Sample records for tall reinforced concrete

  1. Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls

    NASA Astrophysics Data System (ADS)

    Calugaru, Vladimir

    This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes, subjected to pulse type near-fault ground motion, with special focus on the relation between the characteristics of the ground motion and the higher-modes of response; (2) to determine the characteristics of a base isolation system that results in nominally elastic response of the superstructure of a tall reinforced concrete core wall building at the maximum considered earthquake level of shaking; and (3) to demonstrate that the seismic performance, cost, and constructability of a base-isolated tall reinforced concrete core wall building can be significantly improved by incorporating a rocking core-wall in the design. First, this dissertation investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near-fault seismic ground motions as well as simple close-form pulses, which represented distinct pulses within the ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. Next, this dissertation investigates numerically the seismic response of six seismically base-isolated (BI) 20-story reinforced concrete buildings and compares their response to that of a fixed-base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated

  2. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  3. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  4. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    NASA Astrophysics Data System (ADS)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  5. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  6. Fiber-Reinforced Concrete For Hardened Shelter Construction

    DTIC Science & Technology

    1993-02-01

    reduced cost and weight versus the symmetrically rebar reinforced beam design using normal-weight, standard-strength concrete currently used by the...while possibly reducing their cost and weight. Emphasis is placed on modular construction using prefabricated fiber- and rebar -reinforced concrete ...fiber- and rebar -reinforced concrete structural members into U.S. Air Force hardened structure designs. vii (The reverse of this page is blank) PREFACE

  7. Fibre reinforced concrete exposed to elevated temperature

    NASA Astrophysics Data System (ADS)

    Novák, J.; Kohoutková, A.

    2017-09-01

    Although concrete when subject to fire performs very well, its behaviour and properties change dramatically under high temperature due to damaged microstructure and mesostructure. As fibre reinforced concrete (FRC) represents a complex material composed of various components with different response to high temperature, to determine its behaviour and mechanical properties in fire is a demanding task. The presented paper provides a summary of findings on the fire response of fibre FRC. Namely, the information on steel fibre reinforced concrete (SFRC), synthetic fibre reinforced concrete and hybrid (steel + synthetic) fibre reinforced concrete have been gathered from various contributions published up to date. The mechanical properties including the melting point and ignition point of fibres affect significantly the properties of concrete composites with addition of fibres. The combination of steel and synthetic fibres represents a promising alternative how to ensure good toughness of a concrete composite before heating and improve its residual mechanical behaviour and spalling resistance as well as the ductility after heating. While synthetic fibres increase concrete spalling resistance, steel fibres in a concrete mix leads to an improvement in both mechanical properties and resistance to heating effects.

  8. Effect of kenaf fiber in reinforced concrete slab

    NASA Astrophysics Data System (ADS)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  9. Simplified equation for Young's modulus of CNT reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chandran, RameshBabu; Gifty Honeyta A, Maria

    2017-12-01

    This research investigation focuses on finite element modeling of carbon nanotube (CNT) reinforced concrete matrix for three grades of concrete namely M40, M60 and M120. Representative volume element (RVE) was adopted and one-eighth model depicting the CNT reinforced concrete matrix was simulated using FEA software ANSYS17.2. Adopting random orientation of CNTs, with nine fibre volume fractions from 0.1% to 0.9%, finite element modeling simulations replicated exactly the CNT reinforced concrete matrix. Upon evaluations of the model, the longitudinal and transverse Young's modulus of elasticity of the CNT reinforced concrete was arrived. The graphical plots between various fibre volume fractions and the concrete grade revealed simplified equation for estimating the young's modulus. It also exploited the fact that the concrete grade does not have significant impact in CNT reinforced concrete matrix.

  10. Experimental investigation on bond of reinforcement in steel fibre-reinforced lightweight concrete

    NASA Astrophysics Data System (ADS)

    Holschemacher, K.; Ali, A.

    2017-10-01

    Bond behaviour of reinforcement is crucial parameter for load bearing reinforced concrete members. Many parameters like anchorage of reinforcement, lap splices, deflection or tension stiffening are influenced by the bond properties. It is well known that the ductility of bond can be improved by steel fibres. In this context almost innumerable experiments were performed for investigation of bond in normal weight concrete. However, the bond behaviour of reinforcement in steel fibre-reinforced lightweight concrete (SFRLWC) has received much less attention. For this reason, an experimental program dealing with bond in SFRLWC has been started at HTWK Leipzig/Germany. Main parts of the investigation were pull-out tests with various bar sizes and application of different steel fibre-reinforced lightweight and normal weight concretes. The paper reports the details of experimental investigations and evaluates the test results. As one of the most important outcomes that can be noted is that there is pronounced effect of bar size and steel fibre amount on bond properties in general. But those effects are more pronounced for SFRLWC in comparison to normal weight concrete with and without steel fibres.

  11. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    NASA Astrophysics Data System (ADS)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  12. Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…

  13. Seismic performance of circular reinforced concrete bridge columns constructed with grade 80 reinforcement.

    DOT National Transportation Integrated Search

    2014-08-01

    This project assessed the use of ASTM A706 Grade 80 reinforcing bars in reinforced concrete columns. : Grade 80 is not currently allowed in reinforced concrete columns due to lack of information on the : material characteristics and column performanc...

  14. Prediction of reinforced concrete strength by ultrasonic velocities

    NASA Astrophysics Data System (ADS)

    Sabbağ, Nevbahar; Uyanık, Osman

    2017-06-01

    This study was aimed to determine the strength of the reinforced concrete and to reveal the reinforcement effect on the concrete strength by Ultrasonic P and S wave velocities. Studies were conducted with prepared 9 different concrete designs of showing low, medium and high strength features. 4 kinds of cubic samples which unreinforced and including 10, 14 or 20 mm diameter reinforcement were prepared for these designs. Studies were carried out on total 324 samples including 9 samples for each design of these 4 kinds. The prepared samples of these designs were subjected to water curing. On some days of the 90-day period, P and S wave measurements were repeated to reveal the changes in seismic velocities of samples depending on whether reinforced or unreinforced of samples and diameter of reinforcement. Besides, comparisons were done by performing uniaxial compressive strength test with crushing of 3 samples on 7th, 28th and 90th days. As a result of studies and evaluations, it was seen that values of seismic velocities and uniaxial compressive strength increased depending on reinforcement and diameter of reinforcement in low strength concretes. However, while the seismic velocities were not markedly affected from reinforcement or reinforcement diameter in high strength concrete, uniaxial compressive strength values were negatively affected.

  15. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  16. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  17. Reinforcement alternatives for concrete bridge decks.

    DOT National Transportation Integrated Search

    2003-07-01

    The report investigates the application of various reinforcement types in concrete bridge decks as potential replacements or supplements to conventional steel reinforcement. Traditional epoxy coated reinforcement (ECS), stainless steel cald (SSC) rei...

  18. Sustainability and durability analysis of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  19. Modeling reinforced concrete durability : [summary].

    DOT National Transportation Integrated Search

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  20. Bond characteristics of reinforcing steel embedded in geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Kathirvel, Parthiban; Thangavelu, Manju; Gopalan, Rashmi; Raja Mohan Kaliyaperumal, Saravana

    2017-07-01

    The force transferring between reinforcing steel and the surrounding concrete in reinforced concrete is influenced by several factors. Whereas, the study on bond behaviour of geopolymer concrete (GPC) is lagging. In this paper, an experimental attempt has been made to evaluate the geopolymer concrete bond with reinforcing steel of different diameter and embedded length using standard pull out test. The geopolymer concrete is made of ground granulated blast furnace slag (GGBFS) as geopolymer source material (GSM). The tests were conducted to evaluate the development of bond between steel and concrete of grade M40 and M50 with 12 and 16 mm diameter reinforcing steel for geopolymer and cement concrete mixes and to develop a relation between bond strength and compressive strength. From the experimental results, it has been observed that the bond strength of the geopolymer concrete mixes was more compared to the cement concrete mixes and increases with the reduction in the diameter of the bar.

  1. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  2. 3D Concrete Printing Concept Could Solve Tall-Wind Dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrell, Jason; Jenne, Scott; Butterfield, Sandy

    When building a wind turbine, you want to make it as tall as possible to capture stronger, faster winds aloft. But taller tower bases become too large to be transported over the road—a constraint that has kept average U.S. wind turbine heights at 80 meters for the last 10 years. A Lab-Corps project undertaken by the National Renewable Energy Laboratory has found a potential solution: automated concrete manufacturing.

  3. Study of Interaction of Reinforcement with Concrete by Numerical Methods

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. M.; Samoshkin, A. S.

    2018-01-01

    This paper describes the study of deformation of reinforced concrete. A mathematical model for the interaction of reinforcement with concrete, based on the introduction of a contact layer, whose mechanical characteristics are determined from the experimental data, is developed. The limiting state of concrete is described using the Drucker-Prager theory and the fracture criterion with respect to maximum plastic deformations. A series of problems of the theory of reinforced concrete are solved: stretching of concrete from a central-reinforced prism and pre-stressing of concrete. It is shown that the results of the calculations are in good agreement with the experimental data.

  4. A multiscale model for reinforced concrete with macroscopic variation of reinforcement slip

    NASA Astrophysics Data System (ADS)

    Sciegaj, Adam; Larsson, Fredrik; Lundgren, Karin; Nilenius, Filip; Runesson, Kenneth

    2018-06-01

    A single-scale model for reinforced concrete, comprising the plain concrete continuum, reinforcement bars and the bond between them, is used as a basis for deriving a two-scale model. The large-scale problem, representing the "effective" reinforced concrete solid, is enriched by an effective reinforcement slip variable. The subscale problem on a Representative Volume Element (RVE) is defined by Dirichlet boundary conditions. The response of the RVEs of different sizes was investigated by means of pull-out tests. The resulting two-scale formulation was used in an FE^2 analysis of a deep beam. Load-deflection relations, crack widths, and strain fields were compared to those obtained from a single-scale analysis. Incorporating the independent macroscopic reinforcement slip variable resulted in a more pronounced localisation of the effective strain field. This produced a more accurate estimation of the crack widths than the two-scale formulation neglecting the effective reinforcement slip variable.

  5. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  6. 3D Concrete Printing Concept Could Solve Tall-Wind Dilemma

    ScienceCinema

    Cotrell, Jason; Jenne, Scott; Butterfield, Sandy

    2018-06-12

    When building a wind turbine, you want to make it as tall as possible to capture stronger, faster winds aloft. But taller tower bases become too large to be transported over the road—a constraint that has kept average U.S. wind turbine heights at 80 meters for the last 10 years. A Lab-Corps project undertaken by the National Renewable Energy Laboratory has found a potential solution: automated concrete manufacturing.

  7. Collaboration of polymer composite reinforcement and cement concrete

    NASA Astrophysics Data System (ADS)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  8. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  9. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    DTIC Science & Technology

    2010-02-01

    reinforcement if the enamel is broken  Embedded cement grains hydrate if enamel is cracked to self-heal with the formation of calcium silicate hydrate Goal...Reinforced Concrete Pavement The 600% volume change in the iron to iron oxide formation put the concrete in tension and it cracks an spalls BUILDING...corrodes prematurely and delaminates the pavement  Moisture and chlorides can move through the natural porosity of concrete and the cracks in the

  10. Fiber reinforced cementitious matrix (FRCM) composites for reinforced concrete strengthening.

    DOT National Transportation Integrated Search

    2013-07-01

    Fiber-reinforced composite systems are widely used for strengthening, repairing, and rehabilitation of reinforced concrete structural : members. A promising newly-developed type of composite, comprised of fibers and an inorganic cement-based matrix, ...

  11. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  12. Shear transfer capacity of reinforced concrete exposed to fire

    NASA Astrophysics Data System (ADS)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  13. Modeling reinforced concrete durability.

    DOT National Transportation Integrated Search

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  14. Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ershad Ullah

    In recent years, fibre reinforced polymer (FRP) materials have demonstrated enormous potential as materials for repairing and retrofitting concrete bridges that have deteriorated from factors such as electro-chemical corrosion and increased load requirements. However, concerns associated with fire remain an obstacle to applications of FRP materials in buildings and parking garages due to FRP's sensitivity to high temperatures as compared with other structural materials and to limited knowledge on their thermal and mechanical behaviour in fire. This thesis presents results from an ongoing study on the fire performance of FRP materials, fire insulation materials and systems, and FRP wrapped reinforced concrete columns. The overall goal of the study is to understand the fire behaviour of FRP materials and FRP strengthened concrete columns and ultimately, provide rational fire safety design recommendations and guidelines for FRP strengthened concrete columns. A combined experimental and numerical investigation was conducted to achieve the goals of this research study. The experimental work consisted of both small-scale FRP material testing at elevated temperatures and full-scale fire tests on FRP strengthened columns. A numerical model was developed to simulate the behaviour of unwrapped reinforced concrete and FRP strengthened reinforced concrete square or rectangular columns in fire. After validating the numerical model against test data available in literature, it was determined that the numerical model can be used to analyze the behaviour of concrete axial compressive members in fire. Results from this study also demonstrated that although FRP materials experience considerable loss of their mechanical and bond properties at temperatures somewhat below the glass transition temperature of the resin matrix, externally-bonded FRP can be used in strengthening concrete structural members in buildings, if appropriate supplemental fire protection system is provided over

  15. Ultimate Load Behaviour of Reinforced Concrete Beam with Corroded Reinforcement

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramajaneyulu, K.; Sundarkumar, S.; Ramesh, G.; Bharat Kumar, B. H.; Krishna Moorthy, T. S.

    2017-12-01

    Corrosion of reinforcement reduces the load carrying capacity, energy dissipation and ductility of Reinforced Concrete (RC) members. In the present study, reinforcements of RC beam are subjected to 10, 25, and 30% corrosion and the respective RC beams are tested to evaluate their ultimate load behaviour. A huge drop in energy dissipation capacity of the RC beam is observed beyond the corrosion level of 10%. Further, nonlinear finite element analysis is employed to assess the load-displacement behaviour and ultimate load of RC beam. The corrosion induced damage to the reinforcement is represented in the finite element model by modifying its mechanical properties based on the results reported in the literature. The resultant load versus displacement curves of reinforced concrete beams are obtained. Good correlation is observed between the finite element analysis results and that obtained from experimental investigation on the control beam. The experimental results are also compared with the finite element analysis results for RC beams with corroded reinforcement. In order to understand the effect of corrosion on the mechanical properties of reinforcement, the corroded reinforcements are modelled in nonlinear finite element analysis by (i) reducing the area of reinforcement alone (ii) by reducing both area and mechanical properties and (iii) reducing the mechanical properties without reducing the area of steel as reported in literature. The results obtained for the beam with corroded reinforcement confirms reduction in yield stress and ultimate stress of the reinforcement steel.

  16. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    NASA Astrophysics Data System (ADS)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  17. Retrofit of existing reinforced concrete bridges with fiber reinforced polymer composites

    DOT National Transportation Integrated Search

    2001-12-01

    A two-part research was focused on examining various issues related to the use of fiber reinforced polymer (FRP) composites for strengthening of existing reinforced concrete bridges. A summary of each phase is presented separately.

  18. Modeling of the Nonlinear Interface in Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Curiel Sosa, J. L.

    2010-04-01

    This article presents a novel scheme for modeling of reinforced concrete. The strategy takes into account the nonlinear behavior of the concrete as well as the debonding in the interface. The proposed technique solves the kinematic and kinetic jump in the interface by performing sub-cycles over the constituents-reinforcing bar and concrete-jointly with an innovative interface constitutive law. Application to pull-out problems is performed to show the capabilities of the proposed methodology by means of comparison with available experimental data.

  19. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    NASA Astrophysics Data System (ADS)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  20. Improved corrosion inspection procedures for reinforced concrete bridges : electrical resistivity of concrete.

    DOT National Transportation Integrated Search

    2015-07-01

    The effects of steel reinforcement and chloride-induced corrosion initiation on the electrical resistivity measurements using the Wenner : probe technique were studied experimentally on custom-designed reinforced concrete slabs. Investigation paramet...

  1. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  2. Surface treated polypropylene (PP) fibres for reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Buendía, Angel M., E-mail: buendia@uv.es; Romero-Sánchez, María Dolores; Climent, Verónica

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in themore » mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.« less

  3. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    NASA Astrophysics Data System (ADS)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  4. GFRP reinforced concrete bridge decks

    DOT National Transportation Integrated Search

    2000-07-01

    This report investigates the application of glass fiber reinforced polymer (GFRP) rebars in concrete bridge decks as a potential replacement or supplement to conventional steel rebars. Tests were conducted to determine the material properties of the ...

  5. GFRP reinforced concrete bridge decks.

    DOT National Transportation Integrated Search

    2000-07-01

    This report investigates the application of glass fiber reinforced polymer (GFRP) rebars in concrete bridge decks as a potential replacement or supplement to conventional steel rebars. Tests were conducted to determine the material properties of the ...

  6. Modeling Manpower and Equipment Productivity in Tall Building Construction Projects

    NASA Astrophysics Data System (ADS)

    Mudumbai Krishnaswamy, Parthasarathy; Rajiah, Murugasan; Vasan, Ramya

    2017-12-01

    Tall building construction projects involve two critical resources of manpower and equipment. Their usage, however, widely varies due to several factors affecting their productivity. Currently, no systematic study for estimating and increasing their productivity is available. What is prevalent is the use of empirical data, experience of similar projects and assumptions. As tall building projects are here to stay and increase, to meet the emerging demands in ever shrinking urban spaces, it is imperative to explore ways and means of scientific productivity models for basic construction activities: concrete, reinforcement, formwork, block work and plastering for the input of specific resources in a mixed environment of manpower and equipment usage. Data pertaining to 72 tall building projects in India were collected and analyzed. Then, suitable productivity estimation models were developed using multiple linear regression analysis and validated using independent field data. It is hoped that the models developed in the study will be useful for quantity surveyors, cost engineers and project managers to estimate productivity of resources in tall building projects.

  7. Numerical Simulation on the Dynamic Splitting Tensile Test of reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuan; Jia, Haokai; Jing, Lin

    2018-03-01

    The research for crack resistance was of RC was based on the split Hopkinson bar and numerical simulate software LS-DYNA3D. In the research, the difference of dynamic splitting failure modes between plane concrete and reinforced concrete were completed, and the change rule of tensile stress distribution with reinforcement ratio was studied; also the effect rule with the strain rate and the crack resistance was also discussed by the radial tensile stress time history curve of RC specimen under different loading speeds. The results shows that the reinforcement in the concrete can impede the crack extension, defer the failure time of concrete, increase the tension intensity of concrete; with strain rate of concrete increased, the crack resistance of RC increased.

  8. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    NASA Astrophysics Data System (ADS)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  9. Knee degeneration in concrete reinforcement workers.

    PubMed Central

    Wickström, G; Hänninen, K; Mattsson, T; Niskanen, T; Riihimäki, H; Waris, P; Zitting, A

    1983-01-01

    The loads on the knees in concrete reinforcement work and maintenance painting were analysed on eight construction work sites. A total of 352 reinforcement workers and 231 painters. Finnish men aged 20-64, were clinically and radiologically examined to determine the condition of the knee joints in active workers. The loads on the knees and the occurrence of minor injuries and accidents were higher in reinforcement work than in painting, but the occurrence of symptoms, clinical signs, and radiological findings was equally common in both groups. Reinforcement work seemed to provoke more symptoms from degenerated knees than painting. PMID:6830721

  10. Numerical Simulation of Monitoring Corrosion in Reinforced Concrete Based on Ultrasonic Guided Waves

    PubMed Central

    Zheng, Zhupeng; Lei, Ying; Xue, Xin

    2014-01-01

    Numerical simulation based on finite element method is conducted to predict the location of pitting corrosion in reinforced concrete. Simulation results show that it is feasible to predict corrosion monitoring based on ultrasonic guided wave in reinforced concrete, and wavelet analysis can be used for the extremely weak signal of guided waves due to energy leaking into concrete. The characteristic of time-frequency localization of wavelet transform is adopted in the corrosion monitoring of reinforced concrete. Guided waves can be successfully used to identify corrosion defects in reinforced concrete with the analysis of suitable wavelet-based function and its scale. PMID:25013865

  11. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    NASA Astrophysics Data System (ADS)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  12. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    NASA Astrophysics Data System (ADS)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  13. Braided reinforced composite rods for the internal reinforcement of concrete

    NASA Astrophysics Data System (ADS)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  14. Evaluation of Glass Fiber Reinforced Concrete Panels for Use in Military Construction.

    DTIC Science & Technology

    1984-06-01

    AD-A158 134 UNCLASSIFIED EVALUATION OF GLASS FIBER REINFORCED CONCRETE PANELS FOR USE IN MILITARY. . (U) CONSTRUCTION ENGINEERING RESEARCH LAB...Construction Engineering Research Laboratory i=h-C=iU. TECHNICAL REPORT M-85/15 June 1985 AD-A158 134 0~- 8 Evaluation of Glass Fiber ...Reinforced Concrete Panels for Use in Military Construction by Gilbert R. Williamson Glass fiber reinforced concrete (GFRC) materials are investigated

  15. Fracture of concrete caused by the reinforcement corrosion products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.

    2006-11-01

    One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.

  16. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  17. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  18. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  19. Quality control of fireproof coatings for reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  20. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  1. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  2. Durable fiber reinforced self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corinaldesi, V.; Moriconi, G

    2004-02-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strainsmore » due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.« less

  3. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    NASA Astrophysics Data System (ADS)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  4. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    PubMed

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  5. Shear design expressions for concrete filled steel tube and reinforced concrete filled tube components.

    DOT National Transportation Integrated Search

    2016-06-01

    Concrete-filled steel tubes (CFSTs) and reinforced concrete-filled steel tubes (RCFSTs) are increasingly : used in transportation structures as piers, piles, caissons or other foundation components. While the axial : and flexural properties of CFTs h...

  6. Repair of heat damaged reinforced concrete slab with High Strength Fibre Reinforced Concrete materials

    NASA Astrophysics Data System (ADS)

    Ain Hamiruddin, Nur; Razak, Rafiza Abd; Muhammad, Khairunnisa; Zahid, Muhd Zulham Affendi Mohd

    2018-04-01

    The purpose of this study is to investigate the flexural behaviour of heat damaged reinforced concrete (RC) slab by using High Strength Fibre Reinforced Concrete (HSFRC) as repair materials. The slab samples consist of twelve one-way columns heated at 200 ° C, 400 ° C and 600 ° C for 120 minutes. The thickness of the HSFRC layer used to heat damaged slab samples is 40 mm thick. Two distinct curing methods were implement during this study: i.e. normal curing (standard room temperature 26°C) and heat curing (temperature of 90°C for 48 hours). The center-point loading flexural strength test based on ASTM C 293 were referred to examine the flexural strength of the slab samples other than evaluated the mechanical properties of repaired samples (i.e. flexural strength, secant stiffness, toughness and ductility). The HSFRC's results showed that compressive strength at 28 days was 88.66 MPa. Whereas the flexural strength of heat damage repaired samples that exposed to 200°C (R200), 400°C (RNC400) and 400°C (RHC400) were gained by about 3.06% (34.93 MPa), 14.47% (38.79 MPa) and 30.95% (44.38 MPa) respectively, contrasted to the control sample (CS) which is 33.89 MPa. However, heat damage for non-repaired samples that exposed to 200 ° C (NR200) and 400°C (NR400) decline by about 0.77% (33.63 MPa) and 8.13% (31.14 MPa) respectively. Therefore, the utilized of HSFRC as repair materials can improve the flexural strength than control sample (CS). This is clearly indicate that HSFRC can enhance the mechanical properties of heat damaged reinforced concrete (RC) slab which can illustrate that the results of flexural behaviour reflected the superiority by using HSFRC as repair materials.

