paper will introduce a realtime detection and identification of particular speaker in noisy environment using a microphone array based on the location of a speaker and the individual voice characteristics. The study will be applied to develop an adaptive auditory system of a mobile robot which collaborates with a factory worker.
Devious Chatbots - Interactive Malware with a Plot
NASA Astrophysics Data System (ADS)
Jonathan, Pan Juin Yang; Fung, Chun Che; Wong, Kok Wai
Many social robots in the forms of conversation agents or Chatbots have been put to practical use in recent years. Their typical roles are online help or acting as a cyber agent representing an organisation. However, there exists a new form of devious chatbots lurking in the Internet. It is effectively an interactive malware seeking to lure its prey not through vicious assault, but with seductive conversation. It talks to its prey through the same channel that is normally used for human-to-human communication. These devious chatbots are using social engineering to attack the uninformed and unprepared victims. This type of attacks is becoming more pervasive with the advent of Web 2.0. This survey paper presents results from a research on how this breed of devious Malware is spreading, and what could be done to stop it.
Space Architecture: Building The Future
NASA Technical Reports Server (NTRS)
Adams, Constance
1999-01-01
There's been a good deal of flag-waving over the last five years about technology-or rather, a certain terror of technology that underlies almost all recent talk of the global avant-garde. Don't be fooled: the cool, clinical praise of the cyborg and the virtual realm is no more than critical bravado. It's an existential machismo in the world of semiotics which forces the contemporary philosopher to ante up, to get theoretically comfortable with an anti-sensual world of possibilities to which we all respond-let's be frank-with profound discomfort. Does this flag-waving about media, Y2K, robotics and biotechnology serve to cover a pervasive, cross-cultural mesh of fear? Or are we waving our surrender to a process we ourselves have set in motion? Let's look at the medium of a flag-the image and its underlying message.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronauts Mike Massimino and Doug Wheelock talk with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronauts Mike Massimino and Doug Wheelock talk with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
2011-07-07
CAPE CANAVERAL, Fla. -- At Kennedy Space Center in Florida, NASA is hosting a Tweetup for 150 Twitter followers of space shuttle Atlantis' STS-135 mission to the International Space Station, selected from more than 5,500 online registrants. A Tweetup is an informal meeting of people who use the social messaging medium Twitter. Here, NASA astronauts Mike Massimino and Doug Wheelock talk with Sesame Street's Elmo. Sesame Street also is at Kennedy to film Elmo, as he learns about space exploration at NASA. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder
Full-color reflective cholesteric liquid crystal display
NASA Astrophysics Data System (ADS)
Huang, Xiao-Yang; Khan, Asad A.; Davis, Donald J.; Podojil, Gregg M.; Jones, Chad M.; Miller, Nick; Doane, J. William
1999-03-01
We report a full color 1/4 VGA reflective cholesteric display with 4096 colors. The display can deliver a brightness approaching 40 percent reflected luminance, far exceeding all other reflective technologies. With its zero voltage bistability, images can be stored for days and months without ny power consumption. This property can significantly extend the battery life. The capability of displaying full color complex graphics and images is a must in order to establish a market position in this multimedia age. Color is achieved by stacking RGB cells. The top layer is blue with right chirality, the middle layer is green with left chirality, and the bottom layer is red with right chirality. The choice of opposite chirality prevents the loss in the green and red spectra from the blue layer on the top. We also adjusted the thickness of each layer to achieve color balance. We implement gray scale in each layer with pulse width modulation. This modulation method is the best choice consideration of lower driver cost, simpler structure with fewer cross talk problems. Various drive schemes and modulation methods will be discussed in the conference.
Optical Lock-In Detection of FRET Using Synthetic and Genetically Encoded Optical Switches
Mao, Shu; Benninger, Richard K. P.; Yan, Yuling; Petchprayoon, Chutima; Jackson, David; Easley, Christopher J.; Piston, David W.; Marriott, Gerard
2008-01-01
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins. PMID:18281383
The Order of the Dolphin: Origins of SETI
NASA Astrophysics Data System (ADS)
Temming, Maria; Crider, Anthony
2016-01-01
In 1961, the National Academy of Sciences organized a meeting on the search for extraterrestrial intelligence (SETI) at the National Radio Astronomy Observatory in Green Bank, West Virginia. The ten scientists who attended, including future SETI icons such as Frank Drake and Carl Sagan, represented a variety of scientific fields. At the conclusion of the meeting, the attendees adopted the moniker "The Order of the Dolphin," in honor of participant John Lilly's work on interspecies communication. Since this seminal meeting, researchers in each of the attendees' fields have contributed in some way to the search for intelligent life. This study investigates the circumstances that led to each attendee's invitation to Green Bank and explores SETI as the legacy of this meeting. We will focus in this talk on the SETI connections of two attendees, astronomer Otto Struve and physicist Philip Morrison, both in regards to their personal contributions to SETI and the influence of their work on subsequent SETI research. Specifically, we will examine proposals by Otto Struve for exoplanet discovery methods, and Philip Morrison for radio searches that laid the groundwork for modern SETI.
Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces.
Lay, Alice; Wang, Derek S; Wisser, Michael D; Mehlenbacher, Randy D; Lin, Yu; Goodman, Miriam B; Mao, Wendy L; Dionne, Jennifer A
2017-07-12
Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+ , Er 3+ , and Mn 2+ . The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressure or ∼10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow-green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.
Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Alice; Wang, Derek S.; Wisser, Michael D.
Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF4 nanoparticles (NPs) doped with Yb3+, Er3+, and Mn2+. The lanthanides Yb3+ and Er3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn2+ adds force tunability through its crystal field sensitivity. Using a diamond anvil cell to exert up to 3.5 GPa pressuremore » or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF4 and from yellow–green to green for d-metal optimized β-NaYF4 when illuminated in the near infrared. Consistent readouts are recorded over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less
Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces
Lay, Alice; Wang, Derek S.; Wisser, Michael D.; ...
2017-06-13
Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+, Er 3+, and Mn 2+. The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. IN using a diamond anvilmore » cell to exert up to 3.5 GPa pressure or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow–green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. We record consistent readouts over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less
Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Alice; Wang, Derek S.; Wisser, Michael D.
Mechanical forces affect a myriad of processes, from bone growth to material fracture to touch-responsive robotics. While nano- to micro-Newton forces are prevalent at the microscopic scale, few methods have the nanoscopic size and signal stability to measure them in vivo or in situ. Here, we develop an optical force-sensing platform based on sub-25 nm NaYF 4 nanoparticles (NPs) doped with Yb 3+, Er 3+, and Mn 2+. The lanthanides Yb 3+ and Er 3+ enable both photoluminescence and upconversion, while the energetically coupled d-metal Mn 2+ adds force tunability through its crystal field sensitivity. IN using a diamond anvilmore » cell to exert up to 3.5 GPa pressure or ~10 μN force per particle, we track stress-induced spectral responses. The red (660 nm) to green (520, 540 nm) emission ratio varies linearly with pressure, yielding an observed color change from orange to red for α-NaYF 4 and from yellow–green to green for d-metal optimized β-NaYF 4 when illuminated in the near infrared. We record consistent readouts over multiple pressure cycles and hours of illumination. With the nanoscopic size, a dynamic range of 100 nN to 10 μN, and photostability, these nanoparticles lay the foundation for visualizing dynamic mechanical processes, such as stress propagation in materials and force signaling in organisms.« less
Cultural responses to pain in UK children of primary school age: a mixed-methods study.
Azize, Pary M; Endacott, Ruth; Cattani, Allegra; Humphreys, Ann
2014-06-01
Pain-measurement tools are often criticized for not addressing the influence of culture and ethnicity on pain. This study examined how children who speak English as a primary or additional language discuss pain. Two methods were used in six focus group interviews with 34 children aged 4-7 years: (i) use of drawings from the Pediatric Pain Inventory to capture the language used by children to describe pain; and (ii) observation of the children's placing of pain drawings on red/amber/green paper to denote perceived severity of pain. The findings demonstrated that children with English as an additional language used less elaborate language when talking about pain, but tended to talk about the pictures prior to deciding where they should be placed. For these children, there was a positive significant relationship between language, age, and length of stay in the UK. The children's placement of pain drawings varied according to language background, sex, and age. The findings emphasize the need for sufficient time to assess pain adequately in children who do not speak English as a first language. © 2013 Wiley Publishing Asia Pty Ltd.
Predictive Models for Semiconductor Device Design and Processing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1998-01-01
The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.
Strauss, Soeren; Woodgate, Philip J W; Sami, Saber A; Heinke, Dietmar
2015-12-01
We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain's attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO's predictions and also lessons for neurobiologically inspired robotics emerging from this work. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 11, November 2007
2007-11-01
methodologies, work breakdown struc- tures, and risk management. (Any impo- sition of managerial or group expectation or norm is also accessing the Conforming...was a young nav- igator, and he felt green along side the more seasoned pilots on his very first mission. They headed for their destina- tion with a...oter 2 3 2 1 2 l : i l r i l t l reat re 1 2 3 4 5 tal tes 1 2 2 5 3 2 3 3 3 14 a le 4: xa le f ltiv ti take l er tal a keat re 1 2 3 4 5 6 tes 0 - 3
Sentinel lymph node mapping in endometrial cancer: a systematic review and meta-analysis.
Lin, Hefeng; Ding, Zheyuan; Kota, Vishnu Goutham; Zhang, Xiaoming; Zhou, Jianwei
2017-07-11
Endometrial cancer is the most frequent tumor in the female reproductive system, while the sentinel lymph node (SLN) mapping for diagnostic efficacy of endometrial cancer is still controversial. This meta-analysis was conducted to evaluate the diagnostic value of SLN in the assessment of lymph nodal involvement in endometrial cancer. Forty-four studies including 2,236 cases were identified. The pooled overall detection rate was 83% (95% CI: 80-86%). The pooled sensitivity was 91% (95% CI: 87-95%). The bilateral pelvic node detection rate was 56% (95% CI: 48-64%). Use of indocyanine green (ICG) increased the overall detection rate to 93% (95% CI: 89-96%) and robotic-assisted surgery also increased the overall detection rate to 86% (95% CI: 79-93%). In summary, our meta-analysis provides strong evidence that sentinel node mapping is an accurate and feasible method that performs well diagnostically for the assessment of lymph nodal involvement in endometrial cancer. Cervical injection, robot-assisted surgery, as well as using ICG, optimized the sensitivity and detection rate of the technique. Sentinel lymph mapping may potentially leading to a greater utilization by gynecologic surgeons in the future.
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians prepare to cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a wing leading edge of space shuttle Atlantis following removal of the reinforced carbon carbon panels, or RCC panels. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
2010-01-07
CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians remove a reinforced carbon carbon panel, or RCC panel, from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson
Expanding Scales and Applications for 2D Spatial Mapping of CO2 using GreenLITE
NASA Astrophysics Data System (ADS)
Erxleben, W. H.; Dobler, J. T.; Zaccheo, T. S.; Blume, N.; Braun, M.
2015-12-01
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system is a new measurement approach originally developed under a cooperative agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL), Atmospheric Environmental Sciences (AER) and Exelis Inc. (now part of Harris Corp.). The original system design provides 24/7 monitoring of Ground Carbon Storage (GCS) sites, in order to help ensure worker safety and verify 99% containment. The first generation was designed to cover up to 1km2 area, and employs the Exelis Continuous Wave (CW) Intensity Modulated (IM) approach to measure differential transmission. A pair of scanning transceivers was built and combined with a series of retro reflectors, and a local weather station to provide the information required for producing estimates of the atmospheric CO2 concentration over a number of overlapping lines-of-site. The information from the transceivers, and weather station, are sent remotely to a web-based processing and storage tool, which in-turn uses the data to generate estimates of the 2D spatial distribution over the area of coverage and disseminate that information near real-time via a secure web interface. Recently, in 2015, Exelis and AER have invested in the expansion of the GreenLITE transceiver system to 5 km range, enabling areas up to 25 km2 to be evaluated with this technology, and opening new possibilities for applications such as urban scale monitoring. The 5 km system is being tested in conjunction with the National Institute of Standards and Technology at the Boulder Atmospheric Observatory in August of this year. This talk will review the initial GreenLITE system, testing and deployment of that system, and the more recent development, expansion and testing of the 5 km system.
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Sensing of Particular Speakers for the Construction of Voice Interface Utilized in Noisy Environment
NASA Astrophysics Data System (ADS)
Sawada, Hideyuki; Ohkado, Minoru
Human is able to exchange information smoothly using voice under different situations such as noisy environment in a crowd and with the existence of plural speakers. We are able to detect the position of a source sound in 3D space, extract a particular sound from mixed sounds, and recognize who is talking. By realizing this mechanism with a computer, new applications will be presented for recording a sound with high quality by reducing noise, presenting a clarified sound, and realizing a microphone-free speech recognition by extracting particular sound. The paper will introduce a realtime detection and identification of particular speaker in noisy environment using a microphone array based on the location of a speaker and the individual voice characteristics. The study will be applied to develop an adaptive auditory system of a mobile robot which collaborates with a factory worker.
2011-05-16
CAPE CANAVERAL, Fla. - NASA Administrator Charlie Bolden talks to a crowd of spectators gathered at the Banana Creek Viewing Site near the Saturn V Center at NASA's Kennedy Space Center in Florida to watch the launch of space shuttle Endeavour. The shuttle lifted off on its STS-134 mission to the International Space Station on time at 8:56 a.m. EDT on May 16. The shuttle and its six-member crew are embarking on a mission to deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the space station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kurtis Korwan
2011-05-16
CAPE CANAVERAL, Fla. - NASA astronaut Shannon Walker talks to a crowd of spectators gathered at the Banana Creek Viewing Site near the Saturn V Center at NASA's Kennedy Space Center in Florida to watch the launch of space shuttle Endeavour. The shuttle lifted off on its STS-134 mission to the International Space Station on time at 8:56 a.m. EDT on May 16. The shuttle and its six-member crew are embarking on a mission to deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the space station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kurtis Korwan
Guiding brine shrimp through mazes by solving reaction diffusion equations
NASA Astrophysics Data System (ADS)
Singal, Krishma; Fenton, Flavio
Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.
The GEOS-5 Neural Network Retrieval for AOD
NASA Astrophysics Data System (ADS)
Castellanos, P.; da Silva, A. M., Jr.
2017-12-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
Electromechanical instability in soft materials: Theory, experiments and applications
NASA Astrophysics Data System (ADS)
Suo, Zhigang
2013-03-01
Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.
Bending-induced folding, an actuation mechanism for plant reconfiguration.
NASA Astrophysics Data System (ADS)
Terwagne, Denis; Segers, JéRéMy; trioS. lab-Soft Structures; Surfaces Lab Team
Inspired by the sophisticated mechanism of the opening and closing of the ice seed plant valves (Aizoaceae), we present a simple model experiment of this mechanism based on an origami folding. By imposing a curvature to one of the plate connected to a fold designed along a curved path, we actuate its opening and closing. The imposed curvature induces inner mechanical constraints that give us a precise control of the deflection angle, which ultimately leads the fold to close completely. In this talk, we will present an analysis and characterization of this mechanism as a function of the geometrical and mechanical parameters of the system. From these insights, we will show how to build origami pliers with tunable mechanical properties. Possible out comings that might arise in various fields, ranging from deployable engineered structure to soft robotics and medical devices, are discussed. DT and JS thank the Belgian national science foundation F.R.S-FNRS for funding.
The GEOS-5 Neural Network Retrieval (NNR) for AOD
NASA Technical Reports Server (NTRS)
Castellanos, Patricia; Da Silva, Arlindo
2017-01-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
Automated telescope for variability studies
NASA Astrophysics Data System (ADS)
Ganesh, S.; Baliyan, K. S.; Chandra, S.; Joshi, U. C.; Kalyaan, A.; Mathur, S. N.
PRL has installed a 50 cm telescope at Mt Abu, Gurushikhar. The backend instrument consists of a 1K × 1K EMCCD camera with standard UBVRI filters and also has polarization measurement capability using a second filter wheel with polaroid sheets oriented at different position angles. This 50 cm telescope observatory is operated in a robotic mode with different methods of scheduling of the objects being observed. This includes batch mode, fully manual as well as fully autonomous mode of operation. Linux based command line as well as GUI software are used entirely in this observatory. This talk will present the details of the telescope and associated instruments and auxiliary facilities for weather monitoring that were developed in house to ensure the safe and reliable operation of the telescope. The facility has been in use for a couple of years now and various objects have been observed. Some of the interesting results will also be presented.
2007-03-15
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility, William Gerstenmaier, NASA's associate administrator for Space Operations, talks to members of the media during a ceremony to unveil the Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
Wermter, S; Page, M; Knowles, M; Gallese, V; Pulvermüller, F; Taylor, J
2009-03-01
Recent years have seen convergence in research on brain mechanisms and neurocomputational approaches, culminating in the creation of a new generation of robots whose artificial "brains" respect neuroscience principles and whose "cognitive" systems venture into higher cognitive domains such as planning and action sequencing, complex object and concept processing, and language. The present article gives an overview of selected projects in this general multidisciplinary field. The work reviewed centres on research funded by the EU in the context of the New and Emergent Science and Technology, NEST, funding scheme highlighting the topic "What it means to be human". Examples of such projects include learning by imitation (Edici project), examining the origin of human rule-based reasoning (Far), studying the neural origins of language (Neurocom), exploring the evolutionary origins of the human mind (Pkb140404), researching into verbal and non-verbal communication (Refcom), using and interpreting signs (Sedsu), characterising human language by structural complexity (Chlasc), and representing abstract concepts (Abstract). Each of the communication-centred research projects revealed individual insights; however, there had been little overall analysis of results and hypotheses. In the Specific Support Action Nestcom, we proposed to analyse some NEST projects focusing on the central question "What it means to communicate" and to review, understand and integrate the results of previous communication-related research, in order to develop and communicate multimodal experimental hypotheses for investigation by future projects. The present special issue includes a range of papers on the interplay between neuroinformatics, brain science and robotics in the general area of higher cognitive functions and multimodal communication. These papers extend talks given at the NESTCOM workshops, at ICANN (http://www.his.sunderland.ac.uk/nestcom/workshop/icann.html) in Porto and at the first meeting of the Federation of the European Societies of Neuropsychology in Edinburgh in 2008 (http://www.his.sunderland.ac.uk/nestcom/workshop/esn.html). We hope that the collection will give a vivid insight into current trends in the field.
Managing Urban Water: Opportunities and Limitations of the Ecosystem Services Framework
NASA Astrophysics Data System (ADS)
Hamel, P.; Keeler, B.; Donahue, M.; Hobbie, S. E.; Finlay, J. C.; Brauman, K. A.; Vogl, A.
2015-12-01
Traditionally applied to rural environments, the concept of ES is gaining traction in urban areas, overlapping with a number of existing management frameworks in engineering, policy science, political ecology, or urban planning. Given this overlap, it is legitimate to question the value added by the ES concept, either as a theoretical or practical framework. This is particularly the case for urban water management, where new paradigms in engineering and socio-hydrology are increasingly bringing a social dimension to problem solving. In this talk, I will illustrate key opportunities and limitations of the ES framework with a focus on the service of stormwater retention. Drawing from examples in the Global North and South (including Melbourne, Australia, and Cape Town, South Africa), I will show that the ES lens allows: i) an explicit linkage between beneficiaries and grey and green infrastructure, which improves visibility and credibility of techniques valuing urban nature; ii) an improved understanding of tradeoffs and synergies between services, even in regions with limited environmental or socio-economic data; and iii) the development of powerful visualization techniques, enhancing communication with a broad range of stakeholders. These strengths make ES assessments a powerful tool to raise awareness or assist urban planners in realizing their vision of green cities. However, in cities like Melbourne with high capacity and innovative governance, I will argue that the instrumental use of ES is limited and may even be detrimental; limitations of the ES framework, which include a perceived partiality and vagueness, may be used by detractors to undermine the work of urban planners envisioning a greener city. To conclude the talk, I will present the work that the Natural Capital Project is conducting on the application of the ES concept for global indicators of sustainable development, thereby supporting the monitoring and implementation of urban Sustainable Development Goals.
ILEWG report and discussion on Lunar Science and Exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard
2015-04-01
The EGU PS2.2 session "Lunar Science and Exploration" will include oral papers and posters, and a series of discussions. Members of ILEWG International Lunar Exploration Working Group will debate: - Recent lunar results: geochemistry, geophysics in the context of open - Celebrating the lunar legacy of pioneers Gerhard Neukum, Colin Pillinger and Manfred Fuchs planetary science and exploration - Latest results from LADEE and Chang'e 3/4 - Synthesis of results from SMART-1, Kaguya, Chang-E1 and Chang-E2, Chandrayaan-1, Lunar Reconnaissance Orbiter and LCROSS impactor, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs, Chang'E 5, Future landers, Lunar sample return - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar sorties - Preparation: databases, instruments, terrestrial field campaigns - The future international lunar exploration programme towards ILEWG roadmap of a global robotic village and permanent international lunar base - The proposals for an International Lunar Decade and International Lunar Research Parks - Strategic Knowledge Gaps, and key science Goals relevant to Human Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with the perspective of robotic and human exploration. The session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction.
Planning and Execution: The Spirit of Opportunity for Robust Autonomous Systems
NASA Technical Reports Server (NTRS)
Muscettola, Nicola
2004-01-01
One of the most exciting endeavors pursued by human kind is the search for life in the Solar System and the Universe at large. NASA is leading this effort by designing, deploying and operating robotic systems that will reach planets, planet moons, asteroids and comets searching for water, organic building blocks and signs of past or present microbial life. None of these missions will be achievable without substantial advances in.the design, implementation and validation of autonomous control agents. These agents must be capable of robustly controlling a robotic explorer in a hostile environment with very limited or no communication with Earth. The talk focuses on work pursued at the NASA Ames Research center ranging from basic research on algorithm to deployed mission support systems. We will start by discussing how planning and scheduling technology derived from the Remote Agent experiment is being used daily in the operations of the Spirit and Opportunity rovers. Planning and scheduling is also used as the fundamental paradigm at the core of our research in real-time autonomous agents. In particular, we will describe our efforts in the Intelligent Distributed Execution Architecture (IDEA), a multi-agent real-time architecture that exploits artificial intelligence planning as the core reasoning engine of an autonomous agent. We will also describe how the issue of plan robustness at execution can be addressed by novel constraint propagation algorithms capable of giving the tightest exact bounds on resource consumption or all possible executions of a flexible plan.
Multimodal flexible cystoscopy for creating co-registered panoramas of the bladder urothelium
NASA Astrophysics Data System (ADS)
Seibel, Eric J.; Soper, Timothy D.; Burkhardt, Matthew R.; Porter, Michael P.; Yoon, W. Jong
2012-02-01
Bladder cancer is the most expensive cancer to treat due to the high rate of recurrence. Though white light cystoscopy is the gold standard for bladder cancer surveillance, the advent of fluorescence biomarkers provides an opportunity to improve sensitivity for early detection and reduced recurrence resulting from more accurate excision. Ideally, fluorescence information could be combined with standard reflectance images to provide multimodal views of the bladder wall. The scanning fiber endoscope (SFE) of 1.2mm in diameter is able to acquire wide-field multimodal video from a bladder phantom with fluorescence cancer "hot-spots". The SFE generates images by scanning red, green, and blue (RGB) laser light and detects the backscatter signal for reflectance video of 500-line resolution at 30 frames per second. We imaged a bladder phantom with painted vessels and mimicked fluorescent lesions by applying green fluorescent microspheres to the surface. By eliminating the green laser illumination, simultaneous reflectance and fluorescence images can be acquired at the same field of view, resolution, and frame rate. Moreover, the multimodal SFE is combined with a robotic steering mechanism and image stitching software as part of a fully automated bladder surveillance system. Using this system, the SFE can be reliably articulated over the entire 360° bladder surface. Acquired images can then be stitched into a multimodal 3D panorama of the bladder using software developed in our laboratory. In each panorama, the fluorescence images are exactly co-registered with RGB reflectance.
Materials for Better Li-based Storage Systems for a "Green Energy Society"
Jean-Marie Tarascon
2017-12-09
Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.
The Modern Era of Research in Biosphere Atmosphere Interactions
NASA Astrophysics Data System (ADS)
Fung, I. Y.; Sellers, P. J.; Randall, D. A.; Tucker, C. J.; Field, C. B.; Berry, J. A.; Ustin, S.
2015-12-01
Dr. Diane Wickland, the Program Scientist for NASA's EOS InterDisciplinary Science (IDS), encouraged and nurtured the growth of the field of global ecology and eco-climatology. This talk reviews the developments in, and integration of, theory, satellite and field observations that enabled the global modeling of biosphere-atmosphere interactions. Emphasis will be placed on the advances made during the EOS era in global datasets and global coupled carbon-climate models. The advances include functional classifications of the land surface using the NDVI, a global terrestrial carbon-energy-water model, and the greening of the CSU GCM. An equally important achievement of the EOS-IDS program is a new generation of multi-disciplinary scientists who are now leaders in the field.
A Climate Change Minor that gets Physics Students talking to Philosophy Students
NASA Astrophysics Data System (ADS)
Running, S. W.; Phear, N.
2015-12-01
We started a Climate Change Studies Minor at the University of Montana in 2008. The curriculum is divided into three Sections: Science, Society and Solutions. Faculty from at least 8 different departments offer courses. The Science curriculum is what you would expect, however we worked hard to build the Society Section to include courses in political science, ethics, economics, communication, international policy. The Solutions Section introduces a variety of sustainability, renewable energy and green business courses, and internships and practicums with local organizations and businesses. Our goal has been a Minor that can be taken by students from any major on campus. The high point for me is watching the AGU type geeks interacting with philosophy majors, business students, and pre-law students.
Sensitivity of Pulsar Timing Arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2015-08-01
For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Yoshida, Masashi; Furukawa, Toshiharu; Morikawa, Yasuhide; Kitagawa, Yuko; Kitajima, Masaki
2010-09-01
The breakthrough in laparoscopic surgery has been the development of a charge-coupled device camera system and Mouret performing cholecystectomy in 1987. The short-term benefits of laparoscopic surgery are widely accepted and the long-term benefit of less incidence of bowel obstruction can be expected. The important developments have been the articulating instrumentation via new laparoscopic access ports. Since 2007, single-incision laparoscopic surgery has spread all over the world. Not only single-scar but also no-scar operation is a current topic. In 2004, Kalloo reported the flexible transgastric peritoneoscopy as a novel approach to therapeutic interventions. In 2007, Marescaux reported transvaginal cholecystectomy in a patient. The breakthrough in robotic surgery was the development of the da Vinci Surgical System. It was introduced to Keio University Hospital in March 2000. Precision in the surgery will reach a higher level with the use of robotics. In collaboration with the faculty of technology and science, Keio University, the combined master-slave manipulator has been developed. The haptic forceps, which measure the elasticity of organs, have also been developed. The first possible sites of lymphatic metastasis are known as sentinel nodes. Otani reported vagus-sparing segmental gastrectomy under sentinel node navigation. This kind of function-preserving surgery will be performed frequently if the results of the multicenter prospective trial of the dual tracer method are favorable. Indocyanine green fluorescence-guided method using the HyperEye charge-coupled device camera system can be a highly sensitive method without using the radioactive colloid. 'Minimally invasive, function-preserving and precise surgery under sentinel node navigation in community hospital' may be a goal for us.
Toward real-time tumor margin identification in image-guided robotic brain tumor resection
NASA Astrophysics Data System (ADS)
Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.
2017-03-01
For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.
NASA Astrophysics Data System (ADS)
Takahashi, Yasuo
2012-08-01
Conference logo The 21st century has been called the century of environmental revolution. Green innovations and environmentally friendly production systems based on physics, chemistry, materials science, and electronic engineering will be indispensable for ensuring renewable energy and establishing a sustainable society. In particular, production design, materials processing, and fabrication technologies such as welding and joining will be very important components of such green innovations. For these reasons, the International Symposium on Materials Science and Innovation for Sustainable Society - eco-materials and eco-innovation for global sustainability - (ECO-MATES 2011) was organized by the Joining and Welding Research Institute (JWRI) and the Center of Environmental Innovation Design for Sustainability (CEIDS), Osaka University. ECO-MATES 2011 was held at Hotel Hankyu Expo Park, Osaka, Japan from 28-30 November 2011. 435 participants from 20 countries around the world attended the symposium. 149 oral presentations including 60 invited talks and 160 posters were presented at the symposium to discuss the latest research and developments in green innovations in relation to environmental issues. The topics of the symposium covered all environmentally related fields including renewable energy, energy-materials, environment and resources, waste and biomass, power electronics, semiconductor, rare-earth metals, functional materials, organic electronics materials, electronics packaging, smart processing, joining and welding, eco-efficient processes, and green applied physics and chemistry. Therefore, 55 full papers concerning green innovations and environmentally benign production were selected and approved by the editorial board and the program committee of ECO-MATES 2011. All papers were accepted through peer review processes. I believe that all the papers have many informative contents. On behalf of the steering committee of the symposium, I would like to express my sincere appreciation to all the committees and secretariats, authors, participants of ECO-MATES 2011, and everybody involved in the publication of this special issue. It is a great honor for me that the special issue of Journal of Physics: Conference Series will contribute to establishing green innovations and a sustainable society. Chairman's signature Yasuo Takahashi Chairman of ECO-MATES 2011 Conference photograph ECO-MATES 2011 November 28-30, 2011 Venue: Hotel Hankyu Expo Park, Osaka, Japan The PDF also contains a list of the organizing committees.
Environmentally Non-Disturbing Under-ice Robotic ANtarctiC Explorer (ENDURANCE)
NASA Astrophysics Data System (ADS)
Doran, P. T.; Stone, W.; Priscu, J.; McKay, C.; Johnson, A.; Chen, B.
2007-12-01
Permanently ice-covered liquid water environments are among the leading candidate sites for finding evidence of extant life elsewhere in our solar system (e.g. on Europa and other Galiean satellites, and possibly in subglacial lakes on Mars). In order to have the proper tools and strategies for exploring the extant ice-covered planetary environments, we are developing an autonomous underwater vehicle (AUV) capable of generating for the first time 3-D biogeochemical datasets in the extreme environment of perennially ice-covered Antarctic dry valley lakes. The ENDURANCE (Environmentally Non-Disturbing Under-ice Robotic ANtarctic Explorer) will map the under-ice lake dimensions of West Lake Bonney in the McMurdo Dry Valleys, and be equipped to measure a comprehensive suite of physical and biogeochemical indices in the water column, as well as Raman Spectrometry of the water column and benthos. The AUV is being specifically designed to minimize impact on the environment it is working in. This is primarily to meet strict Antarctic environmental protocols, but will also be useful for planetary protection and improved science in the future. We will carry out two Antarctic field seasons (in concert with our NSF-funded Long Term Ecological Research) and test two central hypotheses: H1: The low kinetic energy of the system (diffusion dominates the spatial transport of constituents) produces an ecosystem and ecosystem limits that vary significantly in three dimensions. H2: The whole-lake physical and biogeochemical structure remains static from year to year The talk will provide an overview of the ENDURANCE project and an update on the AUV development at the time of presentation.
