Sample records for tammeveski alexey mashirin

  1. Book review: Rogue waves in the ocean

    USGS Publications Warehouse

    Geist, Eric L.

    2011-01-01

    Review info: Rogue Waves in the Ocean. Advances in Geophysical and Environmental Mechanics and Mathematics. By Christian Kharif, Efim Pelinovsky and Alexey Slunyaev, 2009. ISBN: 978-3540884187, xiii, 216 pp.

  2. "Micro-robots" team up to act like vacuum cleaner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snezhko, Alexey and Aronson, Igor

    2011-01-01

    "Micro-robots" designed by Argonne National Laboratory physicists Alexey Snezhko and Igor Aronson pick up free-floating particles. The competing hydrodynamic flows created by the four-aster assembly trap the particles. This video is courtesy of Nature Materials. Read more about the bots at http://go.usa.gov/KAT

  3. "Micro-robots" pick up a glass bead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    "Micro-robots", which are really collections of particles animated by magnetic fields, pick up a glass bead and move it around the screen. Each movement is precisely controlled. The "asters" were designed by Alexey Snezkho and Igor Aronson at Argonne National Laboratory. Video courtesy Nature Materials. Read the full story at http://go.usa.gov/KAT

  4. Expedition 27 Docking

    NASA Image and Video Library

    2011-04-06

    Russian Federal Space Agency Director of Human Space Flight, Alexey Krasnov, third from right, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Thursday, April 7, 2011. The Soyuz TMA-21 docked to the International Space Station carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko. Photo Credit: (NASA/Carla Cioffi)

  5. Two-Dimensional, Time-Dependent Plasma Structures of a Hall Effect Thruster

    DTIC Science & Technology

    2011-09-01

    atmospheric pressure to 80 mtorr, is accomplished by a Leybold-Trivac rotary van vacuum pump and the second stage is completed by four 20 in CVI...Thruster”. Physics of Plasmas, 13, 2006. 3. Albarede, Luc, Vanessa Vial, Alexey Lazurenko, Andre Bouchoule, and Michel Dudeck. “Low Frequency Dynamical...Force Research Laboratory Space and Missile Division (AFRL/RZS) 5 Pollux Drive Edwards AFB, CA 93524 DSN 525-5230 AFRL/RZS Approval for public release

  6. Voxel-Wise Time-Series Analysis of Quantitative MRI in Relapsing-Remitting MS: Dynamic Imaging Metrics of Disease Activity Including Pre-Lesional Changes

    DTIC Science & Technology

    2015-12-01

    other parameters match the previous simulation. A third simulation was performed to evaluate the effect of gradient and RF spoiling on the accuracy of...this increase also offers an opportunity to increase the length of the spoiler gradient and improve the accuracy of FA quanti - fication (27). To...Relaxation Pouria Mossahebi,1 Vasily L. Yarnykh,2 and Alexey Samsonov3* Purpose: Cross-relaxation imaging (CRI) is a family of quanti - tative

  7. Multikilovolt Coherent X-Ray Generation for Protein Analysis and Biological Threat Reduction

    DTIC Science & Technology

    2003-10-15

    Space Links Neutrino Flavour (νe,νµ) Transformations with the Cosmological Constant Λ,” Yang Dai, Alex B. Borisov, James W. Longworth, Keith Boyer, and...Phys. B 36, L285 (2003). 3. “Cryptographic Unification of Mass and Space Links Neutrino Flavour (νe,νµ) Transformations with the Cosmological ...Constant, and the Higgs Mass,” Yang Dai, Alexey B. Borisov, Keith Boyer, and Charles K. Rhodes, Sandia National Laboratories, Report SAND2000-2043, August

  8. Exp. 55-56 Qual Exams Video File

    NASA Image and Video Library

    2018-02-22

    Expedition 55-56 Crew Undergoes Final Training Outside Moscow Three crew members preparing for a five-month mission on the International Space Station completed their final training before launch. Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA and their backups, Alexey Ovchinin of Roscosmos and Nick Hague of NASA, conducted final qualification training at the Gagarin Cosmonaut Training Center in Star City, Russia Feb. 20 and 21. Artemyev, Feustel and Arnold are scheduled to launch aboard the Soyuz MS-08 spacecraft on March 21 from the Baikonur Cosmodrome in Kazakhstan.