  7. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Doru, Zdrenghea

    2017-10-01

    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  8. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  9. An experiment on the use of disposable plastics as a reinforcement in concrete beams

    NASA Technical Reports Server (NTRS)

    Chowdhury, Mostafiz R.

    1992-01-01

    Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.

  10. Performance of steel wool fiber reinforced geopolymer concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Abdullah, Mohd Mustafa Al Bakri; Ismail, Khairul Nizar; Muniandy, Ratnasamy; Ariffin, Nurliayana

    2017-09-01

    In this paper, performance of geopolymer concrete was studied by mixing of Class F fly ash from Manjung power station, Lumut, Perak, Malaysia with alkaline activator which are combination of sodium hydroxide and sodium silicate. Steel wool fiber were added into the geopolymer concrete as reinforcement with different weight percentage vary from 0 % - 5 %. Chemical compositions of Malaysian fly ash was first analyzed by using X-ray fluorescence. All geopolymer concrete reinforced with steel wool fiber with different weight percentage were tested in terms of density, workability, and compression. Result shows Malaysian fly ash identified by using XRF was class F. Density of geopolymer concrete close to density of OPC which is approximately 2400 kg/m3 and the density was increase gradually with the additions of steel fiber. However, the inclusions of steel fibers also shows some reduction to the workability of geopolymer concrete. Besides, the compressive strength was increased with the increasing of fibers addition until maximum of 18.6 % improvement at 3 % of steel fibers.

  11. Modeling of interaction between steel and concrete in continuously reinforced concrete pavements : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    Continuously reinforced concrete pavement (CRCP) contains continuous longitudinal reinforcement with no transverse : expansion within the early life of the pavement and can continue to develop cracks in the long-term. The : accurate modeling of CRCPs...

  12. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    DOT National Transportation Integrated Search

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  13. Performance of Hydrophobisation Techniques in Case of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz; Osesek, Mateusz; Gwozdowski, Błażej; Ilski, Mirosław

    2017-10-01

    Concrete is, unchangeably, one of the most frequently applied building materials, also in the case of bridges, overpasses or viaducts. Along with the aging of such structures, the degradation of concrete, which may accelerate the corrosion of reinforcing steel and drastically decrease the load-bearing capacity of the structure, becomes an important issue. The paper analyzes the possibilities of using deep hydrophobisation in repairing reinforced concrete engineering structures. The benefits of properly securing reinforced concrete structures from the damaging effects of UV radiation, the influence of harmful gases, or progression of chlorine induced corrosion have been presented, especially in regards to bridge structures. The need to calculate the costs of carrying out investments along with the expected costs of maintaining such structures, as well as the high share of costs connected with logistics, has also been indicated in the total costs of repair works.

  14. Composite Grids for Reinforcement of Concrete Structures.

    DTIC Science & Technology

    1998-06-01

    to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\

  15. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  16. 78 FR 68090 - Steel Concrete Reinforcing Bar from Mexico and Turkey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ...)] Steel Concrete Reinforcing Bar from Mexico and Turkey Determinations On the basis of the record \\1... injured by reason of imports from Mexico and Turkey of steel concrete reinforcing bar, provided for in... L. Aranoff dissenting with regard to subject imports from Mexico. Commencement of Final Phase...

  17. A corrosion monitoring system for existing reinforced concrete structures.

    DOT National Transportation Integrated Search

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  18. Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.

    2010-05-21

    Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less

  19. Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments

    NASA Astrophysics Data System (ADS)

    Akchiche, Hamida; Kriker, Abdelouahed

    2017-02-01

    The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.

  20. Evaluation of reinforced concrete structures using the electromagnetic method

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Frankowski, Paweł; Waszczuk, Paweł; Zieliński, Adam

    2018-04-01

    Reinforced concrete has been a universally dominant construction material for over a century, although structures made of this material are often exposed to many types of damage and deterioration due to different causes and external conditions. The most important problem is corrosion of the reinforcement. Currently, most of the inspection methods of rebar in concrete are of an indirect nature or they are partially destructive. Moreover, none of the well-known systems allow for direct and non-destructive evaluation of the rebar corrosion. The purpose of this paper is to present the new, direct and non-destructive method, which allows detection of cracks and corrosion of the reinforcement bars.

  1. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    NASA Astrophysics Data System (ADS)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  2. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka

    Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less

  3. Laboratory fatigue evaluation of continuously fiber-reinforced concrete pavement.

    DOT National Transportation Integrated Search

    2013-09-01

    Portland cement concrete (PCC) is the worlds most versatile construction material. PCC has : been in use in the United States for over 100 years. PCC pavement is generally constructed as : either continually reinforced concrete pavement (CRCP) or ...

  4. Unidirectional Core-Shell Hybrids for Concrete Reinforcement - A preliminary Study

    DTIC Science & Technology

    1994-02-01

    angle with respect to the rebar longitudinal axis. 14. SUBJECT TERMS 115. WNUMER OF PAGES FRP, rebar , concrete , fibers, carbon fibers, glass fibers...structures. The main cause of deterioration is concrete cracking and corrosion of steel reinforcement exposed to the marine environment and aggressive...agents such as deicing salts for bridges and pavements . To prevent this corrosion , galvanized and epoxy-coated steel reinforcing bars are currently being

  5. Relief of reinforcing congestion in beams and bent caps of concrete bridges.

    DOT National Transportation Integrated Search

    2012-06-01

    In order to determine how to resolve the issues involving steel congestion in reinforced concrete (RC) structures, three potential solutions to this problem were researched. In the first method, reinforced concrete (RC) was mixed with steel fibers. T...

  6. High-performance fiber-reinforced concrete in a bridge deck.

    DOT National Transportation Integrated Search

    2005-01-01

    The purpose of this research was to compare the performance of high-performance fiber-reinforced concrete (FRC) with that of conventional concrete in a bridge deck. FRC is expected to increase toughness, provide enhanced residual strength, and minimi...

  7. Flexural and Tensile Properties of Thin, Very High-Strength, Fiber-Reinforced Concrete Panels

    DTIC Science & Technology

    2008-09-01

    Fiber - Reinforced Concrete Panels Michael J. Roth September 2008 G eo te ch ni ca l a nd S tr uc tu re s La bo ra to ry Approved for...Tensile Properties of Thin, Very High-Strength, Fiber - Reinforced Concrete Panels Michael J. Roth Geotechnical and Structures Laboratory U.S. Army...of Michigan, Ann Arbor, and noted authority in the field of 160 fiber - reinforced concrete . Implementation of Li’s work

  8. Continuously reinforced concrete pavement inventory

    NASA Astrophysics Data System (ADS)

    Halverson, A. D.; Hagen, M. G.

    1982-09-01

    A typical concrete pavement has expansion and contraction joints across and along the pavement surface. The joints allow the pavement to change in dimension with changes in temperature. A continuously reinforced concrete pavement (CRCP) does not have expansion or contraction joints. Random, closely spaced cracks are expected to develop naturally and allow for expansion and contraction due to temperature changes. The many random cracks eliminate expensive joint maintenance. This maintenance-free service life feature has not occurred in Minnesota. This CRCP inventory is a physical evaluation of the extent of corrosion on random sections of pavement. It is related to concurrent efforts which will evaluate CRCP rehabilitation techniques.

  9. Field Performance of Fiber-Reinforced Concrete Airfield Pavements.

    DTIC Science & Technology

    1986-07-01

    were less severe at some fiver-reinforced concrete pavements at JFK airport in New York than at some of the other airports. The pavements at JFK ... airport did use a poly- ethylene sheet as a bond breaker between the fiber-reinforced overlay and base pavement. This may have helped reduce frictional

  10. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  11. 78 FR 43858 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...-860; A-822-804; A-823-809; A- 841-804] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia... antidumping duty orders \\1\\ on steel concrete reinforcing bars from Belarus, Indonesia, Latvia, Moldova... orders. \\1\\ See Antidumping Duty Orders: Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia...

  12. An alternative potentiometric method for determining chloride content in concrete samples from reinforced-concrete bridges.

    DOT National Transportation Integrated Search

    2002-01-01

    Analysis of chloride contents in ground concrete samples collected from reinforced concrete bridges and other structures exposed to deicing salts or seawater has become an important part of the inspection for such structures. Such an analysis provide...

  13. Modeling of concrete cracking due to corrosion process of reinforcement bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossio, Antonio, E-mail: antonio.bossio@unina.it; Monetta, Tullio, E-mail: monetta@unina.it; Bellucci, Francesco, E-mail: bellucci@unina.it

    The reinforcement corrosion in Reinforced Concrete (RC) is a major reason of degradation for structures and infrastructures throughout the world leading to their premature deterioration before design life was attained. The effects of corrosion of reinforcement are: (i) the reduction of the cross section of the bars, and (ii) the development of corrosion products leading to the appearance of cracks in the concrete cover and subsequent cover spalling. Due to their intrinsic complex nature, these issues require an interdisciplinary approach involving both material science and structural design knowledge also in terms on International and National codes that implemented the conceptmore » of durability and service life of structures. In this paper preliminary FEM analyses were performed in order to simulate pitting corrosion or general corrosion aimed to demonstrate the possibility to extend the results obtained for a cylindrical specimen, reinforced by a single bar, to more complex RC members in terms of geometry and reinforcement. Furthermore, a mechanical analytical model to evaluate the stresses in the concrete surrounding the reinforcement bars is proposed. In addition, a sophisticated model is presented to evaluate the non-linear development of stresses inside concrete and crack propagation when reinforcement bars start to corrode. The relationships between the cracking development (mechanical) and the reduction of the steel section (electrochemical) are provided. Finally, numerical findings reported in this paper were compared to experimental results available in the literature and satisfactory agreement was found.« less

  14. Applications of fiber reinforced concrete containers in France and in Slovakia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdier, A.; Delgrande, J.; Remias, V.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by COGEMA culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber reinforced concrete containers satisfy all French safetymore » requirements relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber reinforced concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Campaign Generale des Eaux. This technology is being transferred to Slovenske Elektrarne (Slovak Power Plant) to intern the waste produced by Bohunice and Mochovce power plants in cubical fiber reinforced concrete containers.« less

  15. Nondestructive Inspection Protocol for Reinforced Concrete Barriers [Tech Brief

    DOT National Transportation Integrated Search

    2014-09-01

    Reinforced concrete barriers are generally anchored to the deck of a bridge or retaining wall using reinforcing steel protruding from the main structure or by anchored bars or bolts added during retrofits. Corrosion of steel bars or bolts can weaken ...

  16. Computational models for the nonlinear analysis of reinforced concrete plates

    NASA Technical Reports Server (NTRS)

    Hinton, E.; Rahman, H. H. A.; Huq, M. M.

    1980-01-01

    A finite element computational model for the nonlinear analysis of reinforced concrete solid, stiffened and cellular plates is briefly outlined. Typically, Mindlin elements are used to model the plates whereas eccentric Timoshenko elements are adopted to represent the beams. The layering technique, common in the analysis of reinforced concrete flexural systems, is incorporated in the model. The proposed model provides an inexpensive and reasonably accurate approach which can be extended for use with voided plates.

  17. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    NASA Astrophysics Data System (ADS)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  18. Steel-free hybrid reinforcement system for concrete bridge decks, phase 1

    DOT National Transportation Integrated Search

    2006-05-01

    Use of nonferrous fiber-reinforced polymer (FRP) reinforcement bars (rebars) offers one promising alternative to mitigating the corrosion problem in steel reinforced concrete bridge decks. Resistance to chloride ion driven corrosion, high tensile str...

  19. Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2017-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.

  20. Remaining life of reinforced concrete beams with diagonal-tension cracks : appendix A & B.

    DOT National Transportation Integrated Search

    2004-04-01

    The appendices belong to "Remaining life of reinforced concrete beams with diagonal-tension cracks". : This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-...

  1. Remaining life of reinforced concrete beams with diagonal-tension cracks : appendix C & D.

    DOT National Transportation Integrated Search

    2004-04-01

    The appendices belong to "Remaining life of reinforced concrete beams with diagonal-tension cracks". : This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-...

  2. Earthquake behavior of steel cushion-implemented reinforced concrete frames

    NASA Astrophysics Data System (ADS)

    Özkaynak, Hasan

    2018-04-01

    The earthquake performance of vulnerable structures can be increased by the implementation of supplementary energy-dissipative metallic elements. The main aim of this paper is to describe the earthquake behavior of steel cushion-implemented reinforced concrete frames (SCI-RCFR) in terms of displacement demands and energy components. Several quasi-static experiments were performed on steel cushions (SC) installed in reinforced concrete (RC) frames. The test results served as the basis of the analytical models of SCs and a bare reinforced concrete frame (B-RCFR). These models were integrated in order to obtain the resulting analytical model of the SCI-RCFR. Nonlinear-time history analyses (NTHA) were performed on the SCI-RCFR under the effects of the selected earthquake data set. According to the NTHA, SC application is an effective technique for increasing the seismic performance of RC structures. The main portion of the earthquake input energy was dissipated through SCs. SCs succeeded in decreasing the plastic energy demand on structural elements by almost 50% at distinct drift levels.

  3. Application of Non-pressure Reinforced Concrete Pipes in Modern Construction and Reconstruction of Highways

    NASA Astrophysics Data System (ADS)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    Modern highway construction technologies provide for the quality water discharge systems to increase facilities’ service life. Pipeline operating conditions require the use of durable and reliable materials and structures. The experience in using reinforced concrete pipes for these purposes shows their utilization efficiency. The present paper considers the experience in the use of non-pressure reinforced concrete pipes manufactured by the German company SCHLOSSER-PFEIFFER under the Ural region geological and climatic conditions. The authors analyzed the actual operation of underground pipelines and effective loads upon them. A detailed study of the mechanical properties of reinforced concrete pipes is necessary to improve their production technology and to enhance their serviceability. The use of software-based methods helped to develop a mathematical model and to estimate the strength and crack resistance of reinforced concrete pipes at different laying depths. The authors carried out their complex research of the strain-stress behaviour of reinforced concrete pipes and identified the most hazardous sections in the structure. The calculations performed were confirmed by the results of laboratory tests completed in the construction materials, goods, and structures test center. Based on the completed research, the authors formulated their recommendations to improve the design and technology of non-pressure reinforced concrete pipes.

  4. Evaluation of fiber reinforced concrete : final report.

    DOT National Transportation Integrated Search

    1991-05-01

    This study was conducted to evaluate the physical properties of plastic and hardened fiber reinforced concrete using three basic types of fibers: steel, fiberglass and polypropylene. Fibers have been shown to increase flexural and tensile strength, d...

  5. Reinforced concrete pipe cracks : acceptance criteria [summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Reinforced concrete pipe (RCP) is widely used by the Florida Department of Transportation (FDOT) in installations expected to serve for periods of decades before replacement, and extremely slow deterioration of RCP can be accepted. However, cracks in...

  6. Development of structural health monitoring and early warning system for reinforced concrete system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less

  7. Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads

    NASA Astrophysics Data System (ADS)

    Berlinov, Mikhail

    2018-03-01

    A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.

  8. 77 FR 70140 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ...-860; A-822-804; A-823-809; A- 841-804] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia... concrete reinforcing bars from Belarus, Indonesia, Latvia, Moldova, Poland, the People's Republic of China... reinforcing bars from Belarus, Indonesia, Latvia, Moldova, the People's Republic of China (``PRC''), Poland...

  9. Mechanical behaviour of fibre reinforced concrete using soft - drink can

    NASA Astrophysics Data System (ADS)

    Ilya, J.; Cheow Chea, C.

    2017-11-01

    This research was carried out to study the behaviour of concrete, specifically compressive and flexural strength, by incorporating recycled soft drink aluminium can as fibre reinforcement in the concrete. Another aim of the research is to determine the maximum proportion of fibres to be added in the concrete. By following standard mix design, Ordinary Portland Cement (OPC) concrete was made to have a target mean strength of 30 N/mm2 with not more than 30 mm of slump. Having the same workability, OPC concrete with 0%, 1% and 2% of soft drink can aluminium fibre was prepared based on weight of cement. The specimens were tested for compressive strength and flexural strength. Laboratory test results based on short term investigation reveals that the compressive strength and flexural strength of concrete containing fibre are higher than of normal OPC concrete. Among two volume fractions, concrete with 1% of soft drink can fibre have performed better result in compressive strength and flexural strength compared with 2% amount of soft drink can fibre. The optimum proportion of aluminium fibre to be added in the concrete as fibre reinforcement is 1% fibre content by weight of cement which gave all the positive response from all the tests conducted.

  10. Corrosion resistant alloys for reinforced concrete [2009

    DOT National Transportation Integrated Search

    2009-04-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for four-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focus...

  11. Corrosion resistant alloys for reinforced concrete [2007

    DOT National Transportation Integrated Search

    2007-07-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for 4-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focused ...

  12. Advance study of fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  13. Advance study of fiber-reinforced self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural andmore » material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.« less

  14. Design of reinforced areas of concrete column using quadratic polynomials

    NASA Astrophysics Data System (ADS)

    Arif Gunadi, Tjiang; Parung, Herman; Rachman Djamaluddin, Abd; Arwin Amiruddin, A.

    2017-11-01

    Designing of reinforced concrete columns mostly carried out by a simple planning method which uses column interaction diagram. However, the application of this method is limited because it valids only for certain compressive strenght of the concrete and yield strength of the reinforcement. Thus, a more applicable method is still in need. Another method is the use of quadratic polynomials as a basis for the approach in designing reinforced concrete columns, where the ratio of neutral lines to the effective height of a cross section (ξ) if associated with ξ in the same cross-section with different reinforcement ratios is assumed to form a quadratic polynomial. This is identical to the basic principle used in the Simpson rule for numerical integral using quadratic polynomials and had a sufficiently accurate level of accuracy. The basis of this approach to be used both the normal force equilibrium and the moment equilibrium. The abscissa of the intersection of the two curves is the ratio that had been mentioned, since it fulfill both of the equilibrium. The application of this method is relatively more complicated than the existing method but provided with tables and graphs (N vs ξN ) and (M vs ξM ) so that its used could be simplified. The uniqueness of these tables are only distinguished based on the compresssive strength of the concrete, so in application it could be combined with various yield strenght of the reinforcement available in the market. This method could be solved by using programming languages such as Fortran.

  15. 7. Detail view of reinforced concrete archrings comprising dam's upstream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  16. Headed reinforcement in concrete structure: State of the art

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Yoganata, Yehezkiel Septian; Suluch, Munarus; Iranata, Data

    2017-11-01

    At the reinforced concrete structure, the utilization of the headed bar has provided simpler installation, less congestion of reinforcement and more effective anchorage compared to conventional reinforcing bars anchorage by hooks and bends. A literature review related to the use of headed reinforcement are exhibited. The paper discusses the behavior anchorage of headed reinforcement, and the application of at beam column joint and as shear reinforcement. The review of headed bar includes historical background, the available commercial product and the summary of the experimental results that uses this application. Based on current study the suggestion for further research are provided.

  17. Corrosion performance tests for reinforcing steel in concrete : test procedures.

    DOT National Transportation Integrated Search

    2009-09-01

    The existing test method to assess the corrosion performance of reinforcing steel embedded in concrete, mainly : ASTM G109, is labor intensive, time consuming, slow to provide comparative results, and often expensive. : However, corrosion of reinforc...

  18. Research notes : non-destructive evaluation of FRP-strengthened reinforced concrete.

    DOT National Transportation Integrated Search

    2005-04-01

    Many reinforced concrete structures across the country are being strengthened with fiber reinforced polymer (FRP) composites to increase the load capacity. In many cases, composites provide the most cost effective strengthening option, and they do no...

  19. Evaluation of long carbon fiber reinforced concrete to mitigate earthquake damage of infrastructure components.

    DOT National Transportation Integrated Search

    2013-06-01

    The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...

  20. Development of an embeddable reference electrode for reinforced concrete structures.

    DOT National Transportation Integrated Search

    1998-01-01

    There is a concern that none of the existing concrete-embeddable reference electrodes that are being used as a convenient means for monitoring the condition of the reinforcing steel in concrete bridges or the operation of cathodic protection systems ...

  1. The effect of crack width on the service life of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao

    2018-04-01

    Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.

  2. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  3. Damage Model of Reinforced Concrete Members under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  4. Recent development in blast performance of fiber-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  5. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  6. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    NASA Astrophysics Data System (ADS)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  7. Selected Bibliography on Fiber-Reinforced Cement and Concrete.

    DTIC Science & Technology

    1976-08-01

    A listing of 660 references with author index is given for fiber reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  8. Mechanistic-empirical design concepts for continuously reinforced concrete pavements in Illinois.

    DOT National Transportation Integrated Search

    2009-04-01

    The Illinois Department of Transportation (IDOT) currently has an existing jointed plain concrete pavement : (JPCP) design based on mechanistic-empirical (M-E) principles. However, their continuously reinforced concrete : pavement (CRCP) design proce...

  9. Energy-efficiency increase of reinforced concrete columns with recessed working fittings

    NASA Astrophysics Data System (ADS)

    Muradyan, Viktor; Mailyan, Dmitry; Lyapin, Alexander; Chubarov, Valery

    2017-10-01

    One of the most important ways of increasing the energy-efficiency of the construction industry is the reduction of the material capacity of structures and labour intensity of their manufacturing. Since manufacturing of reinforced concrete structures requires considerable financial and energy expenses, then reduction of technological cycle operations is sure to be the urgent task today. It is well known, that in the recessed reinforced concrete elements the transverse reinforcement is fixed for the purpose of ensuring the longitudinal rods fixity. Besides, the thickness of the protective layer, as a rule, is taken the minimum. The authors proposed to increase the protective layer, and that will reduce the amount of transverse reinforcement rods significantly and will make the technological process of structures manufacturing easier.

  10. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    DOT National Transportation Integrated Search

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  11. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete.

    PubMed

    Bos, Freek P; Ahmed, Zeeshan Y; Jutinov, Evgeniy R; Salet, Theo A M

    2017-11-16

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the nature of this construction method is unsuitable for conventional reinforcement methods to achieve ductile failure behaviour. Sometimes, this is solved by combining printing with conventional casting and reinforcing techniques. This study, however, explores an alternative strategy, namely to directly entrain a metal cable in the concrete filament during printing to serve as reinforcement. A device is introduced to apply the reinforcement. Several options for online reinforcement media are compared for printability. Considerations specific to the manufacturing process are discussed. Subsequently, pull-out tests on cast and printed specimens provide an initial characterisation of bond behaviour. Bending tests furthermore show the potential of this reinforcement method. The bond stress of cables in printed concrete was comparable to values reported for smooth rebar but lower than that of the same cables in cast concrete. The scatter in experimental results was high. When sufficient bond length is available, ductile failure behaviour for tension parallel to the filament direction can be achieved, even though cable slip occurs. Further improvements to the process should pave the way to achieve better post-crack resistance, as the concept in itself is feasible.

  12. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete

    PubMed Central

    Ahmed, Zeeshan Y.; Jutinov, Evgeniy R.; Salet, Theo A. M.