NASA Technical Reports Server (NTRS)
Jeevarajan, Antony
2014-01-01
The Mars probe, launched by India a few months ago, is on its way to Mars. At this juncture, it is appropriate to talk about the opportunities presented to us for the Human Exploration of Mars. I am planning to highlight some of the challenges to take humans to Mars, descend, land, stay, ascend and return home safely. The logistics of carrying the necessary accessories to stay at Mars will be delivered in multiple stages using robotic missions. The primary ingredients for human survival is air, water, food and shelter and the necessity to recycle the primary ingredients will be articulated. Humans have to travel beyond the van Allen radiation belt under microgravity condition during this inter-planetary travel for about 6 months minimum one way. The deconditioning of human system under microgravity conditions and protection of humans from Galactic cosmic radiation during the travel should be taken into consideration. The multi-disciplinary effort to keep the humans safe and functional during this journey will be addressed.
A Potential Role for smallsats and Cubesats in Lunar Exploration
NASA Astrophysics Data System (ADS)
Carpenter, James; Fisackerly, Richard; Houdou, Bérengère; De Rosa, Diego; Schiemann, Jens D.; Walker, Roger; Zeppenfeldt, Frank
2015-04-01
The Moon is an important exploration destination for ESA, which is currently engaged in activities to access and exploit the Moon through developments in future human exploration systems and precursor robotic surface missions. However, recent major advancements in Smallsat and Cubesat technologies, and their application to fields such as Earth imaging and atmospheric science, has opened the possibility of utilising these smaller, lower cost platforms beyond LEO and potentially at the Moon. ESA is interested in understanding how emerging Smallsat & Cubesat instrument and platform technology could be applied to Lunar Exploration, particularly in the fields of technology demonstration and investigations which can be precursors to longer term l exploration activies. Lunar Cubesats can offer an means of access to the Moon, which complements larger ESA-led opportunities on international surface missions and via future human exploration systems. In this talk ESA will outline its current objectives in Lunar Exploration and highlight potential future opportunities for Smallsat and Cubesat platforms to play a role.
STS-114 Crew Interview: James M. Kelly, PLT
NASA Technical Reports Server (NTRS)
2003-01-01
Pilot James M. Kelly, Lieutenant Colonel USAF, is shown during a prelaunch interview. He expresses the major goals of the mission which are to replace the Expedition Six crew of the International Space Station (ISS), install the Raffello Multi-Purpose Logistics Module, deliver the External Stowage Platform to the ISS, and replace the Control Moment Gyroscope (CMG). The major task that he has is to be the backup pilot for Commander Eileen Collins. He talks about the three new research racks brought up to the International Space Station inside the U.S. Destiny Laboratory along with the Window Observational Research Facility (WORF), Human Research Facility 2 (HRF-2), and a Minus Eighty Degree Laboratory Freezer (MELF-1). Kelly also explains how he uses the ISS' Robotic arm to lift the MPLM out of Atlantis' payload bay and attach it to the Unity node to unload hardware, supplies and maintenance items. This will be his second trip to the International Space Station.
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Unbiased and unnoticed verbal conditioning: the double agent robot procedure1
Rosenfeld, Howard M.; Baer, Donald M.
1970-01-01
Subjects who were told they were “experimenters” attempted to reinforce fluent speech in a supposed subject with whom they spoke via intercom. The supposed subject was to say nouns, one at a time, on request by the “experimenter”, who reinforced fluent pronunciation with points. Actually, the “experimenter” was talking to a multi-track tape recording, one track of which contained fluently spoken nouns, the other track containing disfluently spoken nouns. If the “experimenter's” request for the next noun was in a specified form a word from the fluent track was played to him as reinforcement; requests in any other form produced the word from the disfluent track. Repeated conditioning of specific forms of requests was accomplished with two subject-“experimenters,” who were unable to describe changes in their own behavior, or the contingencies applied. This technique improved upon an earlier method that had yielded similar results, but was less thoroughly controlled against possible human bias. PMID:16811461
2007-03-15
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Mission STS-120 Pilot George Zamka (left, partially hidden) and Commander Pam Melroy (second from right in group), talk with members of the media and guests after a ceremony to unveil NASA's Node 2 module's new name, Harmony. The name, Harmony, was chosen from an academic competition involving thousands of students in kindergarten through high school. The Node 2 Challenge required students to learn about the International Space Station, build a scale model of the module, and write an essay explaining their proposed name. This will be the first U.S. piece of the space station named by someone other than a NASA official. Node 2 is a pressurized module that will act as a connecting port and passageway to additional international science labs and supply spacecraft. It also will be a work platform for the station's robotic arm. The module is scheduled to fly on mission STS-120 aboard Space Shuttle Atlantis targeted for later this year. Photo credit: NASA/Jim Grossmann
A Robotic System Discovers Contemporaneous Optical Radiation from a Gamma-Ray Burst
NASA Astrophysics Data System (ADS)
Bloch, J. J.; Akerlof, C.; Balsano, R.; Barthelmy, S.; Butterworth, P.; Casperson, D.; Cline, T.; Fletcher, S.; Frontera, F.; Gisler, G.; Heise, J.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Miller, R. S.; Piro, L.; Priedhorsky, W.; Szymanski, J.; Wren, J.; ROTSE Team
2000-05-01
Since their discovery more than 25 years ago (Klebesadel et al, 1973), the origin of gamma-ray bursts (GRBs) has been profoundly enigmatic. This situation improved radically in 1997 when coordinates provided by the BeppoSAX satellite enabled the delayed detection of faint optical afterglows associated with GRBs which demonstrated that these phenomena are at truly cosmological distances. However the brief duration of gamma-ray bursts has hitherto precluded optical detection while the burst was still in progress. We report here the first discovery of such a signal from GRB 990123, a remarkably bright and distant event using a robotic observation system. The light curve was sampled 7 times in the interval between 22 and 600 seconds following the burst onset. Over this time span, the brightness increased by 3 magnitudes to mv ~ 9 in 25 seconds and then waned by 5 magnitudes 8 minutes later before falling below detection threshold. The absolute magnitude of this object at peak brightness is <= -36.4, about 6 x 106 times as bright as a type Ia supernova, making this the most luminous object ever detected. The discovery reported here was performed with ROTSE-I, a four-fold robotic array of 35 mm camera telephoto lenses coupled to large format CCD imagers mounted on a rapidly slewing platform and having a composite FOV of 16° x 16° . The instrument is directly connected to the GRB Coordinates Network (GCN). The apparatus is installed at Los Alamos National Laboratory in northern New Mexico and runs autonomously. When ROTSE-I is not responding to GRBs, it is automatically recording the visible sky twice every night down to a limiting magnitude of mv ~ 14-15. Over 2 TBytes of sky data has been collected since ROTSE-I began operations. This talk will describe the details and implications of this remarkable detection and the instrumentation used to obtain it. It will also discuss the next generation instrumentation (ROTSE-II,III) that the project will produce and field at various worldwide sites. This work was supported by NASA and the Department of Energy.
Quantum transport and nanoplasmonics with carbon nanorings - using HPC in computational nanoscience
NASA Astrophysics Data System (ADS)
Jack, Mark A.
2011-10-01
Central theme of this talk is the theoretical study of toroidal carbon nanostructures as a new form of metamaterial. The interference of ring-generated electromagnetic radiation in a regular array of nanorings driven by an incoming polarized wave front may lead to fascinating new optoelectronics applications. The tight-binding method is used to model charge transport in a carbon nanotorus: All transport observables can be derived from the Green's function of the device region in a non-equilibrium Green's function algorithm. We have calculated density-of-states D(E) and transmissivities T(E) between two metallic leads under a small voltage bias. Electron-phonon coupling is included for low-energy phonon modes of armchair and zigzag nanorings with atomic displacements determined by a collaborator's finite-element based code. A numerically fast and stable algorithm has been developed via parallel linear algebra matrix routines (PETSc) with MPI parallelism to reach significant speed-up. Production runs are planned on the NSF XSEDE network. This project was supported in parts by a 2010 NSF TeraGrid Fellowship and the Sunshine State Education and Research Computing Alliance (SSERCA). Two summer students were supported as 2010 and 2011 NCSI/Shodor Petascale Computing undergraduate interns.[4pt] In collaboration with Leon W. Durivage, Adam Byrd, and Mario Encinosa.
Food and Drug Administration workshop on indirect mechanisms of carcinogenesis.
Poirier, L A
1996-01-01
A workshop sponsored by the Food and Drug Administration (FDA) was held on March 4-5, 1996, at the Lister Hill Auditorium of the National Institutes of Health (NIH) Campus in Bethesda, Maryland. The workshop considered both the scientific aspects and the regulatory implications of indirect-acting carcinogens. A wide variety of agents and of prospective mechanisms was discussed. The organizing committee for the workshop consisted of Drs. James Farrelly and Joseph DeGeorge of the Center for Drug Evaluation and Research (CDER), Ronald J. Lorentzen and Sidney Green of the Center for Food Safety and Applied Nutrition (CFSAN), Martin D. Green of the Center for Biologics, Evaluation and Research (CBER), C. Darnell Jackson and Lionel A. Poirier of the National Center for Toxicological Research (NCTR). Rosalie K. Elespuru of the Center for Devices and Radiological Health (CDRH), and David G. Longfellow of the National Cancer Institute (NCI). Following an introduction by Dr. Poirier, who provided a description of indirect carcinogens, the major talks were grouped into three formal sessions: indirect-acting compounds and agents of FDA interest, biological and biochemical endpoints commonly seen with indirect agents, and specific problems associated with the indirect-acting compounds. A panel discussion followed and the concluding remarks were made by Dr. Bernard A. Schwetz, Associate Commissioner for Science, FDA.
Topological Hall Effect in Skyrmions: A Nonequilibrium Coherent Transport Approach
NASA Astrophysics Data System (ADS)
Yin, Gen; Zang, Jiadong; Lake, Roger
2014-03-01
Skyrmion is a topological spin texture recently observed in many materials with broken inversion symmetry. In experiments, one effective method to detect the skyrmion crystal phase is the topological Hall measurement. At adiabatic approximation, previous theoretical studies show that the Hall signal is provided by an emergent magnetic field, which explains the topological Hall effect in the classical level. Motivated by the potential device application of skyrmions as digital bits, it is important to understand the topological Hall effect in the mesoscopic level, where the electron coherence should be considered. In this talk, we will discuss the quantum aspects of the topological Hall effect on a tight binding setup solved by nonequilibrium Green's function (NEGF). The charge distribution, Hall potential distribution, thermal broadening effect and the Hall resistivity are investigated in detail. The relation between the Hall resistance and the DM interaction is investigated. Driven by the spin transferred torque (SST), Skyrmion dynamics is previously studied within the adiabatic approximation. At the quantum transport level, this talk will also discuss the non-adiabatic effect in the skyrmion motion with the presence of the topological Hall effect. This material is based upon work supported by the National Science Foundation under Grant Nos. NSF 1128304 and NSF 1124733. It was also supported in part by FAME, one of six centers of STARnet, an SRC program sponsored by MARCO and DARPA.
Siesto, Gabriele; Romano, Fabrizio; Fiamengo, Barbara; Vitobello, Domenico
2016-01-01
Sentinel lymph node (SLN) mapping has emerged as the new frontier for the surgical staging of apparently early-stage cervical and endometrial cancer. Different colorimetric and radioactive tracers, alone and in combination, have been proposed with encouraging results. Fluorometric mapping using indocyanine green (ICG) appears to be a suitable and attractive alternative to provide reliable staging [1-4]. In this video, we present the technique of SLN mapping in 2 cases (1 endometrial and 1 cervical cancer, respectively) using ICG and the near-infrared technology provided by the newest Da Vinci Xi robotic system (Intuitive Surgical Inc., Sunnyvale, CA). Together we report the results of our preliminary experience on the first 20 cases performed. The new robotic Da Vinci Xi system was available at our institution since May 2015. Upon institutional review board/ethical committee approval, all consecutive patients with early-stage endometrial and cervical cancer who were judged suitable for robotic surgery have been enrolled for SLN mapping with ICG. We adopted the Memorial Sloan Kettering Cancer Center SLN algorithm; the tracer was delivered into the cervix in all cases. Four milliliters (1.25 mg/mL) of ICG was injected divided into the 3- and 9-o'clock positions of the cervix alone, with 1 mL deep into the stroma and 1 mL submucosally at the skin incision. Sentinel lymph nodes were examined with a protocol including both ultrastaging with immunohistochemistry [3] and 1-step nucleic acid amplification assay [5,6] under a parallel protocol of study. During the study period, 20 cases were managed; 14 and 6 patients had endometrial and cervical cancer, respectively. SLN was detected in all cases (20/20, 100%). Bilateral SLNs were detected in 17 of 20 (85.0%) cases. Based on preoperative and intraoperative findings, 13 (65.0%) patients received systematic pelvic lymphadenectomy after SLN mapping. Three (15.0%) patients had microscopic nodal metastases on SLN. No patients had positive regional nodes other than SLN. No perioperative complications were recorded. SLN mapping has been acknowledged by the National Comprehensive Cancer Network guidelines as a viable option for the management of selected uterine malignancies [7,8]. Currently, the near-infrared technology built in the Da Vinci Xi system provides an enhanced real-time imaging system that improves the advantages given by ICG. Together with our experience, these conditions indicate that SLN mapping is an effective and safe procedure with high overall detection and low false-negative rates. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy
NASA Astrophysics Data System (ADS)
Mitra, Kinshuk; Melvin, James; Chang, Shufang; Park, Kyoungjin; Yilmaz, Alper; Melvin, Scott; Xu, Ronald X.
2012-11-01
We encapsulate indocyanine green (ICG) in poly[(D,L-lactide-co-glycolide)-co-PEG] diblock (PLGA-PEG) microballoons for real-time fluorescence and hyperspectral imaging of biliary anatomy. ICG-loaded microballoons show superior fluorescence characteristics and slower degradation in comparison with pure ICG. The use of ICG-loaded microballoons in biliary imaging is demonstrated in both biliary-simulating phantoms and an ex vivo tissue model. The biliary-simulating phantoms are prepared by embedding ICG-loaded microballoons in agar gel and imaged by a fluorescence imaging module in a Da Vinci surgical robot. The ex vivo model consists of liver, gallbladder, common bile duct, and part of the duodenum freshly dissected from a domestic swine. After ICG-loaded microballoons are injected into the gallbladder, the biliary structure is imaged by both hyperspectral and fluorescence imaging modalities. Advanced spectral analysis and image processing algorithms are developed to classify the tissue types and identify the biliary anatomy. While fluorescence imaging provides dynamic information of movement and flow in the surgical region of interest, data from hyperspectral imaging allow for rapid identification of the bile duct and safe exclusion of any contaminant fluorescence from tissue not part of the biliary anatomy. Our experiments demonstrate the technical feasibility of using ICG-loaded microballoons for biliary imaging in cholecystectomy.
Mine Land Reclamation and Eco-Reconstruction in Shanxi Province I: Mine Land Reclamation Model
Bing-yuan, Hao; Li-xun, Kang
2014-01-01
Coal resource is the main primary energy in our country, while Shanxi Province is the most important province in resource. Therefore Shanxi is an energy base for our country and has a great significance in energy strategy. However because of the heavy development of the coal resource, the ecological environment is worsening and the farmland is reducing continuously in Shanxi Province. How to resolve the contradiction between coal resource exploitation and environmental protection has become the imperative. Thus the concept of “green mining industry” is arousing more and more attention. In this assay, we will talk about the basic mode of land reclamation in mine area, the engineering study of mine land reclamation, the comprehensive model study of mine land reclamation, and the design and model of ecological agricultural reclamation in mining subsidence. PMID:25050398
Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays
NASA Astrophysics Data System (ADS)
Siemens, Xavier
2016-03-01
For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.
Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori
2009-01-01
It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).
INL Multi-Robot Control Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robotâs condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.
ERIC Educational Resources Information Center
Brand, Judith, Ed.
2002-01-01
This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…
A Green Robotic Observatory for Astronomy Education
NASA Astrophysics Data System (ADS)
Reddy, Vishnu; Archer, K.
2008-09-01
With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.
Automatic control system generation for robot design validation
NASA Technical Reports Server (NTRS)
Bacon, James A. (Inventor); English, James D. (Inventor)
2012-01-01
The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2010-09-21
The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.
Simulation-based training for prostate surgery.
Khan, Raheej; Aydin, Abdullatif; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran
2015-10-01
To identify and review the currently available simulators for prostate surgery and to explore the evidence supporting their validity for training purposes. A review of the literature between 1999 and 2014 was performed. The search terms included a combination of urology, prostate surgery, robotic prostatectomy, laparoscopic prostatectomy, transurethral resection of the prostate (TURP), simulation, virtual reality, animal model, human cadavers, training, assessment, technical skills, validation and learning curves. Furthermore, relevant abstracts from the American Urological Association, European Association of Urology, British Association of Urological Surgeons and World Congress of Endourology meetings, between 1999 and 2013, were included. Only studies related to prostate surgery simulators were included; studies regarding other urological simulators were excluded. A total of 22 studies that carried out a validation study were identified. Five validated models and/or simulators were identified for TURP, one for photoselective vaporisation of the prostate, two for holmium enucleation of the prostate, three for laparoscopic radical prostatectomy (LRP) and four for robot-assisted surgery. Of the TURP simulators, all five have demonstrated content validity, three face validity and four construct validity. The GreenLight laser simulator has demonstrated face, content and construct validities. The Kansai HoLEP Simulator has demonstrated face and content validity whilst the UroSim HoLEP Simulator has demonstrated face, content and construct validity. All three animal models for LRP have been shown to have construct validity whilst the chicken skin model was also content valid. Only two robotic simulators were identified with relevance to robot-assisted laparoscopic prostatectomy, both of which demonstrated construct validity. A wide range of different simulators are available for prostate surgery, including synthetic bench models, virtual-reality platforms, animal models, human cadavers, distributed simulation and advanced training programmes and modules. The currently validated simulators can be used by healthcare organisations to provide supplementary training sessions for trainee surgeons. Further research should be conducted to validate simulated environments, to determine which simulators have greater efficacy than others and to assess the cost-effectiveness of the simulators and the transferability of skills learnt. With surgeons investigating new possibilities for easily reproducible and valid methods of training, simulation offers great scope for implementation alongside traditional methods of training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
Coordinated Control Of Mobile Robotic Manipulators
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1995-01-01
Computationally efficient scheme developed for on-line coordinated control of both manipulation and mobility of robots that include manipulator arms mounted on mobile bases. Applicable to variety of mobile robotic manipulators, including robots that move along tracks (typically, painting and welding robots), robots mounted on gantries and capable of moving in all three dimensions, wheeled robots, and compound robots (consisting of robots mounted on other robots). Theoretical basis discussed in several prior articles in NASA Tech Briefs, including "Increasing the Dexterity of Redundant Robots" (NPO-17801), "Redundant Robot Can Avoid Obstacles" (NPO-17852), "Configuration-Control Scheme Copes With Singularities" (NPO-18556), "More Uses for Configuration Control of Robots" (NPO-18607/NPO-18608).