  9. Expedition 43 Preflight

    NASA Image and Video Library

    2015-03-15

    Expedition 43 backup crew members Jeff Williams of NASA, left, Alexey Ovchinin, center, and Sergei Volkov of Russia's Federal Space Agency (Roscosmos) stop to wave hello to photographers during their Soyuz TMA-16M spacecraft fit check, Sunday, March 15, 2015 at the Baikonur Cosmodrome in Kazakhstan. The prime crew members Russian Cosmonauts Mikhail Kornienko, Gennady Padalka of the Russian Federal Space Agency (Roscosmos), and NASA Astronaut Scott Kelly are preparing for launch to the International Space Station in their Soyuz TMA-16M spacecraft from the Baikonur Cosmodrome in Kazakhstan March 28, Kazakh time. As the one-year crew, Kelly and Kornienko will return to Earth on Soyuz TMA-18M in March 2016. Photo Credit: (NASA/Victor Zelentsov)

  10. Where was ENSO strongest?

    NASA Astrophysics Data System (ADS)

    Cane, M. A.; Chen, D.; Kaplan, A.

    2008-12-01

    Mark A. Cane, Dake Chen, Alexey Kaplan The description of this session begins: "Historical SST records suggest that for the past three decades, ENSO has been anomalously strong" and goes on to ask why. In this talk we dispute this interpretation of the historical record from within the historical record. In particular, we suggest that the most "anomalously strong" period in the historical ENSO record is the late nineteenth century. This claim requires a discussion of how we measure "ENSO strength". We also speculate on possible reasons for the strength of ENSO in this earlier period. Finally, we consult the models, and in reiteration of the collective conclusion of all speakers at this session, find that the riddles the models provide are inelegant and disobliging, lacking the cryptic wisdom of the classical oracles.

  11. KSC-2010-5709

    NASA Image and Video Library

    2010-11-16

    CAPE CANAVERAL, Fla. -- Japan Aerospace Exploration Agency and International Space Station Program Manager Tetsuro Yokoyama addresses attendees of the American Astronautical Society's 2010 National Conference held at the Radisson Resort at the Port in Cape Canaveral, Fla. The panel of speakers seated from left to right are, International Space Services President James Zimmerman; International Space Station Program Manager Michael Suffredini; Canadian Space Agency Director of Space Exploration Operations and Infrastructure Pierre Jean; European Space Agency Directorate of Human Spaceflight and International Space Station Programme Department Bernado Patti and Roskosmos Piloted Space Programs Department Director Alexey Krasnov. This year's conference was titled: International Space Station: The Next Decade - Utilization and Research. The conference was organized with the support of Kennedy and sponsored by The Boeing Company, Honeywell International Inc., Northrop Grumman Corp., Space Florida and the Universities Space Research Association (USRA). Photo credit: NASA/Jim Grossmann

  12. jsc2012e241355

    NASA Image and Video Library

    2012-12-06

    At the Gagarin Cosmonaut Center in Star City, Russia, Ann Marshburn (center), the wife of Expedition 34/35 Flight Engineer Tom Marshburn of NASA and their daughter Grace, look on as the bus carrying Marshburn and his crewmates, Soyuz Commander Roman Romanenko and Flight Engineer Chris Hadfield of the Canadian Space Agency departed for the airport Dec. 6, 2012 to take them to their launch site in Baikonur, Kazakhstan for final training. To the left of Ann Marshburn is former Russian cosmonaut Alexey Leonov, the first human to walk in space in 1965 and to her right is Michael Surber, NASA’s Director of Human Spaceflight Operations in Russia. Marshburn, Romanenko and Hadfield will launch from the Baikonur Cosmodrome Dec. 19 on their Soyuz TMA-07M spacecraft to spend five months on the International Space Station. Photo Credit: NASA/Stephanie Stoll