    2017-01-01

    The Material Deposition Method (MDM) is enjoying increasing attention as an additive method to create concrete mortar structures characterised by a high degree of form-freedom, a lack of geometrical repetition, and automated construction. Several small-scale structures have been realised around the world, or are under preparation. However, the nature of this construction method is unsuitable for conventional reinforcement methods to achieve ductile failure behaviour. Sometimes, this is solved by combining printing with conventional casting and reinforcing techniques. This study, however, explores an alternative strategy, namely to directly entrain a metal cable in the concrete filament during printing to serve as reinforcement. A device is introduced to apply the reinforcement. Several options for online reinforcement media are compared for printability. Considerations specific to the manufacturing process are discussed. Subsequently, pull-out tests on cast and printed specimens provide an initial characterisation of bond behaviour. Bending tests furthermore show the potential of this reinforcement method. The bond stress of cables in printed concrete was comparable to values reported for smooth rebar but lower than that of the same cables in cast concrete. The scatter in experimental results was high. When sufficient bond length is available, ductile failure behaviour for tension parallel to the filament direction can be achieved, even though cable slip occurs. Further improvements to the process should pave the way to achieve better post-crack resistance, as the concept in itself is feasible. PMID:29144426

  13. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    NASA Astrophysics Data System (ADS)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  14. Environmental Durability of Reinforced Concrete Deck Girders Strengthened for Shear with Surface-Bonded Carbon Fiber-Reinforced Polymer

    DOT National Transportation Integrated Search

    2009-05-01

    "This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort...

  15. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    NASA Astrophysics Data System (ADS)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  16. An expert system for the evaluation of reinforced concrete structure durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berra, M.; Bertolini, L.; Briglia, M.C.

    1999-11-01

    A user-friendly expert system has been developed to evaluate primarily the durability of reinforced concrete structures, either in the design phase or during service life related to reinforcement corrosion. Besides the durability module, the ES has been provided with three other expert modules in order to support the user during the following activities: inspections, corrosion diagnosis and repair strategy (of concrete and reinforcement). Corrosion induced by carbonation and chlorides penetration and caused by concrete degradation such as sulfate attack, freeze/thaw cycles, alkali silica reaction are considered. The knowledge used for the expert system is based both on open literature andmore » international standards as well as on specific experiences and proprietary databases. The paper describes main features of the system, including the modeling of the knowledge, input data, the algorithms, the rules and the outputs for each module.« less

  17. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    PubMed

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  18. 78 FR 60831 - Steel Concrete Reinforcing Bar From Turkey: Initiation of Countervailing Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Bar From Turkey: Initiation of Countervailing Duty Investigation AGENCY: Import Administration... concrete reinforcing bar (``rebar'') from the Republic of Turkey (``Turkey''), filed in proper form on... of Steel Concrete Reinforcing Bar from the Republic of Turkey, dated September 4, 2013. \\2...

  19. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    NASA Technical Reports Server (NTRS)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  20. Evaluation of continuously reinforced concrete pavement : final report.

    DOT National Transportation Integrated Search

    1975-02-01

    This report provides a review of the performance and structural characteristic exhibited on five continuously reinforced concrete pavement projects in the State of Louisiana. The performance characteristics were evaluated by means of the Mays Ride Me...

  1. Development of early age shrinkage stresses in reinforced concrete bridge decks

    NASA Astrophysics Data System (ADS)

    William, Gergis W.; Shoukry, Samir N.; Riad, Mourad Y.

    2008-12-01

    This paper describes the instrumentation and data analysis of a reinforced concrete bridge deck constructed on 3-span continuous steel girders in Evansville, West Virginia. An instrumentation system consisting of 232 sensors is developed and implemented specifically to measure strains and temperature in concrete deck, strains in longitudinal and transverse rebars, the overall contraction and expansion of concrete deck, and crack openings. Data from all sensors are automatically collected every 30 minutes starting at the time of placing the concrete deck. Measured strain and temperature time-histories were used to calculate the stresses, which were processed to attenuate the thermal effects due to daily temperature changes and isolate the drying shrinkage component. The results indicated that most of concrete shrinkage occurs during the first three days. Under the constraining effects from stay-in-place forms and reinforcement, early age shrinkage leads to elevated longitudinal stress, which is the main factor responsible for crack initiation.

  2. Rapid repair of severely damaged reinforced concrete columns.

    DOT National Transportation Integrated Search

    2012-11-01

    Research on rapid repair of reinforced concrete (RC) columns has been limited to columns with slight or moderate damage. Moreover, : few studies have been conducted on repair of severely damaged columns, particularly with buckled or fractured reinfor...

  3. Shear capacity assessment of corrosion-damaged reinforced concrete beams : final report.

    DOT National Transportation Integrated Search

    2003-12-01

    This study investigated how the shear capacity of reinforced concrete bridge beams is affected by corrosion damage to the shear stirrups. It described the changes that occur in shear capacity and concrete cracking as shear stirrup corrosion progresse...

  4. Research Status on Reinforcement Connection Form of Precast Concrete Shear Wall Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuangnan; Zhang, Yan

    2018-03-01

    With the rapid development of Chinese economy and the speeding up the process of urbanization, housing industrialization has been paid more and more attention. And the fabricated structure has been widely used in China. The key of precast concrete shear wall structure is the connection of precast components. The reinforcement connection can directly affect the entirety performance and seismic behavior of the structure. Different reinforcement connections have a great impact on the overall behavior of the structure. By studying the characteristics of the reinforcement connection forms used in the vertical connection and horizontal connection of precast concrete shear wall, it can provide reference for the research and development of the reinforcement connection forms in the future.

  5. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  6. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors

    PubMed Central

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-01-01

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251

  7. High-performance continuously reinforced concrete pavements in Richmond and Lynchburg, Virginia.

    DOT National Transportation Integrated Search

    2007-01-01

    This study evaluated the properties of two high performance concrete (HPC) paving projects in Virginia. These continuously reinforced concrete pavements were placed on State Route 288 near Richmond and on the U.S. 29 Madison Heights Bypass in Lynchbu...

  8. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  9. Polypropylene fiber reinforced concrete detention ponds : final report.

    DOT National Transportation Integrated Search

    1995-09-01

    In 1991, two Durafiber polypropylene fiber reinforced concrete lined detention ponds were constructed. The detention ponds are located on the north side of the 181st Avenue Interchange, on the Columbia River Highway (I-84), approximately ten miles ea...

  10. Numerical simulation of CFRP-repaired reinforced concrete columns.

    DOT National Transportation Integrated Search

    2014-07-01

    The overarching goal of this study was to investigate the influence of repair to individual reinforced concrete bridge columns on the : post-repair seismic performance of the bridge system. A method was developed to rapidly repair an earthquake-damag...

  11. Assessing the service life of corrosion-deteriorated reinforced concrete member highway bridges in West Virginia.

    DOT National Transportation Integrated Search

    2014-09-01

    Corrosion of steel-reinforced concrete bridges is a serious problem facing the WVDOT. This : paper provides an overview of techniques for evaluating the condition of reinforced concrete : bridge elements; methods for modeling the remaining service li...

  12. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    DTIC Science & Technology

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  13. FEM investigation of concrete silos damaged and reinforced externally with CFRP

    NASA Astrophysics Data System (ADS)

    Kermiche, Sihem; Boussaid, Ouzine; Redjel, Bachir; Amirat, Abdelaziz

    2018-03-01

    The present work investigates the reinforcement of concrete wheat-grain silos under initial damage. The reinforcement is achieved by mounting bands of carbon fiber reinforced polymer (CFRP) on the external walls of the silo. 4 modes of reinforcement are adapted according to the width of the band, the gap between two bands, the height of reinforcement and the number of layers achieved through banding. Analytical analyses were conducted using the Reimbert method and the Eurocode 1 Part 4 method, as well as numerically through the finite element software Abaqus. Results show that the normal pressure reaches a peak value when approaching the silo hopper. Initial damage in a concrete silo was first determined using a 3D geometrical model, while the damage analyses were conducted to optimize the CFRP reinforcement by mounting 2 CFRP bands close together above and below the cylinder-hopper joint. Increasing the number of banding layers could produce better performance as the damage was slightly decreased from 0.161 to 0.152 for 1 and 4 layers respectively.

  14. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  15. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    NASA Astrophysics Data System (ADS)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  16. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    PubMed Central

    Berardi, Valentino Paolo; Mancusi, Geminiano

    2012-01-01

    Polymer concretes (PCs) represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section). The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  17. Refinement of Strut-and-Tie Model for Reinforced Concrete Deep Beams

    PubMed Central

    Panjehpour, Mohammad; Chai, Hwa Kian; Voo, Yen Lei

    2015-01-01

    Deep beams are commonly used in tall buildings, offshore structures, and foundations. According to many codes and standards, strut-and-tie model (STM) is recommended as a rational approach for deep beam analyses. This research focuses on the STM recommended by ACI 318-11 and AASHTO LRFD and uses experimental results to modify the strut effectiveness factor in STM for reinforced concrete (RC) deep beams. This study aims to refine STM through the strut effectiveness factor and increase result accuracy. Six RC deep beams with different shear span to effective-depth ratios (a/d) of 0.75, 1.00, 1.25, 1.50, 1.75, and 2.00 were experimentally tested under a four-point bending set-up. The ultimate shear strength of deep beams obtained from non-linear finite element modeling and STM recommended by ACI 318-11 as well as AASHTO LRFD (2012) were compared with the experimental results. An empirical equation was proposed to modify the principal tensile strain value in the bottle-shaped strut of deep beams. The equation of the strut effectiveness factor from AASHTTO LRFD was then modified through the aforementioned empirical equation. An investigation on the failure mode and crack propagation in RC deep beams subjected to load was also conducted. PMID:26110268

  18. Improved load rating of reinforced concrete slab bridges.

    DOT National Transportation Integrated Search

    2007-09-01

    In New Mexico, many reinforced concrete slab (RCS) bridges provide service on interstates I-10, I-25, and I-40. An accurate strength evaluation of interstate bridges is essential to avoid unnecessary load restrictions. The AASHTO load rating factor f...

  19. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    NASA Astrophysics Data System (ADS)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  20. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    NASA Astrophysics Data System (ADS)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  1. Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Koorosh; Chenery, Rhea

    2017-12-01

    Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.

  2. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  3. Damage source identification of reinforced concrete structure using acoustic emission technique.

    PubMed

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.

  4. Towards practical multiscale approach for analysis of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  5. Non-traditional shape GFRP rebars for concrete reinforcement

    NASA Astrophysics Data System (ADS)

    Claure, Guillermo G.

    The use of glass-fiber-reinforced-polymer (GFRP) composites as internal reinforcement (rebars) for concrete structures has proven to be an alternative to traditional steel reinforcement due to significant advantages such as magnetic transparency and, most importantly, corrosion resistance equating to durability and structural life extension. In recent years, the number of projects specifying GFRP reinforcement has increased dramatically leading the construction industry towards more sustainable practices. Typically, GFRP rebars are similar to their steel counterparts having external deformations or surface enhancements designed to develop bond to concrete, as well as having solid circular cross-sections; but lately, the worldwide composites industry has taken advantage of the pultrusion process developing GFRP rebars with non-traditional cross-sectional shapes destined to optimize their mechanical, physical, and environmental attributes. Recently, circular GFRP rebars with a hollow-core have also become available. They offer advantages such as a larger surface area for improved bond, and the use of the effective cross-sectional area that is engaged to carry load since fibers at the center of a solid cross-section are generally not fully engaged. For a complete understanding of GFRP rebar physical properties, a study on material characterization regarding a quantitative cross-sectional area analysis of different GFRP rebars was undertaken with a sample population of 190 GFRP specimens with rebar denomination ranging from #2 to #6 and with different cross-sectional shapes and surface deformations manufactured by five pultruders from around the world. The water displacement method was applied as a feasible and reliable way to conduct the investigation. In addition to developing a repeatable protocol for measuring cross-sectional area, the objectives of establishing critical statistical information related to the test methodology and recommending improvements to

  6. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    PubMed Central

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  7. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    PubMed

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  8. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    DTIC Science & Technology

    2010-07-01

    1 BLAST DESIGN OF REINFORCED CONCRETE AND MASONRY COMPONENTS RETROFITTED WITH FRP Marlon L. Bazan, Ph.D. and Charles J. Oswald, P.E., Ph.D...as an alternative to traditional methods for strengthening and retrofitting concrete and masonry structures to resist blast loads. The development...and experimental validation of a methodology for modeling the response of blast loaded concrete and masonry structural components retrofitted with FRP

  9. Influence of reinforcement mesh configuration for improvement of concrete durability

    NASA Astrophysics Data System (ADS)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  10. Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    He, Dongqing; Wu, Min; Jie, Pengyu

    2017-12-01

    Several common high elastic modulus fibers (steel fibers, basalt fibers, polyvinyl alcohol fibers) and low elastic modulus fibers (polypropylene fiber) are incorporated into the concrete, and its cube compressive strength, splitting tensile strength and flexural strength are studied. The test result and analysis demonstrate that single fiber and hybrid fiber will improve the integrity of the concrete at failure. The mechanical properties of hybrid steel fiber-polypropylene fiber reinforced concrete are excellent, and the cube compressive strength, splitting tensile strength and flexural strength respectively increase than plain concrete by 6.4%, 3.7%, 11.4%. Doped single basalt fiber or polypropylene fiber and basalt fibers hybrid has little effect on the mechanical properties of concrete. Polyvinyl alcohol fiber and polypropylene fiber hybrid exhibit ‘negative confounding effect’ on concrete, its splitting tensile and flexural strength respectively are reduced by 17.8% and 12.9% than the single-doped polyvinyl alcohol fiber concrete.

  11. Flexural strengthening of Reinforced Concrete (RC) Beams Retrofitted with Corrugated Glass Fiber Reinforced Polymer (GFRP) Laminates

    NASA Astrophysics Data System (ADS)

    Aravind, N.; Samanta, Amiya K.; Roy, Dilip Kr. Singha; Thanikal, Joseph V.

    2015-01-01

    Strengthening the structural members of old buildings using advanced materials is a contemporary research in the field of repairs and rehabilitation. Many researchers used plain Glass Fiber Reinforced Polymer (GFRP) sheets for strengthening Reinforced Concrete (RC) beams. In this research work, rectangular corrugated GFRP laminates were used for strengthening RC beams to achieve higher flexural strength and load carrying capacity. Type and dimensions of corrugated profile were selected based on preliminary study using ANSYS software. A total of twenty one beams were tested to study the load carrying capacity of control specimens and beams strengthened with plain sheets and corrugated laminates using epoxy resin. This paper presents the experimental and theoretical study on flexural strengthening of Reinforced Concrete (RC) beams using corrugated GFRP laminates and the results are compared. Mathematical models were developed based on the experimental data and then the models were validated.

  12. Polypropylene fiber reinforced microsilica concrete bridge deck overlay at Link River Bridge

    DOT National Transportation Integrated Search

    2000-02-01

    In 1997 ODOT overlaid the Link River Bridge with microsilica concrete, reinforced with polypropylene fibers (FMC). The manufacturer claimed the fibers would reduce plastic shrinkage cracks and settlement cracking during the early life of the concrete...

  13. Factors that influence the efficiency of electrochemical chloride extraction during corrosion mitigation in reinforced concrete structures.

    DOT National Transportation Integrated Search

    2006-01-01

    Electrochemical chloride extraction (ECE) is an electrochemical bridge restoration method for mitigating corrosion in reinforced concrete structures. ECE does this by moving chlorides away from the reinforcement and out of the concrete while simultan...

  14. Polymer concrete reinforced with recycled-tire fibers: Mechanical properties

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, E.; Martínez-Barrera, G.; Martínez-López, M.

    2013-06-01

    Polymer Concrete was reinforced with recycled-tire fibers in order to improve the compressive and flexural strength. Polymer concrete specimens were prepared with 70% of silicious sand, 30% of polyester resin and various fiber concentrations (0.3, 0.6, 0.9 and 1.2 vol%). The results show increment of 50% in average of the compressive and flexural strength as well as on the deformation when adding 1.2 vol% of recycled-fibers.

  15. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  16. Assessment methodology for diagonally cracked reinforced concrete deck girders.

    DOT National Transportation Integrated Search

    2004-10-01

    This report details the results of a research program conducted to estimate the capacity and remaining life of 1950s : vintage conventionally reinforced concrete deck girder (RCDG) bridges with diagonal cracks. The investigation : encompassed fiel...

  17. Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.

    DOT National Transportation Integrated Search

    2011-09-01

    This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combinat...

  18. Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.

    DOT National Transportation Integrated Search

    2011-08-01

    "This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combina...

  19. Environmental durability of reinforced concrete deck girders strengthened for shear with surface-bonded carbon fiber-reinforced polymer : final report.

    DOT National Transportation Integrated Search

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effort ...

  20. Environmental durability of reinforced concrete deck girders strengthened for shear with surface bonded carbon fiber-reinforced polymer : final report.

    DOT National Transportation Integrated Search

    2009-05-01

    This research investigated the durability of carbon fiber-reinforced polymer composites (CFRP) used for shear strengthening reinforced : concrete deck girders. Large beams were used to avoid accounting for size effects in the data analysis. The effor...

  1. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-09-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  2. Assessment of the Uretek process on continuously reinforced concrete pavement, jointed concrete pavement, and bridge approach slabs : technical assistance report.

    DOT National Transportation Integrated Search

    2004-12-01

    This study evaluates the rehabilitation method utilizing the injection of Uretek (polyurethane) into the pavement structures on continuously reinforced concrete pavement (CRCP), jointed concrete pavement (JCP), and bridge approach slabs. The polyuret...

  3. Cyclic behavior, development, and characteristics of a ductile hybrid fiber-reinforced polymer (DHFRP) for reinforced concrete members

    NASA Astrophysics Data System (ADS)

    Hampton, Francis Patrick

    Reinforced concrete (R/C) structures especially pavements and bridge decks that constitute vital elements of the infrastructure of all industrialized societies are deteriorating prematurely. Structural repair and upgrading of these structural elements have become a more economical option for constructed facilities especially in the United States and Canada. One method of retrofitting concrete structures is the use of advanced materials. Fiber reinforced polymer (FRP) composite materials typically are in the form of fabric sheets or reinforcing bars. While the strength and stiffness of the FRP is high, composites are inherently brittle, with limited or no ductility. Conventional FRP systems cannot currently meet ductility demand, and therefore, may fail in a catastrophic failure mode. The primary goal of this research was to develop an optimized prototype 10-mm diameter DHFRP bar. The behavior of the bar under full load reversals to failure was investigated. However, this bar first needed to be designed and manufactured in the Fibrous Materials Research at Drexel University. Material properties were determined through testing to categorize the strength properties of the DHFRP. Similitude was used to demonstrate the scaling of properties from the original model bars. The four most important properties of the DHFRP bars are sufficient strength and stiffness, significant ductility for plasticity to develop in the R/C section, and sufficient bond strength for the R/C section to develop its full strength. Once these properties were determined the behavior of reinforced concrete members was investigated. This included the testing of prototype-size beams under monotonic loading and model and prototype beam-columns under reverse cyclic loading. These tests confirmed the large ductility exhibited by the DHFRP. Also the energy absorption capacity of the bar was demonstrated by the hysteretic behavior of the beam-columns. Displacement ductility factors in the range of 3

  4. A state of the art review on reinforced concrete beams with openings retrofitted with FRP

    NASA Astrophysics Data System (ADS)

    Osman, Bashir H.; Wu, Erjun; Ji, Bohai; S Abdelgader, Abdeldime M.

    2016-09-01

    The use of externally bonded fiber reinforced polymer (FRP) sheets, strips or steel plates is a modern and convenient way for strengthening of reinforced concrete (RC) beams. Several researches have been carried out on reinforced concrete beams with web openings that strengthened using fiber reinforced polymer composite. Majority of researches focused on shear strengthening compared with flexural strengthening, while others studied the effect of openings on shear and flexural separately with various loading. This paper investigates the impact of more than sixty articles on opening reinforced concrete beams with and without strengthening by fiber reinforcement polymers FRP. Moreover, important practical issues, which are contributed in shear strengthening of beams with different strengthening techniques, such as steel plate and FRP laminate, and detailed with various design approaches are discussed. Furthermore, a simple technique of applying fiber reinforced polymer contributed with steel plate for strengthening the RC beams with openings under different load application is concluded. Directions for future research based on the existing gaps of the present works are presented.

  5. Prediction of residual shear strength of corroded reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  6. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  7. Finite element modeling and analysis of reinforced-concrete bridge.

    DOT National Transportation Integrated Search

    2000-09-01

    Despite its long history, the finite element method continues to be the predominant strategy employed by engineers to conduct structural analysis. A reliable method is needed for analyzing structures made of reinforced concrete, a complex but common ...

  8. 78 FR 55755 - Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ...)] Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and Countervailing... of imports from Mexico and Turkey of steel concrete reinforcing bar, primarily provided for in... alleged to be sold in the United States at less than fair value and by reason of imports from Turkey that...

  9. Strain on the back in concrete reinforcement work.

    PubMed Central

    Wickström, G; Niskanen, T; Riihimäki, H

    1985-01-01

    To investigate the long term effect of heavy construction work on the back the occurrence of postures, lifting, carrying, and accidents in concrete reinforcement work and in maintenance house painting were measured. The 32 620 observations covering 272 work hours showed that reinforcement work necessitated stooped postures and heavy lifting more often than did painting. Reported minor back accidents were more than ten times as common in reinforcement work than in painting (1.3 compared with 0.11 accidents per man-year, p less than 0.001). Accidents of the musculoskeletal system, registered by the insurance companies, were also several times more common in reinforcement work (81 compared with 25 per 1000 man-years, p less than 0.001). The premature development of lumbar degeneration detected in the clinical study of the reinforcement workers was evidently due to the occupational strain on the back. The different types of hazardous back loads probably potentiate the effects of each other. PMID:3978042

  10. Evaluation of the fatigue and toughness of fiber reinforced concrete for use as a new highway pavement design.

    DOT National Transportation Integrated Search

    2016-04-01

    Concrete pavement design is currently centered on steel reinforcement, whether that reinforcement be in the : form of dowel bars, as is the case in jointed plain concrete pavement (JPCP), or in the form of continuous rebar : reinforcement, continuous...

  11. Evaluation of corrosion resistance of various concrete reinforcing materials.

    DOT National Transportation Integrated Search

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  12. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  13. Glassfibre Reinforced Concrete: a Review

    NASA Astrophysics Data System (ADS)

    Bartos, P. J. M.

    2017-09-01

    Introduced to construction about 40 years ago, GRC has come of age. It is now widely used all over the world and in quantities very likely greater than most of the other types of fibre reinforced concrete, although it remains less known. A brief history of GRC is followed by review of the basic make-up of this complex composite. Methods of production are identified, properties reviewed and modes of fracture which are unique to GRC are explained. Benefits which are already available and exploited by its users are summarised and the wide spectrum of current applications of GRC is outlined.

  14. Computer-Aided Construction at Designing Reinforced Concrete Columns as Per Ec

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Grębowski, K.

    2015-02-01

    The article presents the authors' computer program for designing and dimensioning columns in reinforced concrete structures taking into account phenomena affecting their behaviour and information referring to design as per EC. The computer program was developed with the use of C++ programming language. The program guides the user through particular dimensioning stages: from introducing basic data such as dimensions, concrete class, reinforcing steel class and forces affecting the column, through calculating the creep coefficient taking into account the impact of imperfection depending on the support scheme and also the number of mating members at load shit, buckling length, to generating the interaction curve graph. The final result of calculations provides two dependence points calculated as per methods of nominal stiffness and nominal curvature. The location of those points relative to the limit curve determines whether the column load capacity is assured or has been exceeded. The content of the study describes in detail the operation of the computer program and the methodology and phenomena which are indispensable at designing axially and eccentrically the compressed members of reinforced concrete structures as per the European standards.