Robotics: An Introduction to Today’s Robot and Future Trends.
1983-07-01
trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are
Concept and design philosophy of a person-accompanying robot
NASA Astrophysics Data System (ADS)
Mizoguchi, Hiroshi; Shigehara, Takaomi; Goto, Yoshiyasu; Hidai, Ken-ichi; Mishima, Taketoshi
1999-01-01
This paper proposes a person accompanying robot as a novel human collaborative robot. The person accompanying robot is such legged mobile robot that is possible to follow the person utilizing its vision. towards future aging society, human collaboration and human support are required as novel applications of robots. Such human collaborative robots share the same space with humans. But conventional robots are isolated from humans and lack the capability to observe humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. To collaborate and support humans properly human collaborative robot must have capability to observe and recognize humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. The authors are currently implementing a prototype of the proposed accompanying robot.As a base for the human observing function of the prototype robot, we have realized face tracking utilizing skin color extraction and correlation based tracking. We also develop a method for the robot to pick up human voice clearly and remotely by utilizing microphone arrays. Results of these preliminary study suggest feasibility of the proposed robot.
hwhap_Ep14_ Robotic Arms In Space
2017-10-13
>> HOUSTON, WE HAVE A PODCAST. WELCOME TO THE OFFICIAL PODCAST OF THE NASA JOHNSON SPACE CENTER EPISODE 14: ROBOTIC ARMS IN SPACE. I’M GARY JORDAN AND I’LL BE YOUR HOST TODAY. SO IF YOU’RE NEW TO THE SHOW, THIS IS WHERE WE BRING IN NASA EXPERTS-- SCIENTISTS, ENGINEERS, ASTRONAUTS-- ALL TO TELL YOU THE COOLEST STUFF ABOUT WHAT’S GOING ON HERE AT NASA. SO TODAY WE’RE TALKING WITH TIM BRAITHWAITE. HE’S THE CANADIAN SPACE AGENCY’S LIAISON MANAGER HERE AT THE NASA JOHNSON SPACE CENTER IN HOUSTON, TEXAS. AND WE TALKED ABOUT THE ROBOTIC ARMS IN SPACE, WHICH IS PERFECT BECAUSE ASTRONAUTS ABOARD THE INTERNATIONAL SPACE STATION ARE GOING TO PERFORM THREE SPACEWALKS IN THE MONTH OF OCTOBER. AND IN ALL THREE THE ASTRONAUTS ARE WORKING ON THE CANADARM2, WHICH WE’LL BE TALKING ABOUT IN THIS EPISODE, ALONG WITH HOW IT WAS DEVELOPED AND HOW IT WORKS TODAY, HOW THE TECHNOLOGY HELPS PEOPLE HERE ON EARTH, AND WHAT’S COMING UP IN THE FUTURE. BUT FOR A LOT OF EPISODES, WE TIE TOPICS TO WHAT’S GOING ON TODAY HERE IN SPACE, AND TRY TO EXPLAIN IT AT A HIGH LEVEL. WE’RE ALWAYS LISTENING TO WHAT YOU WANT TO HEAR ABOUT, AND WE’RE LOOKING ON SOCIAL MEDIA ESPECIALLY. SO IF YOU’VE LISTENED TO PREVIOUS EPISODES, WE TELL YOU WHERE TO ASK THESE QUESTIONS SO WE CAN PUT IT IN THE PODCAST AT THE END OF EVERY EPISODE. SO I WANTED TO ANSWER THIS TWITTER QUESTION FROM JENNIFER, WHO ASKED AFTER THE MISSION CONTROL EPISODE, “WHEN YOU RUN AN EXPERIMENT, ARE SCIENTISTS INVITED TO THE MISSION CONTROL CENTER?” SO I WENT AND DID SOME DIGGING AND FOUND OUT THAT SOMETIMES THEY COME TO MISSION CONTROL HOUSTON, BUT A LOT OF THE TIMES THEY’RE PATCHED THROUGH FROM THE PAYLOAD OPERATIONS INTEGRATION CENTER AT MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. THEY’RE PATCHED ALL THE WAY UP TO THE ASTRONAUTS ON THE INTERNATIONAL SPACE STATION. OTHERWISE THEY CAN BE PATCHED THROUGH FROM A REMOTE LOCATION, AND THEY SORT OF HELP WALK THE ASTRONAUTS THROUGH SOME OF THEIR TASKS, AND SOMETIMES THEY CAN JUST KIND OF WATCH AND MONITOR AS THEY’RE DOING IT. SO ANYWAY, TODAY WE’RE GOING TO BE TALKING ABOUT ROBOTIC ARMS IN SPACE WITH MR. TIM BRAITHWAITE. SO WITH NO FURTHER DELAY, LET’S GO LIGHT SPEED AND JUMP RIGHT AHEAD TO THAT TALK. ENJOY. [ MUSIC ] >> T MINUS FIVE SECONDS AND COUNTING-- MARK. [ INDISTINCT RADIO CHATTER ] >> HOUSTON, WE HAVE A PODCAST. [ MUSIC ] >> SO THANKS FOR COMING ON, AND I KNOW IT’S BEEN PARTICULARLY BUSY RECENTLY, ESPECIALLY BECAUSE IN THE MONTH OF OCTOBER WE HAVE A FEW SPACEWALKS GOING OUT THAT ARE PARTICULARLY FOCUSING ON ROBOTIC ARMS, RIGHT, SPECIFICALLY THE CANADARM2? >> EXACTLY. THIS FIRST SPACEWALK ESPECIALLY, ON THURSDAY THE 5th IS PRETTY MUCH ENTIRELY DEDICATED TO REPLACING ONE OF OUR TWO LATCHING END EFFECTORS ON CANADARM2. >> OKAY, AND WHAT’S A LATCHING END EFFECTOR? >> THE ARM IS MORE OR LESS SYMMETRICAL, AND AT EACH END YOU KIND OF CALL IT THE WORKING HAND OF THE ARM. >> OH, OKAY. >> --IS WHAT YOU CALL THE LATCHING END EFFECTOR. WE USUALLY CALL IT A LEE-- L-E-E. >> OKAY, LOTS OF ACRONYMS HERE. >> IT’S NOT A HAND IN THE SENSE THAT IT HAS FINGERS, BUT THERE ARE GRASPING, GRAPPLING AND LATCHING MECHANISMS THAT WILL ALLOW YOU TO CAPTURE A FREEFLYING CARGO VEHICLE IN SPACE, OR STEP ONTO ANOTHER MODULE ON THE SPACE STATION AND MAKE THAT THE NEW OPERATING BASE, THEN RELEASE THE OTHER END AND THE ARM CAN WALK END OVER END. >> OH. >> BUT THE LATCHING END EFFECTOR PACKAGE IS A BIG THING-- IT’S A SORT OF CYLINDER A LITTLE OVER A METER LONG, WEIGHS OVER 200 KILOGRAMS. >> WOW. >> SO IT’S A BIG PACKAGE. THERE ARE THREE DIFFERENT MECHANISMS WITH GEAR TRAINS OF THEIR OWN, LOTS OF ONBOARD ELECTRONICS, WHAT WE CALL A FORCE END MOMENT SENSOR. SO WHEN THAT LEE IS THE TIP OF THE ARM, IT CAN ACTUALLY SENSE HOW HARD IT’S PUSHING AGAINST SOMETHING OR HOW HARD SOMETHING IS PUSHING BACK. AND THAT’S VERY USEFUL IF WE ARE INSERTING A BIG ITEM, LIKE THE JAPANESE CARGO VEHICLE HAS AN EXTERNAL PALLET THAT WE EXTRACT AND THEN REINSERT LIKE A DRAWER INTO A CHEST OF DRAWERS. AND IMAGINE IF YOU’RE DOING THAT AT HOME, BEING ABLE TO FEEL HOW YOU’RE LINED UP AND FEEL THE FORCES ON ONE SIDE OR THE OTHER. THAT’S A VERY USEFUL THING TO GETTING THE DRAWER ALL THE WAY IN SUCCESSFULLY. >> RIGHT. >> AND THE SAME SORT OF PRINCIPLES APPLY WITH CANADARM2-- THAT FORCE END MOMENT SENSOR CAPABILITY IS VERY USEFUL. BUT THAT’S ALL PART OF THAT BIG, PRETTY COMPLEX PACKAGE IN THE CANADARM2 LEEs. >> OKAY, SO LATCHING END EFFECTOR. AND WE CAN GET INTO SOME OF THE MORE SPECIFIC THINGS LATER HERE, AND JUST FOCUSING ON HOW THAT WORKS AND WHAT IT CAN GRAB. BUT I REALLY WANTED TO HAVE THIS CONVERSATION TODAY BECAUSE OF THIS, RIGHT-- YOU KNOW, WE’RE REPLACING A LATCHING END EFFECTOR, AND WE HAVE SOME REGULAR MAINTENANCE, TOO, COMING UP WITH SOME OF THE OTHER SPACEWALKS. BUT REALLY, THIS KIND OF BEGS THE QUESTION FOR JUST A ROBOTIC ARM, THE IDEA OF A ROBOTIC ARM IN SPACE. SO IF YOU COULD KIND OF GIVE LIKE A GENERAL OVERVIEW OF WHAT A ROBOTIC ARM IN SPACE DOES-- BECAUSE IT IS SIGNIFICANT. >> THE ROBOTIC ARMS DO A LOT OF THINGS. AND OFTEN, THINGS-- HONESTLY-- THAT YOU DIDN’T NECESSARILY ANTICIPATE. SO GOING ALL THE WAY BACK TO THE SPACE SHUTTLE PROGRAM, WHEN NASA WAS PLANNING OUT ITS SPACE SHUTTLE BACK IN THE ‘70s. >> YEAH. >> THEY STARTED A DIALOGUE WITH THE CANADIAN GOVERNMENT. THIS WAS ACTUALLY BEFORE THE CANADIAN SPACE AGENCY EXISTED. BACK THEN IT WAS THE NATIONAL RESEARCH COUNCIL OF CANADA. >> OH. >> AND THEY STARTED A DIALOGUE, AND BY SORT OF THE MID 1970s HAD AN AGREEMENT GOING FORWARD THAT CANADA WOULD PROVIDE WHAT WE CALLED A REMOTE MANIPULATOR SYSTEM. AND THAT’S THE ROBOTIC ARM, THAT FAMILIAR ARM THAT YOU SEE IN ALL THOSE PICTURES OF THE SPACE SHUTTLE. >> YEAH. >> AND THE FIRST CANADARM, AS WE CALLED IT IN CANADA, FLEW ON STS-2. >> ON THE SPACE SHUTTLE? >> ON THE VERY SECOND FLIGHT THAT THEY FLEW AN ARM ON THAT-- THERE WASN’T AN ARM ON EVERY SINGLE SPACE SHUTTLE FLIGHT. THAT WAS THE FIRST ONE THERE WAS, AND THEY DEPLOYED IT AND SHIPPED IT OUT AND STARTED LEARNING WHAT AN ARM COULD DO FOR YOU. THE ORIGINAL CONCEPT WAS THAT THEY MIGHT DEPLOY SATELLITES OUT OF THE PAYLOAD BAY, CATCH SATELLITES AND SERVICE THEM OR BRING THEM BACK TO EARTH. BUT WHAT WE SAY OVER THOSE FIRST YEARS OF OPERATION WITH THE SPACE SHUTTLE WAS THAT THEY WERE THINKING OF THINGS THAT THEY HADN’T ANTICIPATED. I REMEMBER ONE CASE IN PARTICULAR-- THE SPACE SHUTTLE SOMETIMES VENTED FLUIDS OUT THE SIDES-- THEY JUST VENTED STUFF OVERBOARD. AND ONE TIME, THE VENT WASN’T WORKING QUITE RIGHT AND AN ICICLE GREW OUT OF THE SIDE OF THE SPACE SHUTTLE. >> OOH. >> AND THEY WERE CONCERNED ABOUT THAT-- IT MIGHT BREAK OFF DURING REENTRY, MIGHT BE A PROBLEM. >> YEAH. >> SO THEY PLANNED THIS OPERATION NO ONE EVER IMAGINED THAT THEY WOULD KNOCK THE ICICLE OFF WITH THE ROBOTIC ARM. >> NO WAY! >> AND THAT WAS ONE OF MANY-- AND THERE WERE OTHER THINGS, TOO-- TRYING TO THROW A SWITCH ON THE OUTSIDE OF A ROTATING SATELLITE USING THE ARM. JUST THINGS YOU HADN’T THOUGHT OF, AND THAT’S THE GREAT POTENTIAL FOR FLEXIBILITY THAT THIS SORT OF ROBOTIC ARM CAN GIVE YOU. YOU HAVE A CAPABILITY TO GO LOOK AT THINGS UP CLOSE BECAUSE THERE’S A CAMERA ON THE END. >> OH, OKAY. >> YOU-- I MEAN, DURING THE COURSE OF THE SPACE STATION PROGRAM, YEARS LATER, WE STARTED CAPTURING FREEFLYING CARGO VEHICLES. THE VERY FIRST ONE WAS THE JAPANESE CARGO VEHICLE, HTV-1. I THINK THAT WAS IN 2009. >> OKAY. >> AND THAT WAS YEARS AFTER THE ARM ARRIVED ON SPACE STATION BACK IN 2001. AND ALL THIS WORK-- AND ACTUALLY, SOME EXPANSION CAPABILITY OF THE ARM TO SATISFY ALL THE SAFETY REQUIREMENTS SO WE COULD DO THAT-- YOU HAVE THIS BIG SPACECRAFT GENTLY FLY UP UNDER THE SPACE STATION AND SIT THERE, AND THE ARM WOULD REACH OUT AND SECURELY GRASP IT AND THEN ATTACH IT TO THE SPACE STATION. I MEAN, THAT’S-- AGAIN, PART OF THAT EXPANDING CAPABILITY THAT’S BEEN SO NEAT. >> YEAH. I MEAN, WHEN YOU THINK ABOUT THE HUMAN ARM, RIGHT, YOU THINK ABOUT JUST THE FACT THAT IT’S GOT THAT JOINT-- AND THEN AT THE TIP OF IT IS THE HAND. AND THE HAND IS NOT MEANT FOR JUST ONE TASK, RIGHT, THE HAND IS MEANT TO DO A BUNCH OF DIFFERENT THINGS AND KIND OF MANIPULATE. WAS THERE SOME SORT OF ENGINEERING THAT WENT INTO THE HAND OR THE ROBOTIC ARM THAT SORT OF EMULATES THAT OF A HAND TO BE AS FLEXIBLE AS POSSIBLE WITH ALL THESE TASKS HERE THAT YOU’RE TALKING ABOUT? >> WELL, JUST AS WITH A HUMAN ARM, WE CAN MAKE OURSELVES TOOLS THAT WE WOULD GO USE. >> YEAH. >> WE HAVE THE SAME CAPABILITY TO GO DO THAT WITH ROBOTICS. FOR THE CANADARM2 END EFFECTOR, WHICH IS QUITE SIMILAR TO IT-- IT’S EVOLVED FROM THAT ORIGINAL SHUTTLE ARM END EFFECTOR-- IT WAS DESIGNED IN PARTICULAR TO BE ABLE TO RELEASE A SATELLITE, TO DEPLOY IT IN SPACE, AND NOT LEAVE ANY RESIDUAL RATES ON IT. IT HAD TO BE ABLE TO LET IT GO AND NOT HAVE IT BE MOVING OR TUMBLING OR ANYTHING. IT HAD TO LET IT GO AND IT WOULD BE PERFECTLY STILL, AND THEY COULD BACK AWAY WITHOUT ANY RATES ON IT SO THAT THE MECHANISMS THAT WE HAVE WITH THE-- WE HAVE THESE STEEL CABLES WHICH WE CALL SNARE CABLES. >> YEAH. >> AND THAT WHOLE ASSEMBLY IS DESIGNED TO BE ABLE TO LET IT GO AND HAVE IT BE PERFECTLY STILL. SO THAT WAS THE BASIS OF THAT. >> OKAY. >> BUT FOR SPACE STATION, THE PROPER NAME OF OUR WHOLE SYSTEM, THE WHOLE SUITE OF ROBOTICS, IS ACTUALLY THE MOBILE SERVICING SYSTEM. WE ARE THERE-- THESE CANADIAN ROBOTS ARE HERE TO SERVICE THE SPACE STATION. WE’RE HERE TO DO MAINTENANCE. >> OH! >> SO BEYOND JUST THE CANADARM2-- WHICH IS A BIG ARM, DOES A LOT OF HEAVY LIFTING-- IT CAN MOVE REMARKABLY LARGE, MASSIVE OBJECTS-- WE ALSO BUILT A TWO-ARMED MAINTENANCE ROBOT WHICH WE CALL DEXTRE. IT’S THE SPECIAL PURPOSE DEXTROUS MANIPULATOR, BUT WE CALL IT DEXTRE. >> SURE. >> IT LOOKS-- IT’S GOT TWO ARMS. IT LOOKS A LITTLE BIT LIKE A GUY, BUT IT’S ACTUALLY REALLY BIG. BUT THESE DEXTROUS ARMS, WHICH HAVE A SMALLER AND DIFFERENT KIND OF END EFFECTOR ON THOSE SMALLER ARMS, THEY’RE ABLE TO DO MORE DEXTROUS TASKS, MORE REFINED-- WE CAN REPLACE SMALL ELECTRONIC BOXES ON THE OUTSIDE OF THE SPACE STATION. WE’VE DONE THAT A FEW TIMES NOW WITH POWER CONTROLLER MODULES THAT NEED TO BE REPLACED. >> MM-HMM. >> OTHER BOXES WHICH WERE DESIGNED FOR ROBOTIC MAINTENANCE. THE INTERFACES ON THESE BOXES MUST MATCH THE DESIGN OF THE HAND THAT THESE END EFFECTORS, WHETHER ON DEXTRE OR ON CANADARM2. BUT IF IT’S DESIGNED FOR THAT-- AND WE’VE DEMONSTRATED WE CAN DO A LOT OF REALLY COOL MAINTENANCE THAT RELIEVES THE SPACE STATION CREW FROM HAVING TO GO OUTSIDE AND DO SPACEWALKS, WHICH ARE VERY COOL, BUT THEY TAKE A LOT OF TIME. >> RIGHT. >> AND THAT ALLOWS-- FREES THEM UP TO STAY INSIDE AND DO SCIENCE AND RESEARCH, DO ALL THAT GREAT STUFF. >> ABSOLUTELY. I MEAN, THE WHOLE BENEFIT OF SENDING HUMANS OUT TO DO SPACEWALKS IS-- YOU KNOW, FIRST OF ALL, THEY CAN MAKE DECISIONS REAL TIME, AND IT’S REAL QUICK ON WHAT THEY CAN DO. BUT THEY HAVE HANDS-- THEY CAN USE TOOLS, AND THOSE TOOLS ARE MEANT TO OPERATE AND FIX THINGS ON THE OUTSIDE OF THE STATION, BUT YOU’RE SAYING THAT DEXTRE, IN A WAY, AT THE END OF THE CANADARM2 CAN ACCOMPLISH A LOT OF THOSE TASKS AND THEN DO SOME OF THE SERVICE WORK THAT THE ASTRONAUTS WOULD OTHERWISE HAVE TO DO. >> RIGHT. I MEAN, DEXTRE IN ONE SENSE IS A TOOL. >> HMM. >> THE ROBOTS THEMSELVES, THEY ARE NOT THINKING FOR THEMSELVES. WE CAN’T-- WE’RE NOT YET AT THE POINT WHERE WE CAN TELL IT, “GO CHANGE OUT THAT BOX,” AND IT GOES AND DOES IT ON ITS OWN. >> AS COOL AS THAT WOULD BE. >> AS COOL AS THAT WILL BE, AND THERE WILL COME A TIME WHEN THAT WILL BE. HOWEVER, WE ARE NOT THERE YET. >> OKAY. >> WHEN WE STARTED OUT, WHEN WE FIRST LAUNCHED THE ARM, JUST LIKE THE SHUTTLE ARM, ON SPACE STATION, WE HAD A SYSTEM THAT HAD TO BE OPERATED BY THE CREW ON ORBIT. AND THERE IS WHAT WE CALL THE ROBOTICS WORKSTATION-- ONE IN THE LAB MODULE, ONE IN THE CUPOLA WHERE ALL THE WINDOWS ARE. >> MM-HMM. >> AND THE ASTRONAUTS CAN BE THERE, AND THEY CAN OPERATE THE ARM. AND THEY HAVE HAND CONTROLLERS, AND THEY THROW THE SWITCHES, AND THEY HAVE MONITORS THAT SHOW THE CAMERA VIEWS FROM CAMERAS ON THE ARM, CAMERAS ELSEWHERE ON THE STATION. AND WHAT WE REALIZED ACTUALLY AFTER THE ARM WAS FLOWN WAS THAT AS MUCH WORK AS WE DO ON SPACE STATION, WE COULD DO THIS FROM THE GROUND-- WE COULD REMOTELY OPERATE THESE ROBOTS SAFELY FROM THE GROUND. AND DURING THE COURSE OF SPACE STATION ASSEMBLY-- AND THAT WAS ONE OF THE GREAT ACCOMPLISHMENTS, ESPECIALLY MOSTLY FOR CANADARM2, WAS ASSEMBLY OF THE SPACE STATION. THERE WERE VERY FEW PIECES OF-- BIG PIECES ON THE U.S. SEGMENT OF THE SPACE STATION, WHETHER MODULES OR BIG PIECES OF TRUSS, THAT WEREN’T HANDLED BY CANADARM2. >> WOW. >> YEAH, I MEAN, WHETHER-- I MEAN, OFTEN THE SHUTTLE ARM HAD TO TAKE THESE THINGS OUT OF THE PAYLOAD BAY OF THE SHUTTLE WHEN IT CAME UP, HAND IT OFF TO CANADARM2, AND THEY WOULD THEN BE INSTALLED. AND THE STATION WAS BUILT UP IN THAT WAY. SO CANADARM2 IN A VERY REAL SENSE ASSEMBLED THE SPACE STATION. >> ABSOLUTELY. >> BUT ONCE WE GOT PAST THAT, WE REALIZED WE CAN DO A LOT OF THIS WORK BY REMOTELY OPERATING THIS SYSTEM FROM THE GROUND, ESPECIALLY WHEN WE OPERATE DEXTRE. IF WE’RE GOING TO GO DO MAINTENANCE-- ONE OF THOSE POWER CONTROL MODULE REPLACEMENTS-- DOING IT ROBOTICALLY CAN TAKE ACTUALLY QUITE A LONG TIME. ALL THE END TO END WORK, GETTING THE SPARE, GETTING TO THE WORKSITE. >> YEAH. >> PULLING THE OLD ONE OUT, PUTTING THE NEW ONE IN-- THAT CAN ACTUALLY TAKE A COUPLE DAYS EVEN, IN A LONG, COMPLEX CASE. AND THE ASTRONAUTS ONBOARD ARE TOO BUSY FOR THAT. >> YEAH. >> SO WE FIGURED-- WE WENT THROUGH THIS LONG PROCESS, A LOT OF IT DEALING WITH THE SAFETY PROCESSES, MAKING SURE WE HAD WHAT WE CALL ENOUGH FAULT TOLERANCE THAT NO ONE FAILURE COULD REALLY LEAVE US IN TROUBLE DURING THE COURSE OF THIS-- AND ESTABLISHED WHAT WE CALLED GROUND CONTROL. AND IN FACT, TODAY, MOST OF THE ROBOTICS WORK THAT GOES ON ON SPACE STATION IS DONE CONTROLLING OUR ROBOTS FROM THE GROUND-- WHETHER HERE AT MISSION CONTROL IN HOUSTON, OR WE HAVE A SUPPORT CONTROL CENTER IN MONTREAL IN CANADA THAT CONNECTS HERE TO MISSION CONTROL, AND THAT ONE UNIFIED CANADIAN/AMERICAN TEAM OPERATES THE ARM FROM THE GROUND. >> WOW. >> AND THAT’S A TREMENDOUS TIME SAVING FOR THE ASTRONAUT CREW, BUT ALSO AN AMAZING ENHANCEMENT FOR THE WHOLE PROGRAM, BECAUSE IT ALLOWS US TO JUST DO SO MUCH MORE THAN WE OTHERWISE WOULD. >> SO WHEN IT FIRST-- YOU MENTIONED WHEN IT FIRST LAUNCHED, THE CANADARM2 TO THE INTERNATIONAL SPACE STATION, IT WAS WORKING HAND IN HAND WITH SHUTTLE ARMS, RIGHT? YOU WERE TALKING ABOUT A HAND-OFF. THAT WAS ALL OPERATED BY ASTRONAUTS, BOTH THE SHUTTLE ARM AND THE CANADARM2 FROM THE SPACE STATION? >> ABSOLUTELY, AND AT THAT TIME, WE HAD TWO FLIGHT CONTROL TEAMS, BECAUSE WE HAD THE SPACE SHUTTLE ROBOTIC ARM FLIGHT CONTROLLERS-- AND ALTHOUGH IT’S ALSO A BIG WHITE ARM THAT SAYS CANADA ON THE SIDE, IT’S ACTUALLY QUITE A DIFFERENT SYSTEM UNDER THE SKIN, SO WE HAD THOSE GUYS, THOSE FLIGHT CONTROLLERS WHO BUILT THOSE PROCEDURES, WORK WITH THE SHUTTLE ASTRONAUTS TO MAKE SURE THAT THAT PROCEDURE WOULD GO JUST RIGHT. AND THEN ON THE SPACE STATION SIDE, WE BUILT THE PROCEDURES FOR OUR SYSTEM, WORKED WITH THAT CREW AND ORCHESTRATED WHAT WERE SOMETIMES FAIRLY COMPLEX HAND-OFF OPERATIONS. >> HUH. YEAH, I MEAN, YOU’RE TALKING ABOUT IN SPACE, TRAVELLING AROUND THE EARTH AT 17,500 MILES AN HOUR, TWO SHIPS PRETTY MUCH TRAVELLING THAT FAST TOGETHER AND HANDING OFF STUFF TO EACH OTHER. >> IT’S-- THE COMPLEXITY OF-- ESPECIALLY DURING THOSE SPACE SHUTTLE MISSIONS, THE WHOLE DAY WAS TIMELINED SO TIGHTLY THAT EVERYTHING HAD TO GO JUST RIGHT. AND WE’VE GOT, IN THOSE CASES-- AND THIS IS WHAT I USED TO DO. WHEN I FIRST CAME TO HOUSTON, I WAS WORKING ON THE SPACE STATION ROBOTICS FLIGHT CONTROL SIDE. I WAS WHAT THEY CALLED A ROBO. THAT WAS THE NAME OF OUR-- THE FLIGHT CONTROL DISCIPLINE. >> AND YOU WERE IN CHARGE OF THE CANADARM2? >> RIGHT. >> OKAY. >> AND WE HAD TO MAKE SURE THAT THESE TWO BIG ROBOTIC ARMS-- WELL, FIRST AND FOREMOST, NEVER BUMPED INTO ANYTHING, INCLUDING EACH OTHER. SO YOU KNOW, MONITORING THE VOLUMES THAT THEY’RE WORKING IN, MAYBE MAKING SURE THAT WHILE ONE OF THEM’S MOVING THE OTHER ONE’S NOT-- ALL OF THE STEPS THAT YOU WOULD LOGICALLY TAKE JUST TO MAKE SURE THAT YOU KNOW EXACTLY WHERE ALL THE MOVING PIECES ARE. >> YEAH. >> AND A HAND-OFF, SOMETHING THAT YOU AND I WOULD DO TRIVIALLY SITTING HERE HANDING A PEN FROM ONE ARM TO THE OTHER. >> MM-HMM. >> AGAIN, EVERYTHING’S MORE COMPLICATED WHEN YOU’RE DOING IT WITH SPACE ROBOTS. >> YOU’RE DOING IT FROM FAR AWAY, IN SPACE, SEVERAL ROBOTS, SEVERAL TEAMS. >> RIGHT, AND ALSO, THE-- WE DON’T EVEN THINK ABOUT THE SOPHISTICATION THAT WE HAVE WITH OUR OWN ARMS. WE CAN EXACTLY WHEN SOMEBODY’S PULLING TOO HARD AND LET GO REFLEXIVELY. THE ROBOTIC ARMS AREN’T INSTRUMENTED QUITE THAT WELL, SO A LOT OF THE WORK THAT WE DO IS TO ANALYZE TO MAKE SURE THAT THE LOADS ARE NOT GOING TO BE SO LARGE THAT THE ARM GETS DAMAGED, OR THE OPERATING BASE THAT IT’S WORKING FROM GETS DAMAGED, OR THE PAYLOAD THAT WE’RE HANDING OFF GETS DAMAGED. AGAIN, THE COMPLEXITY OF THAT BIG PICTURE IS REALLY REMARKABLE. >> SO I MEAN, IN SPACE, THOUGH-- YOU THINK ABOUT IT-- I MEAN, THERE’S-- YOU DON’T REALLY HAVE TO WORRY ABOUT GRAVITY. SO WHEN YOU’RE HANDLING THESE OBJECTS, WHAT ARE YOU THINKING ABOUT WHEN HANDLING LARGE PAYLOADS? >> WELL, AND THAT’S RIGHT, BECAUSE NOTHING-- THERE’S NOT REALLY WEIGHT. >> MM-HMM. >> BUT THERE IS STILL MASS. >> ABSOLUTELY. >> AND WITH MASS COMES INERTIA AND MOMENTUM. >> YES. >> AND ANYTHING THAT YOU GET MOVING YOU’RE EVENTUALLY GOING TO HAVE TO SLOW DOWN. AND WE HAVE SEEN THAT MANEUVERING MODULES AROUND. YOU KNOW, PEOPLE OFTEN JOKE THAT THESE ROBOTS, GOSH, THEY MOVE SO SLOWLY. >> RIGHT. >> AND THAT’S NOT TO SAY THAT THEY COULDN’T MOVE FASTER, BUT IF THEY DID, THERE WOULD BE CONSEQUENCES. WE HAVE SEEN-- YOU GET MODULES MOVING REALLY QUICKLY AND THEN ALL OF THAT MOMENTUM HAS TO BE TAKEN OUT AT THE OTHER END OF THE MOTION. >> YOU’VE GOT TO STOP, YEAH. >> OTHERWISE THE STATION’S ORIENTATION WOULD HAVE TO ADJUST TO THAT. >> OH, ABSOLUTELY. I MEAN, EVEN THE STATION’S ORIENTATION CHANGES WHEN ASTRONAUTS ARE WORKING OUT. AND THEY BUILT SYSTEMS TO MITIGATE THAT. SO IF YOU’RE TALKING ABOUT A REALLY LARGE OBJECT, I MEAN, YOU DON’T DO IT RIGHT AND YOU CAN FLING-- YOU CAN-- YOU KNOW-- >> YOU CAN FLIP THE STATION OVER. >> YEAH. >> BECAUSE THESE MODULES OFTEN WEIGH TENS OF THOUSANDS OF POUNDS. >> WOW. >> AND AGAIN, WE MANEUVER THOSE WITH GREAT CARE TO MAKE SURE THAT WE’RE MANAGING THAT MOMENTUM IN AN INTELLIGENT WAY SO THAT, YOU KNOW, AGAIN, THE MOMENTUM DOESN’T GET THE BEST OF US. >> SO BY MANAGING MOMENTUM, THAT’S WHERE MOVING THINGS SLOWLY FROM POINT A TO POINT B COMES INTO PLACE. >> THAT’S RIGHT. >> ABSOLUTELY. AND I’M GUESSING THERE’S SOME SORT OF SPECIAL TECHNIQUE, TOO, IN ORDER TO DO THAT, RIGHT? BECAUSE YOU’VE SAID, YOU KNOW, YOU HAVE TO START A MOTION, BUT THEN ALSO STOP. IS THERE LIKE A SLOW ACCELERATION AND THEN A SLOW DECELERATION? IS THERE A FANCY TECHNIQUE YOU GUYS USE? >> I’M NOT SURE HOW FANCY A TECHNIQUE IT IS. >> OKAY. >> YOU MAKE SURE YOU’RE NOT GETTING IT GOING TOO FAST. YOU WANT TO-- THE ARM IS DESIGNED TO MOVE THINGS IN STRAIGHT LINES. IF THAT IS OUR DESIRE-- CERTAINLY IF WE ARE BERTHING A MODULE INTO THAT BERTHING INTERFACE ON THE SPACE STATION, IT NEEDS TO GO IN RIGHT ALONG AT A PERFECT, ALIGNED AXIS FOR THE MECHANISM TO LINE UP PROPERLY. AND WE CAN DO THAT, AND AGAIN, THAT GENERALLY NEEDS TO HAPPEN PRETTY SLOWLY, BECAUSE IF YOU PUSH TOO HARD, AGAIN, IF YOU’RE PUSHING THAT DRAWER INTO YOUR CHEST OF DRAWERS AT HOME, IF YOU PUSH IT TOO HARD, IT’S GOING TO BANG AT THE BACK. OR IF YOU’RE PULLING IT OUT, AND IT STICKS, AND YOU PULL HARDER AND HARDER AND HARDER, ALL OF A SUDDEN WHEN IT LETS GO-- WE’VE ALL FELT THAT-- ALL OF A SUDDEN IT JERKS OUT AT US. >> YEAH. >> AND WE WANT TO AVOID THAT SORT OF MOMENTUM RELEASE ON THE SPACE STATION. >> ABSOLUTELY. I MEAN, IT SEEMS PRETTY INTUITIVE TO US, RIGHT-- YOU KNOW, IF YOU FEEL SOMETHING PULLING TOO HARD, THEN PULL A BIT HARDER OR SOMETHING, MAKE IT COME OUT, DO WHAT YOU HAVE TO DO. AND YOU CAN MAKE THOSE DECISIONS REAL TIME, BUT IF YOU’RE DESIGNING A SYSTEM TO DO THAT, YOU’VE GOT TO THINK ABOUT ALL THESE MINUTE LITTLE THINGS. I KNOW-- I MEAN, ESPECIALLY BECAUSE I DO COMMENTARY SOMETIMES IN MISSION CONTROL, AND WE’LL DO THAT FOR CAPTURING CARGO. SO WE’LL CAPTURE A SPACEX DRAGON OR AN ORBITAL ATK CYGNUS VEHICLE. AND YOU KNOW, IT’LL HAVE THIS MOTION WHERE IT CAPTURES, AND WE’LL ACTUALLY GO OFF-AIR FOR A LITTLE BIT ONCE IT’S CAPTURED. WE’LL SAY THE CAPTURED TIME, AND THEN WE GO OFF-AIR FOR ABOUT AN HOUR, MAYBE AN HOUR AND SOME CHANGE, AND THEN WE’LL COME BACK ON WHEN IT’S IN BERTHING POSITION. BECAUSE IT’S THIS BIG PROCEDURE, YOU KNOW, WHERE IT HAS TO TURN, AND WE ALREADY KNOW WHAT’S GOING TO HAPPEN, SO THERE’S LITTLE COMMENTARY WE CAN ADD BETWEEN THAT. BUT YOU KNOW, YOU HAVE THAT PROCEDURE IN ORDER TO BERTH IT. >> RIGHT, AND THAT CARGO VEHICLE, WHICH WEIGHS PROBABLY TENS OF THOUSANDS OF POUNDS, IS GOING TO BE FLIPPED