  13. Exp. 55-56 GCTC News Conference, Red Square and Museum Visit

    NASA Image and Video Library

    2018-02-26

    Expedition 55-56 Crew Conducts Traditional Ceremonies in Star City and Moscow, Russia----- : Expedition 55-56 Soyuz Commander Oleg Artemyev of Roscosmos and Flight Engineers Drew Feustel and Ricky Arnold of NASA, the next crew headed to the International Space Station, visited the Gagarin Museum at the Gagarin Cosmonaut Training Center in Star City, Russia, Feb. 22 where they viewed historic space artifacts, then visited Red Square in Moscow for traditional ceremonies, including the laying of flowers at the Kremlin Wall where Russian space icons are interred. Their backups, Alexey Ovchinin of Roscosmos and Nick Hague of NASA, also participated in the visits. Artemyev, Feustel and Arnold are scheduled to launch on March 21 from the Baikonur Cosmodrome in Kazakhstan in the Soyuz MS-08 spacecraft for a five-month mission on the orbiting laboratory.

  14. Suit Up - 50 Years of Spacewalks

    NASA Image and Video Library

    2017-01-22

    This NASA documentary celebrates 50 years of extravehicular activity (EVA) or spacewalks that began with the first two EVAs conducted by Russian Alexey Leonov in March 1965 and American astronaut Edward White in June 1965 . The documentary features interviews with NASA Administrator and astronaut, Charles Bolden, NASA Deputy Administrator and spacesuit designer, Dava Newman, as well as other astronauts, engineers, technicians, managers and luminaries of spacewalk history. They share their personal stories and thoughts that cover the full EVA experience-- from the early spacewalking experiences, to spacesuit manufacturing, to modern day spacewalks aboard the International Space Station as well as what the future holds for humans working on a tether in space. "Suit Up," is narrated by actor and fan of space exploration Jon Cryer. Cryer recently traveled to Star City, NASA Headquarters and the Johnson Space Center to film an upcoming Travel Channel documentary series.

  15. Helicon mysteries: fitting a plane wave into a cylinder

    NASA Astrophysics Data System (ADS)

    Boswell, Rod

    2011-10-01

    Since the first reports in the 1960s, the dispersion of helicon waves in a plasma cylinder has been difficult to describe theoretically for axial wavelengths that are greater than the plasma radius. About 10 years ago, Breizman and Arefiev showed how radial density gradients make the plasma column similar to a coaxial cable, allowing the helicon waves to propagate below the cut-off frequency. The resulting dispersion relation is similar to that of a plane wave propagating parallel to the magnetic field. A few years later, Degeling et. al. presented experimental evidence demonstrating such a plane wave dispersion for a broad range of axial wave numbers. The reason lies in the decoupling of the Hall and electron inertial terms in the dispersion, the former describing the electromagnetic propagation and the latter the electrostatic propagation. Combining the experimental and theoretical results has recently thrown further light on this phenomenon that is applicable to both space and laboratory situations. Radially Localized Helicon Modes in Nonuniform Plasma, Boris N. Breizman and Alexey V. Arefiev, Phys. Rev. Letts. 84, 3863 (2000). Transitions from electrostatic to electromagnetic whistler wave excitation, A. W. Degeling, G. G. Borg and R. W. Boswell, Phys. Plasmas, 11, 2144, (2004).

  16. Paleomagnetism and Geochronology of the Precambrian Dikes in NE Fennoscandia, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Samsonov, A.; Stepanova, A.

    2017-12-01

    Paleomagnetism of Proterozoic dikes of Scandinavia, Karelia, and southern part of the Kola Peninsula is extensively explored in many studies (Veikkolainen et al., 2014). In particular, the paleomagnetism of intrusive formations in the southern part of the Kola Peninsula is thoroughly scrutinized in the study authored by Alexey Khramov and his colleagues (Khramov et al., 1997). However, information about the systematic paleomagnetic studies of the Archaean and Proterozoic dikes of the Central Kola block and, especially, Murmansk block are absent. Based on the results of preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization is revealed. The peculiarities of distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 Ga during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia is located in the immediate vicinity of the known Paleoproterozoic (1.9-1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014). We also present the new geochronological Ar/Ar, Sm-Nd, Rb-Sr and U-Pb data which allow to determine the age of remagnetization as 1.86 Ga. The studies were supported by the Russian Science Foundation (project no. 16-17-10260), partially supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 17-05-01121a).