  15. Study on potential of carbon dioxide absorption in reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Bambroo, Vibhas; Gupta, Shipali; Bhoite, Pratik; Sekar, S. K.

    2017-11-01

    The global gas emission is keeping on increasing for which cement industry alone contributes 5%. The enormous water is required for curing of concrete in construction industry which can effectively be used for various purposes. The accelerated carbonation curing shows a way to reduce these emissions in a very effective way by sequestering it in concrete elements. In this research the effect of accelerated carbonation curing was checked on non-reinforced concrete elements (cubes) and reinforced concrete elements (prisms). The 100mm × 100mm × 100 mm cubes and 150mm × 150mm × 1200mm prisms were cast. They were CO2 cured for 4 and 8 hours and were tested for compressive strength and flexural strength test. The CO2 curing results showed 27.7% and 1.8% increase in strength of cubes and prisms, respectively when compared to water cured specimens. This early age strength through waste gas proves beneficial in terms of reducing in atmospheric pollution and saving the water which is a critical resource now-a-days.

  16. Discussion on Construction Technology of Prestressed Reinforced Concrete Pipeline of Municipal Water Supply and Drainage

    NASA Astrophysics Data System (ADS)

    Li, Chunyan

    2017-11-01

    Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.

  17. The implementation of unit price of work standard SNI 7394: 2008 for the construction of reinforced concrete beam

    NASA Astrophysics Data System (ADS)

    Tripoli; Mubarak; Nurisra; Mahmuddin

    2018-05-01

    This paper discusses the implementation of Indonesian National Standard (SNI) 7394: 2008 on procedures for calculating the unit price of concrete work for the construction of building and housing. The standard provides some reinforced concrete constructions unit price (UP) analysis by specified the total number of reinforcing uses. Related to reinforced concrete beam work (Analysis No. 6.31), the reinforcement requirement is stated at 200 kg/m3 of concrete. Once the implementation considers various earthquake zoning, the question will arise about the extent to which the standard is feasible to apply. Therefore, this research aimed to analyze the possibility of UP standard implementation by certain earthquake zonation. This research is focused on the construction of reinforced concrete beam for buildings with function as educational, residential and office buildings. The data used are sourced from 21 buildings in two zones in Aceh Province, covering Zone 10 and Zone 15 based on earthquake map of SNI 1726: 2012. The analysis results indicate that the UP standard for reinforced concrete beam cannot be applied to all zoning. The UP standard is only possible on buildings constructed in Zone 10 or zonation with seismic spectral response 0.6g to 0.7g or lower.

  18. Mathematical modeling of vibration processes in reinforced concrete structures for setting up crack initiation monitoring

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Matveenko, B. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.

    2015-03-01

    The contemporary construction industry is based on the use of reinforced concrete structures, but emergency situations resulting in fracture can arise in their exploitation. In a majority of cases, reinforced concrete fracture is realized as the process of crack formation and development. As a rule, the appearance of the first cracks does not lead to the complete loss of the carrying capacity but is a fracture precursor. One method for ensuring the safe operation of building structures is based on crack initiation monitoring. A vibration method for the monitoring of reinforced concrete structures is justified in this paper. An example of a reinforced concrete beam is used to consider all stages related to the analysis of the behavior of natural frequencies in the development of a crack-shaped defect and the use of the obtained numerical results for the vibration test method. The efficiency of the method is illustrated by the results of modeling of the physical part of the method related to the analysis of the natural frequency evolution as a response to the impact action in the crack development process.

  19. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    NASA Astrophysics Data System (ADS)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  20. The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel

    DTIC Science & Technology

    2009-02-01

    the Army, the Nation The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel Sean W. Morefield1...TITLE AND SUBTITLE The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel 5a. CONTRACT NUMBER...Concrete • Strategies to Prevent Corrosion • Alkali-resistant Vitreous Enamel Testing and Results • Ongoing Demonstration Work at CCAD • Summary U S

  1. Evaluation of continuously reinforced hydraulic cement concrete pavement at Virginia's Smart Road.

    DOT National Transportation Integrated Search

    2004-01-01

    A two-lane continuously reinforced concrete pavement was built in Blacksburg, Virginia, as a part of Virginia's Smart Road. One of the lanes is 12 ft wide, and the other is 14 ft wide. The additional 2 ft was part of the shoulder. Below the concrete ...

  2. Investigation of fiber-reinforced concrete for use in transportation structures.

    DOT National Transportation Integrated Search

    1997-01-01

    This report presents the results of a laboratory investigation to determine the properties of fiber-reinforced concretes (FRCs) with steel (hooked-end), polypropylene (monofilament and fibrillated), and the recently introduced polyolefin fibers (mono...

  3. Acoustic emission of fire damaged fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  4. Use of electrochemical chloride extraction and associated repairs to extend the beneficial life of reinforced concrete substructures.

    DOT National Transportation Integrated Search

    2016-05-01

    One of the biggest causes of bridge deterioration is corrosion of the reinforcement in concrete structures. Therefore, repair : techniques that mitigate corrosion and extend the service life of reinforced concrete are of great value to the Virginia D...

  5. Time-to-Corrosion of Reinforcing Steel in Concrete Slabs, Vol. 4: Galvanized Reinforcing Steel

    DOT National Transportation Integrated Search

    1981-12-01

    Four-ft. by 5-ft. by 6-inch (1.2m x 1.5m x 0.15m) reinforced concrete slabs were fabricated, cured and subjected to 7 years of daily salting at an outdoor exposure yard. Subsequently, the slabs were modified and instrumented to allow direct measureme...

  6. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    PubMed Central

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  7. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    PubMed

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  8. 13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. 9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. Behaviour of smart reinforced concrete beam with super elastic shape memory alloy subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain

    2018-05-01

    This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.

  14. Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion

    NASA Astrophysics Data System (ADS)

    Udegbunam, Ogechukwu Christian

    Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods

  15. 11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  16. 11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. 2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. 12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  19. 13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. 3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    PubMed

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-04-15

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.

  2. Monitoring the Corrosion Process of Reinforced Concrete Using BOTDA and FBG Sensors

    PubMed Central

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-01-01

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790

  3. Finite element modeling of reinforced concrete structures strengthened with FRP laminates : final report.

    DOT National Transportation Integrated Search

    2001-05-01

    Linear and non-linear finite element method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer composites. ANSYS and SAP2000 modeling software were used; however, most of the development ef...

  4. Structural and seismic analyses of waste facility reinforced concrete storage vaults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.Y.

    1995-07-01

    Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less

  5. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    NASA Astrophysics Data System (ADS)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  6. 3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DRAINING & DRYING BUILDING, REINFORCED CONCRETE MUSHROOM COLUMNS WITH DROP PANELS SUPPORTING DRAINING BINS (IRON VALVES OF DRAINING BINS ARE EMBEDDED IN THE CEILING), VIEW LOOKING WEST - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  7. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    NASA Astrophysics Data System (ADS)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  8. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  9. High Strength Reinforcing Steel Bars : Concrete Shear Friction Interface : final report : Part A.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  10. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    DOT National Transportation Integrated Search

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  11. Reinforced concrete pipe cracks : acceptance criteria [revised July 29, 2011].

    DOT National Transportation Integrated Search

    2011-07-01

    Inspection of recently placed reinforced concrete pipes often reveals cracks. Florida DOT was in : need of in-place crack acceptance criteria. This project was intended to determine the influential parameters : responsible for crack healing in in-pla...

  12. Detail view of the reinforced concrete viaduct over the Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the reinforced concrete viaduct over the Union Pacific Railroad corridor, view looking east - Grande Ronde River Bridge, Sprnning Grande Ronde River on Old Oregon Trail Highway (Oregon Route 6), La Grande, Union County, OR

  13. Corrosion performance tests for reinforcing steel in concrete : technical report.

    DOT National Transportation Integrated Search

    2009-10-01

    The existing test method used to assess the corrosion performance of reinforcing steel embedded in : concrete, mainly ASTM G 109, is labor intensive, time consuming, slow to provide comparative results, : and can be expensive. However, with corrosion...

  14. Experimental and modeling study of chloride ingress into concrete and reinforcement corrosion initiation

    NASA Astrophysics Data System (ADS)

    Yu, Hui

    Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.

  15. Behavior of concrete specimens reinforced with composite materials : laboratory study

    DOT National Transportation Integrated Search

    2000-02-01

    The main objective of this study was to investigate the interaction between FRP composite and concrete by addressing the most important : variables in terms of FRP (fiber reinforced polymer) properties. Type of fibers, thickness of the laminates, fib...

  16. 7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR AT RIGHT, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  17. 8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP IN FOREGROUND, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  18. Use of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions

    DOT National Transportation Integrated Search

    2017-12-24

    This report documents and presents the use of steel fiber-reinforced rubberized concrete (SFRRC) in cold regions. Further investigation of SFRRC use was conducted with the wheel tracker rut and freeze-thaw laboratory testing procedures at the Univers...

  19. Calculation of load-bearing capacity of prestressed reinforced concrete trusses by the finite element method

    NASA Astrophysics Data System (ADS)

    Agapov, Vladimir; Golovanov, Roman; Aidemirov, Kurban

    2017-10-01

    The technique of calculation of prestressed reinforced concrete trusses with taking into account geometrical and physical nonlinearity is considered. As a tool for solving the problem, the finite element method has been chosen. Basic design equations and methods for their solution are given. It is assumed that there are both a prestressed and nonprestressed reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature effect on the reinforcement. The ways of taking into account the physical and geometrical nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis of a flat truss is given and the behavior of the truss on various stages of its loading up to destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking into account the nonlinear deformation is developed. The program is adapted to the computational complex PRINS. As a part of this complex it is available to a wide range of engineering, scientific and technical workers

  20. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue

    PubMed Central

    Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  1. Study of stiffness and bearing capacity degradation of reinforced concrete beams under constant-amplitude fatigue.

    PubMed

    Liu, Fangping; Zhou, Jianting; Yan, Lei

    2018-01-01

    For a reinforced concrete beam subjected to fatigue loads, the structural stiffness and bearing capacity will gradually undergo irreversible degeneration, leading to damage. Moreover, there is an inherent relationship between the stiffness and bearing capacity degradation and fatigue damage. In this study, a series of fatigue tests are performed to examine the degradation law of the stiffness and bearing capacity. The results pertaining to the stiffness show that the stiffness degradation of a reinforced concrete beam exhibits a very clear monotonic decreasing "S" curve, i.e., the stiffness of the beam decreases significantly at the start of the fatigue loading, it undergoes a linear decline phase in the middle for a long loading period, and before the failure, the bearing capacity decreases drastically again. The relationship between the residual stiffness and residual bearing capacity is determined based on the assumption that the residual stiffness and residual bearing capacity depend on the same damage state, and then, the bearing capacity degradation model of the reinforced concrete beam is established based on the fatigue stiffness. Through the established model and under the premise of the known residual stiffness degradation law, the degradation law of the bearing capacity is determined by using at least one residual bearing capacity test data, for which the parameters of the stiffness degradation function are considered as material constants. The results of the bearing capacity show that the bearing capacity degradation of the reinforced concrete beam also exhibits a very clear monotonic decreasing "S" curve, which is consistent with the stiffness degradation process and in good agreement with the experiment. In this study, the stiffness and bearing capacity degradation expressions are used to quantitatively describe their occurrence in reinforced concrete beams. In particular, the expression of the bearing capacity degradation can mitigate numerous

  2. Vibrated and self-compacting fibre reinforced concrete: experimental investigation on the fibre orientation

    NASA Astrophysics Data System (ADS)

    Conforti, A.; Plizzari, G. A.; Zerbino, R.

    2017-09-01

    In addition to the fibre type and content, the residual properties of fibre reinforced concrete are influenced by fibre orientation. Consequently, the performance fibre reinforced concrete can be affected by its fresh properties (workability, flowing capacity) and by casting and compaction processes adopted. This paper focuses on the study of the orientation of steel or macro-synthetic fibres in two materials characterized by very different fresh properties: vibrated and self-compacting concrete. Four rectangular slabs 1800 mm long, 925 mm wide and 100 mm high were produced changing concrete and fibre type. From each slab, eighteen small prisms (550 mm long) were firstly cut either orthogonal or parallel to casting direction and, secondly, notched and tested in bending according to EN 14651. Experimental results showed that the toughness properties of a thin slab significantly varies both in vibrated and self-compacting concrete, even if in case of self-compacting concrete this variation resulted higher. Steel fibres led to greater variability of results compared to polymer one, underlining a different fibre orientation. A discussion on the relative residual capacity measured on the prisms sawn from the slabs and the parameters obtained from standard specimens is performed.

  3. 11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL BUILDING B AT FAR CENTER RIGHT. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  4. Corrosion detection in steel-reinforced concrete using a spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Stutzman, P. E.; Wang, S.; Martys, N. S.; Hassan, A. M.; Duthinh, D.; Provenzano, V.; Chou, S. G.; Plusquellic, D. F.; Surek, J. T.; Kim, S.; McMichael, R. D.; Stiles, M. D.

    2014-02-01

    Detecting the early corrosion of steel that is embedded in reinforced concrete (rebar) is a goal that would greatly facilitate the inspection and measurement of corrosion in the US physical infrastructure. Since 2010, the National Institute of Standards and Technology (NIST) has been working on a large project to develop an electromagnetic (EM) probe that detects the specific corrosion products via spectroscopic means. Several principal iron corrosion products, such as hematite and goethite, are antiferromagnetic at field temperatures. At a given applied EM frequency, which depends on temperature, these compounds undergo a unique absorption resonance that identifies the presence of these particular iron corrosion products. The frequency of the resonances tends to be on the order of 100 GHz or higher, so transmitting EM waves through the cover concrete and back out again at a detectable level has been challenging. NIST has successfully detected these two iron corrosion products, and is developing equipment and methodologies that will be capable of penetrating the typical 50 mm of cover concrete in the field. The novel part of this project is the detection of specific compounds, rather than only geometrical changes in rebar cross-section. This method has the potential of providing an early-corrosion probe for steel in reinforced concrete, and for other applications where steel is covered by various layers and coatings.

  5. Prediction of shear critical behavior of high-strength reinforced concrete columns using finite element methods

    NASA Astrophysics Data System (ADS)

    Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu

    2017-11-01

    This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.

  6. Crack identification for reinforced concrete using PZT based smart rebar active sensing diagnostic network

    NASA Astrophysics Data System (ADS)

    Song, N. N.; Wu, F.

    2016-04-01

    An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.

  7. Detection of active corrosion in reinforced and prestressed concrete: overview of NIST TIP project

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nunez, M. A.; Nanni, A.; Matta, F.; Ziehl, P.

    2011-04-01

    The US transportation infrastructure has been receiving intensive public and private attention in recent years. The Federal Highway Administration estimates that 42 percent of the nearly 600,000 bridges in the Unites States are in need of structural or functional rehabilitation1. Corrosion of reinforcement steel is the main durability issue for reinforced and prestressed concrete structures, especially in coastal areas and in regions where de-icing salts are regularly used. Acoustic Emission (AE) has proved to be a promising method for detecting corrosion in steel reinforced and prestressed concrete members. This type of non-destructive test method primarily measures the magnitude of energy released within a material when physically strained. The expansive ferrous byproducts resulting from corrosion induce pressure at the steel-concrete interface, producing longitudinal and radial microcracks that can be detected by AE sensors. In the experimental study presented herein, concrete block specimens with embedded steel reinforcing bars and strands were tested under accelerated corrosion to relate the AE activity with the onset and propagation stages of corrosion. AE data along with half cell potential measurements and galvanic current were recorded to examine the deterioration process. Finally, the steel strands and bars were removed from the specimens, cleaned and weighed. The results were compared vis-à-vis Faraday's law to correlate AE measurements with degree of corrosion in each block.

  8. 8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER DRAINAGE AREA IN THE DISTANCE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 10. REINFORCED CONCRETE SLAB ROOF FROM THE WESTERN EDGE, ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REINFORCED CONCRETE SLAB ROOF FROM THE WESTERN EDGE, ACCESS RAMPS AT LEFT AND RIGHT, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS AT LEFT AND RIGHT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a givenmore » opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.« less

  12. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    PubMed

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  13. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    PubMed Central

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  14. Experimental data of the static behavior of reinforced concrete beams at room and low temperature

    PubMed Central

    Mirzazadeh, M. Mehdi; Noël, Martin; Green, Mark F.

    2016-01-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well. PMID:27158650

  15. Experimental data of the static behavior of reinforced concrete beams at room and low temperature.

    PubMed

    Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F

    2016-06-01

    This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.

  16. On impedance measurement of reinforced concrete on the surface for estimate of corroded rebar

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Yu, Jun; Harada, Yoshihisa; Iwata, Masahiro; Noguchi, Kazuhiro

    2017-04-01

    In an estimate of health monitoring for reinforced concrete, corrosion degree of rebar is important parameter but is not easy to be estimated by non destructive testing. A few test method such as half cell method or polarization resistance method could be a 'perfect' nondestructive method if luckily having had wired connection to rebar without destructing target concrete. In this presentation it is reported the experimental result that an impedance measurement on surface of reinforced concretes is able to distinguish corroded rebar from healthy rebar. The contact electrode on concrete surface are simple structure made of urethane sponge and needle. Impedance measurement are carried out with frequency response analyzer with frequency range from 0.01Hz to 1MHz, typical amplitude of imposed voltage are 10 volt. We made concrete specimens under two different corrosion process. One process(pre corrosion) has rebars corroded by electrolysis in salty water before concrete casting and another process (post corrosion) has concrete specimens being corroded during the curing. The results of application of developed method to these corroded specimens show the method is useful to estimate corrosion level of rebars.

  17. Probabilistic analysis of the torsional effects on the tall building resistance due to earthquake even

    NASA Astrophysics Data System (ADS)

    Králik, Juraj; Králik, Juraj

    2017-07-01

    The paper presents the results from the deterministic and probabilistic analysis of the accidental torsional effect of reinforced concrete tall buildings due to earthquake even. The core-column structural system was considered with various configurations in plane. The methodology of the seismic analysis of the building structures in Eurocode 8 and JCSS 2000 is discussed. The possibilities of the utilization the LHS method to analyze the extensive and robust tasks in FEM is presented. The influence of the various input parameters (material, geometry, soil, masses and others) is considered. The deterministic and probability analysis of the seismic resistance of the structure was calculated in the ANSYS program.

  18. Study on evaluation of corrosion condition of reinforcing bar embedded concrete using infrared thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ruiko, Watanabe; Toshiaki, Mizobuchi

    2017-04-01

    Rapid aging of many concrete structures, which have been developed during rapid economic growth period in Japan, has become a serious problem for us these days. And thus, there is an urgent need to prolong their service life expectancies. For this purpose, the deterioration of reinforcing bars in the concrete structures should be detected quickly and correctly at the early stages. Nevertheless, conventional testing methods such as destructive and nondestructive testing have disadvantages: partial damages on concrete structures; difficulty with quantitative evaluation, etc. Many preceding studies have examined to estimate the deterioration of reinforcing bars based on the temperature of the concrete specimen surfaces. According to those papers, the differences in corrosion degree of reinforcing bars have a certain effect on the temperature of concrete specimen surfaces. In this study, firstly, the quantitative evaluation of the corrosion degree was conducted with 3D scanner which could measure the volume, coverage area and cross-sectional area. Secondly, the surface of the concrete specimen was cooled down with liquid nitrogen, and thirdly, thermographic change was observed up until the air temperature. Finally, the surface of the concrete specimen was detected clearly by the thermal images. As a result, this study shows that the corrosion thickness tends to get bigger, following the uprising temperature of the concrete specimen surfaces. The same kind of tendency can be observed by the thermal images, too.

  19. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    PubMed

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  20. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures

    PubMed Central

    Zhan, Yijian

    2017-01-01

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130

  1. Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.

    PubMed

    Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru

    2016-11-22

    The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.

  2. 9. Photocopy of Reinforced Concrete Details drawing (from the BPA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of Reinforced Concrete Details drawing (from the BPA Engineering Vault, Drawing C13-J2-342-D1, Sheet 6, 13 March 1939) - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR

  3. Latex modified fiber reinforced concrete bridge deck overlay : final report.

    DOT National Transportation Integrated Search

    1995-11-01

    In an attempt to increase the tensile strength of LMC and reduce cracking, steel fibers were added to a LMC mix. The results are what is termed as "latex-modified, fiber-reinforced concrete" (LMFRC). LMFRC was placed on Hayden Bridge as an experiment...

  4. 6. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, CONNECTING TUNNEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, CONNECTING TUNNEL VISIBLE AT CENTER RIGHT AND FAR RIGHT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. 15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ON BRADFORD ISLAND END OF DAM/SPILLWAY; THE PILLBOX WAS BUILT DURING WORLD WAR II TO HELP PROTECT THE DAM/SPILLWAY FROM SABOTAGE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  6. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement number 1.

    DTIC Science & Technology

    1977-09-01

    A listing of 156 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  7. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 2.

    DTIC Science & Technology

    1979-07-01

    A listing of 471 additional references with author index is given for fiber-reinforced cement and gypsum matrices, mortars, and concretes. Fiber types include steel, glass, plastic, asbestos, organic, carbon, and others. (Author)

  8. Demonstration and Validation of a Lightweight Composite Bridge Deck Technology as an Alternative to Reinforced Concrete

    DTIC Science & Technology

    2016-08-01

    Abstract Cyclic loading and weathering of reinforced concrete bridge decks cause corrosion of reinforcement steel , which leads to cracking, potholes...inforcement steel , on a deteriorated concrete bridge at Redstone Arsenal, AL. A pultruded deck system made by Zellcomp, Inc., was selected for...16 Figure 13. Form for grout haunch fabricated by tack welding steel strips to the top of the girder

  9. An evaluation of the performance of epoxy-coated reinforcing steel in concrete exposure specimens.

    DOT National Transportation Integrated Search

    1998-01-01

    The application of a mineral admixture or a combination of a mineral admixture with corrosion inhibitor are the methods used for the corrosion protection for reinforced concrete bridges. The results of a 1.5-year study on evaluation of three concrete...

  10. Protection of reinforced concrete bridge substructures using submerged bulk anodes : final report, January 25, 2009.

    DOT National Transportation Integrated Search

    2010-01-01

    Reinforced concrete bridge substructures in Florida coastal waters have historically experienced deterioration as a consequence of embedded steel corrosion and resultant concrete cracking and spalling. Ultimately, this deterioration leads to added ma...

  11. Corrosion detection and evolution monitoring in reinforced concrete structures by the use of fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.

    2013-04-01

    Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.

  12. Visual inspection & capacity assessment of earthquake damaged reinforced concrete bridge elements.

    DOT National Transportation Integrated Search

    2008-11-01

    The overarching objective of this project was to produce standard procedures and associated training materials, for the conduct of post-earthquake visual inspection and capacity assessment of damaged reinforced concrete (RC) bridges where the procedu...

  13. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  14. Durability of precast prestressed concrete piles in marine environment : reinforcement corrosion and mitigation - Part 1.