AROUND, MANEUVERED AROUND REALLY SLOWLY SO THE SPACE STATION’S MOMENTUM MANAGEMENT SYSTEM CAN SORT OF KEEP UP WITH ALL OF THAT AND ALLOW THE SPACE STATION TO MAINTAIN THE PROPER ORIENTATION, KEEP THE SOLAR ARRAYS POINTED AT THE SUN, KEEP THE ANTENNAS POINTED AT THE SATELLITES. >> WOW-- JUST A LOT OF THINGS YOU HAVE TO THINK OF. BUT YOU KNOW, KIND OF GOING BACK TO THE HISTORY, YOU BRIEFLY MENTIONED THAT, I MEAN, THERE WAS A CONVERSATION THAT STARTED WITH NASA AND-- I’M SORRY, IT WAS NOT CSA AT THE TIME, IT WAS-- >> CSA WAS ESTABLISHED BY AN ACT OF PARLIAMENT IN 1989. >> OH, OKAY. >> AND BEFORE THAT, CSA-- CANADIAN SPACE AGENCY-- DIDN’T EXIST. IT WAS THE NATIONAL RESEARCH COUNCIL. >> OKAY. >> AND THAT WAS SORT OF THE ORIGINAL SCIENCE ORGANIZATION WITHIN THE CANADIAN GOVERNMENT THAT ESTABLISHED THAT RELATIONSHIP WITH NASA, WORKED WITH CANADIAN INDUSTRY TO DESIGN AND BUILD WHAT WE CALL THE CANADARM, THE REMOTE MANIPULATOR SYSTEM. >> YEAH. >> AND THEN PROVIDE THAT TO BE PART OF THE SPACE SHUTTLE PROGRAM. >> OKAY. SO WHAT WAS THE-- WHY DID NASA GO AND HAVE THIS RELATIONSHIP WITH THE NATIONAL RESOURCE COUNCIL? SO WHAT WAS IT-- DID YOU ALREADY-- WERE YOU ALREADY INVENTING ROBOTIC ARMS? >> I THINK AT THAT TIME, THE ROBOTIC ARM WAS A RELATIVELY NEW CONCEPT. >> OKAY. >> THERE WERE ENGINEERS WHO REALIZED THAT THIS WAS SOMETHING THAT THEY COULD DO. THE INDUSTRIAL GROUP THAT WAS PART OF THAT, WHICH INCLUDED WHAT WAS THEN SPAR AEROSPACE, WHO WERE THE PRIME CONTRACTOR FOR THE ROBOTIC ARM, THEY ALREADY HAD A HISTORY WITH ANTENNAE AND SPACE MECHANISMS THAT WENT ON SATELLITES. AND I THINK THIS WAS A NATURAL EXPANSION OF SOMETHING THAT THEY COULD DO. AND IT WAS KIND OF A REVOLUTIONARY DESIGN. IT WAS CERTAINLY NOT SOMETHING THAT HAD BEEN DONE IN SPACE BEFORE. >> ABSOLUTELY. >> AND ONCE THAT CAPABILITY ARRIVES AND YOU START USING IT-- JUST AS WHEN YOU GET A NEW TOOL AT HOME-- IT’S COOL, AND YOU PLAY WITH IT. AND ONCE YOU START PLAYING WITH IT, THEN YOU REALLY START TO SAY, “HEY, I COULD USE IT FOR THIS. I COULD USE IT FOR THIS.” AND AS I WAS SAYING BEFORE, WHEN LITTLE CONTINGENCIES COME UP, YOU GO, “OKAY, WELL, LET’S GO TAKE A LOOK AT IT WITH THE ARM.” SO YOU CAN GET THE ARM IN A NEW POSITION IT’S NEVER BEEN IN AND POINT A CAMERA TO TAKE A LOOK AT SOMETHING. >> RIGHT. >> GO KNOCK THAT ICICLE OFF-- WHATEVER THE NEW CAPABILITIES ARE. AND THAT’S WHAT ROBOTS BRING, IS THIS ABILITY TO CONTROL YOUR ENVIRONMENT AND EXPAND YOUR CAPABILITY. >> SO WHENEVER-- YOU SAID THE FIRST CANADARM FLEW ON STS-2, RIGHT? AND THAT WAS RELATIVELY QUICKLY-- IT WAS ALREADY ON SHUTTLE FLIGHTS. SO WHAT DID YOU START LEARNING THROUGH THAT PROCESS OF-- I GUESS YOU WENT ON MORE SHUTTLE FLIGHTS AFTER THAT, RIGHT? THE CANADARM 1? >> RIGHT, THE ORIGINAL CANADARM. I DON’T KNOW THE PROPORTION OF HOW MANY FLIGHTS IT WAS ON, HOW MANY IT WASN’T. MOST TIMES THAT THEY NEEDED TO DEPLOY A SATELLITE-- SOMETIMES THE SATELLITES WOULD-- THERE WOULD BE A MECHANISM THAT WOULD JUST SORT OF POP IT OUT OF THE PAYLOAD BAY. >> YEAH. >> BUT OFTEN, IF THERE WAS A SATELLITE CAPTURE THAT NEEDED TO GO ON, YOU NEEDED THE ARM TO HAVE THE SHUTTLE FLY UP-- THE ARM WOULD THEN REACH OUT, GRAB THE SATELLITE, AND THEN MAYBE BERTH IT INTO SOMETHING IN THE PAYLOAD BAY. IF THERE WERE SPACEWALKS, YOU COULD PUT AN ASTRONAUT IN A FOOT RESTRAINT STANDING ON THE END OF THE ARM, AND HAVE THE ARM MANEUVER THAT ASTRONAUT AROUND. >> OKAY. >> BECAUSE AGAIN, IN SPACE, YOU’RE NOT STANDING ON ANYTHING. YOU’RE NOT MOVING IN THE CONVENTIONAL SENSE THAT WE ARE USED TO, WORKING ON A WORKSITE HERE IN 1 G. >> RIGHT. >> SO IT WAS JUST A SERIES OF MORE AND MORE EXPANSIVE CAPABILITIES. AND THERE ARE ACTUALLY SOME REALLY NEAT PHOTOGRAPHS FROM THOSE EARLY SHUTTLE MISSIONS. THEY WERE EXPERIMENTING WITH BUILDING TRUSSES. THIS WAS BEFORE SPACE STATION, AND THEY WERE IMAGINING HOW SPACE STATION MIGHT BE BUILT. AND SOME OF THOSE EARLY CONCEPTS WERE SORT OF STICKS AND BALLS, AND THEY WOULD MAKE THESE BIG TRUSSES AND MANEUVER THEM AROUND. >> THAT’S AMAZING. SO WHEN YOU’RE LEARNING ALONG THIS WAY, YOU HAVE A NEED-- FOR EXAMPLE, WHERE IT SAYS, “HEY, WE NEED A-- WE HAVE SOMETHING COMING UP WHERE WE’RE GOING TO HAVE TO PROBABLY PUT AN ASTRONAUT AT THE END OF THIS ARM.” SO DO YOU DEVELOP TOOLS THAT THEY CAN INTERACT WITH IN ORDER TO MAKE THAT HAPPEN SO THEY CAN PUT THEIR FEET IN THERE? >> RIGHT, THE ARM WOULD HAVE NEEDED TO BE FITTED WITH SOME SORT OF SOCKET OR FIXTURE. SO WHAT THEY CALL A FOOT RESTRAINT COULD BE REALLY SECURELY ATTACHED, BECAUSE YOU KNOW, THE LAST THING YOU WANT IS YOU PUT IT ON BUT THEN WHEN YOU’RE STANDING ON IT, IT FLOATS OFF. >> YEAH. >> SO IT’S ALL ABOUT CREW SAFETY, AND THE CREW HAS GOT TO BE SAFELY ATTACHED AND THEN SAFELY TETHERED IN A REDUNDANT WAY SO THEY DON’T FLOAT AWAY. BUT YEAH, EVERY TIME WE HAVE A NEW CAPABILITY LIKE THAT, OFTEN WE HAVE TO LOOK AT THE HARDWARE AND GO, “OKAY, WHAT DO WE NEED TO DO AND ADJUST OR ADD?” BUT A THING TO REMEMBER THERE-- ON THE SPACE SHUTTLE PROGRAM, THE SPACE SHUTTLE CAME HOME AFTER ITS MISSION, WHETHER IT WAS ONE WEEK, OR TWO WEEKS, OR WHATEVER IT WAS. >> RIGHT. >> AND THE GUYS AT SPAR WOULD GET THAT ARM BACK, AND THEY WOULD GET TO LOVINGLY DOTE OVER IT AND SEE HOW IT WAS DOING. >> YEAH. >> AND THEN PREPARE ANOTHER ARM. AND THERE WERE A FEW ARMS THAT I THINK GOT ROTATED BETWEEN THE SPACE SHUTTLES. THEY COULD BE TAKEN OFF AND PUT BACK ON. >> RIGHT, THERE WERE MULTIPLE SHUTTLES AND MULTIPLE MISSIONS. >> RIGHT. >> YEAH. >> SO THAT SORT OF ADJUSTMENT COULD BE MADE RELATIVELY EASY. THE DIFFERENCE BETWEEN THAT AND WHAT WE HAVE NOW ON SPACE STATION IS THAT CANADARM2 WAS LAUNCHED IN APRIL 2001 ON A SPACE SHUTTLE MISSION. IT WAS ATTACHED TO THE SPACE STATION AND HAS BEEN THERE EVER SINCE. >> STILL WORKING. >> STILL WORKING, YES. STILL WORKING MORE THAN 16 YEARS LATER. >> WOW. >> AND THAT’S JUST A WONDERFUL THING, AND WHAT WE’VE REALLY SEEN IS THAT ESPECIALLY IN RECENT YEARS, THE PACE OF THE ROBOTICS WORK HAS JUST BEEN INCREASING. I TALKED ABOUT THE FREEFLYING CARGO VEHICLES. THE VERY FIRST ONE-- AND WHAT A MILESTONE THAT WAS-- IN 2009 WITH THE FIRST JAPANESE CARGO VEHICLE. AND THEN THE U.S. COMMERCIAL VEHICLES STARTED FLYING-- THE SPACEX DRAGON AND THE ORBITAL ATK CYGNUS VEHICLES. AND THEY DID THEIR DEMO FLIGHTS, THEN THEY WOULD START-- AND THE PACE HAS BEEN INCREASING. SO NOW WE DO ONE OF-- WE ARE CAPTURING A FREEFLYING CARGO VEHICLE EVERY MONTH OR TWO. >> THAT’S RIGHT-- WE HAVE TWO COMING UP IN NOVEMBER. >> RIGHT. THIS YEAR, THIS CALENDAR YEAR, 2017, ALL GOING WELL, WE WILL HAVE DONE SIX FREEFLYING CARGO VEHICLES. LAST YEAR I THINK IT WAS FIVE. >> WOW. >> THE PACE IS ALWAYS INCREASING. AND THE SPACE STATION PROGRAM IS REALIZING, TOO, THAT OUR ABILITY TO DO MAINTENANCE ON THE OUTSIDE OF THE ISS IS A REALLY IMPORTANT, VALUABLE THING. >> ABSOLUTELY. >> AND NOW THAT WE’VE DEMONSTRATED THAT WE’RE ABLE TO DO IT-- AND JUST AS WITH US AS HUMANS, THE FIRST TIME YOU DO SOMETHING, YOU ALWAYS THINK ABOUT IT A LOT MORE, IT ALWAYS SEEMS A LITTLE BIT HARDER. BUT ONCE YOU’VE DONE SOMETHING A COUPLE OF TIMES, YOU KIND OF GET THE HANG OF IT. >> YEAH. >> AND NOW WE’VE DONE A FEW MAINTENANCE TASKS WITH THOSE POWER CONTROLLER MODULES. WE RELATIVELY RECENTLY DID WHAT’S CALLED A MAIN BUS SWITCHING UNIT, WHICH IS PART OF THE SPACE STATION POWER SYSTEM. >> MM-HMM. >> AND THE DEMAND IS INCREASING. HEY-- WE’VE DONE THIS BEFORE. CAN WE SLIP THIS TASK IN BETWEEN THIS FREEFLYING VEHICLE AND THIS FREEFLYING VEHICLE? SO THE EFFORT-- THE AMOUNT OF WORK THAT THE ROBOTS ARE CONTINUALLY DOING JUST SEEMS TO BE INCREASING, AND THAT’S THE REALLY EXCITING PART IS BECAUSE THE SYSTEM WAS BUILT TO BE USED. IT’S WORKING FABULOUSLY WELL. >> YEAH. >> AND THE MORE WE USE IT THE MORE THE APPETITE OF THE PROGRAM TO USE IT MORE-- BECAUSE WE CAN ACCOMPLISH MORE-- THAT APPETITE’S INCREASING AND THAT’S JUST GREAT. >> SO USES-WISE IT’S GOING UP. AND YOU SAID THERE’S A LOT OF STUFF THAT IT’S DOING, ESPECIALLY YOU WERE TALKING A LOT ABOUT CAPTURING CARGO VEHICLES. SO WHEN-- EVEN COMMERCIAL COMPANIES ARE DESIGNING THEIR CARGO VEHICLE-- THEY SAY, “WELL, HOW-- WHAT’S GOING TO HAPPEN ONCE IT GETS TO THE INTERNATIONAL SPACE STATION?” AND THEY THINK, “WELL, THERE’S A ROBOTIC ARM. THE ROBOTIC ARM CAN CAPTURE IT AND THEY CAN DO THAT.” SO, I MEAN, YOU’VE GOT A LOT OF MISSIONS AND A LOT MORE TASKS COMING UP. AND YOU SORT OF HINTED AT IT, BUT WHAT IS IT DOING IN BETWEEN THESE CARGO MISSIONS? IT’S CAPTURING CARGO WHEN IT COMES TO THE STATION, BUT WHAT ELSE IS IT DOING? YOU MENTIONED THAT MPSU WAS ONE OF THEM-- THE POWER UNIT. >> RIGHT. WELL, THERE IS STATION MAINTENANCE AND ACTIVITIES. >> MM-HMM. >> BUT OFTEN, ESPECIALLY IN THE CASE OF THE SPACEX DRAGON VEHICLE, IT HAS IN BEHIND THE PRESSURIZED MODULE THERE IS WHAT WE CALL THE TRUNK, AND THAT’S A CYLINDRICAL SPACE THAT’S OPEN AT THE BACK AND THEY HAVE BEEN FLYING EXTERNAL CARGO IN THE TRUNK. AND THAT CARGO CAN ONLY BE EXTRACTED USING OUR ROBOTS. >> OH, YES. >> SO WE WILL-- FOR EXAMPLE, COMING RIGHT UP AT THE END OF THIS YEAR, SPACEX 13 IS GOING TO HAVE THREE ITEMS IN THE TRUNK THAT ARE GOING TO NEED TO BE DEPLOYED. SO AFTER THE BIG ARM CAPTURES THE DRAGON, BERTHS IT TO THE SPACE STATION, THEN WE’RE GOING TO GO HAVE THE BIG ARM PICK UP DEXTRE AND THEN WITH DEXTRE REACH INTO THE TRUNK AND TAKE THOSE THREE ITEMS OUT AND DO WITH THEM WHATEVER THEY ARE. MORE AND MORE LATELY, WE HAVE BEEN HANDLING SCIENCE PAYLOADS FOR EXTERNAL. IT’S NOT ACTUALLY MAINTENANCE. IT’S PART OF SPACE STATION SCIENCE THAT WE’RE ABLE TO SUPPORT WITH THE CANADIAN ROBOT. AND THOSE PIECES OF SCIENCE HARDWARE WERE MADE TO BE ATTACHED TO THE STATION TRUSS OR ONE OF THE MODULES SOMEPLACE. SOMETIMES WE TAKE OLD EXPERIMENTS OR OLD HARDWARE THAT’S NO LONGER NEEDED, THERE’S NOT ROOM FOR IT ANYMORE ON THE SPACE STATION, WE NEED THE ATTACHMENT POINT SO WE’LL PUT IT BACK IN THE TRUNK FOR IT TO BE DEORBITED. >> OH. >> AND THE STUFF IN THE TRUNK DOESN’T RETURN TO EARTH IN THE CONVENTIONAL SENSE. IT BURNS UP IN THE ATMOSPHERE. >> RIGHT. >> BUT IT NEEDS TO BE OFF THE STATION. SOMETIMES YOU NEED TO TAKE OUT THE TRASH, OTHERWISE THERE’S NO ROOM IN YOUR HOUSE ANYMORE. YEAH. I MEAN, THAT-- I WAS THINKING ABOUT THAT AS AN ANALOGY WHILE YOU WERE DESCRIBING THAT. IT’S KIND OF LIKE YOU HAVE A SHIPMENT TO-- THAT’S DELIVERED TO YOUR HOUSE AND THEN YOU HAVE A ROBOT UNPACK IT FOR YOU AND PUT IT WHERE IT NEEDS TO BE. I THINK WE SHOULD PUT SOME OF THESE ROBOTIC ARMS IN OUR HOMES. >> THERE YOU GO. >> BECAUSE I REALLY DON’T WANT TO UNPACK MY GROCERIES ANYMORE. >> WELL, THERE YOU GO. >> I COULD JUST HAVE A CANADARM TO DO IT. >> AND OFTEN, AFTER YOU TAKE-- AFTER YOU TAKE THAT DELIVERY AT HOME THERE’S ALL THESE BOXES THAT YOU THEN GOT TO GET RID OF. >> YEAH. RIGHT. OH, YEAH, SO THEN IT CAN PACK OUT ALL MY GROCERIES, PUT IT IN THE FRIDGE, AND THEN THROW AWAY ALL THE BOXES THAT IT CAME IN. THERE YOU GO. >> THERE YOU GO. >> YEAH, YOU HAVE A LOT MORE CAPABILITIES TOO, BECAUSE YOU MENTIONED THE DEXTRE TOO. SO THE LATCHING END EFFECTOR CAN GRAB X, Y, AND Z, RIGHT? BUT, MAYBE IT CAN’T GRAB MLB, BUT IF YOU ATTACHED THE DEXTRE TO IT, DEXTRE CAN GRAB MLB, RIGHT? SO IT THAT KIND OF HOW IT WORKS? IT HAS DIFFERENT THINGS THAT IT CAN GRAB, DIFFERENT FINGERS? >> RIGHT, AND WITH DEXTRE, WE HAVE A MUCH MORE REFINED PRECISE CAPABILITY. >> MM-HMM. >> AND GIVEN ITS SIZE, IT’S LIKE OVER-- TRYING TO REMEMBER IN MY HEAD. IT’S OVER 17 METERS LONG, THE BIG ARM. >> WOW. >> IT STILL CAN PRECISELY POSITION ITS TIP TO WITHIN A COUPLE OF CENTIMETERS. >> HMM. >> BUT WITH DEXTRE, THOSE SMALLER ARM’S DESIGNED WITH MUCH MORE REFINED END EFFECTORS. THE PRECISION THAT IS POSSIBLE IS ACTUALLY KIND OF MILLIMETER LEVEL. >> WOW. >> AND WE SEE THAT LOOKING THROUGH-- WE HAVE A BORESIGHT CAMERA IN THOSE DEXTROUS ARM END EFFECTORS AND WE CAN SEE OURSELVES MANEUVERING DOWN ONTO THE GRASP FIXTURES. AND IT’S A VERY PRECISE CAPABILITY. SO IF WE NEED TO REMOVE SOME POWER CONTROLLER MODULE, THE POSITIONING REQUIREMENTS ARE FAIRLY TIGHT. >> YEAH. >> AND WITH DEXTRE WE HAVE THAT CAPABILITY AND IT’S PRETTY REMARKABLE TO SEE WHAT’S POSSIBLE. >> THERE YOU GO. DEXTRE CAN GET EXACTLY TO WHERE YOU NEED TO BE BY A MATTER OF MILLIMETERS. >> RIGHT. RIGHT. AND ALSO, WITH THAT FORCE IN MOMENT SENSING CAPABILITY THAT I DESCRIBED THAT WE HAVE WITH CANADARM2, WE ALSO HAVE IT IN DEXTRE’S DEXTROUS ARMS. >> OKAY. >> SO AGAIN, WHEN YOU’RE INSERTING A BOX INTO A SLOT, YOU REALLY VALUE THAT ABILITY TO DETECT THOSE SIDE FORCES. >> YEAH. >> AND MAKE SURE YOU’RE NOT GETTING IT BOUND UP. >> WOW. AND ALL OF THIS IS BEING OPERATED FROM THE GROUND, RIGHT? >> CONTROLLED FROM THE GROUND. >> SO WHO’S-- I GUESS, IS IT-- I ACTUALLY FORGOT TO ASK YOU THIS QUESTION NOW THAT I’M THINKING ABOUT IT. BUT, YOU SAID YOU WERE A FLIGHT CONTROLLER FOR A WHILE, YOU WERE ROBO. WHO WERE YOU TALKING TO TO PULL OFF SOME OF THESE MANEUVERS? BECAUSE YOU SAID IT’S A BIG COORDINATION ACT OBVIOUSLY ON YOUR END. THERE’S A DECENT AMOUNT OF COMMUNICATION THAT NEEDS TO GO BY TO MAKE THAT HAPPEN. >> WELL, AT THE VERY BEGINNING, AND I WAS A ROBO IN THOSE VERY FIRST YEARS STARTING IN 2001. >> MM-HMM. >> AT THAT POINT, WE WERE NOT YET ACTUALLY DOING GROUND CONTROLLED MOTION. THAT DIDN’T START UNTIL YEARS LATER, UNTIL AFTER I ACTUALLY HAD MOVED OUT OF THAT JOB. >> OH. OH, OKAY. >> WE WERE STILL COMMANDING OUR SYSTEM, SO WE WOULD POWER UP THE-- WE WOULD POWER THE SYSTEM UP BECAUSE THERE’S NO MOTION INVOLVED. BUT WHEN YOU POWER UP YOUR COMPUTER YOU PUSH THE BUTTON THAT STARTS THE POWER, YOU MIGHT DO THE LOG-IN, YOU MIGHT LOAD SOFTWARE IN A PARTICULAR WAY. >> MM-HMM. NONE OF THAT ACTUALLY MOVED ANYTHING. >> OH. >> WE SEND ALL OF THOSE COMMANDS. WE COULD ALSO PAN AND TILT THE CAMERAS. >> HMM. >> WHICH IS ACTUALLY MOTION IN A SMALL WAY. >> YEAH, YEAH. >> BUT, THE FLIGHT CONTROLLERS, THE COORDINATION IS THROUGH THE FLIGHT DIRECTOR. >> AH. >> AND FOR THE ROBOS, IT’S HOUSTON FLIGHT. >> OKAY. >> SO THAT’S OUR DIRECT REAL TIME AUTHORITY COMES FROM THE FLIGHT DIRECTOR. THAT’S WHO WE REPORT TO. >> OKAY. SO OKAY, YOU WERE MOVING HOUSTON FLIGHT I’M GOING TO DO-- MANEUVER X, Y, Z. >> EXACTLY. AND COORDINATING WITH THE OTHER FLIGHT CONTROLLERS IN THE ROOM. >> RIGHT. >> BECAUSE WE POWER CERTAINLY COMMUNICATIONS, ALL OF THAT INTERACTION NEEDS TO GO ON TO MAKE SURE-- AND THE TIMING JUST RIGHT, MAKE SURE IF THE CREW ARE EXERCISING AND THERE’S A LITTLE BIT OF VIBRATION, WE NEED TO MAKE SURE THAT WE STAY AWAY FROM THAT ON THE SCHEDULE. >> MM-HMM. SO, SAY FOR EXAMPLE WE WERE DOING A-- WE’RE DOING A MANEUVER TO CAPTURE THE DRAGON, FOR EXAMPLE. AND SO, THE CREW IS THE ONE THAT ACTUALLY CAPTURES THE DRAGON NOW, RIGHT? SO THEY’RE-- >> RIGHT, THAT’S ONE THING WE DON’T DO FROM THE GROUND IS THE PREFLIGHT CAPTURES AND RELEASES. >> SO THEN AFTERWARDS, YOU HAVE TO MOVE IT INTO ITS BERTHING POSITION AND YOU DO THAT FROM THE GROUND, RIGHT? >> RIGHT. >> SO, WHO IS DOING THAT-- IS THERE COORDINATION WITH THE ROBO CONSOLE ON-- IN MISSION CONTROL HOUSTON, IS THERE A CANADIAN SPACE AGENCY INVOLVEMENT AS WELL? >> THE ROBO CONSOLE-- THE WAY IT WORKS IS WE HAVE THE FRONT ROOM, WHICH IS WHERE THE FLIGHT DIRECTOR IS. >> OKAY. >> AND USUALLY THE ROBO IS THERE, BUT ALSO HERE IN MISSION CONTROL THERE IS WHAT THEY CALL A BACK ROOM. >> OKAY. >> AND THERE ARE TWO MORE SUPPORT ROBOTICS FLIGHT CONTROLLERS WHO TALK TO THE ROBO AND THEY’RE PART OF THAT TEAM. >> OKAY. >> THERE IS ALSO A BACK ROOM IN MONTREAL. >> AH. >> SO THOSE SUPPORTING FLIGHT CONTROLLERS-- OR NOW, EVEN SOMETIMES EVEN THE ROBO, HIM OR HER SELF, CAN BE UP THERE IN MONTREAL, STILL TALKING TO HOUSTON FLIGHT. >> RIGHT. >> THAT COMMAND IN CONTROL LINE OF AUTHORITY STILL WORKS IN JUST THE SAME WAY. IT’S JUST A MATTER OF LOCATION. >> THERE YOU GO. >> AND AS WE’VE LEARNED WITH GROUND CONTROL ROBOTICS, LOCATION CAN BE WHERE YOU WANT IT TO BE. >> EXACTLY. WELL, I MEAN, ALL THIS STUFF THAT YOU’RE TALKING ABOUT IS GOING ON IN SPACE, SO AS LONG AS YOU HAVE THAT COORDINATION. AND IT’S A TEAM EFFORT, TOO. IT’S NOT JUST ONE GUY ON THE GROUND DOING THE WORK. I MEAN, YOU’RE WORKING WITH A DECENT TEAM. >> RIGHT. >> WHEN YOU’RE DOING THESE MANEUVERS. SO THAT’S FANTASTIC. BUT, YOU KIND OF MENTIONED-- SO GOING BACK TO CANADARM2, YOU MENTIONED IT’S BEEN UP THERE SINCE YOU SAID 2001? >> YUP. >> AND IT’S 16 YEARS OF OPERATION, WHICH IS AWESOME. >> PART OF THE SPACEWALK STAT ARE-- THAT WE’RE DOING HERE IN OCTOBER ARE FOR MAINTENANCE, RIGHT? SO IT NEEDS REGULAR MAINTENANCE. SO WHAT’S SOME OF THE STUFF THAT WE’RE DOING OVER THESE SPACEWALKS? >> WELL, EVEN THE MAINTENANCE SYSTEM ITSELF NEEDS TO BE MAINTAINED. >> THERE YOU GO. >> SO HERE WE ARE, AND THAT’S WHERE WE’RE GOING TO BE THIS THURSDAY. >> OKAY. >> THE LATCHING END EFFECTORS, THE LEEs ON CANADARM2 HAVE DONE ALL THIS HEAVY WORK OVER ALL THESE YEARS. AND WHAT WE HAD STARTED TO SEE A FEW YEARS AGO, MAYBE THREE YEARS AGO, IS WE HAD STARTED TO PERCEIVE SOME DEGRADATION IN THE LEE MECHANISMS AND WE WERE ABLE TO MONITOR THAT. WE SEE WITH SOME PRECISION THE CURRENTS AND THE RATES ON THE MOTORS. >> HMM. >> AND WE COULD SEE FROM THE TELEMETRY DATA DOWN FROM THE ARM THAT SOME OF THE MECHANISMS WERE SOMETIMES A LITTLE BIT STICKY. >> OH. >> AND WE TALKED-- STUDIED THAT A LOT. >> YEAH. >> TRENDED THE DATA AND IN 2015 THAT ANALYSIS LEAD US TO HAVE SPACEWALKING ASTRONAUTS GO OUT AND LUBRICATE THESE MECHANISMS IN THE CANADARM2 END EFFECTORS. >> OH. >> SO THE GUYS WENT OUT IN SPACESUITS AND THEY HAD-- THEY TOOK A WET LUBRICANT. IT’S SORT OF THIS GRAY GOO. >> MM-HMM. >> AND THEY WERE ABLE TO PUT THAT INTO THE MECHANISMS THAT WERE EXPOSED ON THE LATCHING END EFFECTOR TO MITIGATE THAT STICKINESS THAT WE HAD BEEN STARTING TO SEE. >> OKAY. >> AND THAT DID INDEED IMPROVE THINGS. WE SAW SOME IMPROVEMENT RIGHT AFTER THAT IN BOTH CASES. >> YEAH. >> BUT, IN THE CASE OF LEE-A, WE-- THERE’S TWO ENDS OF THE ARM. WE SIMPLY CALL IT A AND B. >> OKAY. >> AND IN THE CASE OF LEE-A, WHILE THERE WAS SOME IMPROVEMENT IT STILL WAS KIND OF GOING DOWNHILL AND WE COULD SEE THAT. >> OH, OKAY. >> AND WHAT WE SAW IN AUGUST-- I THINK IT WAS AUGUST 22nd, WE WERE GOING TO WALK THE ARM OFF TO GO-- I ACTUALLY FORGET WHAT WE WERE GOING TO GO DO. WE WERE GOING TO WALK OFF NODE 2 ONTO OUR MOBILE BASE SYSTEM. >> MM-HMM. >> AND THE LATCHES ON THE LEE-A ACTUALLY STALLED DURING THE COURSE OF THE GRAPPLE. >> OH. >> AND THAT’S QUITE UNUSUAL. >> OKAY. >> SO THERE WAS A LOT OF DISCUSSION THAT EVENING ON CONSOLE AND REAL TIME AND THEY RELEASED IT BACK OFF. WE TALKED ABOUT IT SOME MORE AND DECIDED, “YOU KNOW WHAT? WE’RE GOING TO DEFER THIS TASK, WE’RE GOING TO STAY HERE ON NODE 2 BECAUSE THIS IS WHERE WE NEED TO BE.” AT THAT POINT I THINK IT WAS JUST A COUPLE OF WEEKS AWAY, WE WERE GOING TO UNBERTH AND RELEASE SPACEX DRAGON 12. >> OKAY. >> WHICH WAS ONBOARD THE SPACE STATION AT THAT TIME. >> YEAH. >> AND HANDLING THE DRAGON VEHICLES-- WE ACTUALLY DON’T USE THOSE LATCHES. WE JUST USE THOSE SNARE CABLES. >> OKAY. >> WHICH IS VERY MUCH LIKE THE SHUTTLE ARM USED TO WORK. SO WE DECIDED TO STAY THERE. WE REALLY WANTED TO PROTECT THAT SCHEDULE. >> RIGHT. GET IT OUT IN TIME. >> SO THE VISITING VEHICLES CAN ARRIVE AND DEPART ON SCHEDULE. >> MM-HMM. >> DID THAT, RELEASED THE DRAGON. THAT WENT PERFECTLY WELL. AND SINCE THEN-- SINCE WE HAD BEEN ALREADY TALKING ABOUT END EFFECTOR MAINTENANCE WE WERE ALREADY WORKING WITH THE SPACE WORK EXPERTS HERE AT JSC TO START PLANNING AN END EFFECTOR REPLACEMENT. SO THAT WORK WAS ALREADY GOING ON. >> OKAY. >> SO WHEN WE HAD THIS LATCH STALL WITH LEE-A, WE SORT OF ADJUSTED OUR PLANS, SAID, “OKAY, WE’RE GOING TO GO DO LEE-A. WE’RE GOING TO DO IT RIGHT AWAY SO WE CAN GET CANADARM2 BACK UP TO FULL OPERATING POTENTIAL SO WE CAN GO DO EVERYTHING THAT WE NEED TO DO.” >> ALL RIGHT. >> SO THAT GOT SCHEDULED IN FOR THIS THURSDAY. >> ALL RIGHT. SO LEE-A-- IS IT BEING-- IS IT A SWAP? ARE YOU REPLACING IT FOR A NEW LATCHING END EFFECTOR? >> THERE IS ALSO PART OF OUR SYSTEM-- WE HAVE CANADARM2, WE HAVE DEXTRE, WE ALSO HAVE WHAT WE CALL THE MOBILE BASE SYSTEM. >> OKAY. >> AND THIS IS A STRUCTURE THAT RIDES UP AND DOWN THE SPACE STATION TRUSS ON A LITTLE TROLLEY CALLED THE MOBILE TRANSPORTER. >> OKAY. >> SO THAT MOBILE BASE HAS FOUR OPERATING BASES FOR THE AMR, SO THE ARM CAN WALK ONTO IT AND GO RIGHT DOWN THE TRUSS. >> COOL. >> BUT ALSO, ON THE MOBILE BASE THERE IS ANOTHER LATCHING END EFFECTOR AND IT'S IN FACT AN IDENTICAL UNIT TO THE ONE THAT’S ON BOTH ENDS OF CANADARM2. WE USE THAT FOR TEMPORARILY STOWING LARGE ITEMS THAT WE’RE MOVING AROUND OUTSIDE. >> HMM. >> SO IF WE NEED TO DO MAINTENANCE OF SOMETHING BIG-- >> OKAY. >> --THERE HAVE BEEN A COUPLE OF TIMES WHEN THE-- WHEN A PUMP PACKAGE FAILED THAT WAS PART OF THE THERMAL CONTROL SYSTEM. AND THE PUMPS ARE BIG AND THEY NEEDED TO BE TEMPORARILY STOWED BEFORE THEY COULD BE DEORBITED. >> YEAH. >> AND WE WOULD STORE THOSE ON THAT END EFFECTOR ON THE MOBILE BASE. SO THAT’S A LEE. ALTHOUGH, IT’S BEEN IN SPACE SINCE 2002, 15 YEARS. >> WOW. >> IT’S ACTUALLY ONLY BEEN USED 15 TIMES. SO WHEN WE USE IT, IT’S VERY IMPORTANT. >> YEAH. >> BUT WE ACTUALLY ONLY USE IT RELATIVELY RARELY. >> YEAH. >> SO ON AVERAGE, ONCE A YEAR. SO WHAT WE’VE GOT, LOOKING AT THAT END EFFECTOR ON THE MOBILE BASE, WE’VE GOT THE IDEAL SPACE LATCHING END EFFECTOR. NOT ONLY DO WE KNOW THAT IT MADE IT UP HILL SAFELY AND IT’S IN SPACE, WE’VE ALSO BEEN CHECKING IT OUT ONCE A YEAR. >> SO IT IS UP TO SPEED. YOU’RE LIKE, “EH, WHY DON’T WE JUST USE THIS ONE.” >> SO WE’RE GOING TO USE THAT. SO WHAT WE’RE GOING TO DO THIS THURSDAY IS WE’RE GOING TO MOVE THE TIP OF THE ARM WE LEE-A RIGHT NEXT TO WHERE THAT MOBILE BASE END EFFECTOR IS. >> RIGHT. >> AND THE EVA CREW ARE GOING TO SWAP THE TWO. >> THERE YOU GO. OKAY, SO THAT’S A BIG PART OF THE FIRST SPACEWALK. >> RIGHT. AND WHAT THAT DOES IS IT RESTORES CANADARM2 TO MUCH IMPROVED OPERATING POTENTIAL. WE’VE GOT A LEE-A THAT WILL THEN HAVE WORKING LATCHES, WE CAN GO DO-- WE’VE GOT ORBITAL ATK-8 COMING RIGHT UP. >> YES. >> I THINK IT’S 0A-8. >> OA-8, THAT’S RIGHT. >> AND WE ACTUALLY WOULD LIKE TO HAVE WORKING LATCHES FOR THAT BECAUSE THE CYGNUS VEHICLES LIKE POWER RIGHT AFTER THEY’VE BEEN CAPTURED. AND TO GIVE THEM POWER THE LATCHES HAVE TO WORK. >> OKAY. >> SO WE ARE EAGER TO GO RESTORE THAT CAPABILITY. WE’LL THEN HAVE THIS SOMEWHAT DEGRADED END EFFECTOR ON THE MOBILE BASE AND A COUPLE MORE SPACEWALKS THIS MONTH, BUT THEN AT LEAST ONE MORE IN JANUARY. AND WE’RE GOING TO DO A LITTLE BIT OF A SHELL GAME. WE’RE GOING TO ALSO SWAP OUT LEE-B OFF CANADARM2, BECAUSE THAT ALSO-- IT’S NOT AS DEGRADED AS LEE-A, BUT THERE’S ALSO WE’D LIKE TO MOVE IT AROUND. >> RIGHT. >> WE WANT TO LEAVE LEE-B ON THE MOBILE BASE AS THAT END EFFECTOR FOR STOWING THINGS. >> OKAY. >> IT IS A LITTLE BIT DEGRADED, BUT GOOD ENOUGH THAT WE THINK IT’LL PROBABLY LAST THE REST OF THE PROGRAM. IF WE ONLY USE IT ONCE PER YEAR, WHICH HAS BEEN OUR AVERAGE. >> YEAH. >> IT’LL LAST FOR YEARS. IT’S LIKE