  17. New method to determine initial surface water displacement at tsunami source

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Mikhail; Romanenko, Alexey; Tatarintsev, Pavel

    2013-04-01

    Friday, March 11, 2011 at 05:46:23 UTC, Japan was struck by an 8.9-magnitude earthquake near its Northeastern coast. This is one of the largest earthquakes that Japan has ever experienced. Tsunami waves swept away houses and cars and caused massive human losses. To predict tsunami wave parameters better and faster, we propose to improve data inversion scheme and achieve the performance gain of data processing. One of the reasons of inaccurate predictions of tsunami parameters is that very little information is available about the initial disturbance of the sea bed at tsunami source. In this paper, we suggest a new way of improving the quality of tsunami source parameters prediction. Modern computational technologies can accurately calculate tsunami wave propagation over the deep ocean provided that the initial displacement (perturbation of the sea bed at tsunami source) is known [4]. Direct geophysical measurements provide the location of an earthquake hypocenter and its magnitude (the released energy evaluation). Among the methods of determination of initial displacement the following ones should be considered. Calculation through the known fault structure and available seismic information. This method is widely used and provides useful information. However, even if the exact knowledge about rock blocks shifts is given, recalculation in terms of sea bed displacement is needed. This results in a certain number of errors. GPS data analysis. This method was developed after the December 2004 event in the Indian Ocean. A good correlation between dry land based GPS sensors and tsunami wave parameters was observed in the particular case of the West coast of Sumatra, Indonesia. This approach is very unique and can hardly been used in other geo locations. Satellite image analysis. The resolution of modern satellite images has dramatically improved. In the future, correct data of sea surface displacement will probably be available in real time, right after a tsunamigenic earthquake. However, today it is not yet possible. Ground-based sea radars. This is an effective tool for direct measurement of tsunami wave. At the same time, the wave is measured at a rather narrow area in front of the radar and does not include information about neighboring parts of the wave. Direct measurement of tsunami wave at deep water [2]. Today, this technology is certainly among the most useful and promising. The DART II® system consists of a seafloor bottom pressure recording (BPR) system, capable of detecting tsunamis as small as 1 cm, and a moored surface buoy for real-time communications. We focus our research on improving the later method, direct measurement of tsunami wave at deep water. We suggest the new way to analyze DART data, modifying the methodology originally proposed by V. Titov. Smaller system of unit sources [3] should be considered to approximate all typical shapes of initial disturbance by several suitable basis functions. To successfully implement it, performance of data analysis should be dramatically improved. This could be done by using a signal orthogonalization procedure for considered system of unit sources and calculation of Fourier coefficients of the measured time series with respect to orthogonal basis. The approach suggested was used as a part of computerized workstation for tsunami hazard monitoring [5-6]. National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/honshu20110311/ National Data Buoy Center. URL: http://www.ndbc.noaa.gov/dart.shtml National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://sift.pmel.noaa.gov/thredds/dodsC/uncompressed/ National Oceanic and Atmospheric Administration Center for Tsunami Research. URL: http://nctr.pmel.noaa.gov/model.html Alexey Romanenko, Mikhail Lavrentiev-jr, Vasily Titov, "Modern Architecture for Tsunami Hazard Mitigation" // Asia Oceania Geosciences Society (AOGS-2012), ISBN 978-981-07-2049-0 Mikhail Lavrentiev-jr, Andrey Marchuk, Alexey Romanenko, Konstantin Simonov, and Vasiliy Titov, "Computerized Workstation for Tsunami Hazard Monitoring", Geophysical research abstracts, Vol. 12, EGU2010-3021-1, 2010

  18. Recognizing short coding sequences of prokaryotic genome using a novel iteratively adaptive sparse partial least squares algorithm