    DOT National Transportation Integrated Search

    2011-06-01

    Research conducted in Part 1 has verified that precast prestressed concrete piles in : Georgias marine environment are deteriorating. The concrete is subjected to sulfate and : biological attack and the prestressed and nonprestressed reinforcement...

  15. Combined effect of high curing temperature and crack width on chloride migration in reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Elkedrouci, L.; Diao, B.; Pang, S.; Li, Y.

    2018-03-01

    Deterioration of reinforced concrete structures is a serious concern in the construction engineering, largely due to chloride induced corrosion of reinforcement. Chloride penetration is markedly influenced by one or several major factors at the same time such as cuing in combination with different crack widths which have spectacular effect on reinforced concrete structures. This research presents the results of an experimental investigation involving reinforced concrete beams with three different crack widths ranging from 0 to 0.2mm, curing temperatures of 20°C or 40°C and water-to-cement of 0.5. Chloride content profiles were determined under non-steady state diffusion at 20°C. Based on the obtained results, higher chloride content was obtained under condition of high curing temperature in combination with large crack more than 0.1mm and there are no significant differences between narrow crack width (less than 0.1 mm) and beams without crack (0 mm).

  16. Determination of concrete cover thickness in a reinforced concrete pillar by observation of the scattered electromagnetic field

    NASA Astrophysics Data System (ADS)

    Di Gregorio, Pietro Paolo; Frezza, Fabrizio; Mangini, Fabio; Pajewski, Lara

    2017-04-01

    The electromagnetic scattered field by a reinforced concrete structure is calculated by means of frequency-domain numerical simulations and by making use of the scattered-field formulation. The concrete pillar, used as supporting architectural element, is modelled as a parallelepiped shell made of concrete material inside which are present steel bars. In order to make the model simpler, the steel bars are supposed running parallel to the air-pillar interface. To excite the model, a linearly-polarized plane wave impinging normally with respect to the pillars surface, is adopted. We consider two different polarizations in order to determine the most useful in terms of scattered-field sensitivity. Moreover, a preliminary frequency sweep allows us to choose the most suitable operating frequency depending on the dimensions of the pillar cross-section, the steel bars cross-section and the concrete cover. All the three components of the scattered field are monitored along a line just above the interface air-pillar. The electromagnetic properties of the materials employed in this study are present in the literature and, since a frequency-domain technique is adopted, no further approximation is needed. The results obtained for different values of the concrete cover are compared, with the goal of determining the scattered field dependence on the concrete cover thickness. Considering different concrete cover thicknesses, we want to provide an electromagnetic method to obtain this useful parameter by observation of the scattered electromagnetic field. One of the practical applications of this study in the field of Civil Engineering may be the use of ground penetrating radar (GPR) techniques to monitor the thickness of the concrete that separates the metal bars embedded in the pillar from the outer surface. A correct distance is useful because the concrete cover serves as a protection against external agents avoiding corrosion of the bars that might prejudice the reinforced

  17. Crack detection and leakage monitoring on reinforced concrete pipe

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Kong, Qingzhao; Huo, Linsheng; Song, Gangbing

    2015-11-01

    Reinforced concrete underground pipelines are some of the most widely used types of structures in water transportation systems. Cracks and leakage are the leading causes of pipeline structural failures which directly results in economic losses and environmental hazards. In this paper, the authors propose a piezoceramic based active sensing approach to detect the cracks and the further leakage of concrete pipelines. Due to the piezoelectric properties, piezoceramic material can be utilized as both the actuator and the sensor in the active sensing approach. The piezoceramic patch, which is sandwiched between protective materials called ‘smart aggregates,’ can be safely embedded into concrete structures. Circumferential and axial cracks were investigated. A wavelet packet-based energy analysis was developed to distinguish the type of crack and determine the further leakage based on different stress wave energy attenuation propagated through the cracks.

  18. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    NASA Astrophysics Data System (ADS)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  19. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    NASA Astrophysics Data System (ADS)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  20. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGES

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  1. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    DOT National Transportation Integrated Search

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of T...

  2. Triaxial constitutive model for plain and reinforced concrete behavior

    NASA Astrophysics Data System (ADS)

    Kang, Hong Duk

    Inelastic failure analysis of concrete structures has been one of the central issues in concrete mechanics. Especially, the effect of confinement has been of great importance to capture the transition from brittle to ductile fracture of concrete under triaxial loading scenarios. Moreover, it has been a difficult task to implement numerically material descriptions which are susceptible to loss of stability and localization. Consequently, it has been a challenge to develop comprehensive material formulations of concrete, which consider the full spectrum of loading histories which the material in a real structure is subjected to. A new triaxial constitutive model of concrete is presented that not only describes the hardening/softening behavior of concrete in tension and low confined compression, but also captures the transition from brittle to ductile failure under high confinement. The concrete model is based on a loading surface that is Csp1-continuous, and that closes smoothly in equitriaxial compression, while the deviatoric trace expands from a triangular to a circular shape with increasing confinement. The plastic potential has a different curvature from the plastic loading function for non-associativity in order to reduce excessive inelastic dilatancy. In the thesis, the results of deformation and localization analyses for various loading histories are presented in the constitutive study. In addition, studies of associativity and non-associativity, and two-invariant versus three-invariant formulations are performed. At the structural level the triaxial concrete model is used to predict the nonlinear response behavior of a reinforced concrete column subject to axial and lateral loadings.

  3. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete

    PubMed Central

    Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.

    2016-01-01

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859

  4. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    PubMed

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  5. Three-Dimensional Nonlinear Finite Element Analysis of Continuously Reinforced Concrete Pavements

    DOT National Transportation Integrated Search

    2000-02-01

    Continuously reinforced concrete pavement (CRCP)performance depends primarily on early-age cracks that result from changes in temperature and drying shrinkage. This report presents the findings of a study of the early-age behavior of CRCP in response...

  6. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. P. Pantelides; T. T. Garfield; W. D. Richins

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Eachmore » panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.« less

  7. The use of a Phosphate-Based Migrating Corrosion Inhibitor to Repair Reinforced Concrete Elements Contaminated by Chlorides

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Mobili, Alessandra; Bellezze, Tiziano

    2017-08-01

    The use of sodium monofluorophosphate (MFP) was experimented as migrator inhibiting treatment against corrosion of reinforced concrete elements induced by chlorides. The results show that sodium monofluorophosphate, applied by surface impregnation, is able to slow down reinforcement corrosion only for reinforcing steel bars with concrete cover not thicker than 1 cm. This limitation is most probably due to the difficulty, with the type of application adopted, in making MFP to reach concentrations high enough to inhibit the corrosive process at greater depths from the impregnation surface.

  8. Degradation and mechanism of the mechanics and durability of reinforced concrete slab in a marine environment

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua

    2016-04-01

    An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.

  9. High velocity penetration into fibre-reinforced concrete materials - protection of buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.F.; Watson, A.J.; Armstrong, P.J.

    1983-05-01

    Fibre reinforced concrete suitable for spraying onto existing structures is being examined to assess its resistance to penetration by 7.62mm diameter armour piercing projectiles. A major test programme is being carried out to examine the influence of aggregate type and fibre type. For each aggregate/fibre combination a statistical method is being used to plan test series which will lead to optimization of the concrete in terms of water/cement ratio, fibre content and aggregate/cement ratio. The minimum thickness of optimized concretes to resist penetration by the projectile and minimise spall and scabbing, will be determined. The mechanics of the impact andmore » penetration event are being studied and a possible method of deflecting the projectile within the concrete is suggested.« less

  10. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  11. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  12. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  13. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  14. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    NASA Astrophysics Data System (ADS)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber

  15. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  16. Control of reflection cracking in a fabric-reinforced overlay on jointed portland cement concrete pavement.

    DOT National Transportation Integrated Search

    1982-01-01

    A study of the installation and three-year performance evaluation of a fabric-reinforced bituminous concrete overlay of a jointed concrete pavement is reported. The fabric, a polypropylene in an asphaltic mastic, was shown to act as a significant det...

  17. CREATION OF MUSIC WITH FIBER REINFORCED CONCRETE

    NASA Astrophysics Data System (ADS)

    Kato, Hayato; Takeuchi, Masaki; Ogura, Naoyuki; Kitahara, Yukiko; Okamoto, Takahisa

    This research focuses on the Fiber Reinforcement Concrete(FRC) and its performance on musical tones. Thepossibility of future musical instruments made of this concrete is discussed. Recently, the technical properties of FRC had been improved and the different production styles, such as unit weight of binding material and volume of fiber in the structure, hardly affects the results of the acoustics. However, the board thickness in the FRC instruments is directly related with the variety of musical tone. The FRC musical effects were compared with those produced with wood on wind instruments. The sounds were compared with those produced with woodwind instruments. The sound pressure level was affected by the material and it becomes remarkably notorious in the high frequency levels. These differences had great influence on the spectrum analysis of the tone in the wind instruments and the sensory test. The results from the sensory test show dominant performances of brightness, beauty and power in the FRC instruments compared with those made of wood.

  18. Use of electrochemical chloride extraction and associated repairs to extend the beneficial life of reinforced concrete substructures: VCTIR report detail.

    DOT National Transportation Integrated Search

    2016-01-01

    One of the biggest causes of bridge deterioration is corrosion of the reinforcement in concrete structures. Therefore, repair techniques that mitigate corrosion and extend the service life of reinforced concrete are of great value to the Virginia Dep...

  19. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  20. Study on reinforced concrete beams strengthened using shape memory alloy wires in combination with carbon-fiber-reinforced polymer plates

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Zhi-qiang; Ou, Jin-ping

    2007-12-01

    It has been proven that carbon-fiber-reinforced polymer (CFRP) sheets or plates are capable of improving the strength of reinforced concrete (RC) structures. However, residual deformation of RC structures in service reduces the effect of CFRP strengthening. SMA can be applied to potentially decrease residual deformation and even close concrete cracks because of its recovery forces imposed on the concrete when heated. Therefore, a method of a RC structure strengthened by CFRP plates in combination with SMA wires is proposed in this paper. The strengthening effect of this method is investigated through experiments and numerical study based on the nonlinear finite element software ABAQUS in simple RC beams. Parametric analysis and assessment of damage by defining a damage index are carried out. The results indicate that recovery forces of SMA wires can decrease deflections and even close cracks in the concrete. The recovery rate of deflection of the beam increases with increasing the ratio of SMA wires. The specimen strengthened with CFRP plates has a relatively large stiffness and smaller damage index value when the residual deformation of the beam is first reduced by activation of the SMA wires. The effectiveness of this strengthening method for RC beams is verified by experimental and numerical results.

  1. Thermal analysis of GFRP-reinforced continuous concrete decks subjected to top fire

    NASA Astrophysics Data System (ADS)

    Hawileh, Rami A.; Rasheed, Hayder A.

    2017-12-01

    This paper presents a numerical study that investigates the behavior of continuous concrete decks doubly reinforced with top and bottom glass fiber reinforced polymer (GFRP) bars subjected to top surface fire. A finite element (FE) model is developed and a detailed transient thermal analysis is performed on a continuous concrete bridge deck under the effect of various fire curves. A parametric study is performed to examine the top cover thickness and the critical fire exposure curve needed to fully degrade the top GFRP bars while achieving certain fire ratings for the deck considered. Accordingly, design tables are prepared for each fire curve to guide the engineer to properly size the top concrete cover and maintain the temperature in the GFRP bars below critical design values in order to control the full top GFRP degradation. It is notable to indicate that degradation of top GFRP bars do not pose a collapse hazard but rather a serviceability concern since cracks in the negative moment region widen resulting in simply supported spans.

  2. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets

    PubMed Central

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K.; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-01-01

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets. PMID:28773024

  3. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    PubMed

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  4. A New Evaluation Method of Stored Heat Effect of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    Today it has become imperative to save energy by operating a refrigerator in a cold storage executed by external insulate reinforced concrete wall intermittently. The theme of the paper is to get the evaluation method to be capable of calculating, numerically, interval time for stopping the refrigerator, in applying reinforced concrete wall as source of stored heat. The experiments with the concrete models were performed in order to examine the time variation of internal temperature after refrigerator stopped. In addition, the simulation method with three dimensional unsteady FEM for personal-computer type was introduced for easily analyzing the internal temperature variation. Using this method, it is possible to obtain the time variation of internal temperature and to calculate the interval time for stopping the refrigerator.

  5. 0-6687 : minimize premature distresses in continuously reinforced concrete pavement : [project summary].

    DOT National Transportation Integrated Search

    2013-08-01

    The performance of continuously reinforced concrete : pavement (CRCP) has been quite satisfactory in Texas, : providing one of the most cost-effective pavement systems : for the Texas Department of Transportation (TxDOT). : However, distresses do occ...

  6. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.

    2018-03-01

    SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.

  7. Interfacial chemistry of zinc anodes for reinforced concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less

  8. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  9. Application of titanium alloy bars for strengthening reinforced concrete bridge girders (part a: shear) : final report.

    DOT National Transportation Integrated Search

    2017-07-04

    Large numbers of conventionally reinforced concrete bridges (RC) were constructed during the interstate highway expansion of the 1950s and remain in the national inventory. Coincidently, deformed steel reinforcing bars were standardized. The stand...

  10. Evaluation of bent caps in reinforced concrete deck girder bridges : part 2.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  11. Evaluation of bent caps in reinforced concrete deck girder bridges : part 1.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  12. 78 FR 73838 - Steel Concrete Reinforcing Bar From Turkey: Postponement of Preliminary Determination in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Bar From Turkey: Postponement of Preliminary Determination in the Countervailing Duty Investigation... countervailing duty investigation on steel concrete reinforcing bar from Turkey.\\1\\ The original signature date... Reinforcing Bar from Turkey: Initiation of Countervailing Duty Investigations, 78 FR 60831 (October 2, 2013...

  13. Design equations for the assessment and FRP-strengthening of reinforced rectangular concrete columns under combined biaxial bending and axial loads

    NASA Astrophysics Data System (ADS)

    Alessandri, S.; Monti, G.

    2008-05-01

    A simple procedure is proposed for the assessment of reinforced rectangular concrete columns under combined biaxial bending and axial loads and for the design of a correct amount of FRP-strengthening for underdesigned concrete sections. Approximate closed-form equations are developed based on the load contour method originally proposed by Bresler for reinforced concrete sections. The 3D failure surface is approximated along its contours, at a constant axial load, by means of equations given as the sum of the acting/resisting moment ratio in the directions of principal axes of the sections, raised to a power depending on the axial load, the steel reinforcement ratio, and the section shape. The method is extended to FRP-strengthened sections. Moreover, to make it possible to apply the load contour method in a more practical way, simple closed-form equations are developed for rectangular reinforced concrete sections with a two-way steel reinforcement and FRP strengthenings on each side. A comparison between the approach proposed and the fiber method (which is considered exact) shows that the simplified equations correctly represent the section interaction diagram.

  14. Nonstructural damages of reinforced concrete buildings due to 2015 Ranau earthquake

    NASA Astrophysics Data System (ADS)

    Adiyanto, Mohd Irwan; Majid, Taksiah A.; Nazri, Fadzli Mohamed

    2017-07-01

    On 15th June 2016 a moderate earthquake with magnitude Mw5.9 was occurred in Sabah, Malaysia. Specifically, the epicentre was located at 16 km northwest of Ranau. Less than two days after the first event, a reconnaissance mission took action to investigate the damages on buildings. Since the reinforced concrete buildings in Ranau were designed based on gravity and wind load only, a lot of minor to severe damages was occurred. This paper presents the damages on the nonstructural elements of reinforced concrete buildings due to Ranau earthquake. The assessment was conducted via in-situ field investigation covering the visual observation, taking photo, and interview with local resident. Based on in-situ field investigation, there was a lot of damages occurred on the nonstructural elements like the brick walls. Such damages cannot be neglected since it can cause injury and fatality to the victims. Therefore, it can be concluded that the installation of nonstructural elements should be reviewed for the sake of safety.

  15. Determination of entrance loss coefficients for pre-cast reinforced concrete box culverts.

    DOT National Transportation Integrated Search

    2012-12-01

    There is an increased interest in constructing Pre-Cast (PC) Twin and Triple Reinforced Concrete Box (RCB) culverts : in Iowa due to the efficiency associated with their production in controlled environment and decrease of the construction : time at ...

  16. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    PubMed Central

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-01-01

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with circular section subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness. PMID:28773028

  17. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections.

    PubMed

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-06-18

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  18. Capillary transport of water through textile-reinforced concrete applied in repairing and/or strengthening cracked RC structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieboldt, M.; Mechtcherine, V., E-mail: mechtcherine@tu-dresden.de

    2013-10-15

    The use of textile-reinforced concrete (TRC) has great potential for innovative solutions in repairing, protecting, and strengthening concrete and RC structures. The article at hand reports on an investigation on composite concrete specimens made of cracked ordinary concrete as substrate and textile-reinforced concrete (TRC) as a cover layer for its strengthening and repair. The TRC cover layer was assessed with regard to its effectiveness as a protective layer against the ingress of water through capillary action. Since in real applications such TRC layers may be cracked or presumed to be so, thereby activating the load-carrying function of the textile reinforcement,more » the TRC layer was cracked for purposes of this study. The water transport in the cracked ordinary concrete specimens without the TRC layer was used as a reference. Gravimetric measurements and neutron radiography served as the testing techniques. In ordinary concrete quick and deep ingress of water through relatively wide macro-cracks of approximately 100 μm width, followed by transport through the capillary pore system, caused saturation of large areas in a rather short time. TRC applied to the RC surface reduced the ingress of water to a large extent. Its small crack widths of 15 to 20 μm changed suction behaviour fundamentally. In the cracked substrate of ordinary concrete, capillary suction was prevented, and transport through the pore system of the matrix became the prevailing transport mechanism of capillary action. Not only was the mechanism altered, but the transport of water deep into inner regions was markedly retarded as well.« less

  19. Effect of PVA fiber content on creep property of fiber reinforced high-strength concrete columns

    NASA Astrophysics Data System (ADS)

    Xu, Zongnan; Wang, Tao; Wang, Weilun

    2018-04-01

    The effect of PVA (polyvinyl alcohol) fiber content on the creep property of fiber reinforced high-strength concrete columns was investigated. The correction factor of PVA fiber content was proposed and the creep prediction model of ACI209 was modified. Controlling the concrete strength as C80, changing the content of PVA fiber (volume fraction 0%, 0.25%, 0.5%, 1% respectively), the creep experiment of PVA fiber reinforced concrete columns was carried out, the creep coefficient of each specimen was calculated to characterize the creep property. The influence of PVA fiber content on the creep property was analyzed based on the creep coefficient and the calculation results of several frequently used creep prediction models. The correction factor of PVA fiber content was proposed to modify the ACI209 creep prediction model.

  20. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  1. Remaining life of reinforced concrete beams with diagonal-tension cracks : final report.

    DOT National Transportation Integrated Search

    2004-04-01

    This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-girder (RCDG) bridges with diagonal tension cracks. A database of 442 bridges constructed from 1947 to ...

  2. Hilfiker reinforced soil embankment with full-height, cast-in-place concrete panels

    DOT National Transportation Integrated Search

    1992-05-01

    The objective of this project was to evaluate the construction and performance of a full-height retaining wall system. The contractor chose to use the Hilfiker Reinforced Soil Embankment with cast-in-place, concrete panels. The project included three...

  3. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    NASA Astrophysics Data System (ADS)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  4. Investigation of properties of high-performance fiber-reinforced concrete : very early strength, toughness, permeability, and fiber distribution : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    Concrete cracking, high permeability, and leaking joints allow for intrusion of harmful solutions, resulting in concrete deterioration and corrosion of reinforcement in structures. The development of durable, high-performance concretes with limited c...

  5. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    In recent years, the use of fi ber reinforced polymer (FRP) tube-encased concrete columns for new construction and rebuilding : of engineering structures has increased. The purpose in FRP tube-encased concrete columns is to replace the steel rebar by...

  6. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    NASA Astrophysics Data System (ADS)

    McGinnis, M. J.; Pessiki, S.

    2006-03-01

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation and industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.

  7. Influence of Steel Reinforcement on In-Situ Stress Evaluation in Concrete Structures by the Core-Drilling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, M. J.; Pessiki, S.

    2006-03-06

    The core-drilling method is an emerging technique for evaluating in-situ stress in a concrete structure. A small hole is drilled into the structure, and the deformations in the vicinity of the hole are measured and related via elasticity theory to the stress. The method is similar to the ASTM hole-drilling strain-gauge method excepting that displacements rather than strains are the measured quantities. The technique may be considered nondestructive since the ability of the structure to perform its function is unaffected, and the hole is easily repaired. Displacement measurements in the current work are performed using 3D digital image correlation andmore » industrial photogrammetry. The current paper addresses perturbations in the method caused by steel reinforcement within the concrete. The reinforcement is significantly stiffer than the surrounding concrete, altering the expected displacement field. A numerical investigation performed indicates an under-prediction of stress by as much as 18 percent in a heavily reinforced structure, although the effect is significantly smaller for more common amounts of reinforcement.« less

  8. Evaluation of the effectiveness of pressure relief joints in reinforced concrete pavements.

    DOT National Transportation Integrated Search

    1976-01-01

    Reported are studies of the effectiveness of a 4-inch (100 mm) wide compressible material installed at 1,000-ft. (305 m) intervals in a jointed, reinforced concrete pavement in reducing pavement blowups. The studies were made on an Interstate highway...

  9. Role of reinforcement couplers in serviceability performance of concrete members

    NASA Astrophysics Data System (ADS)

    Ng, P. L.; Guan, G. X.; Kwan, A. K. H.

    2017-10-01

    Connection of reinforcing bars by couplers is a common form of reinforcement splicing. However, the variation of stiffness at the location of couplers and the potentially excessive residual slips are suspected to cause adverse impact on the serviceability, especially for structural members subjected to repeated loading. This paper studies the role of couplers in the serviceability performance of concrete members. Relevant provisions in design codes are reviewed and compared. Laboratory tests are conducted to investigate the slip behaviour of couplers. A section analysis approach based on equivalent stiffness model is proposed to account for the effects of couplers, and formulations of crack width calculation are explored for use in structural design.

  10. Integrity assessment of grouted posttensioning cables and reinforced concrete of a nuclear containment building

    NASA Astrophysics Data System (ADS)

    Philipose, K.; Shenton, B.

    2011-04-01

    The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.

  11. The study of chloride ion migration in reinforced concrete under cathodic protection

    DOT National Transportation Integrated Search

    1999-09-01

    The migration of chloride ions in concrete with steel reinforcement was investigated. Mortar blocks (15 cm x 15 cm x 17 cm) of various : composition (water to cement ratio, chloride ion content) were cast with an iron mesh cathode imbedded along one ...

  12. Research notes : evaluation of the performance of reference electrodes embedded in reinforced concrete.

    DOT National Transportation Integrated Search

    1995-07-01

    The objectives of this work were to examine placement strategies for reference electrodes and to evaluate the suitability of graphite reference electrodes as imbedded reference electrodes in reinforced concrete structures that are cathodically protec...

  13. Durability Studies on Confined Concrete using Fiber Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Ponmalar, V.; Gettu, R.

    2014-06-01

    In this study, 24 concrete cylinders with a notch at the centre were prepared. Among them six cylinders were wrapped using single and double layers of fiber reinforced polymer; six cylinders were coated with epoxy resin; the remaining cylinders were used as a control. The cylinders were exposed to wet and dry cycling and acid (3 % H2SO4) solution for the period of 120 days. Two different concrete strengths M30 and M50 were considered for the study. It is found that the strength, ductility and failure mode of wrapped cylinders depend on number of layers and the nature of exposure conditions. It was noticed that the damage due to wet and dry cycling and acid attack was severe in control specimen than the epoxy coated and wrapped cylinders.