DOG YEARS. IT’LL LAST A LONG TIME. AND LEE-A WE WILL ACTUALLY TAKE OFF AND BRING INSIDE THE SPACE STATION. >> HUH. >> AND THE TWO EVA-- SOMETIME IN JANUARY, WE’LL SEE THE TWO SPACEWALKING CREW MEMBERS BRING THIS BIG OIL BARREL OF A PACK-- AN END EFFECTOR PACKAGE INTO THE AIRLOCK WITH THEM. AND WE WILL ACTUALLY BRING IT DOWN TO EARTH INSIDE A DRAGON VEHICLE. >> OH, IT CAN FIT WHERE? IN THE TRUNK OF IN THE PRESSURIZED? >> WELL, REMEMBER, THE TRUNK BURNS UP. IT NEEDS TO COME DOWN ON THE INSIDE OR IT DOESN’T REALLY COME HOME. >> OH, SO IT’S GOING TO BE COMING IN THE PRESSURIZED PART? >> RIGHT. >> OKAY, VERY COOL. >> AND WE’RE GOING TO HAVE THAT. IT’S A BIG EXPENSIVE PACKAGE. WE REALLY DON’T WANT TO BURN IT UP. SO WE’RE GOING TO GO TO ALL THAT TROUBLE TO BRING IT DOWN, SEND IT BACK TO OUR PRIME CONTRACTOR IN BRAMPTON, ONTARIO, IS MacDONALD DETTWEILER. >> OKAY. >> THEY ARE THE EXPERTS AND THEY ARE GOING TO HAVE THE TASK OF REFURBISHING THIS LATCHING END EFFECTOR THAT’S BEEN IN SPACE FOR 16 YEARS. AND WHAT A WITNESS TO THE SPACE ENVIRONMENT AND TO SPACE HISTORY THIS THING HAS BEEN, RIGHT? >> YEAH. >> IT’S BEEN THERE FOR MOST OF SPACE STATION ASSEMBLY. >> RIGHT. >> AND ALL OF THIS MAINTENANCE, EXPOSED TO THE ENVIRONMENT, ALL THE ATOMIC OXYGEN, MICROMETEORITES, ALL THE PROPELLANT FROM ALL THE JETS, ALL THE LOADS THAT IT’S EXPERIENCED. AND THEY’RE GOING TO SORT OF PEEL IT BACK, REFURBISH IT, AND THEN RETURN IT TO FLIGHT STATUS. SO WE WILL HAVE ANOTHER END EFFECTOR SPARE READY WHEN WE NEED IT. >> WOW. ALL RIGHT. SO YOU GOT IT PLANNED OUT? SO YOU’VE GOT NEW END EFFECTORS COMING ON AND YOU’RE GOING TO HAVE REFURBISHED END EFFECTORS THERE. SO THAT’S PRETTY COOL. HOW MANY END EFFECTORS TOTAL THEN ARE WE TALKING ABOUT THROUGH THE END OF THE LIFE OF THE STATION? THAT WAS GOING TO BE-- >> WELL, THERE ARE TWO ON CANADARM2, AND WE’RE TALKING ABOUT SWAPPING OUT BOTH OF THOSE IN THE NEXT FEW MONTHS. >> RIGHT, RIGHT. >> THERE’S ONE ON DEXTRE, BECAUSE WHEN WE PUT DEXTRE DOWN THERE’S AN END EFFECTOR ON THE BOTTOM. >> OKAY. >> THERE’S THIS ONE ON THE MOBILE BASE I’VE BEEN TALKING ABOUT. >> RIGHT. >> THERE IS A-- WE’RE USING THAT ONE ON THE MOBILE BASE AS A SPARE. >> UH-HUH. >> THERE IS ANOTHER ACTUAL SPARE STORED ON THE SPACE STATION TRUSS OUTSIDE SORT OF IN A BOX SAFE, WAITING TO BE USED. AND THAT ONE WILL GO ONTO CANADARM2 IN JANUARY. >> YUP, YUP. >> AND WE ACTUALLY HAVE ANOTHER ONE ON THE GROUND RIGHT NOW THAT'S PROBABLY GOING TO LAUNCH IN A FEW MONTHS TIME. >> HMM. >> WE CALL THAT OUR LAUNCH ON NEED END EFFECTORS, SO YOU NEED TO HAVE ENOUGH OF THESE THINGS SO THAT THEY CAN FAIL AND YOU HAVE TIME TO REPLACE THEM BEFORE YOU NEED ANOTHER ONE. >> WELL, IT SOUNDS LIKE A AND B WAS IT? ARE THE TWO THAT ARE ON THE ARM RIGHT NOW? >> RIGHT. >> SOUNDS LIKE THEY’VE BEEN DOING A PRETTY GOOD JOB SO FAR. >> SIXTEEN YEARS, GIVEN THE COMPLEXITY AND, I MEAN, THE HARSH ENVIRONMENT, AND ALL THEY’VE ACCOMPLISHED, IT’S ACTUALLY AMAZING THAT THEY HAVE LASTED THIS LONG. >> YEAH. >> I WAS ON THE PROGRAM EARLY ON LOOKING AT THOSE DESIGNS, WE ARE PRETTY PLEASED THAT THESE THINGS HAVE LASTED SO LONG. WE EXPECTED MAYBE WE’D HAVE TO DO MAINTENANCE LIKE THIS EARLIER THAN WE HAVE. SO NO COMPLAINTS. >> ABSOLUTELY. AND IT SEEMS LIKE YOU GOT A LOT OF PLAN B, C, D, ALL THE WAY DOWN TOO. >> THAT’S THE WAY WE ROLL HERE IN HUMAN SPACEFLIGHT. >> HEY, THAT’S PERFECT, RIGHT? BECAUSE YOU’RE SAYING, “OH, WE NEED-- THIS ONE’S NOT WORKING AS WELL AS IT COULD. OH, WE GOT A SPARE OVER HERE, AND A SPARE OVER HERE, SPARE OVER HERE. WE’LL TAKE THIS ONE OVER HERE.” SO THAT’S NOT BAD. A WHILE AGO--NOT A WHILE-- JUST A FEW MINUTES AGO YOU TALKED ABOUT IT CAN MOVE ON THIS MOBILITY UNIT, RIGHT? IT CAN WALK. THAT IS KIND OF A UNIQUE THING, RIGHT? SO WHEN YOU’RE THINKING ABOUT A ROBOTIC ARM, IT’S NOT JUST AN ARM THAT’S ON THE SIDE OF THE STATION AND CAN GRAB THINGS. THIS THING CAN MOVE TO DIFFERENT PARTS OF THE STATION. HOW DOES THAT WORK? >> WELL, THE ARM CAN WALK END OVER END. THAT’S WHY WE HAVE AN END EFFECTOR AT EACH END OF THE ARM. >> UH-HUH. >> ONE’S THE BASE. THE TIP OF THE ARM, JUST LIKE THE BASE, CAN REACH ANOTHER OPERATING BASE AND GRAPPLE IT, ENGAGE, CONNECT ELECTRICALLY. >> YEAH. >> POWER DOWN, POWER UP FROM THE NEW BASE, AND THEN LET GO AND WALK END OVER END. >> WOW. >> AND THE MOBILE BASE SYSTEM ON THE MOBILE TRANSPORTER AS I DESCRIBED HAS THESE BASE PLUGS ON IT. SO THE ARM CAN WALK ONTO THERE RIGHT OUT PORT OR STARBOARD TO THE EXTREME END OF THE TRUSS EVEN, DO WORK OUT THERE. >> YEAH, WHEREVER YOU NEED IT. >> WHEREVER IT NEEDS TO BE, AND THAT’S ANOTHER REALLY COOL ENHANCEMENT OVER THE SHUTTLE ARM SYSTEM. WHEN YOU LOOKED OUT THE AFT-- THE PAYLOAD BAY WINDOWS ON THE SHUTTLE, THE ARM WAS ALWAYS THERE. THE SHOULDER WAS ALWAYS EXACTLY IN THE SAME PLACE ON THE PORT SIDE OF THE VEHICLE. AND THIS IS A NEW SYSTEM, IT’S A NEW ENVIRONMENT. >> YEAH. >> AND SPACE STATION IS A BIG COMPLEX STRUCTURE. THERE’S ALL SORTS OF PLACES YOU MIGHT NEED TO BE. AND IN FACT, RELATIVELY RECENTLY, WE EVEN INSTALLED A BASE POINT ON ONE OF THE RUSSIAN MODULES, WHAT WE CALL THE FGB. SO THE FORWARD MOST PART OF THE RUSSIAN SEGMENT NOW HAS A POWER AND DATA GRAPPLE FIXTURE ON IT. AND THE ARM CAN WALK ON THERE TO REACH EVEN FURTHER BACK IF IT NEEDS TO AND WE’VE DONE SOME SURVEYS FROM THERE. >> OH, THERE YOU GO. SO POWER AND DATA GRAPPLE FIXTURE, THAT’S-- WHEN IT’S WALKING IT NEEDS TO GRAB ONTO ONE OF THOSE IN ORDER TO GET POWER AND DATA SO YOU CAN SEND THE COMMANDS? >> TO BE A BASE POINT, THAT’S RIGHT. >> YEAH. >> IT NEEDS ELECTRICAL POWER. THE ARM IS ALL ELECTRIC. >> UH-HUH. >> THEY ARE DC ELECTRIC MOTORS-- >> YEAH. >> --ON EACH OF THE JOINTS AND EACH OF THE MECHANISMS ON THE END EFFECTOR. AND OF COURSE DATA, IT SEEMS LIKE WE DON’T DO ANYTHING WITHOUT A COMPUTER THESE DAYS. THE ARM HAS ONBOARD COMPUTERS THAT CONTROL EACH JOINT AND EACH JOINT HAS A COMPUTER THAT CONTROLS THE MOTOR MODULE. >> YUP, BECAUSE IF YOU SEND IT A COMMAND YOU WANT IT TO DO WHAT YOU’RE ASKING TI TO DO. >> RIGHT. AND ALSO, THOSE COMPUTERS GATHER THE INFORMATION THAT WE NEED TO HAVE INSIGHT INTO WHAT THE ARM IS DOING AND HOW THE ARM IS DOING. >> YEAH, THERE YOU GO. OH, WELL, THAT’S WHERE YOU’RE GETTING THAT DATA WHERE YOU CAN FIND OUT, “OH, THIS IS DEGRADING A LITTLE BIT AND WE’RE GOING TO HAVE TO FIX IT.” >> YEAH, “THAT MOTOR’S DRAWING A LITTLE BIT MORE CURRENT THAN WE THOUGHT. LET’S GO TAKE A LOOK AT THAT.” >> MM-HMM. ABSOLUTELY. I MEAN, SO NOW THE CANADARM HAS BEEN UP THERE FOR 16 YEARS, YOU’RE TALKING ABOUT ROBOTIC ARMS THAT HAVE BEEN THOUGHT ABOUT SINCE THE ‘70s, AND THEN YOU STARTED FLYING IN THE ‘80s. THIS HAS A LONG HISTORY OF ROBOTIC ARMS. HAS ANY OF THE TECHNOLOGY BEEN BROUGHT DOWN TO EARTH IN ANY WAY, SHAPE, OR FORM? >> IT HAS. >> OKAY. >> AND THERE ARE A NUMBER OF APPLICATIONS AND THE ONES I CAN THINK OF RIGHT HERE ARE MOSTLY MEDICAL. >> HMM. >> IT’S POSSIBLE TO DO VERY, VERY FINE, EVEN MICROSCOPIC SURGERY WITH VERSIONS OF ROBOTIC ARMS. >> OH. >> AND THE TECHNOLOGY THAT THAT’S BASED ON, AS IT TURNS OUT, IS DIRECTLY DERIVED FROM THE WORK THAT WE’VE DONE ON SPACE STATION WITH CANADARM2. >> HOW ABOUT THAT. >> SO THERE’S A SYSTEM IN THAT WAS DESIGNED IN CANADA CALLED NEUROARM, WHICH HAS DONE BRAIN SURGERY AND THERE’S A GROWING LIST OF PEOPLE WHO HAVE BEEN HELPED BY THAT. THERE’S A SMALLER PEDIATRIC VERSION CALLED KIDSARM. >> OH, WOW. >> AND THERE IS-- LET ME THINK, THERE IS A SYSTEM CALLED IMAGE GUIDED AUTONOMOUS ROBOT, IGAR, WHICH GOT SOME RECOGNITION. AND THAT’S-- IT’S ABLE TO DO BREAST CANCER SURGERIES FOR VERY SMALL PROCEDURES. >> WOW. >>SO THIS TECHNOLOGY IS PROLIFERATING. >> YEAH. I MEAN, SO YOU PRETTY MUCH JUST TAKE THE CANADARM2, WHICH IS HOW LONG DOES IT STRETCH? FIFTEEN METERS IS IT? OR IS IT-- >> NO, WAS IT 17 OR 18 METERS, I THINK. >> SEVENTEEN OR EIGHTEEN? OH, OKAY. I’M THINKING 15, BUT OKAY. YEAH, 17 OR 18 METERS, YOU BRING THAT DOWN TO A SMALLER SCALE IN A WAY, RIGHT? >> WELL, AND IT'S NOT EVEN JUST THE PHYSICALITY OF IT. >> OKAY. >> IT IS THE TECHNOLOGY OF CONTROLLING COORDINATED MOTION IN VERY REFINED WAYS. >> RIGHT. RIGHT. I MEAN, VERY MICROSCOPIC MOVEMENTS LIKE YOU WERE SAYING. >> RIGHT. >> AND IS THAT-- SO YOU WERE TALKING ABOUT BEFORE THIS RESPONSIVE TECHNOLOGY WHERE IF YOU’RE MOVING IT CAN FEEL THE TURN AND STUFF LIKE THAT. IS THAT PART OF IT TOO? >> I THINK A BIG PART OF IT IS THE ABILITY TO OPERATE THE ROBOT IN AN ENVIRONMENT WHERE YOU CAN GUIDE IT VISUALLY. >> OKAY. >> WORKING INSIDE-- LIKE, WORKING CT SCAN ENVIRONMENTS WHERE YOU HAVE ALL OF THE SENSORS SO YOU CAN REALLY SEE WHAT’S GOING ON INSIDE SOMEONE’S BODY AND THERE’S THE ROBOT ACTUALLY OPERATING RIGHT THERE WHILE THE SCAN’S GOING ON. >> AH, OKAY. >> BUT ALSO, AT A MICROSCOPIC LEVEL. BECAUSE WE HUMANS-- IF YOU REDUCE EVERYTHING TO A SMALL ENOUGH SCALE IT’S ACTUALLY DIFFICULT TO CONTROL THINGS THAT PRECISELY. BUT THE ROBOT, IF YOU GEAR EVERYTHING DOWN THE ROBOT CAN REALLY HELP YOU WITH THAT. >> OH, YEAH. >> SO IF-- YOUR HANDS MAY NOT TREMBLE, BUT WHEN YOU’RE AT THE MICRON LEVEL YOUR HAND’S REALLY TREMBLING AND YOU’RE NOT EVEN AWARE OF IT. >> YEAH. >> BUT THAT’S THE LEVEL OF CONTROL THAT THEY’RE ABLE TO PROVIDE WITH THESE MICROSCOPIC BRAIN SURGERY ROBOTS. >> HOW ABOUT THAT. >> AND THAT’S REALLY HELPING PEOPLE, AND THAT’S EXCITING. >> THAT’S VERY EXCITING. I’M THINKING ABOUT-- THE FIRST THING THAT COMES TO MIND IS THREADING A NEEDLE WITH YOUR HAND, HOW DIFFICULT THAT IS JUST OUT OF SCALE. YOU GET TO THAT SMALL AND YOU START SHAKING AND YOU CAN’T SEE. >> RIGHT. >> BUT IF YOU GET THE INSTRUMENTS YOU CAN DO IT. >> AND YOU’RE TALKING EVEN SMALLER THAN THAT. >> WOW. OH, YEAH, YOU’RE RIGHT, BECAUSE MICROSCOPIC. >> RIGHT. >> SO WE ONLY HAVE A FEW MINUTES LEFT SO I’LL KIND OF-- WE’LL LEAVE OFF WITH THIS: WHAT’S THE FUTURE OF ROBOTIC ARMS? IS THERE GOING TO BE A CANADARM3? OR IS THERE THINGS YOU’RE THINKING ABOUT FOR MISSIONS BEYOND INTERNATIONAL SPACE STATION? >> WELL, WE ARE THINKING ABOUT CANADARM3. >> OKAY. >> AND WHAT WE DO IN THESE PROGRAMS, CERTAINLY WHAT WE DID WITH CANADARM2, IS WE LOOKED AT OUR EXPERIENCE ON THE SHUTTLE. >> MM-HMM. >> AND WE TOOK THAT OPERATING PARADIGM AND SAID, “OKAY, WHAT DID WE LEARN? WHAT MORE CAN WE DO?” AND SURE ENOUGH, IF YOU LOOK AT CANADARM2 IT’S MORE COMPLEX, BUT IT’S A MUCH MORE CAPABLE SYSTEM. WE’RE LOOKING AT WHAT A CANADARM3 COULD BE. AND ONE THING THAT WE ARE HEARING A LOT ABOUT IN OUR MODERN WORLD IS AUTONOMY. >> OH. >> WE HEAR A LOT THESE DAYS ABOUT SELF-DRIVING CARS. >> YUP. >> BECAUSE THE COMPUTER TECHNOLOGY NOW EXISTS WHERE THE COMPUTERS CAN PROCESS, AND MAKE SOME OF THOSE DECISIONS, AND CAN DO THE TAKE ME FROM POINT A TO POINT B. >> RIGHT. >> WHEREAS JUST EVEN-- EVEN A FEW YEARS AGO, THAT WASN’T EVEN CONCEIVABLE. >> MM-HMM. >> WE ARE STARTING TO LOOK AT WHAT IT WOULD TAKE FOR TO START INTRODUCING MORE AUTONOMY INTO THESE SORT OF ROBOTS. >> THAT IS EXCITING. >> RIGHT. AND AGAIN, AND WE’RE NOT TALKING ABOUT-- I DON’T NEED TO NAME THE MOVIES, BUT I’M NOT TALKING ABOUT ROBOTS GOING CRAZY AND ACTING INDEPENDENTLY. >> SURE. >> IT’S ABOUT-- YOU CAN CALCULATE THE MOST EFFICIENT WAY TO GET FROM THIS ARM POSITION TO THIS ARM POSITION, THEN YOU CAN GRASP THAT GRAPPLE FIXTURE, THEN YOU CAN CHANGE BASE. >> MM-HMM. >> AND THE ABILITY, PRACTICALLY SPEAKING, IS THERE TO GO DO THAT AND WE’RE STARTING TO LOOK AT HOW WE MIGHT INTRODUCE THAT INTO A SPACE ENVIRONMENT. >> HOW ABOUT THAT. THAT’S PRETTY EXCITING-- AUTOMATIC. >> AND AGAIN, THAT’S AN ENHANCEMENT IN TERMS OF SAVING TIME. WE’RE ALREADY SAVING TIME FOR THE ASTRONAUTS BECAUSE THE GROUND IS DOING IT. BUT NOW, WE CAN ACTUALLY SAVE TIME SO THAT THE GROUND CONTROLLERS DON’T HAVE TO BE THERE FOR EVERY SINGLE STEP, EVERY SINGLE COMMAND. >> MM-HMM. >> AND INDEED, THESE DAYS, IF WE LOSE COMM WITH THE SPACE STATION, IF THERE’S WHAT WE CALL AN LOS, A LOS OF SIGNAL, PERIOD-- >> RIGHT. >> --WE HAVE TO SIT AND WAIT. HOWEVER, WHAT IF YOU GET YOUR COMMAND IN BEFORE YOU LOSE COMM AND THE ROBOT CAN BE THERE WAITING FOR YOU-- AT THE END OF ITS MANEUVER WAITING FOR YOU WHEN YOU COME BACK IN. >> BECAUSE LOSS OF SIGNALS CAN BE-- CAN GET UPWARDS OF TENS OF MINUTES. SO YOU COME BACK AND IT’S ALREADY PART OF THE WAY THROUGH THE JOB. THAT’S NOT BAD. >> IT REALLY DEPENDS ON WHAT’S GOING ON, BUT YEAH. AND AS YOU START TO GO FURTHER AFIELD, IF YOU’RE TALKING ABOUT-- WELL, EVEN THE MOON, BUT CERTAINLY MARS WHERE THE LATENCIES, THE RADIO DELAYS ARE SUCH THAT SENDING A COMMAND AND THEN WAITING TO SEE THAT IT COMPLETED CORRECTLY BEFORE YOU SEND THE NEXT ONE. >> YES. >> IF THE ROUNDTRIP FOR THAT IS 40 MINUTES, THEN THAT’S REALLY GOING TO SLOW EVERYTHING DOWN. BUT, IF YOU CAN TELL YOUR ROBOT, “GO MOVE FROM HERE TO THERE AND CHECK BACK WITH ME WHEN YOU’RE DONE.” THAT’S JUST GOING TO INTRODUCE A CAPABILITY-- IT’S NOT JUST MAKING IT MORE EFFICIENT, IT GIVES YOU A CAPABILITY THAT YOU DIDN’T HAVE BEFORE. >> HOW ABOUT THAT. THAT’S REALLY EXCITING. CAN’T WAIT. IS THERE A CHANCE THAT CANADARM3 IS GOING TO BE ON THE INTERNATIONAL SPACE STATION SORT OF THING? >> NO, I THINK-- WE ARE GOING TO USE THE MSS, THE MOBILE SERVICING SYSTEM, AND CANADARM2 AS SORT OF A TEST BED FOR THAT TECHNOLOGY. >> OH, OKAY. >> WE HAVE THIS AMAZING ENVIRONMENT WHERE WE HAVE A MONITORED ENVIRONMENT, WE HAVE THINGS THAT NEED DOING. >> YEAH. >> WE HAVE THE ABILITY TO MAINTAIN IT BECAUSE THERE’S ASTRONAUTS. AND ALSO, SOMETIMES WE DO ROBOT SELF MAINTENANCE. WE HAVE REPLACED A FEW OF OUR OWN CAMERAS WITH THE ROBOT, AND THAT’S REALLY COOL. >> YEAH. >> BUT WE HAVE THIS ENVIRONMENT THAT IS REALLY IDEAL TO DEVELOP SOME OF THAT NEXT GENERATION EXPLORATION TECHNOLOGY AND WE’RE STARTING TO LOOK AT THAT. >> WOW. VERY EXCITING. ALL RIGHT, WELL, TIM, THANKS FOR COMING ON THE SHOW TODAY. IT SEEMS LIKE A PRETTY DECENT KIND OF OVERVIEW OF ROBOTIC ARMS HISTORY, AND CAPABILITY, FUTURE. THAT’S AWESOME. THANK YOU VERY MUCH. >> IT’S A PLEASURE TO BE HERE. THERE’S A LOT GOING ON. >> ABSOLUTELY. WELL, SO FOR THE LISTENERS, IF YOU STICK TOWARDS THE END OF PODCAST WE’LL TALK ABOUT-- TIM AND I KIND OF MENTIONED THE SPACEWALKS THAT HAVE BEEN HAPPENING, OR THAT ARE GOING TO HAPPEN HERE IN OCTOBER, SO YOU CAN TALK ABOUT THAT AND WHERE TO GO FOR QUESTIONS AND IDEAS. SO THANKS AGAIN, TIM. >> THANK YOU. [ MUSIC ] >> HOUSTON, GO AHEAD. >> I’M ON THE SPACE SHUTTLE. >> ROGER, ZERO-G AND I FEEL FINE. >> SHUTTLE HAS CLEARED THE TOWER. >> WE CAME IN PEACE FOR ALL MANKIND. >> IT’S ACTUALLY A HUGE HONOR TO BREAK THE RECORD LIKE THIS. >> NOT BECAUSE THEY ARE EASY, BUT BECAUSE THEY ARE HARD. >> HOUSTON, WELCOME TO SPACE. >> HEY, THANKS FOR STICKING AROUND. SO TODAY, WE TALKED WITH MR. TIM BRAITHWAITE ABOUT ROBOTIC ARMS IN SPACE AND WE REALLY WANTED TO TALK ABOUT THIS TOPIC BECAUSE WE HAVE THREE SPACEWALKS IN THE MONTH OF OCTOBER AND ALL OF THEM HAVE TO DO WITH IN SOME WAY, SHAPE, OR FORM WITH DEALING WITH THE CANADARM2 ON THE INTERNATIONAL SPACE STATION. TWO OF THEM RIGHT NOW HAVE ALREADY BEEN COMPLETED. THERE WAS ONE ON OCTOBER 5th AND ANOTHER ONE ON OCTOBER 10th. THE ONE ON OCTOBER 5th WAS THE ONE THAT WE TALKED ABOUT, ME AND TIM, IN THIS EPISODE WHERE THEY REPLACED A LATCHING END EFFECTOR. AND THE THE LAST ONE, THEY WERE ACTUALLY USING THE LUBE THAT HE ALSO TALKED ABOUT TO GREASE UP THE INSIDE OF THE LATCH. WELL, THEY HAVE ONE MORE COMING UP AND IT’S GOING TO BE I GUESS AT THE TIME OF THIS RELEASE WILL BE NEXT WEEK ON OCTOBER 18th. SO YOU CAN TUNE IN AND KIND OF WATCH WHAT A SPACEWALK IS ALL ABOUT, YOU CAN GO ON THE INTERNATIONAL SPACE STATION FACEBOOK ACCOUNT. WE’LL BE DOING A FACEBOOK LIVE THROUGHOUT THE WHOLE THING, BUT YOU CAN ALSO GO TO NASA TV OR WHEREVER YOU GET NASA TV. I THINK IT’S ON USTREAM AS WELL. IF YOU WANT TO FOLLOW ALONG, JUST KIND OF GET THE HIGHLIGHTS OF EVERYTHING, WE DO EVERYTHING ON SOCIAL MEDIA, SO INTERNATIONAL SPACE STATION FACEBOOK ACCOUNT IS A GREAT PLACE TO GET THAT INFORMATION. OTHERWISE, YOU CAN GO TO TWITTER, WHICH IS KIND OF LIKE LITTLE SNIPPETS. YOU KNOW TWITTER. WHAT AM I TELLING YOU ABOUT TWITTER FOR? AND INSTAGRAM @ISS. SO YOU CAN USE THE HASHTAG #ASKNASA ON YOUR FAVORITE TO SUBMIT AN IDEA FOR THE PODCAST, OR MAYBE DURING THE SPACEWALK COVERAGE YOU CAN ASK A QUESTION AND WE’LL TRY TO GET TO AS MANY AS POSSIBLE. I KNOW I’LL BE ONE OF THE COMMENTATORS FOR THE SPACEWALKS COMING UP. AND WE REALLY TRY TO ANSWER SOME OF THOSE QUESTIONS DURING THE-- DURING COMMENTARY SO YOU KINDA OF UNDERSTAND WHAT’S GOING ON. SO PLEASE, ASK THOSE QUESTIONS AS IT’S GOING ON. OTHERWISE, YOU CAN SUBMIT QUESTIONS FOR THE PODCAST. JUST PUT IN-- MAKE SURE IT’S MENTIONED FOR “HOUSTON, WE HAVE A PODCAST” HWHAP. ACTUALLY, THAT’S HOW I GOT THAT QUESTION FROM JENNIFER AT THE BEGINNING OF THE EPISODE. I WAS-- I’M SEARCHING FOR THAT STUFF, SO DON’T THINK I’M NOT PAYING ATTENTION. SO THIS PODCAST WAS RECORDED ON OCTOBER 3rd, 2017. THANKS TO ALEX PERRYMAN-- WHO ALWAYS HELPS OUT WITH EVERY EPISODE-- JOHN STOLL, DAN HUOT, AND OF COURSE THE PUBLIC AFFAIRS OFFICERS, THE COMMUNICATORS AT THE CANADIAN SPACE AGENCY. THANKS AGAIN TO MR. TIM BRAITHWAITE FOR COMING ON THE SHOW. WE’LL BE BACK NEXT WEEK.
Associations of parents' self, child, and other "fat talk" with child eating behaviors and weight.
Lydecker, Janet A; Riley, Kristen E; Grilo, Carlos M
2018-03-15
Fat talk, negative communication about weight, is common in the media, peer groups, and families. Little is known about parental fat talk directed at oneself or others. This study examined associations between different forms of parental fat talk and child disordered eating behaviors and weight, and differences by child sex and age. Parents of preadolescents or adolescents (n = 581) reported fat talk about themselves (self-fat talk), others (obesity-fat talk), and their child (child-fat talk). 76.0% of parents reported regular self-fat talk in front of children, 51.5% reported obesity-fat talk, and 43.6% reported child-fat talk. Fat talk did not differ significantly between parents of preadolescents and adolescents but was more common with sons than daughters. Of the three forms of fat talk, only child-fat talk was associated with all child eating and weight variables (binge eating, overeating, secretive eating, and overweight/obesity); associations were strongest for adolescent girls. Child sex was associated with secretive eating and overweight/obesity. Parents reported using different forms of fat talk frequently. Parent self- and obesity-fat talk were reported more frequently, but child-fat talk was the most strongly associated with children's eating and weight. Because of associations with disordered eating behaviors, intervening to reduce fat talk might contribute to improving pediatric disordered eating and weight-related interventions. © 2018 Wiley Periodicals, Inc.
I’m not just fat, I’m old: has the study of body image overlooked “old talk”?
2013-01-01
Background Research indicates that body dissatisfaction is correlated with and often predictive of both physical and mental health problems. “Fat talk,” a well-studied form of body image talk in adolescents and university-aged women, has been implicated as contributing to body dissatisfaction and mediating the relationship between body dissatisfaction and other mental health problems. Limited research, however, has investigated fat talk across the female lifespan. Further, consistent with most body image research, fat talk research solely focuses on the thin dimension of idealized female attractiveness, even though other dimensions may contribute to body dissatisfaction in women. Method The current study investigated whether or not “old talk,” a hereto un-described form of body image talk, appears to be a parallel, but distinct, form of body image talk that taps into the young dimension of the thin-young-ideal standard of female beauty. An international, internet sample of women (aged 18-87, N = 914) completed questionnaires aimed at assessing fat talk, old talk, body image disturbance, and eating disorder pathology. Results Results indicated that both fat talk and old talk were reported by women across the lifespan, although they evidenced different trajectories of frequency. Like fat talk, old talk was significantly correlated with body image disturbance and eating disorder pathology, albeit at a lower rate than fat talk in the total sample. Old talk was more highly correlated with ageing appearance anxiety than fat talk, and the correlation between old talk and body image disturbance and ED pathology increased with women’s ages. Conclusion Results suggest that old talk is a form of body image talk that is related to but distinct from fat talk. Old talk appears to be similarly problematic to fat talk for women whose age increases their deviation from the thin-young-ideal. Further research into the phenomenon of old talk is warranted as is increased attention to fat talk across the full lifespan of women. PMID:24764529
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, David J; Walton, Miles C
Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes amore » multi-robot common window comprised of information received from each of the plurality of robots.« less
Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...
NASA Astrophysics Data System (ADS)
Popov, E. P.; Iurevich, E. I.
The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.
Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN
Fristedt, Rikard; Dinc, Emine
2016-01-01
Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747
Reducing Energy Consumption and CO2 One Street Lamp at a Time
NASA Astrophysics Data System (ADS)
Somssich, Peter
2011-11-01
Why wait for federal action on incentives to reduce energy use and address Greenhouse Gas (GHG) reductions (e.g. CO2), when we can take personal actions right now in our private lives and in our communities? One such initiative by private citizens working with Portsmouth NH officials resulted in the installation of energy reducing lighting products on Court St. and the benefits to taxpayers are still coming after over 4 years of operation. This citizen initiative to save money and reduce CO2 emissions, while only one small effort, could easily be duplicated in many towns and cities. Replacing old lamps in just one street fixture with a more energy efficient (Non-LED) lamp has resulted after 4 years of operation (˜15,000 hr. life of product) in real electrical energy savings of > 43. and CO2 emission reduction of > 465 lbs. The return on investment (ROI) was less than 2 years. This is much better than any financial investment available today and far safer. Our street only had 30 such lamps installed; however, the rest of Portsmouth (population 22,000) has at least another 150 street lamp fixtures that are candidates for such an upgrade. The talk will also address other energy reduction measures that green the planet and also put more green in the pockets of citizens and municipalities.