    PubMed Central

    2013-01-01

    Background Significant efforts have been made to address the problem of identifying short genes in prokaryotic genomes. However, most known methods are not effective in detecting short genes. Because of the limited information contained in short DNA sequences, it is very difficult to accurately distinguish between protein coding and non-coding sequences in prokaryotic genomes. We have developed a new Iteratively Adaptive Sparse Partial Least Squares (IASPLS) algorithm as the classifier to improve the accuracy of the identification process. Results For testing, we chose the short coding and non-coding sequences from seven prokaryotic organisms. We used seven feature sets (including GC content, Z-curve, etc.) of short genes. In comparison with GeneMarkS, Metagene, Orphelia, and Heuristic Approachs methods, our model achieved the best prediction performance in identification of short prokaryotic genes. Even when we focused on the very short length group ([60–100 nt)), our model provided sensitivity as high as 83.44% and specificity as high as 92.8%. These values are two or three times higher than three of the other methods while Metagene fails to recognize genes in this length range. The experiments also proved that the IASPLS can improve the identification accuracy in comparison with other widely used classifiers, i.e. Logistic, Random Forest (RF) and K nearest neighbors (KNN). The accuracy in using IASPLS was improved 5.90% or more in comparison with the other methods. In addition to the improvements in accuracy, IASPLS required ten times less computer time than using KNN or RF. Conclusions It is conclusive that our method is preferable for application as an automated method of short gene classification. Its linearity and easily optimized parameters make it practicable for predicting short genes of newly-sequenced or under-studied species. Reviewers This article was reviewed by Alexey Kondrashov, Rajeev Azad (nominated by Dr J.Peter Gogarten) and Yuriy Fofanov (nominated by Dr Janet Siefert). PMID:24067167

  19. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and seminars for youth on topical problems of physics and technology that is organized by the Academic University since 2009. We invite all the students and young scientists to attend "Saint Petersburg OPEN" in 2015! Please, find details at http://spbopen2015.spbau.com/ With best wishes, Editorial Board, Program and Organizing Committees

  20. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    NASA Astrophysics Data System (ADS)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey Samsonov (University of Wisconsin-Madison, USA) demonstrated new image reconstruction methods for accelerated quantitative parameter mapping and magnetic resonance angiography. Finally, we would like to thank the scientific committee, the local organizing committee and the National Research Tomsk State University for giving an opportunity to share scientific ideas and new developments at the conference and the Russian Science Foundation (project № 14-45-00040) for financial support.

  1. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Takahashi, Masahiko; Ueda, Kiyoshi

    2011-03-01

    The 17th edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces (MPS) was held in Sendai, Japan, from September 4-7, 2010. It was the first time that a meeting of this series of biennial conferences was hosted in a non-European country. The conference was attended by 110 researchers (90 regular participants and 20 students) from 15 different countries around the world. The themes that the conference covered can be divided into three broad areas: lepton impact, photon impact and heavy-particle impact. A total of 43 oral presentations - including 2 plenary talks, 29 progress reports and 12 hot topics - and 87 poster presentations were held during the course of the program. Rapid progress both in experimental and theoretical techniques has led to discussions across a broad range of currently hot topics, such as many-body dynamics and electron correlation effects in excitation processes, as well as in single and multiple ionization processes for various kinds of targets including atoms, molecules, clusters, solid state and even biological systems. A snapshot of the present status of many particle spectroscopy is given in this proceedings. The chairs of the conference gratefully acknowledge the financial support from the Morino Foundation for Molecular Science, Iwatani Naoji Foundation, Sendai Tourism and Convention Bureau, and Intelligent Cosmos Academic Foundation. They are indebted to the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, for co-hosting the conference, as well as to the international advisory board members for their extremely helpful suggestions to make the program attractive. The united effort of the local organizing committee, involving N Watanabe (Secretary), M Okunishi (Treasurer), H Fukuzawa, M Yamazaki, Y Kino, and N Kishimoto, is also gratefully acknowledged. Without the help of these institutions and individuals it would have been impossible to organize the conference. Finally, the chairs would like to express their thanks to all the participants for contributing to lively and fruitful discussions throughout the conference. Masahiko Takahashi and Kiyoshi Ueda International Advisory Board Lorenzo Avaldi (Italy)Klaus Bartschat (USA) Azzedine Lahmam-Bennani (France)Jamal Berakdar (Germany) Nora Berrah (USA)Igor Bray (Australia) XiangJun Chen (China)Claude Dal Cappello (France) Reinhard Dörner (Germany)Alexander Dorn (Germany) Danielle Dowek (France)Alexey Grum-Grzhimailo (Russia) Noriyuki Kouchi (Japan)Birgit Lohmann (Australia) Don Madison (USA)Fernando Martin (Spain) Andrew Murray (England)Bernard Piraux (Belgium) Roberto Rivarola (Argentina)Emma Sokell (Ireland) Giovanni Stefani (Italy) Conference photograph