  14. Characterization of frictional interference in closely-spaced reinforcements in MSE walls.

    DOT National Transportation Integrated Search

    2014-09-01

    This research addresses one of several knowledge gaps in the understanding of tall MSE wall behavior: prediction of reinforcement loads impacted by frictional interference of closely-spaced reinforcements associated with tall walls.

  15. 76 FR 48802 - Certain Steel Concrete Reinforcing Bars From Turkey; Notice of Amended Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... Reinforcing Bars From Turkey; Notice of Amended Final Results of Antidumping Duty Administrative Review AGENCY... (rebar) from Turkey. See Certain Steel Concrete Reinforcing Bars From Turkey; Final Results of... administrative review of rebar from Turkey as follows: Manufacturer/Producer/Exporter Margin Percentage Ekinciler...

  16. Inclusion of geopolymers derivate from fly ash and pumice in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Montaño, A. M.; González, C. P.; Castro, D.; Gualdron, G.; Atencio, R.

    2017-12-01

    This paper presents results of a research project related to the development of alkali-activated geopolymers, synthesized from alumina-silicate minerals (fly ash and pumice) which are added to concrete. Alkali sources used in geopolymer synthesis were sodium hydroxide and sodium silicate solution. New materials were structurally characterized by Infra-Red spectroscopy (IR) and X-Ray Diffraction (XRD). Concretes obtained after geopolymers addition as Portland cement substitutes at 10%, 20% and 30%, were mechanically analysed by compression resistance at 7, 14, 28 and 90 drying days. Results were referred to standard (concrete of Portland cement) allows to know cementitious characteristics of geopolymers are lower than those for standard, but it keeps growing at longer drying time than Portland cement. By Electrochemical Impedance Spectroscopy (EIS) it is found that this new material shows high electrical resistance and have been proved as a protection agent against corrosion in reinforced concrete exhibiting anticorrosive properties higher than those showed by the conventional concrete mixture.

  17. Methods for strengthening reinforced concrete bridge girders containing poorly detailed flexural steel using near-surface mounted metallics.

    DOT National Transportation Integrated Search

    2015-08-01

    Many older reinforced concrete deck girder (RCDG) bridges contain straight-bar terminations of flexural reinforcement in : flexural tension zones without special detailing. Common bridge design practice of the 1950s did not consider the additional : ...

  18. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yi., E-mail: zhaoyi091218@163.com; Xu, Li. Hua.

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of themore » ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.« less

  19. Seismic behavior of circular reinforced concrete bridge columns under combined loading including torsion.

    DOT National Transportation Integrated Search

    2009-12-01

    Reinforced concrete (RC) columns of skewed and curved bridges with unequal spans and column heights can be subjected to : combined loading including axial, flexure, shear, and torsion loads during earthquakes. The combination of axial loads, shear : ...

  20. FRP reinforcement for concrete: performance assessment and new construction : volume I: Sierrita De La Cruz Creek bridge.

    DOT National Transportation Integrated Search

    2016-07-01

    Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the : corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial : to extend it...

  1. Damage evaluation of reinforced concrete frame based on a combined fiber beam model

    NASA Astrophysics Data System (ADS)

    Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo

    2014-04-01

    In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.

  2. Accelerated testing for studying pavement design and performance (FY 2000) : effectiveness of fiber reinforced and plain, ultra-thin concrete overlays on Portland Cement Concrete Pavement (PCCP).

    DOT National Transportation Integrated Search

    2003-11-01

    The objective of the research was to compare the performance of fiber reinforced and plain PCC concrete overlay when used as a thin non-dowelled overlay on top of a rubblized, distressed concrete pavement. The experiment was conducted at the Accelera...

  3. Testing of selected metallic reinforcing bars for extending the service life of future concrete bridges : testing in outdoor concrete blocks.

    DOT National Transportation Integrated Search

    2002-01-01

    To meet the challenge of a design life of 100 years for major concrete bridges, economical and corrosion-resistant reinforcing bars will be needed. The preliminary results for stainless steel-clad bars in a recent investigation funded by the Federal ...

  4. Testing of full-size reinforced concrete beams strengthened with FRP composites : experimental results and design methods verification

    DOT National Transportation Integrated Search

    2000-06-01

    In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced : polymer composites as...

  5. Flexural properties of reinforced date palm fibres concrete in Sahara climate

    NASA Astrophysics Data System (ADS)

    Abani, S.; Kriker, A.; Khenfer, M. M.

    2018-05-01

    The mechanical characteristics of fibres reinforced concrete depend on many factors which are; the conditions of the work, the dosage, the distance between fibres and their orientation and distribution in the concrete. There are also other factors concerns the fibres themselves such as: the proportion of the length of the fibres to their diameter, their nature, the mechanical characteristics and the geometrical form. The main objective of our work is to contribute in the estimation of the vegetable fibres of the palm-trees that exist too much in our region and to introduce them scientifically in the domain of construction with taking into consideration the climatic conditions of the use. In this work, we will study the effect of the palm fibres on the mechanical characteristics of the concrete, such as: the strength of tensile by flexion.

  6. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    DOT National Transportation Integrated Search

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  7. View from intersection. Ninestory reinforced concrete building infilled with brick. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from intersection. Nine-story reinforced concrete building infilled with brick. The street facades on beaubien and east grand are faced with stone accents and elaborate brick work. Brick pilasters run the entire height of the building. Steel tiebacks are apparent running up the height of the building on the east side. The large tower appears at the northeast and southeast corners - Detroit Storage Company, 2937 East Grand Boulevard, Detroit, MI

  8. Environmentally induced acoustic emission from reinforced concrete

    NASA Astrophysics Data System (ADS)

    Pollock, Adrian A.; Gonzalez-Nunez, Miguel; Shokri, Tala

    2011-04-01

    A system is being developed to monitor in-service deterioration of reinforced concrete (RC) in highway bridges. The system includes the monitoring of acoustic emission (AE). To develop a preliminary understanding of AE source mechanisms and their causes while also getting closer to the challenges of separating relevant AE from noise, a 6ft long RC test article was monitored in the outdoors environment of a New Jersey summer. There were indications of daily swings in the AE rate, coinciding with the daily swings in temperature. However this correlation was not consistent or reproducible. As the monitoring was extended into the winter and the test site was buried in snow, the AE rate dropped drastically. It was concluded that temperature changes were instrumental in stimulating AE from this damaged concrete. Implications for the formulation of AE evaluation criteria are discussed. Also, the summer swings provoked consideration of the underlying stress field, the fractal nature of the heterogeneous material and the stochastic AE phenomenon. An analysis of calm time distributions yielded results similar to those found by Abe and Suzuki for earthquake time distributions. Analysis of this kind may help to differentiate relevant AE from some kinds of noise.

  9. A technical report on structural evaluation of the Meade County reinforced concrete bridge.

    DOT National Transportation Integrated Search

    2009-01-01

    This is a technical report on the first phase of the evaluation of the Meade County reinforced concrete bridge. : The first three chapters introduce the main problem and provide a general review of the existing evaluation : methods and the procedures...

  10. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  11. Evaluation of damage in reinforced concrete bridge beams using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Vidya Sagar, R.; Raghu Prasad, B. K.; Sharma, Reema

    2012-06-01

    Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.

  12. Evaluation of two corrosion inhibitors using two surface application methods for reinforced concrete structures.

    DOT National Transportation Integrated Search

    2004-01-01

    This study investigated the use of penetrating corrosion inhibitors to extend the life of existing reinforced concrete bridge decks. The use of assisted (vacuum/pressure injection) and unassisted (diffusion) treatment methods and two inhibitors were ...

  13. Finite element analysis of smart reinforced concrete beam with super elastic shape memory alloy subjected to static loading for seismic mitigation

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan

    2018-05-01

    Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the

  14. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    NASA Astrophysics Data System (ADS)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  15. 75 FR 47260 - Certain Steel Concrete Reinforcing Bars from Turkey: Notice of Amended Final Results Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... Reinforcing Bars from Turkey: Notice of Amended Final Results Pursuant to Court Decision AGENCY: Import... concrete reinforcing bars (rebar) from Turkey. See Nucor Corporation, Gerdau Ameristeel, Inc., and... published its final results in the antidumping duty administrative review of rebar from Turkey covering the...

  16. Evaluation of bent caps in reinforced concrete deck girder bridges, part 2 : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  17. Evaluation of bent caps in reinforced concrete deck girder bridges, part 1 : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    This report describes research conducted to enable evaluation of existing vintage bent cap beams in reinforced concrete : deck girder bridges. The report is organized into two parts: 1) flexural anchorage capacity response and prediction of : reduced...

  18. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Smart CFRP systems for the controlled retrofitting of reinforced concrete members

    NASA Astrophysics Data System (ADS)

    Schaller, M.-B.; Käseberg, S.; Kuhne, M.

    2010-09-01

    During the last ten years an increasing amount of Carbon Fiber Reinforced Polymer (CFRP) applications to rehabilitate damaged concrete elements was observed. Thereby some important disadvantages of the brittle materials must be considered, for example the low ductility of the bond between CFRP and concrete and brittle failure of FRP. With embedded sensor systems it is possible to measure crack propagation and strains. In this paper a sensor based CFRP system will be presented, that can be used for strengthening and measuring. The used optical fibers with Fiber Bragg Gratings (FBG) have a large number of advantages in opposite to electrical measuring methods. Examples are small dimensions, low weight as well as high static and dynamic resolution of measured values. The main problem during the investigations was the fixing of the glass fiber and the small FBG at the designated position. In this paper the possibility of setting the glass fiber with embroidery at the reinforcing fiber material will be presented. On the basis of four point bending tests on beams (dimensions of 700 x 150 x 150 mm) and tests on wrapped columns the potential of the Smart CFRP system is introduced.

  20. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete

    PubMed Central

    Ríos, José D.

    2017-01-01

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308–318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter. PMID:28773123

  1. Probabilistic Flexural Fatigue in Plain and Fiber-Reinforced Concrete.

    PubMed

    Ríos, José D; Cifuentes, Héctor; Yu, Rena C; Ruiz, Gonzalo

    2017-07-07

    The objective of this work is two-fold. First, we attempt to fit the experimental data on the flexural fatigue of plain and fiber-reinforced concrete with a probabilistic model (Saucedo, Yu, Medeiros, Zhang and Ruiz, Int. J. Fatigue, 2013, 48, 308-318). This model was validated for compressive fatigue at various loading frequencies, but not for flexural fatigue. Since the model is probabilistic, it is not necessarily related to the specific mechanism of fatigue damage, but rather generically explains the fatigue distribution in concrete (plain or reinforced with fibers) for damage under compression, tension or flexion. In this work, more than 100 series of flexural fatigue tests in the literature are fit with excellent results. Since the distribution of monotonic tests was not available in the majority of cases, a two-step procedure is established to estimate the model parameters based solely on fatigue tests. The coefficient of regression was more than 0.90 except for particular cases where not all tests were strictly performed under the same loading conditions, which confirms the applicability of the model to flexural fatigue data analysis. Moreover, the model parameters are closely related to fatigue performance, which demonstrates the predictive capacity of the model. For instance, the scale parameter is related to flexural strength, which improves with the addition of fibers. Similarly, fiber increases the scattering of fatigue life, which is reflected by the decreasing shape parameter.

  2. Partial Prestress Concrete Beams Reinforced Concrete Column Joint Earthquake Resistant On Frame Structure Building

    NASA Astrophysics Data System (ADS)

    Astawa, M. D.; Kartini, W.; Lie, F. X. E.

    2018-01-01

    Floor Building that requires a large space such as for the meeting room, so it must remove the column in the middle of the room, then the span beam above the room will be long. If the beam of structural element with a span length reaches 15.00 m, then it is less effective and efficient using a regular Reinforced Concrete Beam because it requires a large section dimension, and will reduce the beauty of the view in terms of aesthetics of Architecture. In order to meet these criteria, in this design will use partial prestressing method with 400/600 mm section dimension, assuming the partial Prestressed Beam structure is still able to resist the lateral force of the earthquake. The design of the reinforcement has taken into account to resist the moment due to the gravitational load and lateral forces. The earthquake occurring on the frame structure of the building. In accordance with the provisions, the flexural moment capacity of the tendon is permitted only by 25% of the total bending moment on support of the beam, while the 75% will be charged to the reinforcing steel. Based on the analysis result, bring ini 1 (one) tendon contains 6 strand with diameter 15,2 mm. On the beam pedestal, requires 5D25 tensile reinforcement and 3D25 for the compression reinforcement, for shear reinforcement on the pedestal using Ø10-100 mm. Dimensional column section are 600/600 mm with longitudinal main reinforcement of 12D25, and transverse reinforcement Ø10-150. At the core of the beam-column joint, use the transversal reinforcement Ø10-100 mm. The moment of Column versus Beam Moment ∑Me > 1.2 Mg, with a value of 906.99 kNm > 832.25 kNm, qualify for ductility and Strong Columns-weak beam. Capacity of contribution bending moment of Strand Tendon’s is 23.95% from the total bending moment capacity of the beam, meaning in accordance with the provisions. Thus, the stability and ductility structure of Beam-Column joint is satisfy the requirements of SNI 2847: 2013 and ACI 318-11.

  3. Testing of full-size reinforced concrete beams strengthened with FRP composites : experimental results and design methods verification(appendices)

    DOT National Transportation Integrated Search

    2000-06-01

    In 1997, a load rating of an historic reinforced concrete bridge in Oregon, Horsetail Creek Bridge, indicated substandard shear and moment capacities of the beams. As a result, the Bridge was strengthened with fiber reinforced polymer composites as a...

  4. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    NASA Astrophysics Data System (ADS)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  5. Analysis of acoustic emission cumulative signal strength of steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP)

    NASA Astrophysics Data System (ADS)

    Abdul Hakeem, Z.; Noorsuhada, M. N.; Azmi, I.; Noor Syafeekha, M. S.; Soffian Noor, M. S.

    2017-12-01

    In this study, steel fibre reinforced concrete (SFRC) beams strengthened with carbon fibre reinforced polymer (CFRP) were investigated using acoustic emission (AE) technique. Three beams with dimension of 150 mm width, 200 mm depth and 1500 mm length were fabricated. The results generated from AE parameters were analysed as well as signal strength and cumulative signal strength. Three relationships were produced namely load versus deflection, signal strength versus time and cumulative signal strength with respect to time. Each relationship indicates significant physical behaviour as the crack propagated in the beams. It is found that an addition of steel fibre in the concrete mix and strengthening of CFRP increase the ultimate load of the beam and the activity of signal strength. Moreover, the highest signal strength generated can be identified. From the study, the occurrence of crack in the beam can be predicted using AE signal strength.

  6. Laboratory performance of zinc anodes for impressed current cathodic protection of reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brousseau, R.; Arnott, M.; Baldock, B.

    1995-08-01

    Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.

  7. Development of load and resistance factor design for FRP strengthening of reinforced concrete bridges.

    DOT National Transportation Integrated Search

    2006-05-01

    Externally bonded fiber reinforced polymer (FRP) composites are an increasingly adopted technology for the renewal of existing concrete structures. In order to encourage the further use of these materials, a design code is needed that considers the i...

  8. 75 FR 22552 - Certain Steel Concrete Reinforcing Bars from Turkey; Notice of Amended Final Results Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Reinforcing Bars from Turkey; Notice of Amended Final Results Pursuant to Court Decisions AGENCY: Import... certain steel concrete of reinforcing bars (rebar) from Turkey. See Habas Sinai ve Tibbi Gazlar Istihsal... Turkey for the period of review (POR) of April 1, 2003, through March 31, 2004. See Certain Steel...

  9. Grout compactness monitoring of concrete-filled fiber-reinforced polymer tube using electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing

    2018-05-01

    The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.

  10. Experience-based training of students on concretes reinforced by recycled carbon fibers

    NASA Astrophysics Data System (ADS)

    Cosgun, Cumhur; Patlolla, Vamsidhar R.; Alzahrani, Naif; Zeineddine, Hatim F.; Asmatulu, Eylem

    2017-04-01

    Fiber reinforcement increases many properties of the concretes, such as toughness, strength, abrasion, and resistance to corrosion. Use of recycled carbon fibers from industrial waste offers many advantages because it will reduce the waste, contribute the economy, protect natural resources and improve the property of structural units. The City of Wichita, KS is known to be "Air Capital of the World" where many aircraft companies have been producing aircraft, parts and components. Due to the superior properties of composites (e.g., light weight, low density, high impact resistance), they have been highly used by aircraft industry. Prepreg is the most preferred combination of the fiber and resin due to the easy application, but it has a limited shelf life (e.g., three months to one year at most) and scrap has no use after all in the same industry. Every year tons of un-used prepreg or after use scrap are being collected in Wichita, KS. Recycling prepreg from the post-consumer waste offers great advantages of waste reduction and resource conservation in the city. Reusing the carbon fibers obtained from outdated prepreg composites for concrete reinforcement will offer double advantages for our environment and concrete structures. In this study, recycled carbon fibers of the outdated prepreg composites were collected, and then incorporated with concretes at different ratios prior to the molding and mechanical testing. An undergraduate student was involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. We believe that experience based learning will enhance the students' skills and interest into the scientific and engineering studies.

  11. Development of advanced grid stiffened (AGS) fiber reinforced polymer (FRP) tube-encased concrete columns.

    DOT National Transportation Integrated Search

    2013-03-01

    In this project, a new type of confining device, a latticework of interlacing fiber reinforced polymer (FRP) ribs that are jacketed by a FRP skin, is proposed, manufactured, tested, and modeled to encase concrete cylinders. This systematic study incl...

  12. Seismic response of reinforced concrete frames at different damage levels

    NASA Astrophysics Data System (ADS)

    Morales-González, Merangeli; Vidot-Vega, Aidcer L.

    2017-03-01

    Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.

  13. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    NASA Astrophysics Data System (ADS)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  14. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    PubMed Central

    Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-01-01

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615

  15. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.

    PubMed

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-10-23

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%-1.5%, in terms of shear performance.

  16. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  17. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  18. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    PubMed Central

    Kim, JunHee; You, Young-Chan

    2015-01-01

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation. PMID:28787978

  19. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of

  20. FRP reinforcement for concrete : performance assessment and new construction volume I : Sierrita De La Cruz Creek bridge : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial to extend its ap...

  1. Fibre Concrete 2017

    NASA Astrophysics Data System (ADS)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  2. Flexural stiffness of the composite steel and fibre-reinforced concrete circular hollow section column

    NASA Astrophysics Data System (ADS)

    Tretyakov, A.; Tkalenko, I.; Wald, F.; Novak, J.; Stefan, R.; Kohoutková, A.

    2017-09-01

    The recent development in technology of production and transportation of steel fibre-reinforced concrete enables its utilization in composite steel-concrete structures. This work is a part of a project which focuses on development of mechanical behaviour of circular hollow section (CHS) composite steel and fibre-concrete (SFRC) columns at elevate temperature. Research includes two levels of accuracy/complexity, allowing simplified or advanced approach for design that follows upcoming changes in European standard for composite member design in fire EN1994-1-2 [1]. One part is dedicated to determination and description of flexural stiffness of the SFRC CHS columns. To determinate flexural stiffness were prepared series of pure bending tests at elevated and ambient temperature. Presented paper focuses on the results of the tests and determination of flexural stiffness at ambient temperature. Obtained outputs were compared to data of existing studies about concrete-filled tube members with plain concrete and values analytically calculated according to the existing European standard EN1994-1-1 [2].

  3. Durability of a reinforced concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2012-01-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  4. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Alexander, Joshua B.; Cardenas, Henry E.; Kupwade-Patil, Kunal

    2008-01-01

    This work examines field performance of nanoscale pozzolan treatments delivered el ctrokinetically to suppress chloride induced corrosion of concrete reinforcement. The particles are 20 nm silica spheres coated with 2 nm alumina particles that carry a net positive charge. Earlier work demonstrated that the alumina particles were stripped from the silica carriers and formed a dense phase with an interparticle spacing that is small enough to inhibit the transport of solvated chlorides. A D.C. field was used to inject the particles into the pores of concrete specimens, directly toward the mild steel bars that were embedded within each 3 inch diameter by 6 inch length concrete specimen. The voltage was held constant at 25 v per inch of concrete cover for a period of 7 days. These voltages permitted current densities as high as 3 A/sq m. During the final 3 days, a 1 molar solution of calcium nitrate tetrahydrate was used to provide a source of calcium to facilitate stronger and more densified phase formation within the pores. In a departure from prior work the particle treatments were started concurrent with chloride extraction in order to determine if particle delivery would inhibit chloride transport. Following treatment the specimens were immersed in seawater for 4 weeks. After this posttreatment exposure, the specimens were tested for tensile strength and the steel reinforcement was examined for evidence of corrosion. Scanning electron microscopy was conducted to assess impact on microstructure.

  5. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete

    PubMed Central

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-01-01

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L/600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L/600 and Level IV at others. PMID:28788265

  6. Processing and Mechanical Properties of Macro Polyamide Fiber Reinforced Concrete.

    PubMed

    Jeon, Joong Kyu; Kim, WooSeok; Jeon, Chan Ki; Kim, Jin Cheol

    2014-11-26

    This study developed a macro-sized polyamide (PA) fiber for concrete reinforcement and investigated the influence of the PA fiber on flexural responses in accordance with ASTM standards. PA fibers are advantageous compared to steel fibers that are corrosive and gravitated. The macro-sized PA fiber significantly improved concrete ductility and toughness. Unlike steel fibers, the PA fibers produced two peak bending strengths. The first-peaks occurred near 0.005 mm of deflection and decreased up to 0.5 mm of deflection. Then the bending strength increased up to second-peaks until the deflections reached between 1.0 and 1.5 mm. The averaged flexural responses revealed that PA fiber content did not significantly influence flexural responses before L /600, but had significant influence thereafter. Toughness performance levels were also determined, and the results indicated more than Level II at L /600 and Level IV at others.

  7. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing.

    PubMed

    Galao, Oscar; Bañón, Luis; Baeza, Francisco Javier; Carmona, Jesús; Garcés, Pedro

    2016-04-12

    This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC) as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at -15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e. , -15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention) and deicing (curing), which could turn into an environmentally friendly and cost-effective deicing method.

  8. Assessment of Reinforced Concrete Surface Breaking Crack Using Rayleigh Wave Measurement.

    PubMed

    Lee, Foo Wei; Chai, Hwa Kian; Lim, Kok Sing

    2016-03-05

    An improved single sided Rayleigh wave (R-wave) measurement was suggested to characterize surface breaking crack in steel reinforced concrete structures. Numerical simulations were performed to clarify the behavior of R-waves interacting with surface breaking crack with different depths and degrees of inclinations. Through analysis of simulation results, correlations between R-wave parameters of interest and crack characteristics (depth and degree of inclination) were obtained, which were then validated by experimental measurement of concrete specimens instigated with vertical and inclined artificial cracks of different depths. Wave parameters including velocity and amplitude attenuation for each case were studied. The correlations allowed us to estimate the depth and inclination of cracks measured experimentally with acceptable discrepancies, particularly for cracks which are relatively shallow and when the crack depth is smaller than the wavelength.