Challenging fat talk: An experimental investigation of reactions to body disparaging conversations.
Ambwani, Suman; Baumgardner, Megan; Guo, Cai; Simms, Lea; Abromowitz, Emily
2017-12-01
Although "fat talk" is associated with increased eating disorder risk, the predictors of fat talk engagement and viable alternatives to these pervasive conversations remain unclear. The current experiment examined responses to fat talk versus feminist-oriented challenging fat talk scenarios. Undergraduate women (N=283) completed baseline questionnaires assessing body dissatisfaction, fat talk engagement, and positive impression management. One week later, they were randomized to view one of the two scenarios, followed by assessment of mood, fat talk engagement, social acceptability, and social likeability. Results indicated that the challenging fat talk vignette (versus the fat talk vignette) yielded less negative affect and fat talk and was perceived as more socially attractive with a more likeable target character. Baseline body dissatisfaction, baseline fat talk tendencies, and momentary negative affect predicted post-exposure fat talk engagement. Current findings highlight possibilities for implementing feminist language and psychoeducation in fat talk prevention efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Broadbent, Elizabeth; Kumar, Vinayak; Li, Xingyan; Sollers, John; Stafford, Rebecca Q; MacDonald, Bruce A; Wegner, Daniel M
2013-01-01
It is important for robot designers to know how to make robots that interact effectively with humans. One key dimension is robot appearance and in particular how humanlike the robot should be. Uncanny Valley theory suggests that robots look uncanny when their appearance approaches, but is not absolutely, human. An underlying mechanism may be that appearance affects users' perceptions of the robot's personality and mind. This study aimed to investigate how robot facial appearance affected perceptions of the robot's mind, personality and eeriness. A repeated measures experiment was conducted. 30 participants (14 females and 16 males, mean age 22.5 years) interacted with a Peoplebot healthcare robot under three conditions in a randomized order: the robot had either a humanlike face, silver face, or no-face on its display screen. Each time, the robot assisted the participant to take his/her blood pressure. Participants rated the robot's mind, personality, and eeriness in each condition. The robot with the humanlike face display was most preferred, rated as having most mind, being most humanlike, alive, sociable and amiable. The robot with the silver face display was least preferred, rated most eerie, moderate in mind, humanlikeness and amiability. The robot with the no-face display was rated least sociable and amiable. There was no difference in blood pressure readings between the robots with different face displays. Higher ratings of eeriness were related to impressions of the robot with the humanlike face display being less amiable, less sociable and less trustworthy. These results suggest that the more humanlike a healthcare robot's face display is, the more people attribute mind and positive personality characteristics to it. Eeriness was related to negative impressions of the robot's personality. Designers should be aware that the face on a robot's display screen can affect both the perceived mind and personality of the robot.
Unscientific America: What's the Problem? What's the Solution?
NASA Astrophysics Data System (ADS)
Mooney, C.
2012-08-01
It's a staggering paradox. Thee United States has the finest universities in the world and invests more money in scientific research than any other nation. Yet we're allowing ourselves to fall behind in science education, and behind other countries like China, in green energy innovation. Meanwhile, most Americans know very little about science, and often don't even understand what they're missing - or why science matters to their lives. No wonder we have unending battles over the science of global warming, the teaching of evolution, and whether or not to vaccinate our children. How could the U.S. become so...unscientific? And what can we do about it? How can we make science popular again, or even...sexy? In this talk, Chris Mooney explains the reasons for the gap between science and the U.S. public, and what we can do to bring these two worlds - both of which need the other - back together again.
Synchronization of eukaryotic flagella in vivo: from two to thousands
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.
2012-02-01
From unicellular organisms as small as a few microns to the largest vertebrates on Earth, we find groups of beating flagella or cilia that exhibit striking spatiotemporal organization. This may take the form of precise frequency and phase locking, as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates such as Paramecium and in our own respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. This talk will summarize recent work using the unicellular alga Chlamydomonas reinhardtii and its multicellular cousin Volvox carteri to study in detail the nature of flagellar synchronization and its possible hydrodynamic origins.
NASA Participates in Mars Day Activities at the National Air and Space Museum
2017-07-21
NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet. Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.
NASA Participates in Mars Day Activities at National Air and Space Museum
2017-07-21
NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet. Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
Development of autonomous eating mechanism for biomimetic robots
NASA Astrophysics Data System (ADS)
Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung
2005-12-01
Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.
The climbing crawling robot (a unique cable robot for space and Earth)
NASA Technical Reports Server (NTRS)
Kerley, James J.; May, Edward; Eklund, Wayne
1991-01-01
Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.
System and method for seamless task-directed autonomy for robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis; Bruemmer, David; Few, Douglas
Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
NASA Astrophysics Data System (ADS)
Schulze, L.; Behling, S.; Buhrs, S.
2008-06-01
The usage of Automated Guided Vehicle Systems (AGVS) is growing. This has not always been the case in the past. A new record of the sells numbers is the result of inventive developments, new applications and modern thinking. One market that AGVS were not able to thoroughly conquer yet were rapidly changing logistics environments. The advantages in recurrent transportation with AGVS used to be hindered by the needs of flexibility. When nowadays managers talk about Flexible Manufacturing Systems (FMS) there is no reason not to consider AGVS. Fixed guidelines, permanent transfer stations and static routes are no necessity for most AGVS producers. Flexible Manufacturing Systems can raise profitability with AGVS. When robots start saving billions in production costs, the next step at same plants are automated materials handling systems. Today, there are hundreds of instances of computer-controlled systems designed to handle and transport materials, many of which have replaced conventional human-driven platform trucks. Reduced costs due to damages and failures, tracking and tracing as well as improved production scheduling on top of fewer personnel needs are only some of the advantages.
Topological mechanics: from metamaterials to active matter
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo
2015-03-01
Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.
Training in urological robotic surgery. Future perspectives.
El Sherbiny, Ahmed; Eissa, Ahmed; Ghaith, Ahmed; Morini, Elena; Marzotta, Lucilla; Sighinolfi, Maria Chiara; Micali, Salvatore; Bianchi, Giampaolo; Rocco, Bernardo
2018-01-01
As robotics are becoming more integrated into the medical field, robotic training is becoming more crucial in order to overcome the lack of experienced robotic surgeons. However, there are several obstacles facing the development of robotic training programs like the high cost of training and the increased operative time during the initial period of the learning curve, which, in turn increase the operative cost. Robotic-assisted laparoscopic prostatectomy is the most commonly performed robotic surgery. Moreover, robotic surgery is becoming more popular among urologic oncologists and pediatric urologists. The need for a standardized and validated robotic training curriculum was growing along with the increased number of urologic centers and institutes adopting the robotic technology. Robotic training includes proctorship, mentorship or fellowship, telementoring, simulators and video training. In this chapter, we are going to discuss the different training methods, how to evaluate robotic skills, the available robotic training curriculum, and the future perspectives.
Robotic nurse duties in the urology operative room: 11 years of experience.
Abdel Raheem, Ali; Song, Hyun Jung; Chang, Ki Don; Choi, Young Deuk; Rha, Koon Ho
2017-04-01
The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team "nurse coordinator, scrub-nurse and circulating-nurse" has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.
Takahashi, Hideo; Zaidi, Nisar; Berber, Eren
2016-10-01
There has been a recent interest in the use of Indocyanine green (ICG) imaging. The aim of this study is to review our initial experience in liver surgery. ICG fluorescent imaging was used in 15 patients undergoing surgical treatment of their liver tumors between 2015 and 2016. ICG imaging was initially performed, followed by intraoperative ultrasound (IOUS). Findings on fluorescence were compared with preoperative cross-sectional imaging and IOUS. Sixty-two lesions were identified, with 34 located superficially and 28 deeply in the liver. While 13 patients underwent surgery for malignant liver metastases, two patients had operations for benign liver diseases. Seven patients underwent open or robotic liver resections, five laparoscopic microwave liver ablation, and three diagnostic laparoscopy. ICG identified all of the superficial lesions. IOUS identified 98% of all lesions. The most benefit of ICG was in showing the margins of the superficial lesions in real-time and guiding surgical treatment, which was limited by IOUS. This is the first North American study to evaluate the potential utility of ICG during liver surgery. Its major benefit seems to be in providing real-time feedback to the surgeon about the margins of superficial tumors for resection or ablation. J. Surg. Oncol. 2016;114:625-629. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
International Space Station (ISS)
2002-06-01
Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Expedition Crews Four and Five and STS-111 Crew Aboard the ISS
NASA Technical Reports Server (NTRS)
2002-01-01
Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse
Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.
2009-01-01
We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166
Vision servo of industrial robot: A review
NASA Astrophysics Data System (ADS)
Zhang, Yujin
2018-04-01
Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.
Robotics, a Kennedy Educate to Innovate (KETI) PowerPoint Presentation
NASA Technical Reports Server (NTRS)
Davila, Dina
2010-01-01
This presentation is a series of lecture notes for a lecture on Robotics. It describes the concept of robots and differentiates between robotic devices and "true robots". It also reviews the reasons for why we use robots, generally, and specificaly.why NASA uses robots. It also explains what an end effector is and explores some of the careers available in the field of robotics.
Competencies Identification for Robotics Training.
ERIC Educational Resources Information Center
Tang, Le D.
A study focused on the task of identifying competencies for robotics training. The level of robotics training was limited to that of robot technicians. Study objectives were to obtain a list of occupational competencies; to rank their order of importance; and to compare opinions from robot manufacturers, robot users, and robotics educators…
Gutierrez, Mario; Ditto, Richard; Roy, Sanjoy
2018-05-09
A comprehensive review of operative outcomes of robotic surgical procedures performed with the da Vinci robotic system using either endoscopic linear staplers (ELS) or robotic staplers is not available in the published literature. We conducted a literature search to identify publications of robotic surgical procedures in all specialties performed with either ELS or robotic staplers. Twenty-nine manuscripts and six abstracts with relevant information on operative outcomes published from January 2011 to September 2017 were identified. Given the relatively recent market release of robotic staplers in 2014, comparative perioperative clinical outcomes data on the performance of ELS vs. robotic staplers in robotic surgery is very sparse in the published literature. Only three comparative studies of surgeries with the da Vinci robotic system plus ELS vs. da Vinci plus robotic staplers were identified; two in robotic colorectal surgery and the other in robotic gastric bypass surgery. These comparative studies illustrate some nuances in device design and usability, which may impact outcomes and cost, and therefore may be important to consider when selecting the appropriate stapling technologies/technique for different robotic surgeries. Comparative perioperative data on the use of ELS vs. robotic staplers in robotic surgery is scarce (three studies), and current literature identifies both types of devices as safe and effective. Given the longer clinical history of ELS and its relatively more robust evidence base, there may be trade-offs to consider before switching to robotic staplers in certain robotic procedures. However, this literature review may serve as an initial reference for future research.
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
View of the SSRMS / Canadarm2 during Expedition Six
2003-01-18
ISS006-E-21378 (18 January 2003) --- A portion of the Canadarm2, or Space Station Remote Manipulator System (SSRMS), was photographed by one of the Expedition 6 crewmembers onboard the International Space Station (ISS). Just above Canadarm2s elbow are the Pleiades, also known as the Seven Sisters. These seven stars, arranged like a little dipper, are just the brightest members of a cluster of more than 3000 stars lying 400 light years from Earth. Between the robotic arm and the Pleiades is Earth itself. Below, the cloudy landscape is lit by a nearly-full Moon (out of frame). Above, the edge of Earths atmosphere is defined by a layer of glowing aira brownish-yellow band of light stretching all the way across the image. And finally, just under Canadarms elbow, is a streak of greenthe Aurora Borealis, also known as northern lights.
NASA Astrophysics Data System (ADS)
Zheng, Taixiong
2005-12-01
A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.
Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.
2004-02-03
A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.
Fundamentals of soft robot locomotion
2017-01-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. PMID:28539483
Fundamentals of soft robot locomotion.
Calisti, M; Picardi, G; Laschi, C
2017-05-01
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics. © 2017 The Author(s).
Scientifically speaking: Identifying, analyzing, and promoting science talk in small groups
NASA Astrophysics Data System (ADS)
Holthuis, Nicole Inamine
In this dissertation I define, document, and analyze the nature of students' science talk as they work in cooperative learning groups. Three questions form the basis of this research. First, what is science talk? Second, how much and what kind of science talk did students do? And, third, what conditions help promote or inhibit students' science talk? This study was conducted in a total of six classrooms in three high schools. I videotaped and audiotaped students as they worked in small groups during the course of an ecology unit. I analyzed this videotape data and field notes using both quantitative and qualitative methods. I define science talk as talk that serves to move students along in terms of the science (both content and process) required or suggested by the activity. More specifically, I identified five epistemological characteristics that delineate what counts as scientific knowledge and, subsequently, science talk. From this definition, I developed an analytic framework and science talk observation instrument to document the quantity and level of student and teacher talk during groupwork. Analysis of the data from this instrument indicates that the overall level of students' science talk is considerable and students do significantly more science talk than school talk. I also found that while the overall level and type of science talk does not vary by class or by school, it does vary by activity type. Finally, my analysis suggests that science talk does not vary by gender composition of the group. I explored the classroom conditions that promote or inhibit science talk during groupwork. My findings suggest that, among other things, teachers can promote science talk by delegating authority to students, by emphasizing content and the big idea, by implementing open-ended tasks, and by modeling science talk. In conclusion, the findings described in this dissertation point teachers and researchers toward ways in which they may improve practice in order to foster more science talk. In addition, my Science Talk Instrument and analytic framework provides teachers, teacher educators, and researchers a means of understanding and evaluating student talk in small groups.
Alac, Morana; Movellan, Javier; Tanaka, Fumihide
2011-12-01
Social roboticists design their robots to function as social agents in interaction with humans and other robots. Although we do not deny that the robot's design features are crucial for attaining this aim, we point to the relevance of spatial organization and coordination between the robot and the humans who interact with it. We recover these interactions through an observational study of a social robotics laboratory and examine them by applying a multimodal interactional analysis to two moments of robotics practice. We describe the vital role of roboticists and of the group of preverbal infants, who are involved in a robot's design activity, and we argue that the robot's social character is intrinsically related to the subtleties of human interactional moves in laboratories of social robotics. This human involvement in the robot's social agency is not simply controlled by individual will. Instead, the human-machine couplings are demanded by the situational dynamics in which the robot is lodged.
Lee, Gyusung I; Lee, Mija R; Clanton, Tameka; Clanton, Tamera; Sutton, Erica; Park, Adrian E; Marohn, Michael R
2014-02-01
We conducted this study to investigate how physical and cognitive ergonomic workloads would differ between robotic and laparoscopic surgeries and whether any ergonomic differences would be related to surgeons' robotic surgery skill level. Our hypothesis is that the unique features in robotic surgery will demonstrate skill-related results both in substantially less physical and cognitive workload and uncompromised task performance. Thirteen MIS surgeons were recruited for this institutional review board-approved study and divided into three groups based on their robotic surgery experiences: laparoscopy experts with no robotic experience, novices with no or little robotic experience, and robotic experts. Each participant performed six surgical training tasks using traditional laparoscopy and robotic surgery. Physical workload was assessed by using surface electromyography from eight muscles (biceps, triceps, deltoid, trapezius, flexor carpi ulnaris, extensor digitorum, thenar compartment, and erector spinae). Mental workload assessment was conducted using the NASA-TLX. The cumulative muscular workload (CMW) from the biceps and the flexor carpi ulnaris with robotic surgery was significantly lower than with laparoscopy (p < 0.05). Interestingly, the CMW from the trapezius was significantly higher with robotic surgery than with laparoscopy (p < 0.05), but this difference was only observed in laparoscopic experts (LEs) and robotic surgery novices. NASA-TLX analysis showed that both robotic surgery novices and experts expressed lower global workloads with robotic surgery than with laparoscopy, whereas LEs showed higher global workload with robotic surgery (p > 0.05). Robotic surgery experts and novices had significantly higher performance scores with robotic surgery than with laparoscopy (p < 0.05). This study demonstrated that the physical and cognitive ergonomics with robotic surgery were significantly less challenging. Additionally, several ergonomic components were skill-related. Robotic experts could benefit the most from the ergonomic advantages in robotic surgery. These results emphasize the need for well-structured training and well-defined ergonomics guidelines to maximize the benefits utilizing the robotic surgery.
Recent trends for practical rehabilitation robotics, current challenges and the future.
Yakub, Fitri; Md Khudzari, Ahmad Zahran; Mori, Yasuchika
2014-03-01
This paper presents and studies various selected literature primarily from conference proceedings, journals and clinical tests of the robotic, mechatronics, neurology and biomedical engineering of rehabilitation robotic systems. The present paper focuses of three main categories: types of rehabilitation robots, key technologies with current issues and future challenges. Literature on fundamental research with some examples from commercialized robots and new robot development projects related to rehabilitation are introduced. Most of the commercialized robots presented in this paper are well known especially to robotics engineers and scholars in the robotic field, but are less known to humanities scholars. The field of rehabilitation robot research is expanding; in light of this, some of the current issues and future challenges in rehabilitation robot engineering are recalled, examined and clarified with future directions. This paper is concluded with some recommendations with respect to rehabilitation robots.
MODEL2TALK: An Intervention to Promote Productive Classroom Talk
ERIC Educational Resources Information Center
van der Veen, Chiel; van der Wilt, Femke; van Kruistum, Claudia; van Oers, Bert; Michaels, Sarah
2017-01-01
This article describes the MODEL2TALK intervention, which aims to promote young children's oral communicative competence through productive classroom talk. Productive classroom talk provides children in early childhood education with many opportunities to talk and think together. Results from a large-scale study show that productive classroom talk…
Towards a sustainable modular robot system for planetary exploration
NASA Astrophysics Data System (ADS)
Hossain, S. G. M.
This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.
[Rehabilitation and nursing-care robots].
Hachisuka, Kenji
2016-04-01
In the extremely aged society, rehabilitation staff will be required to provide ample rehabilitation training for more stroke patients and more aged people with disabilities despite limitations in human resources. A nursing-care robot is one potential solution from the standpoint of rehabilitation. The nursing-care robot is defined as a robot which assists aged people and persons with disabilities in daily life and social life activities. The nursing-care robot consists of an independent support robot, caregiver support robot, and life support robot. Although many nursing-care robots have been developed, the most appropriate robot must be selected according to its features and the needs of patients and caregivers in the field of nursing-care.
Sports Training Support Method by Self-Coaching with Humanoid Robot
NASA Astrophysics Data System (ADS)
Toyama, S.; Ikeda, F.; Yasaka, T.
2016-09-01
This paper proposes a new training support method called self-coaching with humanoid robots. In the proposed method, two small size inexpensive humanoid robots are used because of their availability. One robot called target robot reproduces motion of a target player and another robot called reference robot reproduces motion of an expert player. The target player can recognize a target technique from the reference robot and his/her inadequate skill from the target robot. Modifying the motion of the target robot as self-coaching, the target player could get advanced cognition. Some experimental results show some possibility as the new training method and some issues of the self-coaching interface program as a future work.
Master-slave robotic system for needle indentation and insertion.
Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan
2017-12-01
Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.
Interaction dynamics of multiple autonomous mobile robots in bounded spatial domains
NASA Technical Reports Server (NTRS)
Wang, P. K. C.
1989-01-01
A general navigation strategy for multiple autonomous robots in a bounded domain is developed analytically. Each robot is modeled as a spherical particle (i.e., an effective spatial domain about the center of mass); its interactions with other robots or with obstacles and domain boundaries are described in terms of the classical many-body problem; and a collision-avoidance strategy is derived and combined with homing, robot-robot, and robot-obstacle collision-avoidance strategies. Results from homing simulations involving (1) a single robot in a circular domain, (2) two robots in a circular domain, and (3) one robot in a domain with an obstacle are presented in graphs and briefly characterized.
Research state-of-the-art of mobile robots in China
NASA Astrophysics Data System (ADS)
Wu, Lin; Zhao, Jinglun; Zhang, Peng; Li, Shiqing
1991-03-01
Several newly developed mobile robots in china are described in the paper. It includes masterslave telerobot sixleged robot biped walking robot remote inspection robot crawler moving robot and autonomous mobi le vehicle . Some relevant technology are also described.
Multi-Robot Assembly Strategies and Metrics.
Marvel, Jeremy A; Bostelman, Roger; Falco, Joe
2018-02-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.
Multi-Robot Assembly Strategies and Metrics
MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE
2018-01-01
We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234
Liang, Yuhua Jake; Lee, Seungcheol Austin
2016-09-01
Human-robot interaction (HRI) will soon transform and shift the communication landscape such that people exchange messages with robots. However, successful HRI requires people to trust robots, and, in turn, the trust affects the interaction. Although prior research has examined the determinants of human-robot trust (HRT) during HRI, no research has examined the messages that people received before interacting with robots and their effect on HRT. We conceptualize these messages as SMART (Strategic Messages Affecting Robot Trust). Moreover, we posit that SMART can ultimately affect actual HRI outcomes (i.e., robot evaluations, robot credibility, participant mood) by affording the persuasive influences from user-generated content (UGC) on participatory Web sites. In Study 1, participants were assigned to one of two conditions (UGC/control) in an original experiment of HRT. Compared with the control (descriptive information only), results showed that UGC moderated the correlation between HRT and interaction outcomes in a positive direction (average Δr = +0.39) for robots as media and robots as tools. In Study 2, we explored the effect of robot-generated content but did not find similar moderation effects. These findings point to an important empirical potential to employ SMART in future robot deployment.
Modelling cooperation of industrial robots as multi-agent systems
NASA Astrophysics Data System (ADS)
Hryniewicz, P.; Banas, W.; Foit, K.; Gwiazda, A.; Sekala, A.
2017-08-01
Nowadays, more and more often in a cell is more than one robot, there is also a dual arm robots, because of this cooperation of two robots in the same space becomes more and more important. Programming robotic cell consisting of two or more robots are currently performed separately for each element of the robot and the cell. It is performed only synchronization programs, but no robot movements. In such situations often placed industrial robots so they do not have common space so the robots are operated separately. When industrial robots are a common space this space can occupy only one robot the other one must be outside the common space. It is very difficult to find applications where two robots are in the same workspace. It was tested but one robot did not do of movement when moving the second and waited for permission to move from the second when it sent a permit - stop the move. Such programs are very difficult and require a lot of experience from the programmer and must be tested separately at the beginning and then very slowly under control. Ideally, the operator takes care of exactly one robot during the test and it is very important to take special care.
Ando, Noriyasu; Kanzaki, Ryohei
2017-09-01
The use of mobile robots is an effective method of validating sensory-motor models of animals in a real environment. The well-identified insect sensory-motor systems have been the major targets for modeling. Furthermore, mobile robots implemented with such insect models attract engineers who aim to avail advantages from organisms. However, directly comparing the robots with real insects is still difficult, even if we successfully model the biological systems, because of the physical differences between them. We developed a hybrid robot to bridge the gap. This hybrid robot is an insect-controlled robot, in which a tethered male silkmoth (Bombyx mori) drives the robot in order to localize an odor source. This robot has the following three advantages: 1) from a biomimetic perspective, the robot enables us to evaluate the potential performance of future insect-mimetic robots; 2) from a biological perspective, the robot enables us to manipulate the closed-loop of an onboard insect for further understanding of its sensory-motor system; and 3) the robot enables comparison with insect models as a reference biological system. In this paper, we review the recent works regarding insect-controlled robots and discuss the significance for both engineering and biology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cruwys, Tegan; Leverington, Carly T; Sheldon, Anne M
2016-01-01
Fat talk is a form of self-degrading, thin-ideal endorsing communication that occurs within female friendship groups. Previous studies have suggested negative associations with wellbeing, but have been predominantly correlational and based on self-report. This study aimed to assess the causal relationship between fat talk and the correlates of disordered eating (thin-ideal internalization, body dissatisfaction, negative affect, and dieting intentions) by experimentally manipulating fat talk in existing friendship groups and measuring naturalistic expression of fat talk and its effects. Participants were 85 women aged 17-25 who completed the experiment in friendship pairs. They were randomly assigned to a condition in which their friend expressed fat talk, positive body talk, or neutral talk. This study found evidence of a causal link between listening to friends fat talk and increased correlates of disordered eating. The negative effects of listening to fat talk were fully mediated by fat talk expression. This study also revealed a social function of fat talk, whereby participants rated their friends more positively when they were perceived to behave consistently with group norms, either pro- or anti-fat talk. Positive body talk showed none of the negative effects of fat talk, and was considered socially acceptable regardless of existing friendship group norms. These findings indicate that fat talk is a mechanism through which the thin ideal is transmitted between individuals. Interventions at the level of the friendship group to challenge norms and communication styles may break the link between societal risk factors and individual risk of eating disorders. © 2015 Wiley Periodicals, Inc.
Comparison of precision and speed in laparoscopic and robot-assisted surgical task performance.
Zihni, Ahmed; Gerull, William D; Cavallo, Jaime A; Ge, Tianjia; Ray, Shuddhadeb; Chiu, Jason; Brunt, L Michael; Awad, Michael M
2018-03-01
Robotic platforms have the potential advantage of providing additional dexterity and precision to surgeons while performing complex laparoscopic tasks, especially for those in training. Few quantitative evaluations of surgical task performance comparing laparoscopic and robotic platforms among surgeons of varying experience levels have been done. We compared measures of quality and efficiency of Fundamentals of Laparoscopic Surgery task performance on these platforms in novices and experienced laparoscopic and robotic surgeons. Fourteen novices, 12 expert laparoscopic surgeons (>100 laparoscopic procedures performed, no robotics experience), and five expert robotic surgeons (>25 robotic procedures performed) performed three Fundamentals of Laparoscopic Surgery tasks on both laparoscopic and robotic platforms: peg transfer (PT), pattern cutting (PC), and intracorporeal suturing. All tasks were repeated three times by each subject on each platform in a randomized order. Mean completion times and mean errors per trial (EPT) were calculated for each task on both platforms. Results were compared using Student's t-test (P < 0.05 considered statistically significant). Among novices, greater errors were noted during laparoscopic PC (Lap 2.21 versus Robot 0.88 EPT, P < 0.001). Among expert laparoscopists, greater errors were noted during laparoscopic PT compared with robotic (PT: Lap 0.14 versus Robot 0.00 EPT, P = 0.04). Among expert robotic surgeons, greater errors were noted during laparoscopic PC compared with robotic (Lap 0.80 versus Robot 0.13 EPT, P = 0.02). Among expert laparoscopists, task performance was slower on the robotic platform compared with laparoscopy. In comparisons of expert laparoscopists performing tasks on the laparoscopic platform and expert robotic surgeons performing tasks on the robotic platform, expert robotic surgeons demonstrated fewer errors during the PC task (P = 0.009). Robotic assistance provided a reduction in errors at all experience levels for some laparoscopic tasks, but no benefit in the speed of task performance. Robotic assistance may provide some benefit in precision of surgical task performance. Copyright © 2017 Elsevier Inc. All rights reserved.
The Emergence of Inclusive Exploratory Talk in Primary Students' Peer Interaction
ERIC Educational Resources Information Center
Rajala, Antti; Hilppo, Jaakko; Lipponen, Lasse
2012-01-01
In this study, we examine a prominent type of classroom talk, exploratory talk, in primary school peer interactions. Exploratory talk has been shown to be productive in facilitating problem solving and fostering school achievement. However, within the growing body of research concerning exploratory talk, the relation between exploratory talk and…
Socially intelligent robots: dimensions of human-robot interaction.
Dautenhahn, Kerstin
2007-04-29
Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.
Sabanović, Selma
2014-06-01
Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science.
Characteristics of Behavior of Robots with Emotion Model
NASA Astrophysics Data System (ADS)
Sato, Shigehiko; Nozawa, Akio; Ide, Hideto
Cooperated multi robots system has much dominance in comparison with single robot system. It is able to adapt to various circumstances and has a flexibility for variation of tasks. However it has still problems to control each robot, though methods for control multi robots system have been studied. Recently, the robots have been coming into real scene. And emotion and sensitivity of the robots have been widely studied. In this study, human emotion model based on psychological interaction was adapt to multi robots system to achieve methods for organization of multi robots. The characteristics of behavior of multi robots system achieved through computer simulation were analyzed. As a result, very complexed and interesting behavior was emerged even though it has rather simple configuration. And it has flexiblity in various circumstances. Additional experiment with actual robots will be conducted based on the emotion model.
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
International Assessment of Research and Development in Micromanufacturing
2005-10-01
83 7.1. Female robot used for robot artificial insemination project...90 7.2. Male robot used for robot artificial insemination project...include building a desktop factory, “robot mating” using artificial insemination (a fish egg was actually fertilized by his students’ robots
Testing the norm to fat talk for women of varying size: what's weight got to do with it?
Barwick, Amy; Bazzini, Doris; Martz, Denise; Rocheleau, Courtney; Curtin, Lisa
2012-01-01
"Fat talk" is the conversational phenomenon whereby people berate their bodies in social circles. This study assessed whether norms of fat talk differ for overweight versus average-weight women. Sixty-three women read a script depicting a fat talk situation during which an overweight or average-weight target woman engaged in positive or negative body talk. Regardless of the target's weight, participants perceived it to be more typical and less surprising if she engaged in negative body talk (fat talk) rather than positive body talk. Furthermore, fat talk from either weight group did not affect the likeability of the target, but women, overweight or of average weight, who engaged in positive talk were perceived to have more socially desirable personality characteristics. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heath Pastore, Tracy; Barnes, Mitchell; Hallman, Rory
2005-05-01
Robot technology is developing at a rapid rate for both commercial and Department of Defense (DOD) applications. As a result, the task of managing both technology and experience information is growing. In the not-to-distant past, tracking development efforts of robot platforms, subsystems and components was not too difficult, expensive, or time consuming. To do the same today is a significant undertaking. The Mobile Robot Knowledge Base (MRKB) provides the robotics community with a web-accessible, centralized resource for sharing information, experience, and technology to more efficiently and effectively meet the needs of the robot system user. The resource includes searchable information on robot components, subsystems, mission payloads, platforms, and DOD robotics programs. In addition, the MRKB website provides a forum for technology and information transfer within the DOD robotics community and an interface for the Robotic Systems Pool (RSP). The RSP manages a collection of small teleoperated and semi-autonomous robotic platforms, available for loan to DOD and other qualified entities. The objective is to put robots in the hands of users and use the test data and fielding experience to improve robot systems.