  9. Estimating Durability of Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  10. Experimental Investigation of the Capacity of Steel Fibers to Ensure the Structural Integrity of Reinforced Concrete Specimens Coated with CFRP Sheets

    NASA Astrophysics Data System (ADS)

    Gribniak, V.; Arnautov, A. K.; Norkus, A.; Tamulenas, V.; Gudonis, E.; Sokolov, A.

    2016-07-01

    The capacity of steel fibers to ensure the structural integrity of reinforced concrete specimens coated with CFRP sheets was investigated. Test data for four ties and eight beams reinforced with steel or glass-FRP bars are presented. Experiments showed that the fibers significantly increased the cracking resistance and altered the failure character from the splitting of concrete to the debonding of the external sheets, which noticeably increased the load-carrying capacity of the strengthened specimens.

  11. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  12. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintakunta, Satish R.; Boone, Shane D.

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Boardmore » (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.« less

  13. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    NASA Astrophysics Data System (ADS)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  14. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    NASA Astrophysics Data System (ADS)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  15. Materials and Methods for Corrosion Control of Reinforced and Prestressed Concrete Structures in New Construction

    DOT National Transportation Integrated Search

    2000-08-03

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  16. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches

    PubMed Central

    Hwang, Jin-Ha; Lee, Deuck Hang; Ju, Hyunjin; Kim, Kang Su; Seo, Soo-Yeon; Kang, Joo-Won

    2013-01-01

    Recognizing that steel fibers can supplement the brittle tensile characteristics of concrete, many studies have been conducted on the shear performance of steel fiber reinforced concrete (SFRC) members. However, previous studies were mostly focused on the shear strength and proposed empirical shear strength equations based on their experimental results. Thus, this study attempts to estimate the strains and stresses in steel fibers by considering the detailed characteristics of steel fibers in SFRC members, from which more accurate estimation on the shear behavior and strength of SFRC members is possible, and the failure mode of steel fibers can be also identified. Four shear behavior models for SFRC members have been proposed, which have been modified from the softened truss models for reinforced concrete members, and they can estimate the contribution of steel fibers to the total shear strength of the SFRC member. The performances of all the models proposed in this study were also evaluated by a large number of test results. The contribution of steel fibers to the shear strength varied from 5% to 50% according to their amount, and the most optimized volume fraction of steel fibers was estimated as 1%–1.5%, in terms of shear performance. PMID:28788364

  17. Effects of aggregate grading on the properties of steel fibre-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Acikgens Ulas, M.; Alyamac, K. E.; Ulucan, Z. C.

    2017-09-01

    This study investigates the effects of changing the aggregate grading and maximum aggregate size (D max ) on the workability and mechanical properties of steel fibre-reinforced concrete (SFRC). Four different gradations and two different D max were used to produce SFRC mixtures with constant cement dosages and water/cement ratios. Twelve different concrete series were tested. To observe the properties of fresh concrete, slump and Ve-Be tests were performed immediately after the mixing process to investigate the effects of time on workability. The hardened properties, such as the compressive, splitting tensile and flexural strengths, were also evaluated. In addition, the toughness of the SFRC was calculated. Based on our test results, we can conclude that the grading of the aggregate and the D max have remarkable effects on the properties of fresh and hardened SFRC. In addition, the toughness of the SFRC was influenced by changing the grading of the aggregate and the D max .

  18. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    DOT National Transportation Integrated Search

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  19. 77 FR 71631 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine... From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine AGENCY: United States... Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine would be likely to lead to continuation or...

  20. Galvanic cathodic protection for reinforced concrete bridge decks: Field evaluation

    NASA Astrophysics Data System (ADS)

    Whiting, D.; Stark, D.

    1981-06-01

    The application of four sacrificial zinc anode cathodic protection systems to a reinforced concrete highway bridge deck is described. Two system designs were found to be the most promising in terms of polarized potentials and protective current densities achieved during the 3 year monitoring program. One design uses commercially available zinc ribbon anodes spaced at 5 in (127 mm) centers; the other, custom-fabricated perforated zinc sheets. Both systems are overlaid with an open-graded asphalt friction course. The systems yield maximum current density and polarized potentials under warm and moist environment conditions.

  1. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  2. Preliminary investigation on the suitablity of using fiber reinforced concrete in the construction of a hazardous waste disposal vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, M.R.; Daie-e, G.

    1988-07-01

    There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn,more » is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.« less

  3. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates

    NASA Astrophysics Data System (ADS)

    Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.

    2015-10-01

    Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.

  4. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, Dan J

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adversemore » performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.« less

  5. Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete.

    PubMed

    Yang, Sheng-Fu; Wang, To-Mai; Lee, Wen-Cheng; Sun, Kin-Seng; Tzeng, Chin-Ching

    2010-10-15

    This study proposes using thermal plasma technology to treat municipal solid waste incinerator ashes. A feasible fiberization method was developed and applied to produce man-made vitreous fiber (MMVF) from plasma vitrified slag. MMVF were obtained through directly blending the oxide melt stream with high velocity compressed air. The basic technological characteristics of MMVF, including morphology, diameter, shot content, length and chemical resistance, are described in this work. Laboratory experiments were conducted on the fiber-reinforced concrete. The effects of fibrous content on compressive strength and flexural strength are presented. The experimental results showed the proper additive of MMVF in concrete can enhance its mechanical properties. MMVF products produced from incinerator ashes treated with the thermal plasma technique have great potential for reinforcement in concrete. 2010 Elsevier B.V. All rights reserved.

  6. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    NASA Astrophysics Data System (ADS)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  7. Degradation processes of reinforced concretes by combined sulfate–phosphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secco, Michele, E-mail: michele.secco@unipd.it; Department of Civil, Environmental and Architectural Engineering; Lampronti, Giulio Isacco, E-mail: gil21@cam.ac.uk

    2015-02-15

    A novel form of alteration due to the interaction between hydrated cement phases and sulfate and phosphate-based pollutants is described, through the characterization of concrete samples from an industrial reinforced concrete building. Decalcification of the cement matrices was observed, with secondary sulfate and phosphate-based mineral formation, according to a marked mineralogical and textural zoning. Five alteration layers may be detected: the two outermost layers are characterized by the presence of gypsum–brushite solid solution phases associated with anhydrous calcium sulfates and phosphates, respectively, while a progressive increase in apatite and ammonium magnesium phosphates is observable in the three innermost layers, associatedmore » with specific apatite precursors (brushite, octacalcium phosphate and amorphous calcium phosphate, respectively). The heterogeneous microstructural development of secondary phases is related to the chemical, pH and thermal gradients in the attacked cementitious systems, caused by different sources of pollutants and the exposure to the sun's radiation.« less

  8. Damage assessment in reinforced concrete using nonlinear vibration techniques

    NASA Astrophysics Data System (ADS)

    Van Den Abeele, K.; De Visscher, J.

    2000-07-01

    Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.

  9. A technical report on structural evaluation of the Meade County reinforced concrete bridge : research [summary].

    DOT National Transportation Integrated Search

    2009-01-01

    Meade County Bridge is a two-lane highway reinforced concrete bridge with two girders each with 20 continuous spans. The bridge was built in 1965. It has been reported that in early years of the bridge service period, a considerable amount of cracks ...

  10. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  11. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders.

    DOT National Transportation Integrated Search

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  12. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  13. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  14. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.

    PubMed

    Aiello, M A; Leuzzi, F; Centonze, G; Maffezzoli, A

    2009-06-01

    The increasing amount of waste tyres worldwide makes the disposition of tyres a relevant problem to be solved. In the last years over three million tons of waste tyres were generated in the EU states [ETRA, 2006. Tyre Technology International - Trends in Tyre Recycling. http://www.etra-eu.org]; most of them were disposed into landfills. Since the European Union Landfill Directive (EU Landfill, 1999) aims to significantly reduce the landfill disposal of waste tyres, the development of new markets for the tyres becomes fundamental. Recently some research has been devoted to the use of granulated rubber and steel fibres recovered from waste tyres in concrete. In particular, the concrete obtained by adding recycled steel fibres evidenced a satisfactory improvement of the fragile matrix, mostly in terms of toughness and post-cracking behaviour. As a consequence RSFRC (recycled steel fibres reinforced concrete) appears a promising candidate for both structural and non-structural applications. Within this context a research project was undertaken at the University of Salento (Italy) aiming to investigate the mechanical behaviour of concrete reinforced with RSF (recycled steel fibres) recovered from waste tyres by a mechanical process. In the present paper results obtained by the experimental work performed up to now are reported. In order to evaluate the concrete-fibres bond characteristics and to determine the critical fibre length, pull-out tests were initially carried out. Furthermore compressive strength of concrete was evaluated for different volume ratios of added RSF and flexural tests were performed to analyze the post-cracking behaviour of RSFRC. For comparison purposes, samples reinforced with industrial steel fibres (ISF) were also considered. Satisfactory results were obtained regarding the bond between recycled steel fibres and concrete; on the other hand compressive strength of concrete seems unaffected by the presence of fibres despite their irregular

  15. Comparison of UPE and GPR systems for the survey of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Derobert, Xavier; Villain, Géraldine; Joubert, Anaelle

    2014-05-01

    The objective of this study is to compare two non-destructive techniques using sonic and radar pulses for the survey of reinforced concre structures. The first studied testing method is a Ultrasonic (US) Pulse-Echo (model M2502, from Acoustic Control Systems manufacturer) composed of an array of 12 S-wave transmitters and 12 receivers in one bloc. Their central frequency is equal to 55 kHz. As the averaged USvelocities in concrete tend to 1800-3000 m/s, the corresponding wavelengths tend to 3-5 cm. The Ground-penetrating radar (GPR) system has been performed with high frequency antennas above 1 GHz (1.5 and 2.6 GHz antennas), which lead to the same range of EM wavelengths than the US ones. Measurements have been performed on some thick reinforced concrete elements of structures, and then are compared in term of resolution, depth penetration and ease to use. One of the studied elements is a concrete beam (dimensions : 16 m long, 0.5 m width and 1 m high) designed in an European Projet (FP7_ISTIMES) and damaged by controled impacts of blocks of several tons dropped from few meters [1]. Therefore, the objective of this studyis to compare the two techniques, and for the last studied element to detect the major cracks and the spallings of the cover concrete which are visible from the opposite side. References: Malhotra V.M., Carino, N.J., CRC Handbook on Nondestructive Testing of Concrete, CRC Press LLC, , 1991, 343p. Taffe A., Wiggenhauser H., Validation for Thickness Measurement in Civil Engineering with Ultrasonic Echo, International Symposium NDT-CE, Saint-Louis, USA, 2006, pp506-512. Géraldine Villain, Anaëlle Luczak, Olivier Durand, Xavier Dérobert, Deepening of the measurement technique by Ultrasonic Pulse Echo UPE, Report, IFSTTAR, January 2011, 22p. Catapano I., Di Napoli R., Soldovieri F., Bavusi M., Loperte A., Dumoulin J. (2012), « Structural monitoring via microwave tomography-enhanced GPR : the Montagnole test site », J. Geophys. Eng., Vol. 9, pp. 100-107.

  16. Inspection and evaluation of a bridge deck reinforced with carbon fiber reinforced polymer (CFRP) bars.

    DOT National Transportation Integrated Search

    2006-03-01

    Cracking in reinforced concrete decks is inevitable. It leads to the corrosion and eventual deterioration of the deck system. The use of non-corrosive reinforcement is one alternative to steel in reinforced concrete construction. : This report deals ...

  17. Unsteady Stored Heat Behavior in Building Frame of Reinforced Concrete Structure Type Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    The time variation of temperature in the reinforced concrete frame with an internal insulation or with an external insulation and the unsteady stored heat behavior, which results from the thermal mass of the concrete frame, have been investigated. The experiments with the concrete models and the measurements of the heat flux through the practical cold storage were performed. The experimental results under the unsteady condition showed great difference of the stored heat behavior between the internal insulation type and the external type. In addition, it was shown that the external insulation frame was useful for heat storage. The simulation method with two dimentional unsteady FEM was introduced for easily analyzing the stored heat behavior problems of the practical cold storages, which had various specifications in design. The calculated results of the heat flux and temperature in the concrete frame agreed with the experiments approximately. From these results, the suggestions for the design of the insulation wall under the unsteady condition were given.

  18. Health monitoring of precast bridge deck panels reinforced with glass fiber reinforced polymer (GFRP) bars.

    DOT National Transportation Integrated Search

    2012-03-01

    The present research project investigates monitoring concrete precast panels for bridge decks that are reinforced with Glass Fiber Reinforced Polymer (GFRP) bars. Due to the lack of long term research on concrete members reinforced with GFRP bars, lo...

  19. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the

  20. Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete

    NASA Astrophysics Data System (ADS)

    Nam, Jingak

    Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on

  1. Steel Fibre Reinforced Concrete Simulation with the SPH Method

    NASA Astrophysics Data System (ADS)

    Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip

    2017-10-01

    Steel fibre reinforced concrete (SFRC) is very popular in many branches of civil engineering. Thanks to its increased ductility, it is able to resist various types of loading. When designing a structure, the mechanical behaviour of SFRC can be described by currently available material models (with equivalent material for example) and therefore no problems arise with numerical simulations. But in many scenarios, e.g. high speed loading, it would be a mistake to use such an equivalent material. Physical modelling of the steel fibres used in concrete is usually problematic, though. It is necessary to consider the fact that mesh-based methods are very unsuitable for high-speed simulations with regard to the issues that occur due to the effect of excessive mesh deformation. So-called meshfree methods are much more suitable for this purpose. The Smoothed Particle Hydrodynamics (SPH) method is currently the best choice, thanks to its advantages. However, a numerical defect known as tensile instability may appear when the SPH method is used. It causes the development of numerical (false) cracks, making simulations of ductile types of failure significantly more difficult to perform. The contribution therefore deals with the description of a procedure for avoiding this defect and successfully simulating the behaviour of SFRC with the SPH method. The essence of the problem lies in the choice of coordinates and the description of the integration domain derived from them - spatial (Eulerian kernel) or material coordinates (Lagrangian kernel). The contribution describes the behaviour of both formulations. Conclusions are drawn from the fundamental tasks, and the contribution additionally demonstrates the functionality of SFRC simulations. The random generation of steel fibres and their inclusion in simulations are also discussed. The functionality of the method is supported by the results of pressure test simulations which compare various levels of fibre reinforcement of SFRC

  2. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  3. Nonlinear Earthquake Analysis of Reinforced Concrete Frames with Fiber and Bernoulli-Euler Beam-Column Element

    PubMed Central

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667

  4. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    PubMed

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  5. Experimental study on the use of steel-decks for prefabricated reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Priastiwi, Y. A.; Han, A. L.; Maryoto, A.; Noor, E. S.

    2017-11-01

    This paper presents an experimental study on the use of steel-decks for concrete beams. The purpose of this research is to determine the beam’s capacity, and the loaddisplacement relationships due to the use of steel-decks. The failure mechanism was also studied, since the behavior differs significantly from conventional concrete members. For analysis purposes, two beam prototypes with steel-decks (GB1 and GB2), and two conventional concrete beams having the exact same material properties and dimensions (NB1 and NB2) functioning as control elements, were tested. Load was applied by a two-point loading system, creating a pure bending state. To monitor vertical deflections, two LVDTs were used. All precision instruments were connected to a data logger, and a computer. The results showed that the beams GB had a significant ultimate moment capacity increase, which is 2,3 times the control element NB. The main enhancement contribution is originated from the presence of the bottom steel-deck, which due to bonding to the concrete, functioned as additional tensile reinforcement. The deck also increased the member’s ductility performance by 1.3 times. Specimen GB2 underwent bond loss in the transition zone between the deck and the concrete, reducing the initial stiffness of the member.

  6. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete

    PubMed Central

    Singh, M. P.; Singh, S. P.; Singh, A. P.

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together. PMID:27379298

  7. Dynamic behaviors of various volume rate steel-fiber reinforced reactive powder concrete after high temperature burnt

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Wang, Liwen; Yang, Zhenqi; Chi, Runqiang

    2009-06-01

    Dynamic strain-stress curves of reactive powder concrete under high strain rate (10/s-100/s) were determined by improved split Hopkinson pressure bar (SHPB) system. A plumbum pulse shaper was used to ensure the symmetrical stress in the specimens before fracture and avoid the fluctuation of test data due to input shaky stress pulse. A time modified method was induced for data processing in order to get accurate SHPB results. The results of experiment showed after high temperature burnt, different volume rate (0.0%, 0.5%, 1.0%, 1.5%) steel-fiber reinforced reactive power concrete had the same changing tendency of residual mechanics behaviors, e.g. after 400 centigrade burnt, the residual compression strength was about 70% of material strength without burnt under 100/s. After 800 centigrade burnt, the compression strength is about 30% under 100/s while the deformation ability increased. At meanwhile, steel fiber had improved the mechanism of reinforcing effect and toughening effect of concrete material after burnt. With increasing of steel fiber volume rate, dynamic residual behavior of samples was improved. Microcosmic characteristics and energy absorption were induced for explaining the experiment results.

  8. Compressive Membrane Capability Estimates in Laterally Edge Restrained Reinforced Concrete One-Way Slabs

    DTIC Science & Technology

    1999-05-01

    by THE UNITED STATES ARMY, I DEPARTMENT OF CIVIL AND MECHANICAL ENGINEERINGI UNITED STATES MILITARY ACADEMY and DEPARTMENT OF CIVIL AND ENVIRONMENTAL ...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING AG-ENCY REPORT NUMBER Department of Civil and Environmental ...LATERALLY EDGE RESTRAINED REINFORCED CONCRETE ONE-WAY SLABS Ronald Wayne Welch, Ph.D. Department of Civil and Environmental Engineering University of

  9. Numerical Modeling of Local Penetration of Chloride-Containing Medium into Construction Elements Made of Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.

    2017-11-01

    The task of modeling the kinetics of chloride-containing medium penetration into construction elements out of reinforced concrete that have partially damaged anti-corrosion protective coatings is being discussed. As a result, chlorides penetrate the construction element via local surface areas which leads to irregularities between chloride dispersion volumes. The kinetics of chloride penetration is described by the equation of diffusion to solve which the CONDUCT software complex by professor S. Patankar was used. The methodology used to solve the diffusional equation is described. The results of the evaluation of concentration field in the axial section of a cylindrical construction element, which was centrally reinforced, are given. The chloride diffusion was symmetrical to the axis, the medium was applied through the central ring area equal to one third of the side surface area while the rest of the surface was isolated. It was shown that the methodology of evaluation and its algorithm allow one to evaluate the concentration field of chlorides in reinforced concrete structural elements under local or asymmetrical action of the chloride - containing medium. The example given illustrates that after a certain time interval critical the concentration of chlorides develops even in protected areas which are located far from the initial damaged area. This means that the corrosion destruction of reinforced elements develops not only in the immediate damage area, but also further away from it.

  10. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    PubMed

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  11. Fiber reinforced concrete: An advanced technology for LL/ML radwaste conditioning and disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchemitcheff, E.; Verdier, A.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirementsmore » relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Compagnie Generale des Eaux.« less

  12. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    NASA Astrophysics Data System (ADS)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  13. A flexural crack model for damage detection in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.

    2011-07-01

    The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.

  14. Nondestructive Concrete Characterization System

    DTIC Science & Technology

    2013-05-20

    Army, locate steel reinforcing bars, and identify the presence of steel fiber reinforcement . The thickness of all sides of each concrete block was...concrete compressive strength within the accuracy required by the U.S. Army, locate steel reinforcing bars, and identify the presence of steel fiber ...tolerance of ±3 ksi. 3. Detect the presence of fiber reinforcement . 4. Locate and detect the presence and density (e.g. spacing) of metallic objects

  15. Behavior of reinforcement SCC beams under elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fathi, Hamoon; Farhang, Kianoosh

    2015-09-01

    This experimental study focuses on the behavior of heated reinforced concrete beams. Four types of concrete mixtures were used for the tested self-compacting concrete beams. A total of 72 reinforced concrete beams and 72 standard cylindrical specimens were tested. The compressive strength under uniaxial loading at 23 °C ranged from 30 to 45 MPa. The specimens were exposed to different temperatures. The test parameters of interest were the compressive strength and the temperature of the specimens. The effect of changes in the parameters was examined so as to control the behavior of the tested concrete and that of the reinforced concrete beam. The results indicated that flexibility and compressive strength of the reinforced concrete beams decreased at higher temperatures. Furthermore, heating beyond 400 °C produced greater variations in the structural behavior of the materials in both the cylindrical samples and the reinforced concrete beams.

  16. 78 FR 41079 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ...)] Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine... from Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine would be likely to lead to... with respect to Indonesia, Latvia, and Poland. Commissioner Daniel R. Pearson dissenting with respect...

  17. 4. EXTERIOR OF SOUTH END OF BUILDING 105 SHOWING TALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR OF SOUTH END OF BUILDING 105 SHOWING TALL RUSTIC STYLE CHIMNEY WITH GABLE FRAME, METAL ROOF, AND CONCRETE WALKWAY AND STEP TO OPEN SIDE-ENTRY DOOR AT PHOTO ENTER. ORIGINAL DECORATIVE WOOD SHIPLAP SIDING ON UPPER END GABLE HAS BEEN COVERED WITH ASPHALT SHINGLES. VIEW TO NORTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  18. Stiffness of reinforced concrete walls resisting in-place shear -- Tier 2: Aging and durability of concrete used in nuclear power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Moehle, J.P.

    1995-12-01

    Reinforced concrete walls are commonly used in power-plant construction to resist earthquake effects. Determination of wall stiffness is of particular importance for establishing design forces on attached equipment. Available experimental data indicate differences between the measured and calculated stiffness of walls in cases where concrete mechanical properties are well defined. Additional data indicate that in-situ concrete mechanical properties may differ significantly from those specified in design. The work summarized in this report was undertaken to investigate the mechanical properties of concrete considering aging and deterioration. Existing data on mechanical properties of concrete are evaluated, and new tests are carried outmore » on concrete cylinders batched for nuclear power plants and stored under controlled conditions for up to twenty years. It is concluded that concretes batched for nuclear power plants commonly have 28-day strength that exceeds the design value by at least 1000 psi. Under curing conditions representative of those in the interior of thick concrete elements, strength gain with time can be estimated conservatively using the expression proposed by ACI Committee 209, with strengths at 25 years being approximately 1.3 times the 28-day strength. Young`s modulus can be estimated using the expression given by ACI Committee 318. Variabilities in mechanical properties are identified. A review of concrete durability identified the main causes and results of concrete deterioration that are relevant for the class of concretes and structures commonly used in nuclear power plants. Prospects for identifying the occurrence and predicting the extent of deterioration are discussed.« less

  19. Finite element simulation of ultrasonic waves in corroded reinforced concrete for early-stage corrosion detection

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2017-04-01

    In reinforced concrete (RC) structures, corrosion of steel rebar introduces internal stress at the interface between rebar and concrete, ultimately leading to debonding and separation between rebar and concrete. Effective early-stage detection of steel rebar corrosion can significantly reduce maintenance costs and enable early-stage repair. In this paper, ultrasonic detection of early-stage steel rebar corrosion inside concrete is numerically investigated using the finite element method (FEM). Commercial FEM software (ABAQUS) was used in all simulation cases. Steel rebar was simplified and modeled by a cylindrical structure. 1MHz ultrasonic elastic waves were generated at the interface between rebar and concrete. Two-dimensional plain strain element was adopted in all FE models. Formation of surface rust in rebar was modeled by changing material properties and expanding element size in order to simulate the rust interface between rebar and concrete and the presence of interfacial stress. Two types of surface rust (corroded regions) were considered. Time domain and frequency domain responses of displacement were studied. From our simulation result, two corrosion indicators, baseline (b) and center frequency (fc) were proposed for detecting and quantifying corrosion.

  20. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : appendices.

    DOT National Transportation Integrated Search

    2012-01-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  1. Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads

    NASA Astrophysics Data System (ADS)

    Kang, J.; Yi, Z. Z.; Choi, S. G.

    2017-12-01

    This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.

  2. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    PubMed

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  3. The determination of the constitutive parameters of a medium with application to a reinforced concrete pad

    NASA Technical Reports Server (NTRS)

    Poggio, A. J.; Burke, G. L.; Pennock, S. T.

    1995-01-01

    This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.

  4. Acoustic emission testing of in-service conventionally reinforced concrete deck girder superstructures on highway bridges : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    Three reports were produced from research sponsored by the Oregon Department of Transportation on acoustic emission (AE). The first describes the evaluation of AE techniques applied to two reinforced concrete (RC) bridge girders, which were loaded to...

  5. Probabilistic design of fibre concrete structures

    NASA Astrophysics Data System (ADS)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented

  6. History of the Development of Liquid-Applied Coatings for Protection of Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph J.; Hansen, marlin H.

    2005-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem for structures at Kennedy Space Center (KSC). KSC is located on the coast of Florida in a highly corrosive atmosphere. Launch pads, highway bridge infrastructure, and buildings are strongly affected. To mitigate these problems, NASA initiated a development program for a Galvanic Liquid-Applied Coating System (GLACS). A breakthrough in this area would have great commercial value in transportation, marine and construction industry infrastructures. The patented NASA GLACS system has undergone considerable testing to meet the needs of commercialization. A moisture-cure coating gives excellent adhesion with ease of application compared to existing galvanic products on the market. The latest development, GalvaCori; can be sprayed or hand applied to almost any structure shape. A self-adhesive conductive tape system has been devised to simplify current collection within the coating areas. In testing programs, millivolt potential and milliamp output per square foot of anode have been closely studied at actual test sites. These two parameters are probably the most challenging items of a resin-based, room-temperature-applied, galvanic coating. Extensive re-formulation has resulted in a system that provides the needed polarization for catholic protection of reinforcing steel in concrete in a variety of structure environments. The rate of corrosion of rebar in concrete is greatly affected by the environment of the structure. In addition to this, for any given concrete structure; moisture level, carbonization, and chloride contamination influences the rate of rebar corrosion. Similarly, the cathodic protection level of galvanic systems is also dependent on the moisture level of the concrete. GalvaCorr is formulated to maintain galvanic activity as the moisture level of the structure declines. GalvaCorr is available as a three-part kit. The mixing step requires about ten minutes. The viscosity can be easily

  7. Improved concretes for corrosion resistance

    DOT National Transportation Integrated Search

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  8. Use of fiber reinforced concrete for concrete pavement slab replacement.

    DOT National Transportation Integrated Search

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    PubMed Central

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  10. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam

  11. Report C : self-consolidating concrete (SCC) for infrastructure elements - bond behavior of mild reinforcing steel in SCC.

    DOT National Transportation Integrated Search

    2012-08-01

    The main objective of this study was to determine the effect on bond performance : of mild reinforcing steel in self-consolidating concrete (SCC). The SCC test program : consisted of comparing the bond performance of normal and high strength SCC with...

  12. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements : Technical Summary

    DOT National Transportation Integrated Search

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  13. Structural health monitoring of a reinforced concrete building during the severe typhoon Vicente in 2012.

    PubMed

    Kuok, Sin-Chi; Yuen, Ka-Veng

    2013-01-01

    The goal of this study is to investigate the structural performance of reinforced concrete building under the influence of severe typhoon. For this purpose, full-scale monitoring of a 22-story reinforced concrete building was conducted during the entire passage process of a severe typhoon "Vicente." Vicente was the eighth tropical storm developed in the Western North Pacific Ocean and the South China Sea in 2012. Moreover, it was the strongest and most devastating typhoon that struck Macao since 1999. The overall duration of the typhoon affected period that lasted more than 70 hours and the typhoon eye region covered Macao for around one hour. The wind and structural response measurements were acquired throughout the entire typhoon affected period. The wind characteristics were analyzed using the measured wind data including the wind speed and wind direction time histories. Besides, the structural response measurements of the monitored building were utilized for modal identification using the Bayesian spectral density approach. Detailed analysis of the field data and the typhoon generated effects on the structural performance are discussed.

  14. Constitutive Relations of Randomly Oriented Steel Fiber Reinforced Concrete under Multiaxial Compressive Loadings,

    DTIC Science & Technology

    1981-12-01

    This was done to observe the effect of specimen age on strength after the curing period of 7 days in the humidity room and the remaining time in air in... fatigue resistance. Although the compressive strength is not much improved, the brittle behavior that would occur in plain concrete after peak strength...such as fracture toughness, fatigue resistance, impact resistance and flexural strength (82). The idea of fiber reinforcement applications is not new

  15. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    PubMed Central

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-01-01

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes. PMID:28788613

  16. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report.

    DOT National Transportation Integrated Search

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  17. Health monitoring system for a tall building with Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  18. Increased of the capacity integral bridge with reinforced concrete beams for single span

    NASA Astrophysics Data System (ADS)

    Setiati, N. Retno

    2017-11-01

    Sinapeul Bridge that was built in 2012 in Sumedang is a bridge type using a full integral system. The prototype of integral bridge with reinforced concrete girder and single span 20 meters until this year had decreased capacity. The bridge was conducted monitoring of strain that occurs in the abutment in 2014. Monitoring results show that based on the data recorded, the maximum strain occurs at the abutment on the location of the integration of the girder of 10.59 x 10-6 tensile stress of 0.25 MPa (smaller than 150 x 10-6) with 3 MPa tensile stress as limit the occurrence of cracks in concrete. Sinapeul bridge abutment with integral system is still in the intact condition. Deflection of the bridge at the time of load test is 1.31 mm. But this time the bridge has decreased exceeded permission deflection (deflection occurred by 40 mm). Besides that, the slab also suffered destruction. One cause of the destruction of the bridge slab is the load factor. It is necessary for required effort to increase the capacity of the integral bridge with retrofitting. Retrofitting method also aims to restore the capacity of the bridge structure due to deterioration. Retrofitting can be done by shortening of the span or using Fibre Reinforced Polymer (FRC). Based on the results obtained by analysis of that method of retrofitting with Fibre Reinforced Polymer (FRC) is more simple and effective. Retrofitting with FRP can increase the capacity of the shear and bending moment becomes 41% of the existing bridge. Retrofitting with FRP method does not change the integral system on the bridge Sinapeul become conventional bridges.

  19. Experimental Research of FRP Composite Tube Confined Steel-reinforced Concrete Stub Columns Under Axial Compression

    NASA Astrophysics Data System (ADS)

    Wang, Ji Zhong; Cheng, Lu; Wang, Xin Pei

    2018-06-01

    A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.

  20. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calio, I.; Cannizzaro, F.; Marletta, M.

    2008-07-08

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to themore » requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria.« less

  1. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    NASA Astrophysics Data System (ADS)

    Caliò, I.; Cannizzaro, F.; D'Amore, E.; Marletta, M.; Pantò, B.

    2008-07-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria.

  2. Concrete Infrastructure Corrosion

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.

    2003-06-01

    It is well known that many reinforced concrete structures are at risk of deterioration due to chloride ion contamination of the concrete or atmospheric carbon dioxide dissolving in water to form carbonic acid, which reacts with the concrete and the reinforcing steel. The environment within the concrete will determine the corrosion product layers, which might, inter alia, contain the oxides and/or hydroxides of iron. Tensile forces resulting from volume changes during their formation lead to the cracking and delamination of the concrete. In the present investigation the handrail of an outside staircase suffered rebar corrosion during 30 year's service, leading to severe delamination damage to the concrete structure. The railings had been sealed into the concrete staircase using a polysulphide sealant, Thiokol®. The corrosion products were identified by means of Mössbauer and SEM analyses, which indicated that the corrosion product composition varied from the original steel surface to the outer layers, the former being mainly iron oxides and the latter iron oxyhydroxide.

  3. Effect of Curing Period on Properties of Steel and Polypropylene Fibre Reinforced Ultra-High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Smarzewski, Piotr

    2017-10-01

    This study has investigated the effect of curing period on the mechanical properties of straight polypropylene and hooked-end steel fibre reinforced ultra-high performance concrete (UHPC). Various physical properties are evaluated, i.e. absorbability, apparent density and open porosity. Compressive strength, tensile splitting strength, flexural strength and modulus of elasticity were determined at 28, 56 and 730 days. Comparative strength development of fibre reinforced mixes at 0.5%, 1%, 1.5% and 2% by volume fractions in relation to the mix without fibres was observed. Good correlations between the compressive strength and the modulus of elasticity are established. Steel and polypropylene fibres significantly increased the compressive strength, tensile splitting strength, flexural strength and modulus of elasticity of UHPC after two years curing period when fibre content volume was at least 1%. It seems that steel fibre reinforced UHPC has better properties than the polypropylene fibre reinforced UHPC.

  4. Field application of a thermal-sprayed titanium anode for cathodic protection of reinforcing steel in concrete : final report

    DOT National Transportation Integrated Search

    1999-01-01

    This study provided the first field trial of a catalyzed, thermal-sprayed titanium anode for cathodic protection of steel reinforced concrete structures. Catalyzed titanium as an anode material offers the advantage of long life due to the inherent no...

  5. Unsteady Heat Transfer Behavior of Reinforced Concrete Wall of Cold Storage

    NASA Astrophysics Data System (ADS)

    Nomura, Tomohiro; Murakami, Yuji; Uchikawa, Motoyuki

    The authors had already clarified that the heat transfer behaviors between internal and external insulated reinforced concrete wall of cold storage are different each others when inside and outside temperature of wall is flactuating. From that conclusion, we must consider the application method of wall insulation of cold storages in actual design. The theme of the paper is to get the analyzing method and unsteady heat transfer characteristics of concrete walls of cold storage during daily variation of outside temperature of walls, and to give the basis for efficient design and cost optimization of insulate wall of cold storage. The difference of unsteady heat transfer characteristics between internal and external insulate wall, when outside temperature of the wall follewed daily varation, was clarified in experiment and in situ measurement of practical cold storage. The analyzing method with two dimentional unsteady FEM was introduced. Using this method, it is possible to obtain the time variation of heat flux, which is important basic factor for practical design of cold storage, through the wall.

  6. An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Pellegrino, C.; Modena, C.

    2008-05-01

    This paper deals with the shear strengthening of Reinforced Concrete (RC) flexural members with externally bonded Fiber-Reinforced Polymers (FRPs). The interaction between an external FRP and an internal transverse steel reinforcement is not considered in actual code recommendations, but it strongly influences the efficiency of the shear strengthening rehabilitation technique and, as a consequence, the computation of interacting contributions to the nominal shear strength of beams. This circumstance is also discussed on the basis of the results of an experimental investigation of rectangular RC beams strengthened in shear with "U-jacketed" carbon FRP sheets. Based on experimental results of the present and other investigations, a new analytical model for describing the shear capacity of RC beams strengthened according to the most common schemes (side-bonded and "U-jacketed"), taking into account the interaction between steel and FRP shear strength contributions, is proposed.

  7. Heat transfer in hybrid fibre reinforced concrete-steel composite column exposed to a gas-fired radiant heater

    NASA Astrophysics Data System (ADS)

    Štefan, R.; Procházka, J.; Novák, J.; Fládr, J.; Wald, F.; Kohoutková, A.; Scheinherrová, L.; Čáchová, M.

    2017-09-01

    In the paper, a gas-fired radiant heater system for testing of structural elements and materials at elevated temperatures is described. The applicability of the system is illustrated on an example of the heat transfer experiment on a hybrid fibre reinforced concrete-steel composite column specimen. The results obtained during the test are closely analysed by common data visualization techniques. The experiment is simulated by a mathematical model of heat transfer, assuming the material data of the concrete determined by in-house measurements. The measured and calculated data are compared and discussed.

  8. Study of a reinforced concrete beam strengthened using a combination of SMA wire and CFRP plate

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-qiang; Li, Hui

    2006-03-01

    Traditional methods used for strengthening of reinforced concrete (RC) structures, such as bonding of steel plates, suffer from inherent disadvantages. In recent years, strengthening of RC structures using carbon fiber reinforced polymer (CFRP) plates has attracted considerable attentions around the world. Most existing research on CFRP plate bonding for flexural strengthening of RC beams has been carried out for the strength enhancement. However, little research is focused on effect of residual deformations on the strengthening. The residual deformations have an important effect on the strengthening by CFRP plates. There exists a very significant challenge how the residual deformations are reduced. Shape memory alloy (SMA) has showed outstanding functional properties as an actuator. It is a possibility that SMA can be used to reduce the residual deformation and make cracks of concrete close by imposing the recovery forces on the concrete in the tensile zone. It is only an emergency damage repair since the SMA wires need to be heated continuously. So, an innovative method of a RC beam strengthened by CFRP plates in combination with SMA wires was first investigated experimentally in this paper. In addition, the nonlinear finite element software of ABAQUS was employed to further simulate the behavior of RC beams strengthened through the new strengthening method. It can be found that this is an excellent and effective strengthening method.

  9. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    NASA Astrophysics Data System (ADS)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  10. 1. U.S. Route 250 grade separation structure. This reinforced concrete, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. U.S. Route 250 grade separation structure. This reinforced concrete, rigid frame structure was built in 1941. Its relatively flat arch provided maximum useful clearance in a short span and the physics of the design eliminated the need for extensive abutments to contain the thrust of traditional arches, making it ideally suited as a grade separation structure. BLRI designers made extensive use of theses bridges for crossing small streams and creeks, and grade separation structures, ornamenting them with a rustic stone facade. View is of the south-southeast elevation. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  11. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    PubMed

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  12. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    PubMed Central

    2018-01-01

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ. PMID:29462857

  13. Strength and durability of near-surface mounted CFRP bars for shear strengthening reinforced concrete bridge girders : final report appendices.

    DOT National Transportation Integrated Search

    2012-03-01

    During the interstate expansion of the 1950s, many conventionally reinforced concrete deck girder bridges were built throughout the country. These aging bridges commonly exhibit diagonal cracking and rate inadequately for shear, thus they are candida...

  14. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    PubMed

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  15. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    PubMed Central

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-01-01

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245

  16. Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials

    NASA Astrophysics Data System (ADS)

    Hurley, Michael F.

    The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete

  17. A Walk in the "Tall, Tall Grass"

    ERIC Educational Resources Information Center

    Kaatz, Kathryn

    2008-01-01

    This inquiry-based lesson was inspired by Denise Fleming's book entitled, "In the Tall, Tall Grass" (1991). The author used the book and a real study of prairie grasses to teach kindergartners how to make careful observations and record what they see. In addition, they learn how to "draw as scientists." Here the author describes her class's yearly…

  18. Analysis of the influence of dynamic phenomena on the fracture of a reinforced concrete beam under quasistatic loading (computations and experiment)

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Matveenko, V. P.; Serovaev, G. S.; Shardakov, I. N.; Shestakov, A. P.

    2015-07-01

    Construction of numerical models which reliably describe the processes of crack formation and development in reinforced concrete permit estimating the bearing capacity and structural strength of any structural element without using expensive full-scale experiments. In the present paper, an example of four-point bending of a rectangular beam is used to consider a finite-element model of concrete fracture. The results obtained by quasistatic calculations and by solving the problem with inertia forces taken into account are compared. The kinetic energy contribution to the total mechanical energy of the system at the crack origination moment, which is greater than 30%, is estimated to justify the expediency of taking the inertia forces into account. The crack distribution characters obtained numerically and observed experimentally are compared. It is shown that the leading role in the evolution of the crack formation process is played by the mechanism of fracture of bonds between the reinforcing elements and the concrete.

  19. Tall Buildings Initiative

    Science.gov Websites

    Design Task 7 - Guidelines on Modeling and Acceptance Values Task 8 - Input Ground Motions for Tall - Performance-Based Seismic Design Guidelines for Tall Buildings Task 12 - Quantification of seismic performance published Report No. 2017/06 titled: "Guidelines for Performance-Based Seismic Design of Tall Buildings

  20. Exodermic bridge deck performance evaluation.

    DOT National Transportation Integrated Search

    2010-07-01

    In 1998, the Wisconsin DOT completed a two"leaf bascule bridge in Green Bay with an exodermic deck system. The exodermic deck consisted of 4.5"in thick cast"in"place reinforced concrete supported by a 5.19"in tall unfilled steel grid. The concrete an...

  1. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Abd El Baky, Hussien

    --slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical

  2. Strength and Stiffness Analysis by the Finite-Difference Method of a Concrete Floor Slab Reinforced with Composite Rods During a Fire

    NASA Astrophysics Data System (ADS)

    Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.

    2017-05-01

    A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.

  3. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Luo, Mingzhang; Hei, Chuang; Song, Gangbing

    2018-03-01

    Owing to its light weight and corrosion resistance, the concrete-filled fiber-reinforced polymer tube (CFFT) structure has a broad application prospect; the concrete compactness is key to the strength of CFFTs. To meet the urgent requirement of compactness monitoring of CFFTs, a quantitative method, which uses an array of four equally spaced piezoceramic patches and an ultrasonic time difference of arrival (TDOA) algorithm, is developed. Since the velocity of the ultrasonic wave propagation in fiber-reinforced polymer (FRP) material is about half of that in concrete material, the compactness condition of CFFT impacts the piezoceramic-induced wave propagation in the CFFT, and differentiates the TDOA for different receivers. An important condition is the half compactness, which can be judged by the Half Compactness Indicator (HCI) based on the TDOAs. To characterize the difference of stress wave propagation durations from the emitter to different receivers, which can be utilized to calculate the concrete infill compactness, the TDOA ratio (TDOAR) is introduced. An innovative algorithm is developed in this paper to estimate the compactness of the CFFT using HCI and TDOAR values. Analytical, numerical, and experimental studies based on a CFFT with seven different states of compactness (empty, 1/10, 1/3, 1/2, 2/3, 9/10, and full) are carried out in this research. Analyses demonstrate that there is a good agreement among the analytical, numerical, and experimental results of the proposed method, which employs a piezoceramic transducer array and the TDOAR for quantitative estimating the compactness of concrete infill in a CFFT.

  4. Effects of climate and corrosion on concrete behaviour

    NASA Astrophysics Data System (ADS)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  5. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  6. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures

    PubMed Central

    Angst, Ueli M.; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-01-01

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established

  7. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures.

    PubMed

    Angst, Ueli M; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-08-31

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established

  8. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  9. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  10. Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, R.J.; Rashid, Y.R.; Cherry, J.L.

    Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less

  11. The behaviour of reinforced concrete structure due to earthquake load using Time History analysis Method

    NASA Astrophysics Data System (ADS)

    Afifuddin, M.; Panjaitan, M. A. R.; Ayuna, D.

    2017-02-01

    Earthquakes are one of the most dangerous, destructive and unpredictable natural hazards, which can leave everything up to a few hundred kilometres in complete destruction in seconds. Indonesia has a unique position as an earthquake prone country. It is the place of the interaction for three tectonic plates, namely the Indo-Australian, Eurasian and Pacific plates. Banda Aceh is one of the cities that located in earthquake-prone areas. Due to the vulnerable conditions of Banda Aceh some efforts have been exerted to reduce these unfavourable conditions. Many aspects have been addressed, starting from community awareness up to engineering solutions. One of them is all buildings that build in the city should be designed as an earthquake resistant building. The objectives of this research are to observe the response of a reinforced concrete structure due to several types of earthquake load, and to see the performance of the structure after earthquake loads applied. After Tsunami in 2004 many building has been build, one of them is a hotel building located at simpang lima. The hotel is made of reinforced concrete with a height of 34.95 meters with a total area of 8872.5 m2 building. So far this building was the tallest building in Banda Aceh.

  12. Physical and mechanical properties of carbon fiber reinforced smart porous concrete for planting

    NASA Astrophysics Data System (ADS)

    Park, Seung-Bum; Kim, Jung-Hwan; Seo, Dae-Seuk

    2005-05-01

    The reinforcement strength of porous concrete and its applicability as a recycled aggregate was measured. Changes in physical and mechanical properties, subsequent to the mixing of carbon fiber and silica fume, were examined, and the effect of recycled aggregate depending on their mixing rate was evaluated. The applicability of planting to concrete material was also assessed. The results showed that there were not any remarkable change in the porosity and strength characteristics although its proportion of recycled aggregate increased. Also, the mixture of 10% of silica was found to be most effective for strength enforcement. In case of carbon fiber, the highest flexural strength was obtained with its mixing rate being 3%. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its use for vegetation proved that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  13. Crack classification in concrete beams using AE parameters

    NASA Astrophysics Data System (ADS)

    Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.

    2017-11-01

    The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.

  14. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  15. Conditioned flavor aversion and location avoidance in hamsters from toxic extract of tall larkspur (Delphinium barbeyi)

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to address conditioned flavour aversion (CFA) and place avoidance learning in hamsters given injections of alkaloid extracts from tall larkspur (Delphinium barbeyi), to determine if larkspur had reinforcing or negative properties sufficient to cause place avoidance or preferen...

  16. Evaluation of the fatigue and toughness of fiber reinforced concrete for use as a new highway pavement design : tech summary.

    DOT National Transportation Integrated Search

    2016-04-01

    This study presents the fi rst approach to develop a new concrete pavement structure reinforced only with fi bers. This : research will identify probable combinations of fi bers (dosage and length combinations) that will adequately perform : in repea...

  17. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  18. Brain network response underlying decisions about abstract reinforcers.

    PubMed

    Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose

    2014-12-01

    Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effect of fiber surface conditioning on the acoustic emission behavior of steel fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Gatselou, E.; Barkoula, N. M.; Paipetis, A.; Matikas, T. E.

    2011-04-01

    The role of coating in preserving the bonding between steel fibers and concrete is investigated in this paper. Straight types of fibers with and without chemical coating are used in steel fiber reinforced concrete mixes. The specimens are tested in bending with concurrent monitoring of their acoustic emission activity throughout the failure process using two broadband sensors. The different stages of fracture (before, during and after main crack formation) exhibit different acoustic fingerprints, depending on the mechanisms that are active during failure (concrete matrix micro-cracking, macro-cracking and fiber pull out). Additionally, it was seen that the acoustic emission behaviour exhibits distinct characteristics between coated and uncoated fiber specimens. Specifically, the frequency of the emitted waves is much lower for uncoated fiber specimens, especially after the main fracture incident, during the fiber pull out stage of failure. Additionally, the duration and the rise time of the acquired waveforms are much higher for uncoated specimens. These indices are used to distinguish between tensile and shear fracture in concrete and suggest that friction is much stronger for the uncoated fibers. On the other hand, specimens with coated fibers exhibit more tensile characteristics, more likely due to the fact that the bond between fibers and concrete matrix is stronger. The fibers therefore, are not simply pulled out but also detach a small volume of the brittle concrete matrix surrounding them. It seems that the effect of chemical coating can be assessed by acoustic emission parameters additionally to the macroscopic measurements of ultimate toughness.

  20. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Eric Robert

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations andmore » details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.« less