Wang, Rosalie H; Sudhama, Aishwarya; Begum, Momotaz; Huq, Rajibul; Mihailidis, Alex
2017-01-01
Robots have the potential to both enable older adults with dementia to perform daily activities with greater independence, and provide support to caregivers. This study explored perspectives of older adults with Alzheimer's disease (AD) and their caregivers on robots that provide stepwise prompting to complete activities in the home. Ten dyads participated: Older adults with mild-to-moderate AD and difficulty completing activity steps, and their family caregivers. Older adults were prompted by a tele-operated robot to wash their hands in the bathroom and make a cup of tea in the kitchen. Caregivers observed interactions. Semi-structured interviews were conducted individually. Transcribed interviews were thematically analyzed. Three themes summarized responses to robot interactions: contemplating a future with assistive robots, considering opportunities with assistive robots, and reflecting on implications for social relationships. Older adults expressed opportunities for robots to help in daily activities, were open to the idea of robotic assistance, but did not want a robot. Caregivers identified numerous opportunities and were more open to robots. Several wanted a robot, if available. Positive consequences of robots in caregiving scenarios could include decreased frustration, stress, and relationship strain, and increased social interaction via the robot. A negative consequence could be decreased interaction with caregivers. Few studies have investigated in-depth perspectives of older adults with dementia and their caregivers following direct interaction with an assistive prompting robot. To fulfill the potential of robots, continued dialogue between users and developers, and consideration of robot design and caregiving relationship factors are necessary.
Lounging with robots--social spaces of residents in care: A comparison trial.
Peri, Kathryn; Kerse, Ngaire; Broadbent, Elizabeth; Jayawardena, Chandimal; Kuo, Tony; Datta, Chandan; Stafford, Rebecca; MacDonald, Bruce
2016-03-01
To investigate whether robots could reduce resident sleeping and stimulate activity in the lounges of an older persons' care facility. Non-randomised controlled trial over a 12-week period. The intervention involved situating robots in low-level and high-dependency ward lounges and a comparison with similar lounges without robots. A time sampling observation method was utilised to observe resident behaviour, including sleep and activities over periods of time, to compare interactions in robot and no robot lounges. The use of robots was modest; overall 13% of residents in robot lounges used the robot. Utilisation was higher in the low-level care lounges; on average, 23% used the robot, whereas in high-level care lounges, the television being on was the strongest predictor of sleep. This study found that having robots in lounges was mostly a positive experience. The amount of time residents slept during the day was significantly less in low-level care lounges that had a robot. © 2015 AJA Inc.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
The Role of Reciprocity in Verbally Persuasive Robots.
Lee, Seungcheol Austin; Liang, Yuhua Jake
2016-08-01
The current research examines the persuasive effects of reciprocity in the context of human-robot interaction. This is an important theoretical and practical extension of persuasive robotics by testing (1) if robots can utilize verbal requests and (2) if robots can utilize persuasive mechanisms (e.g., reciprocity) to gain human compliance. Participants played a trivia game with a robot teammate. The ostensibly autonomous robot helped (or failed to help) the participants by providing the correct (vs. incorrect) trivia answers. Then, the robot directly asked participants to complete a 15-minute task for pattern recognition. Compared to no help, results showed that a robot's prior helping behavior significantly increased the likelihood of compliance (60 percent vs. 33 percent). Interestingly, participants' evaluations toward the robot (i.e., competence, warmth, and trustworthiness) did not predict compliance. These results also provided an insightful comparison showing that participants complied at similar rates with the robot and with computer agents. This result documents a clear empirically powerful potential for the role of verbal messages in persuasive robotics.
The Rise of Robots and the Implications for Military Organizations
2013-09-01
assesses the impact of robots on military organizations and suggests the way forward for military organizations to facilitate the adoption of robots...organizational processes in the long term. Military organizations will benefit from a better understanding of the impact of robots and the resulting...organizations, projects the adoption timeframe for robots in military organizations, proposes how robots might evolve, assesses the impact of robots
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-12-15
In animal studies, robots have been recently used as a valid tool for testing a wide spectrum of hypotheses. These robots often exploit visual or auditory cues to modulate animal behavior. The propensity of zebrafish, a model organism in biological studies, toward fish with similar color patterns and shape has been leveraged to design biologically inspired robots that successfully attract zebrafish in preference tests. With an aim of extending the application of such robots to field studies, here, we investigate the response of zebrafish to multiple robotic fish swimming at different speeds and in varying arrangements. A soft real-time multi-target tracking and control system remotely steers the robots in circular trajectories during the experimental trials. Our findings indicate a complex behavioral response of zebrafish to biologically inspired robots. More robots produce a significant change in salient measures of stress, with a fast robot swimming alone causing more freezing and erratic activity than two robots swimming slowly together. In addition, fish spend more time in the proximity of a robot when they swim far apart than when the robots swim close to each other. Increase in the number of robots also significantly alters the degree of alignment of fish motion with a robot. Results from this study are expected to advance our understanding of robot perception by live animals and aid in hypothesis-driven studies in unconstrained free-swimming environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Fiore, Stephen M; Wiltshire, Travis J; Lobato, Emilio J C; Jentsch, Florian G; Huang, Wesley H; Axelrod, Benjamin
2013-01-01
As robots are increasingly deployed in settings requiring social interaction, research is needed to examine the social signals perceived by humans when robots display certain social cues. In this paper, we report a study designed to examine how humans interpret social cues exhibited by robots. We first provide a brief overview of perspectives from social cognition in humans and how these processes are applicable to human-robot interaction (HRI). We then discuss the need to examine the relationship between social cues and signals as a function of the degree to which a robot is perceived as a socially present agent. We describe an experiment in which social cues were manipulated on an iRobot Ava(TM) mobile robotics platform in a hallway navigation scenario. Cues associated with the robot's proxemic behavior were found to significantly affect participant perceptions of the robot's social presence and emotional state while cues associated with the robot's gaze behavior were not found to be significant. Further, regardless of the proxemic behavior, participants attributed more social presence and emotional states to the robot over repeated interactions than when they first interacted with it. Generally, these results indicate the importance for HRI research to consider how social cues expressed by a robot can differentially affect perceptions of the robot's mental states and intentions. The discussion focuses on implications for the design of robotic systems and future directions for research on the relationship between social cues and signals.
NASA Astrophysics Data System (ADS)
Kletetschka, G.; Wasilewski, P. J.; Ocampo, A.; Pope, K.
2001-05-01
A major focus in the search for fossil life on Mars is on recognition of the proper material on the surface. Heavily cratered surface suggests high concentration of fluidized ejecta deposits. Because magnetism of rocks is an easy measure for remote robotic tools we collected samples of ejecta blanket deposits in southern Mexico and throughout Belize as a Martian analog. The ejecta layer (spheroid bed) that blankets the preexisting Cretaceous dolomite units consists of green glassy fragments, pink and white spheroids (accretionary lapilli) and darker fragments of limestone. The spheroid bed is overlain by a coarse unit of pebbles, cobbles, and boulders, which in more distal locations is composed of a pebble conglomerate. Clasts in the conglomerate (Pooks Pebbles) have striated features consistent with hypervelocity collisions during impact. We examined the magnetic properties of individual fragments within the spheroid bed. Green glassy fragments are highly paramagnetic (0.2 to 0.3 Am2kg-1 at 2 Tesla field) with no ferromagnetic component detected. Pink spheroids are slightly paramagnetic (0.001 to 0.04 Am2kg-1 at 2 Tesla field) and commonly contain soft ferromagnetic component (saturation magnetization (Ms) = 0.02 to 0.03 Am2kg-1). White spheroids have more or less equal amount of paramagnetic and diamagnetic components (-0.08 to 0.03 Am2kg-1 at 2 Tesla field) and no apparent ferromagnetism. Darker fragments are diamagnetic (-0.05 to -0.02 Am2kg-1 at 2 Tesla field) with absence of ferromagnetism. Intense paramagnetic properties of the glass allow easy distinction of glass containing samples. Pink spheroids appear to contain the largest amount of ferromagnetic particles. Diamagnetic dark grains are most likely fragments of limestone. Pebbles from the conglomerate unit are dolomite and consequently diamagnetic. The diamagnetism was established with field magnetic susceptibility measurements. Pebbles have very small natural remanent magnetization (NRM). Thermal remanent magnetization (TRM) acquisition in laboratory field (0.04 mT) does, however, indicate that carriers capable of acquiring TRM are present. Absence of TRM in these pebbles indicates that they were not heated above the Currie point of hematite and/or magnetite (680 C and 570 C respectively) after they were deposited.
Soft Robotics: New Perspectives for Robot Bodyware and Control
Laschi, Cecilia; Cianchetti, Matteo
2014-01-01
The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259
From Illusion to Reality: A Brief History of Robotic Surgery.
Marino, Marco Vito; Shabat, Galyna; Gulotta, Gaspare; Komorowski, Andrzej Lech
2018-06-01
Robotic surgery is currently employed for many surgical procedures, yielding interesting results. We performed an historical review of robots and robotic surgery evaluating some critical phases of its evolution, analyzing its impact on our life and the steps completed that gave the robotics its current popularity. The origins of robotics can be traced back to Greek mythology. Different aspects of robotics have been explored by some of the greatest inventors like Leonardo da Vinci, Pierre Jaquet-Droz, and Wolfgang Von-Kempelen. Advances in many fields of science made possible the development of advanced surgical robots. Over 3000 da Vinci robotic platforms are installed worldwide, and more than 200 000 robotic procedures are performed every year. Despite some potential adverse events, robotic technology seems safe and feasible. It is strictly linked to our life, leading surgeons to a new concept of surgery and training.
In good company? Perception of movement synchrony of a non-anthropomorphic robot.
Lehmann, Hagen; Saez-Pons, Joan; Syrdal, Dag Sverre; Dautenhahn, Kerstin
2015-01-01
Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot's likeability and perceived intelligence using an online video survey. The robot used was Care-O-bot3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants' perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.
Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
Zhao, Xu; Dou, Lihua; Su, Zhong; Liu, Ning
2018-03-16
A snake robot is a type of highly redundant mobile robot that significantly differs from a tracked robot, wheeled robot and legged robot. To address the issue of a snake robot performing self-localization in the application environment without assistant orientation, an autonomous navigation method is proposed based on the snake robot's motion characteristic constraints. The method realized the autonomous navigation of the snake robot with non-nodes and an external assistant using its own Micro-Electromechanical-Systems (MEMS) Inertial-Measurement-Unit (IMU). First, it studies the snake robot's motion characteristics, builds the kinematics model, and then analyses the motion constraint characteristics and motion error propagation properties. Second, it explores the snake robot's navigation layout, proposes a constraint criterion and the fixed relationship, and makes zero-state constraints based on the motion features and control modes of a snake robot. Finally, it realizes autonomous navigation positioning based on the Extended-Kalman-Filter (EKF) position estimation method under the constraints of its motion characteristics. With the self-developed snake robot, the test verifies the proposed method, and the position error is less than 5% of Total-Traveled-Distance (TDD). In a short-distance environment, this method is able to meet the requirements of a snake robot in order to perform autonomous navigation and positioning in traditional applications and can be extended to other familiar multi-link robots.
Dynamic photogrammetric calibration of industrial robots
NASA Astrophysics Data System (ADS)
Maas, Hans-Gerd
1997-07-01
Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot calibration and perform dynamic robot calibration as well as photogrammetric on-line control of a robot in action.
Damholdt, Malene F.; Nørskov, Marco; Yamazaki, Ryuji; Hakli, Raul; Hansen, Catharina Vesterager; Vestergaard, Christina; Seibt, Johanna
2015-01-01
Attitudes toward robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes toward robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i) the information provided about robot functionality, (ii) the number of encounters, (iii) personality type. Fourteen elderly residents at a rehabilitation center participated. Pre-encounter attitudes toward robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid) during their lunch (c. 30 min.) for up to 3 days. Half of the participants were informed that the robot was tele-operated (IC) whilst the other half were naïve to its functioning (UC). Post-encounter assessments of attitudes toward robots and anthropomorphic thinking were undertaken to assess change. Attitudes toward robots were assessed with a new generic 35-items questionnaire (attitudes toward social robots scale: ASOR-5), offering a differentiated conceptualization of the conditions for social interaction. There was no significant difference between the IC and UC groups in attitude change toward robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r = 0.619) and to psychological relatedness (r = 0.581) whilst Neuroticism correlated negatively (r = -0.582) with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes toward robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance reductions, given that robots, unlike computers, are not yet perceived as action targets. Specific personality traits may be indicators of attitude change relating to specific domains of social interaction. Implications and future directions are discussed. PMID:26635646
Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie
2014-01-01
There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults' uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to destigmatize assistive devices.
Wu, Ya-Huei; Wrobel, Jérémy; Cornuet, Mélanie; Kerhervé, Hélène; Damnée, Souad; Rigaud, Anne-Sophie
2014-01-01
Background There is growing interest in investigating acceptance of robots, which are increasingly being proposed as one form of assistive technology to support older adults, maintain their independence, and enhance their well-being. In the present study, we aimed to observe robot-acceptance in older adults, particularly subsequent to a 1-month direct experience with a robot. Subjects and methods Six older adults with mild cognitive impairment (MCI) and five cognitively intact healthy (CIH) older adults were recruited. Participants interacted with an assistive robot in the Living Lab once a week for 4 weeks. After being shown how to use the robot, participants performed tasks to simulate robot use in everyday life. Mixed methods, comprising a robot-acceptance questionnaire, semistructured interviews, usability-performance measures, and a focus group, were used. Results Both CIH and MCI subjects were able to learn how to use the robot. However, MCI subjects needed more time to perform tasks after a 1-week period of not using the robot. Both groups rated similarly on the robot-acceptance questionnaire. They showed low intention to use the robot, as well as negative attitudes toward and negative images of this device. They did not perceive it as useful in their daily life. However, they found it easy to use, amusing, and not threatening. In addition, social influence was perceived as powerful on robot adoption. Direct experience with the robot did not change the way the participants rated robots in their acceptance questionnaire. We identified several barriers to robot-acceptance, including older adults’ uneasiness with technology, feeling of stigmatization, and ethical/societal issues associated with robot use. Conclusion It is important to destigmatize images of assistive robots to facilitate their acceptance. Universal design aiming to increase the market for and production of products that are usable by everyone (to the greatest extent possible) might help to destigmatize assistive devices. PMID:24855349
Accessibility to surgical robot technology and prostate-cancer patient behavior for prostatectomy.
Sugihara, Toru; Yasunaga, Hideo; Matsui, Hiroki; Nagao, Go; Ishikawa, Akira; Fujimura, Tetsuya; Fukuhara, Hiroshi; Fushimi, Kiyohide; Ohori, Makoto; Homma, Yukio
2017-07-01
To examine how surgical robot emergence affects prostate-cancer patient behavior in seeking radical prostatectomy focusing on geographical accessibility. In Japan, robotic surgery was approved in April 2012. Based on data in the Japanese Diagnosis Procedure Combination database between April 2012 and March 2014, distance to nearest surgical robot and interval days to radical prostatectomy (divided by mean interval in 2011: % interval days to radical prostatectomy) were calculated for individual radical prostatectomy cases at non-robotic hospitals. Caseload changes regarding distance to nearest surgical robot and robot introduction were investigated. Change in % interval days to radical prostatectomy was evaluated by multivariate analysis including distance to nearest surgical robot, age, comorbidity, hospital volume, operation type, hospital academic status, bed volume and temporal progress. % Interval days to radical prostatectomy became wider for distance to nearest surgical robot <30 km. When a surgical robot emerged within 30 and 10 km, the prostatectomy caseload in non-robot hospitals reduced by 13 and 18% within 6 months, respectively, while the robot hospitals gained +101% caseload (P < 0.01 for all) Multivariate analyses including 9759 open and 5052 non-robotic minimally invasive radical prostatectomies in 483 non-robot hospitals revealed a significant inverse association between distance to nearest surgical robot and % interval days to radical prostatectomy (B = -17.3% for distance to nearest surgical robot ≥30 km and -11.7% for 10-30 km versus distance to nearest surgical robot <10 km), while younger age, high-volume hospital, open-prostatectomy provider and temporal progress were other significant factors related to % interval days to radical prostatectomy widening (P < 0.05 for all). Robotic surgery accessibility within 30 km would make patients less likely select conventional surgery. The nearer a robot was, the faster the caseload reduction was. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Damholdt, Malene F; Nørskov, Marco; Yamazaki, Ryuji; Hakli, Raul; Hansen, Catharina Vesterager; Vestergaard, Christina; Seibt, Johanna
2015-01-01
Attitudes toward robots influence the tendency to accept or reject robotic devices. Thus it is important to investigate whether and how attitudes toward robots can change. In this pilot study we investigate attitudinal changes in elderly citizens toward a tele-operated robot in relation to three parameters: (i) the information provided about robot functionality, (ii) the number of encounters, (iii) personality type. Fourteen elderly residents at a rehabilitation center participated. Pre-encounter attitudes toward robots, anthropomorphic thinking, and personality were assessed. Thereafter the participants interacted with a tele-operated robot (Telenoid) during their lunch (c. 30 min.) for up to 3 days. Half of the participants were informed that the robot was tele-operated (IC) whilst the other half were naïve to its functioning (UC). Post-encounter assessments of attitudes toward robots and anthropomorphic thinking were undertaken to assess change. Attitudes toward robots were assessed with a new generic 35-items questionnaire (attitudes toward social robots scale: ASOR-5), offering a differentiated conceptualization of the conditions for social interaction. There was no significant difference between the IC and UC groups in attitude change toward robots though trends were observed. Personality was correlated with some tendencies for attitude changes; Extraversion correlated with positive attitude changes to intimate-personal relatedness with the robot (r = 0.619) and to psychological relatedness (r = 0.581) whilst Neuroticism correlated negatively (r = -0.582) with mental relatedness with the robot. The results tentatively suggest that neither information about functionality nor direct repeated encounters are pivotal in changing attitudes toward robots in elderly citizens. This may reflect a cognitive congruence bias where the robot is experienced in congruence with initial attitudes, or it may support action-based explanations of cognitive dissonance reductions, given that robots, unlike computers, are not yet perceived as action targets. Specific personality traits may be indicators of attitude change relating to specific domains of social interaction. Implications and future directions are discussed.
Robotic Anesthesia – A Vision for the Future of Anesthesia
Hemmerling, Thomas M; Taddei, Riccardo; Wehbe, Mohamad; Morse, Joshua; Cyr, Shantale; Zaouter, Cedrick
2011-01-01
Summary This narrative review describes a rationale for robotic anesthesia. It offers a first classification of robotic anesthesia by separating it into pharmacological robots and robots for aiding or replacing manual gestures. Developments in closed loop anesthesia are outlined. First attempts to perform manual tasks using robots are described. A critical analysis of the delayed development and introduction of robots in anesthesia is delivered. PMID:23905028
Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics
2014-08-01
employed by doctors/ nurses among others. It is important to focus on this aspect when we consider a robot’s deceptive capabilities in human- robot ... Robot Deception and Squirrel Behavior: A Case Study in Bio-inspired Robotics Jaeeun Shim and Ronald C. Arkin Mobile Robot ...Abstract A common behavior in animals and human beings is deception. Deceptive behavior in robotics is potentially beneficial in several domains
Bruemmer, David J [Idaho Falls, ID
2009-11-17
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.
Design of an integrated master-slave robotic system for minimally invasive surgery.
Li, Jianmin; Zhou, Ningxin; Wang, Shuxin; Gao, Yuanqian; Liu, Dongchun
2012-03-01
Minimally invasive surgery (MIS) robots are commonly used in hospitals and medical centres. However, currently available robotic systems are very complicated and huge, greatly raising system costs and the requirements of operating rooms. These disadvantages have become the major impediments to the expansion of MIS robots. An integrated MIS robotic system is proposed based on the analysis of advantages and disadvantages of different MIS robots. In the proposed system, the master manipulators, slave manipulators, image display device and control system have been designed as a whole. Modular design is adopted for the control system for easy maintenance and upgrade. The kinematic relations between the master and the slave are also investigated and embedded in software to realize intuitive movements of hand and instrument. Finally, animal experiments were designed to test the effectiveness of the robot. The robot realizes natural hand-eye movements between the master and the slave to facilitate MIS operations. The experimental results show that the robot can realize similar functions to those of current commercialized robots. The integrated design simplifies the robotic system and facilitates use of the robot. Compared with the commercialized robots, the proposed MIS robot achieves similar functions and features but with a smaller size and less weight. Copyright © 2011 John Wiley & Sons, Ltd.
Robot therapy: a new approach for mental healthcare of the elderly - a mini-review.
Shibata, Takanori; Wada, Kazuyoshi
2011-01-01
Mental healthcare of elderly people is a common problem in advanced countries. Recently, high technology has developed robots for use not only in factories but also for our living environment. In particular, human-interactive robots for psychological enrichment, which provide services by interacting with humans while stimulating their minds, are rapidly spreading. Such robots not only simply entertain but also render assistance, guide, provide therapy, educate, enable communication, and so on. Robot therapy, which uses robots as a substitution for animals in animal-assisted therapy and activity, is a new application of robots and is attracting the attention of many researchers and psychologists. The seal robot named Paro was developed especially for robot therapy and was used at hospitals and facilities for elderly people in several countries. Recent research has revealed that robot therapy has the same effects on people as animal therapy. In addition, it is being recognized as a new method of mental healthcare for elderly people. In this mini review, we introduce the merits and demerits of animal therapy. Then we explain the human-interactive robot for psychological enrichment, the required functions for therapeutic robots, and the seal robot. Finally, we provide examples of robot therapy for elderly people, including dementia patients. Copyright © 2010 S. Karger AG, Basel.
Communication and knowledge sharing in human-robot interaction and learning from demonstration.
Koenig, Nathan; Takayama, Leila; Matarić, Maja
2010-01-01
Inexpensive personal robots will soon become available to a large portion of the population. Currently, most consumer robots are relatively simple single-purpose machines or toys. In order to be cost effective and thus widely accepted, robots will need to be able to accomplish a wide range of tasks in diverse conditions. Learning these tasks from demonstrations offers a convenient mechanism to customize and train a robot by transferring task related knowledge from a user to a robot. This avoids the time-consuming and complex process of manual programming. The way in which the user interacts with a robot during a demonstration plays a vital role in terms of how effectively and accurately the user is able to provide a demonstration. Teaching through demonstrations is a social activity, one that requires bidirectional communication between a teacher and a student. The work described in this paper studies how the user's visual observation of the robot and the robot's auditory cues affect the user's ability to teach the robot in a social setting. Results show that auditory cues provide important knowledge about the robot's internal state, while visual observation of a robot can hinder an instructor due to incorrect mental models of the robot and distractions from the robot's movements. Copyright © 2010. Published by Elsevier Ltd.
Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search
Song, Kai; Liu, Qi; Wang, Qi
2011-01-01
Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401
Building a Relationship between Robot Characteristics and Teleoperation User Interfaces.
Mortimer, Michael; Horan, Ben; Seyedmahmoudian, Mehdi
2017-03-14
The Robot Operating System (ROS) provides roboticists with a standardized and distributed framework for real-time communication between robotic systems using a microkernel environment. This paper looks at how ROS metadata, Unified Robot Description Format (URDF), Semantic Robot Description Format (SRDF), and its message description language, can be used to identify key robot characteristics to inform User Interface (UI) design for the teleoperation of heterogeneous robot teams. Logical relationships between UI components and robot characteristics are defined by a set of relationship rules created using relevant and available information including developer expertise and ROS metadata. This provides a significant opportunity to move towards a rule-driven approach for generating the designs of teleoperation UIs; in particular the reduction of the number of different UI configurations required to teleoperate each individual robot within a heterogeneous robot team. This approach is based on using an underlying rule set identifying robots that can be teleoperated using the same UI configuration due to having the same or similar robot characteristics. Aside from reducing the number of different UI configurations an operator needs to be familiar with, this approach also supports consistency in UI configurations when a teleoperator is periodically switching between different robots. To achieve this aim, a Matlab toolbox is developed providing users with the ability to define rules specifying the relationship between robot characteristics and UI components. Once rules are defined, selections that best describe the characteristics of the robot type within a particular heterogeneous robot team can be made. A main advantage of this approach is that rather than specifying discrete robots comprising the team, the user can specify characteristics of the team more generally allowing the system to deal with slight variations that may occur in the future. In fact, by using the defined relationship rules and characteristic selections, the toolbox can automatically identify a reduced set of UI configurations required to control possible robot team configurations, as opposed to the traditional ad-hoc approach to teleoperation UI design. In the results section, three test cases are presented to demonstrate how the selection of different robot characteristics builds a number of robot characteristic combinations, and how the relationship rules are used to determine a reduced set of required UI configurations needed to control each individual robot in the robot team.
Building a Relationship between Robot Characteristics and Teleoperation User Interfaces
Mortimer, Michael; Horan, Ben; Seyedmahmoudian, Mehdi
2017-01-01
The Robot Operating System (ROS) provides roboticists with a standardized and distributed framework for real-time communication between robotic systems using a microkernel environment. This paper looks at how ROS metadata, Unified Robot Description Format (URDF), Semantic Robot Description Format (SRDF), and its message description language, can be used to identify key robot characteristics to inform User Interface (UI) design for the teleoperation of heterogeneous robot teams. Logical relationships between UI components and robot characteristics are defined by a set of relationship rules created using relevant and available information including developer expertise and ROS metadata. This provides a significant opportunity to move towards a rule-driven approach for generating the designs of teleoperation UIs; in particular the reduction of the number of different UI configurations required to teleoperate each individual robot within a heterogeneous robot team. This approach is based on using an underlying rule set identifying robots that can be teleoperated using the same UI configuration due to having the same or similar robot characteristics. Aside from reducing the number of different UI configurations an operator needs to be familiar with, this approach also supports consistency in UI configurations when a teleoperator is periodically switching between different robots. To achieve this aim, a Matlab toolbox is developed providing users with the ability to define rules specifying the relationship between robot characteristics and UI components. Once rules are defined, selections that best describe the characteristics of the robot type within a particular heterogeneous robot team can be made. A main advantage of this approach is that rather than specifying discrete robots comprising the team, the user can specify characteristics of the team more generally allowing the system to deal with slight variations that may occur in the future. In fact, by using the defined relationship rules and characteristic selections, the toolbox can automatically identify a reduced set of UI configurations required to control possible robot team configurations, as opposed to the traditional ad-hoc approach to teleoperation UI design. In the results section, three test cases are presented to demonstrate how the selection of different robot characteristics builds a number of robot characteristic combinations, and how the relationship rules are used to determine a reduced set of required UI configurations needed to control each individual robot in the robot team. PMID:28335431
Exploring TED Talks as Linked Data for Education
ERIC Educational Resources Information Center
Taibi, Davide; Chawla, Saniya; Dietze, Stefan; Marenzi, Ivana; Fetahu, Besnik
2015-01-01
In this paper, we present the TED Talks dataset which exposes all metadata and the actual transcripts of available TED talks as structured Linked Data. The TED talks collection is composed of more than 1800 talks, along with 35?000 transcripts in over 30 languages, related to a wide range of topics. In this regard, TED talks metadata available in…
Talk about Talk with Young Children: Pragmatic Socialization in Two Communities in Norway and the US
ERIC Educational Resources Information Center
Aukrust, Vibeke Grover
2004-01-01
Recent studies have suggested that cultures vary in subtle ways in the talk about talk that children hear and learn to produce. Twenty-two three-year-old children and their families in respectively Oslo, Norway and Cambridge, Massachusetts were observed during mealtime with the aim of identifying talk-focused talk. The analysis distinguished talk…
Analyzing Cyber-Physical Threats on Robotic Platforms.
Ahmad Yousef, Khalil M; AlMajali, Anas; Ghalyon, Salah Abu; Dweik, Waleed; Mohd, Bassam J
2018-05-21
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBot TM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications.
Analyzing Cyber-Physical Threats on Robotic Platforms †
2018-01-01
Robots are increasingly involved in our daily lives. Fundamental to robots are the communication link (or stream) and the applications that connect the robots to their clients or users. Such communication link and applications are usually supported through client/server network connection. This networking system is amenable of being attacked and vulnerable to the security threats. Ensuring security and privacy for robotic platforms is thus critical, as failures and attacks could have devastating consequences. In this paper, we examine several cyber-physical security threats that are unique to the robotic platforms; specifically the communication link and the applications. Threats target integrity, availability and confidential security requirements of the robotic platforms, which use MobileEyes/arnlServer client/server applications. A robot attack tool (RAT) was developed to perform specific security attacks. An impact-oriented approach was adopted to analyze the assessment results of the attacks. Tests and experiments of attacks were conducted in simulation environment and physically on the robot. The simulation environment was based on MobileSim; a software tool for simulating, debugging and experimenting on MobileRobots/ActivMedia platforms and their environments. The robot platform PeopleBotTM was used for physical experiments. The analysis and testing results show that certain attacks were successful at breaching the robot security. Integrity attacks modified commands and manipulated the robot behavior. Availability attacks were able to cause Denial-of-Service (DoS) and the robot was not responsive to MobileEyes commands. Integrity and availability attacks caused sensitive information on the robot to be hijacked. To mitigate security threats, we provide possible mitigation techniques and suggestions to raise awareness of threats on the robotic platforms, especially when the robots are involved in critical missions or applications. PMID:29883403
Using virtual robot-mediated play activities to assess cognitive skills.
Encarnação, Pedro; Alvarez, Liliana; Rios, Adriana; Maya, Catarina; Adams, Kim; Cook, Al
2014-05-01
To evaluate the feasibility of using virtual robot-mediated play activities to assess cognitive skills. Children with and without disabilities utilized both a physical robot and a matching virtual robot to perform the same play activities. The activities were designed such that successfully performing them is an indication of understanding of the underlying cognitive skills. Participants' performance with both robots was similar when evaluated by the success rates in each of the activities. Session video analysis encompassing participants' behavioral, interaction and communication aspects revealed differences in sustained attention, visuospatial and temporal perception, and self-regulation, favoring the virtual robot. The study shows that virtual robots are a viable alternative to the use of physical robots for assessing children's cognitive skills, with the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support. Virtual robots can provide a vehicle for children to demonstrate cognitive understanding. Virtual and physical robots can be used as augmentative manipulation tools allowing children with disabilities to actively participate in play, educational and therapeutic activities. Virtual robots have the potential of overcoming limitations of physical robots such as cost, reliability and the need for on-site technical support.
NASA Technical Reports Server (NTRS)
Sandy, Michael
2015-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.
Assessing the accuracy of self-reported self-talk
Brinthaupt, Thomas M.; Benson, Scott A.; Kang, Minsoo; Moore, Zaver D.
2015-01-01
As with most kinds of inner experience, it is difficult to assess actual self-talk frequency beyond self-reports, given the often hidden and subjective nature of the phenomenon. The Self-Talk Scale (STS; Brinthaupt et al., 2009) is a self-report measure of self-talk frequency that has been shown to possess acceptable reliability and validity. However, no research using the STS has examined the accuracy of respondents’ self-reports. In the present paper, we report a series of studies directly examining the measurement of self-talk frequency and functions using the STS. The studies examine ways to validate self-reported self-talk by (1) comparing STS responses from 6 weeks earlier to recent experiences that might precipitate self-talk, (2) using experience sampling methods to determine whether STS scores are related to recent reports of self-talk over a period of a week, and (3) comparing self-reported STS scores to those provided by a significant other who rated the target on the STS. Results showed that (1) overall self-talk scores, particularly self-critical and self-reinforcing self-talk, were significantly related to reports of context-specific self-talk; (2) high STS scorers reported talking to themselves significantly more often during recent events compared to low STS scorers, and, contrary to expectations, (3) friends reported less agreement than strangers in their self-other self-talk ratings. Implications of the results for the validity of the STS and for measuring self-talk are presented. PMID:25999887
Quantifying athlete self-talk.
Hardy, James; Hall, Craig R; Hardy, Lew
2005-09-01
Two studies were conducted. The aims of Study 1 were (a) to generate quantitative data on the content of athletes' self-talk and (b) to examine differences in the use of self-talk in general as well as the functions of self-talk in practice and competition settings. Differences in self-talk between the sexes, sport types and skill levels were also assessed. Athletes (n = 295, mean age = 21.9 years) from a variety of sports and competitive levels completed the Self-Talk Use Questionnaire (STUQ), which was developed specifically for the study. In Study 1, single-factor between-group multivariate analyses of variance revealed significant differences across sex and sport type for the content of self-talk. Mixed-model multivariate analyses of variance revealed overall greater use of self-talk, as well as increased use of the functions of self-talk, in competition compared with practice. Moreover, individual sport athletes reported greater use of self-talk, as well as the functions of self-talk, than their team sport counterparts. In Study 2, recreational volleyball players (n = 164, mean age = 21.5 years) completed a situationally modified STUQ. The results were very similar to those of Study 1. That the content of athlete self-talk was generally positive, covert and abbreviated lends support to the application of Vygotsky's (1986) verbal self-regulation theory to the study of self-talk in sport. Researchers are encouraged to examine the effectiveness of self-talk in future studies.
NASA Astrophysics Data System (ADS)
Panfil, Wawrzyniec; Moczulski, Wojciech
2017-10-01
In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.
Hu, Xiao-Ling; Tong, Raymond Kai-yu; Ho, Newmen S K; Xue, Jing-jing; Rong, Wei; Li, Leonard S W
2015-09-01
Augmented physical training with assistance from robot and neuromuscular electrical stimulation (NMES) may introduce intensive motor improvement in chronic stroke. To compare the rehabilitation effectiveness achieved by NMES robot-assisted wrist training and that by robot-assisted training. This study was a single-blinded randomized controlled trial with a 3-month follow-up. Twenty-six hemiplegic subjects with chronic stroke were randomly assigned to receive 20-session wrist training with an electromyography (EMG)-driven NMES robot (NMES robot group, n = 11) and with an EMG-driven robot (robot group, n = 15), completed within 7 consecutive weeks. Clinical scores, Fugl-Meyer Assessment (FMA), Modified Ashworth Score (MAS), and Action Research Arm Test (ARAT) were used to evaluate the training effects before and after the training, as well as 3 months later. An EMG parameter, muscle co-contraction index, was also applied to investigate the session-by-session variation in muscular coordination patterns during the training. The improvement in FMA (shoulder/elbow, wrist/hand) obtained in the NMES robot group was more significant than the robot group (P < .05). Significant improvement in ARAT was achieved in the NMES robot group (P < .05) but absent in the robot group. NMES robot-assisted training showed better performance in releasing muscle co-contraction than the robot-assisted across the training sessions (P < .05). The NMES robot-assisted wrist training was more effective than the pure robot. The additional NMES application in the treatment could bring more improvements in the distal motor functions and faster rehabilitation progress. © The Author(s) 2014.
A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance
NASA Astrophysics Data System (ADS)
Qin, Lei; Tang, Yucheng; Gupta, Ujjaval; Zhu, Jian
2018-04-01
Soft robots have shown great potential for surveillance applications due to their interesting attributes including inherent flexibility, extreme adaptability, and excellent ability to move in confined spaces. High mobility combined with the sensing systems that can detect obstacles plays a significant role in performing surveillance tasks. Extensive studies have been conducted on movement mechanisms of traditional hard-bodied robots to increase their mobility. However, there are limited efforts in the literature to explore the mobility of soft robots. In addition, little attempt has been made to study the obstacle-detection capability of a soft mobile robot. In this paper, we develop a soft mobile robot capable of high mobility and self-sensing for obstacle detection and avoidance. This robot, consisting of a dielectric elastomer actuator as the robot body and four electroadhesion actuators as the robot feet, can generate 2D mobility, i.e. translations and turning in a 2D plane, by programming the actuation sequence of the robot body and feet. Furthermore, we develop a self-sensing method which models the robot body as a deformable capacitor. By measuring the real-time capacitance of the robot body, the robot can detect an obstacle when the peak capacitance drops suddenly. This sensing method utilizes the robot body itself instead of external sensors to achieve detection of obstacles, which greatly reduces the weight and complexity of the robot system. The 2D mobility and self-sensing capability ensure the success of obstacle detection and avoidance, which paves the way for the development of lightweight and intelligent soft mobile robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, Stephen A.; Shepherd, Robert F.; Stokes, Adam
Systems and methods for providing flexible robotic actuators are disclosed. Some embodiments of the disclosed subject matter include a soft robot capable of providing a radial deflection motions; a soft tentacle actuator capable of providing a variety of motions and providing transportation means for various types of materials; and a hybrid robotic system that retains desirable characteristics of both soft robots and hard robots. Some embodiments of the disclosed subject matter also include methods for operating the disclosed robotic systems.
2017-02-01
DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT FLORIDA INSTITUTE FOR HUMAN AND...AND SUBTITLE DARPA ROBOTICS CHALLENGE (DRC) USING HUMAN-MACHINE TEAMWORK TO PERFORM DISASTER RESPONSE WITH A HUMANOID ROBOT 5a. CONTRACT NUMBER...Human and Machine Cognition (IHMC) from 2012-2016 through three phases of the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge
Tandem robot control system and method for controlling mobile robots in tandem
Hayward, David R.; Buttz, James H.; Shirey, David L.
2002-01-01
A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.
ERIC Educational Resources Information Center
Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela
2016-01-01
Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…
[History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].
Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H
2007-03-01
Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.
Launchable and Retrievable Tetherobot
NASA Technical Reports Server (NTRS)
Younse, Paulo; Aghazarian, Hrand
2010-01-01
A proposed robotic system for scientific exploration of rough terrain would include a stationary or infrequently moving larger base robot, to which would be tethered a smaller hopping robot of the type described in the immediately preceding article. The two-robot design would extend the reach of the base robot, making it possible to explore nearby locations that might otherwise be inaccessible or too hazardous for the base robot. The system would include a launching mechanism and a motor-driven reel on the larger robot. The outer end of the tether would be attached to the smaller robot; the inner end of the tether would be attached to the reel. The figure depicts the launching and retrieval process. The launching mechanism would aim and throw the smaller robot toward a target location, and the tether would be paid out from the reel as the hopping robot flew toward the target. Upon completion of exploratory activity at the target location, the smaller robot would be made to hop and, in a coordinated motion, the tether would be wound onto the reel to pull the smaller robot back to the larger one.
Developing a successful robotics program.
Luthringer, Tyler; Aleksic, Ilija; Caire, Arthur; Albala, David M
2012-01-01
Advancements in the robotic surgical technology have revolutionized the standard of care for many surgical procedures. The purpose of this review is to evaluate the important considerations in developing a new robotics program at a given healthcare institution. Patients' interest in robotic-assisted surgery has and continues to grow because of improved outcomes and decreased periods of hospitalization. Resulting market forces have created a solid foundation for the implementation of robotic surgery into surgical practice. Given proper surgeon experience and an efficient system, robotic-assisted procedures have been cost comparable to open surgical alternatives. Surgeon training and experience is closely linked to the efficiency of a new robotics program. Formally trained robotic surgeons have better patient outcomes and shorter operative times. Training in robotics has shown no negative impact on patient outcomes or mentor learning curves. Individual economic factors of local healthcare settings must be evaluated when planning for a new robotics program. The high cost of the robotic surgical platform is best offset with a large surgical volume. A mature, experienced surgeon is integral to the success of a new robotics program.
Open Issues in Evolutionary Robotics.
Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne
2016-01-01
One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
Kinematic design considerations for minimally invasive surgical robots: an overview.
Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar
2012-06-01
Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.
Motion coordination and programmable teleoperation between two industrial robots
NASA Technical Reports Server (NTRS)
Luh, J. Y. S.; Zheng, Y. F.
1987-01-01
Tasks for two coordinated industrial robots always bring the robots in contact with a same object. The motion coordination among the robots and the object must be maintained all the time. To plan the coordinated tasks, only one robot's motion is planned according to the required motion of the object. The motion of the second robot is to follow the first one as specified by a set of holonomic equality constraints at every time instant. If any modification of the object's motion is needed in real-time, only the first robot's motion has to be modified accordingly in real-time. The modification for the second robot is done implicitly through the constraint conditions. Thus the operation is simplified. If the object is physically removed, the second robot still continually follows the first one through the constraint conditions. If the first robot is maneuvered through either the teach pendant or the keyboard, the second one moves accordingly to form the teleoperation which is linked through the software programming. Obviously, the second robot does not need to duplicate the first robot's motion. The programming of the constraints specifies their relative motions.
Robotized production systems observed in modern plants
NASA Astrophysics Data System (ADS)
Saverina, A. N.
1985-09-01
Robots, robotized lines and sectors are no longer innovations in shops at automotive plants. The widespread robotization of automobile assembly operations is described in general terms. Robot use for machining operation is also discussed.
D2 Delta Robot Structural Design and Kinematics Analysis
NASA Astrophysics Data System (ADS)
Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai
2017-12-01
In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1990-01-01
New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.
Continuum limbed robots for locomotion
NASA Astrophysics Data System (ADS)
Mutlu, Alper
This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.
Robots, systems, and methods for hazard evaluation and visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.
A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less
Development of a soft untethered robot using artificial muscle actuators
NASA Astrophysics Data System (ADS)
Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian
2017-04-01
Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.
Alon, Uri
2009-10-23
We depend on talks to communicate our work, and we spend much of our time as audience members in talks. However, few scientists are taught the well-established principles of giving good talks. Here, I describe how to prepare, present, and answer questions in a scientific talk. We will see how a talk prepared with a single premise and delivered with good eye contact is clear and enjoyable.
Sensing sociality in dogs: what may make an interactive robot social?
Lakatos, Gabriella; Janiak, Mariusz; Malek, Lukasz; Muszynski, Robert; Konok, Veronika; Tchon, Krzysztof; Miklósi, A
2014-03-01
This study investigated whether dogs would engage in social interactions with an unfamiliar robot, utilize the communicative signals it provides and to examine whether the level of sociality shown by the robot affects the dogs' performance. We hypothesized that dogs would react to the communicative signals of a robot more successfully if the robot showed interactive social behaviour in general (towards both humans and dogs) than if it behaved in a machinelike, asocial way. The experiment consisted of an interactive phase followed by a pointing session, both with a human and a robotic experimenter. In the interaction phase, dogs witnessed a 6-min interaction episode between the owner and a human experimenter and another 6-min interaction episode between the owner and the robot. Each interaction episode was followed by the pointing phase in which the human/robot experimenter indicated the location of hidden food by using pointing gestures (two-way choice test). The results showed that in the interaction phase, the dogs' behaviour towards the robot was affected by the differential exposure. Dogs spent more time staying near the robot experimenter as compared to the human experimenter, with this difference being even more pronounced when the robot behaved socially. Similarly, dogs spent more time gazing at the head of the robot experimenter when the situation was social. Dogs achieved a significantly lower level of performance (finding the hidden food) with the pointing robot than with the pointing human; however, separate analysis of the robot sessions suggested that gestures of the socially behaving robot were easier for the dogs to comprehend than gestures of the asocially behaving robot. Thus, the level of sociality shown by the robot was not enough to elicit the same set of social behaviours from the dogs as was possible with humans, although sociality had a positive effect on dog-robot interactions.
Getting started with robotics in general surgery with cholecystectomy: the Canadian experience.
Jayaraman, Shiva; Davies, Ward; Schlachta, Christopher M
2009-10-01
The value of robotics in general surgery may be for advanced minimally invasive procedures. Unlike other specialties, formal fellowship training opportunities for robotic general surgery are few. As a result, most surgeons currently develop robotic skills in practice. Our goal was to determine whether robotic cholecystectomy is a safe and effective bridge to advanced robotics in general surgery. Before performing advanced robotic procedures, 2 surgeons completed the Intuitive Surgical da Vinci training course and agreed to work together on all procedures. Clinical surgery began with da Vinci cholecystectomy with a plan to begin advanced procedures after at least 10 cholecystectomies. We performed a retrospective review of our pilot series of robotic cholecystectomies and compared them with contemporaneous laparoscopic controls. The primary outcome was safety, and the secondary outcome was learning curve. There were 16 procedures in the robotics arm and 20 in the laparoscopic arm. Two complications (da Vinci port-site hernia, transient elevation of liver enzymes) occurred in the robotic arm, whereas only 1 laparoscopic patient (slow to awaken from anesthetic) experienced a complication. None was significant. The mean time required to perform robotic cholecystectomy was significantly longer than laparoscopic surgery (91 v. 41 min, p < 0.001). The mean time to clear the operating room was significantly longer for robotic procedures (14 v. 11 min, p = 0.015). We observed a trend showing longer mean anesthesia time for robotic procedures (23 v. 15 min). Regarding learning curve, the mean operative time needed for the first 3 robotic procedures was longer than for the last 3 (101 v. 80 min); however, this difference was not significant. Since this experience, the team has confidently gone on to perform robotic biliary, pancreatic, gastresophageal, intestinal and colorectal operations. Robotic cholecystectomy can be performed reliably; however, owing to the significant increase in operating room resources, it cannot be justified for routine use. Our experience, however, demonstrates that robotic cholecystectomy is one means by which general surgeons may gain confidence in performing advanced robotic procedures.
[Mobile autonomous robots-Possibilities and limits].
Maehle, E; Brockmann, W; Walthelm, A
2002-02-01
Besides industrial robots, which today are firmly established in production processes, service robots are becoming more and more important. They shall provide services for humans in different areas of their professional and everyday environment including medicine. Most of these service robots are mobile which requires an intelligent autonomous behaviour. After characterising the different kinds of robots the relevant paradigms of intelligent autonomous behaviour for mobile robots are critically discussed in this paper and illustrated by three concrete examples of robots realized in Lübeck. In addition a short survey of actual kinds of surgical robots as well as an outlook to future developments is given.
With the Development of Teaching Sumo Robot are Discussed
NASA Astrophysics Data System (ADS)
quan, Miao Zhi; Ke, Ma; Xin, Wei Jing
In recent years, with of robot technology progress and robot science activities, robot technology obtained fast development. The system USES the Atmega128 single-chip Atmel company as a core controller, was designed using a infrared to tube detection boundary, looking for each other, controller to tube receiving infrared data, and according to the data control motor state thus robot reached automatic control purposes. Against robot by single-chip microcomputer smallest system, By making the teaching purpose is to promote the robot sumo students' interests and let more students to participate in the robot research activities.
Inverse kinematic solution for near-simple robots and its application to robot calibration
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Roston, Gerald P.
1986-01-01
This paper provides an inverse kinematic solution for a class of robot manipulators called near-simple manipulators. The kinematics of these manipulators differ from those of simple-robots by small parameter variations. Although most robots are by design simple, in practice, due to manufacturing tolerances, every robot is near-simple. The method in this paper gives an approximate inverse kinematics solution for real time applications based on the nominal solution for these robots. The validity of the results are tested both by a simulation study and by applying the algorithm to a PUMA robot.
Miniature in vivo robotics and novel robotic surgical platforms.
Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry
2009-05-01
Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.
Human guidance of mobile robots in complex 3D environments using smart glasses
NASA Astrophysics Data System (ADS)
Kopinsky, Ryan; Sharma, Aneesh; Gupta, Nikhil; Ordonez, Camilo; Collins, Emmanuel; Barber, Daniel
2016-05-01
In order for humans to safely work alongside robots in the field, the human-robot (HR) interface, which enables bi-directional communication between human and robot, should be able to quickly and concisely express the robot's intentions and needs. While the robot operates mostly in autonomous mode, the human should be able to intervene to effectively guide the robot in complex, risky and/or highly uncertain scenarios. Using smart glasses such as Google Glass∗, we seek to develop an HR interface that aids in reducing interaction time and distractions during interaction with the robot.
System for exchanging tools and end effectors on a robot
Burry, David B.; Williams, Paul M.
1991-02-19
A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.
NASA Astrophysics Data System (ADS)
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.
Molecular Robots Obeying Asimov's Three Laws of Robotics.
Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido
2017-01-01
Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.
Medical robots in cardiac surgery - application and perspectives.
Kroczek, Karolina; Kroczek, Piotr; Nawrat, Zbigniew
2017-03-01
Medical robots offer new standards and opportunities for treatment. This paper presents a review of the literature and market information on the current situation and future perspectives for the applications of robots in cardiac surgery. Currently in the United States, only 10% of thoracic surgical procedures are conducted using robots, while globally this value remains below 1%. Cardiac and thoracic surgeons use robotic surgical systems increasingly often. The goal is to perform more than one hundred thousand minimally invasive robotic surgical procedures every year. A surgical robot can be used by surgical teams on a rotational basis. The market of surgical robots used for cardiovascular and lung surgery was worth 72.2 million dollars in 2014 and is anticipated to reach 2.2 billion dollars by 2021. The analysis shows that Poland should have more than 30 surgical robots. Moreover, Polish medical teams are ready for the introduction of several robots into the field of cardiac surgery. We hope that this market will accommodate the Polish Robin Heart robots as well.
Interactions With Robots: The Truths We Reveal About Ourselves.
Broadbent, Elizabeth
2017-01-03
In movies, robots are often extremely humanlike. Although these robots are not yet reality, robots are currently being used in healthcare, education, and business. Robots provide benefits such as relieving loneliness and enabling communication. Engineers are trying to build robots that look and behave like humans and thus need comprehensive knowledge not only of technology but also of human cognition, emotion, and behavior. This need is driving engineers to study human behavior toward other humans and toward robots, leading to greater understanding of how humans think, feel, and behave in these contexts, including our tendencies for mindless social behaviors, anthropomorphism, uncanny feelings toward robots, and the formation of emotional attachments. However, in considering the increased use of robots, many people have concerns about deception, privacy, job loss, safety, and the loss of human relationships. Human-robot interaction is a fascinating field and one in which psychologists have much to contribute, both to the development of robots and to the study of human behavior.
Research on Robot Pose Control Technology Based on Kinematics Analysis Model
NASA Astrophysics Data System (ADS)
Liu, Dalong; Xu, Lijuan
2018-01-01
In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.
Tan, Huan; Liang, Chen
2011-01-01
This paper proposes a conceptual hybrid cognitive architecture for cognitive robots to learn behaviors from demonstrations in robotic aid situations. Unlike the current cognitive architectures, this architecture puts concentration on the requirements of the safety, the interaction, and the non-centralized processing in robotic aid situations. Imitation learning technologies for cognitive robots have been integrated into this architecture for rapidly transferring the knowledge and skills between human teachers and robots.
2006-06-01
Scientific Research. 5PAM-Crash is a trademark of the ESI Group . 6MATLAB and SIMULINK are registered trademarks of the MathWorks. 14 maneuvers...Laboratory (ARL) to develop methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots...methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots acting as a team to perform a
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resseguie, David R
There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less
Adoption of robotics in a general surgery residency program: at what cost?
Mehaffey, J Hunter; Michaels, Alex D; Mullen, Matthew G; Yount, Kenan W; Meneveau, Max O; Smith, Philip W; Friel, Charles M; Schirmer, Bruce D
2017-06-01
Robotic technology is increasingly being utilized by general surgeons. However, the impact of introducing robotics to surgical residency has not been examined. This study aims to assess the financial costs and training impact of introducing robotics at an academic general surgery residency program. All patients who underwent laparoscopic or robotic cholecystectomy, ventral hernia repair (VHR), and inguinal hernia repair (IHR) at our institution from 2011-2015 were identified. The effect of robotic surgery on laparoscopic case volume was assessed with linear regression analysis. Resident participation, operative time, hospital costs, and patient charges were also evaluated. We identified 2260 laparoscopic and 139 robotic operations. As the volume of robotic cases increased, the number of laparoscopic cases steadily decreased. Residents participated in all laparoscopic cases and 70% of robotic cases but operated from the robot console in only 21% of cases. Mean operative time was increased for robotic cholecystectomy (+22%), IHR (+55%), and VHR (+61%). Financial analysis revealed higher median hospital costs per case for robotic cholecystectomy (+$411), IHR (+$887), and VHR (+$1124) as well as substantial associated fixed costs. Introduction of robotic surgery had considerable negative impact on laparoscopic case volume and significantly decreased resident participation. Increased operative time and hospital costs are substantial. An institution must be cognizant of these effects when considering implementing robotics in departments with a general surgery residency program. Copyright © 2017 Elsevier Inc. All rights reserved.
In Good Company? Perception of Movement Synchrony of a Non-Anthropomorphic Robot
Lehmann, Hagen; Saez-Pons, Joan; Syrdal, Dag Sverre; Dautenhahn, Kerstin
2015-01-01
Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-bot3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot. PMID:26001025
ERIC Educational Resources Information Center
Hull, Daniel M.; Lovett, James E.
The six new robotics and automated systems specialty courses developed by the Robotics/Automated Systems Technician (RAST) project are described in this publication. Course titles are Fundamentals of Robotics and Automated Systems, Automated Systems and Support Components, Controllers for Robots and Automated Systems, Robotics and Automated…
Put Your Robot In, Put Your Robot Out: Sequencing through Programming Robots in Early Childhood
ERIC Educational Resources Information Center
Kazakoff, Elizabeth R.; Bers, Marina Umaschi
2014-01-01
This article examines the impact of programming robots on sequencing ability in early childhood. Thirty-four children (ages 4.5-6.5 years) participated in computer programming activities with a developmentally appropriate tool, CHERP, specifically designed to program a robot's behaviors. The children learned to build and program robots over three…
Measurement of the Robot Motor Capability of a Robot Motor System: A Fitts's-Law-Inspired Approach
Lin, Hsien-I; George Lee, C. S.
2013-01-01
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly. PMID:23820745
Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
Lin, Hsien-I; Lee, C S George
2013-07-02
Robot motor capability is a crucial factor for a robot, because it affects how accurately and rapidly a robot can perform a motion to accomplish a task constrained by spatial and temporal conditions. In this paper, we propose and derive a pseudo-index of motor performance (pIp) to characterize robot motor capability with robot kinematics, dynamics and control taken into consideration. The proposed pIp provides a quantitative measure for a robot with revolute joints, which is inspired from an index of performance in Fitts's law of human skills. Computer simulations and experiments on a PUMA 560 industrial robot were conducted to validate the proposed pIp for performing a motion accurately and rapidly.
[Robot-aided training in rehabilitation].
Hachisuka, Kenji
2010-02-01
Recently, new training techniques that involve the use of robots have been used in the rehabilitation of patients with hemiplegia and paraplegia. Robots used for training the arm include the MIT-MANUS, Arm Trainer, mirror-image motion enabler (MIME) robot, and the assisted rehabilitation and measurement (ARM) Guide. Robots that are used for lower-limb training are the Rehabot, Gait Trainer, Lokomat, LOPES Exoskeleton Robot, and Gait Assist Robot. Robot-aided therapy has enabled the functional training of the arm and the lower limbs in an effective, easy, and comfortable manner. Therefore, with this type of therapy, the patients can repeatedly undergo sufficient and accurate training for a prolonged period. However, evidence of the benefits of robot-aided training has not yet been established.
Integration of Haptics in Agricultural Robotics
NASA Astrophysics Data System (ADS)
Kannan Megalingam, Rajesh; Sreekanth, M. M.; Sivanantham, Vinu; Sai Kumar, K.; Ghanta, Sriharsha; Surya Teja, P.; Reddy, Rajesh G.
2017-08-01
Robots can differentiate with open loop system and closed loop system robots. We face many problems when we do not have a feedback from robots. In this research paper, we are discussing all possibilities to achieve complete closed loop system for Multiple-DOF Robotic Arm, which is used in a coconut tree climbing and cutting robot by introducing a Haptic device. We are working on various sensors like tactile, vibration, force and proximity sensors for getting feedback. For monitoring the robotic arm achieved by graphical user interference software which simulates the working of the robotic arm, send the feedback of all the real time analog values which are produced by various sensors and provide real-time graphs for estimate the efficiency of the Robot.
The effect of collision avoidance for autonomous robot team formation
NASA Astrophysics Data System (ADS)
Seidman, Mark H.; Yang, Shanchieh J.
2007-04-01
As technology and research advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies of robot team formation have shown success, it is unclear whether such algorithms will perform well in a real-world environment. This work examines the effect of collision avoidance schemes on an ideal circle formation algorithm, but behaves similarly if robot-to-robot communications are in place. Our findings reveal that robots with basic collision avoidance capabilities are still able to form into a circle, under most conditions. Moreover, the robot sizes, sensing ranges, and other critical physical parameters are examined to determine their effects on algorithm's performance.
The Dawning of the Ethics of Environmental Robots.
van Wynsberghe, Aimee; Donhauser, Justin
2017-10-23
Environmental scientists and engineers have been exploring research and monitoring applications of robotics, as well as exploring ways of integrating robotics into ecosystems to aid in responses to accelerating environmental, climatic, and biodiversity changes. These emerging applications of robots and other autonomous technologies present novel ethical and practical challenges. Yet, the critical applications of robots for environmental research, engineering, protection and remediation have received next to no attention in the ethics of robotics literature to date. This paper seeks to fill that void, and promote the study of environmental robotics. It provides key resources for further critical examination of the issues environmental robots present by explaining and differentiating the sorts of environmental robotics that exist to date and identifying unique conceptual, ethical, and practical issues they present.
Research and implementation of a new 6-DOF light-weight robot
NASA Astrophysics Data System (ADS)
Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui
2017-06-01
Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.
Innovative tools help counselors discuss childhood obesity with parents.
Herrera, Jennifer; Lockner, Donna; Kibbe, Debra; Marley, Scott C; Trowbridge, Frederick; Bailey, Angie
2013-04-01
Childhood overweight and obesity pose potential health risks for many children under the age of 5 years. Women, Infants, and Children (WIC) nutritionists are in a unique position to help reduce this problem because of their frequent counseling contacts with clients during certification visits. Therefore, four new tools to facilitate nutritional counseling of parents of overweight children during certifications were developed and systematically evaluated. The Nutrition and Activity Self-History (NASH) form, Report Card/Action Plan (ReCAP), Talking Tips, and Healthy Weight Poster were evaluated by WIC nutritionists via an online survey. Anchors on the Likert scale were 0 for Strongly Disagree to 6 for Strongly Agree. Four regional focus groups were also conducted. Data were analyzed descriptively. The response rate on the survey was 83% (n=63). Focus groups were comprised of staff that volunteered to participate (n=34). The NASH form, which replaces a food frequency questionnaire for identifying nutrition risk, had a mean rating of 5.20 as "Helpful when counseling about weight." The ReCAP, Talking Tips, and Healthy Weight Poster achieved mean ratings of 5.70, 4.75, and 5.30, respectively, in this category. Focus group responses were very positive about the usefulness of the ReCAP and Healthy Weight Poster to visually convey the concept of BMI percentile for age using a green, yellow, and red color-coded "traffic light" approach to showing healthy versus unhealthy BMI values. WIC programs and other pediatric health care settings may want to consider adopting these innovative tools to better serve their clients and address pediatric overweight in the populations they serve.
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
Types of verbal interaction with instructable robots
NASA Technical Reports Server (NTRS)
Crangle, C.; Suppes, P.; Michalowski, S.
1987-01-01
An instructable robot is one that accepts instruction in some natural language such as English and uses that instruction to extend its basic repertoire of actions. Such robots are quite different in conception from autonomously intelligent robots, which provide the impetus for much of the research on inference and planning in artificial intelligence. Examined here are the significant problem areas in the design of robots that learn from vebal instruction. Examples are drawn primarily from our earlier work on instructable robots and recent work on the Robotic Aid for the physically disabled. Natural-language understanding by machines is discussed as well as in the possibilities and limits of verbal instruction. The core problem of verbal instruction, namely, how to achieve specific concrete action in the robot in response to commands that express general intentions, is considered, as are two major challenges to instructability: achieving appropriate real-time behavior in the robot, and extending the robot's language capabilities.
Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto
2015-02-01
At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.
Son, Jaebum; Cho, Chang Nho; Kim, Kwang Gi; Chang, Tae Young; Jung, Hyunchul; Kim, Sung Chun; Kim, Min-Tae; Yang, Nari; Kim, Tae-Yun; Sohn, Dae Kyung
2015-06-01
Natural orifice transluminal endoscopic surgery (NOTES) is an emerging surgical technique. We aimed to design, create, and evaluate a new semi-automatic snake robot for NOTES. The snake robot employs the characteristics of both a manual endoscope and a multi-segment snake robot. This robot is inserted and retracted manually, like a classical endoscope, while its shape is controlled using embedded robot technology. The feasibility of a prototype robot for NOTES was evaluated in animals and human cadavers. The transverse stiffness and maneuverability of the snake robot appeared satisfactory. It could be advanced through the anus as far as the peritoneal cavity without any injury to adjacent organs. Preclinical tests showed that the device could navigate the peritoneal cavity. The snake robot has advantages of high transverse force and intuitive control. This new robot may be clinically superior to conventional tools for transanal NOTES.
Creepiness Creeps In: Uncanny Valley Feelings Are Acquired in Childhood.
Brink, Kimberly A; Gray, Kurt; Wellman, Henry M
2017-12-13
The uncanny valley posits that very human-like robots are unsettling, a phenomenon amply demonstrated in adults but unexplored in children. Two hundred forty 3- to 18-year-olds viewed one of two robots (machine-like or very human-like) and rated their feelings toward (e.g., "Does the robot make you feel weird or happy?") and perceptions of the robot's capacities (e.g., "Does the robot think for itself?"). Like adults, children older than 9 judged the human-like robot as creepier than the machine-like robot-but younger children did not. Children's perceptions of robots' mental capacities predicted uncanny feelings: children judge robots to be creepy depending on whether they have human-like minds. The uncanny valley is therefore acquired over development and relates to changing conceptions about robot minds. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Robotic follow system and method
Bruemmer, David J [Idaho Falls, ID; Anderson, Matthew O [Idaho Falls, ID
2007-05-01
Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Quillin, Nathaniel (Inventor); Platt, Robert J., Jr. (Inventor); Pfeiffer, Joseph (Inventor); Permenter, Frank Noble (Inventor)
2014-01-01
A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.