  2. The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity

    NASA Astrophysics Data System (ADS)

    Avksentev, Alexey; Negrobova, Elena; Kramareva, Tatiana; Moiseeva, Evgenya

    2016-04-01

    The dependence of the discharge of nitrous oxide by ordinary chernozem steppe of the Central-Chernozem Region of Russia from the content of humus, nitrogen and enzymatic activity Alexey Avksentev, Elena Negrobova, Tatiana Kramareva, Evgenya Moiseeva 394000 Voronezh, Universitetskaya square, 1 Voronezh State University Nitrous oxide is emitted by soil as a result of microbiological processes, ranks third in the list of aggressive greenhouse gas after carbon dioxide and methane. Nitrous oxide is formed during nitrification and denitrification of ammonia that enters the soil during microbial decomposition of complex organic compounds. Denitrification can be direct and indirect. In the microbiological process of recovery of nitrates involved of the organic substance. In aerobic conditions microorganisms denitrificator behave like normal saprotrophs and oxidize organic matter in the act of breathing oxygen. Thus, they operate at different times two enzyme systems: the electron transport chain with an oxygen acceptor in aerobic and restoration of nitrates under anaerobic conditions. Investigation of the emission of nitrous oxide by ordinary Chernozem steppe of the Central-Chernozem Region showed that it depends on the type of cenosis and the content of available forms of nitrogen. Natural ecosystems emit nitrous oxide more than the soil of arable land. The dependence of the emission of nitrous oxide from the humus content shows positive trend, but the aggregation of data, significant differences are not detected. Research shows that nitrous oxide emissions are seasonal. So the autumn season is characterized by nitrous oxide emissions than spring. Enzymatic processes are an important link in the biological cycle of elements and, consequently, participate in the process of decomposition of organic matter, nitrification and other processes. Analysis of the data on enzyme activity of ordinary Chernozem and the intensity of emission of N20 shows a clear relationship between invertase, urease activity and emission of nitrous oxide, which is confirmed by the correlation coefficient R=0,78-0,79. Analysis of data on physical characteristics of common Chernozem shows that the relationship between nitrous oxide emissions and the density of the solid phase of the soil and the density of the composition of the soil and total porosity is not significant (R=0.4) and is not limiting. A limiting factor of N20 flux from ordinary Chernozem is the presence of available forms of nitrogen.

  3. Aleutian Islands

    NASA Image and Video Library

    2014-05-21

    Remote, rugged and extraordinarily beautiful, Alaska’s Aleutian Islands are best known for wildlife reserves, military bases, fishing, furs and fog. The sprawling volcanic archipelago was brought into the spotlight by the Russian-supported expedition of Alexey Chirikov and Vitus Bering in 1741, and soon became controlled by the Russian-American Fur Company. In 1867 the United States purchased Alaska, including the Aleutian Islands, from Russia. By 1900 the port in Unalaska was well established as a shipping port for Alaska gold. The archipelago sweeps about 1,200 miles (1,800 km) from the tip of the Alaskan Peninsula to Attu, the most westward island. Four major island groups hold 14 large islands, about 55 smaller islands, and a large number of islets, adding up to roughly 150 islands/islets in total. This chain separates the Bering Sea (north) from the Pacific Ocean (south) and the islands are connected by the Marine Highway Ferry – at least as far as Unalaska. For the most remote islands, such as birding paradise of Attu, the western-most Aleutian Island, travel becomes trickier and relies primarily on custom charter. The Moderate Resolution Imaging Spectroradiometer (MODIS) flew over the region and captured this spectacular true-color image of the eastern Aleutian Islands on May 15, 2014. In this image, the Alaskan Peninsula protrudes from the mainland and sweeps to the southwest. The first set of islands are called the Fox Island group. Unalaska Island is part of this group and can be identified, with some imagination, as an island formed in the shape of a flying cherub, with two arms (peninsulas) outstretched towards the northeast, seemingly reaching for the round “balls” of Akutan and Akun Islands. The smallest islands in the west of the image belong to the group known as the Islands of Four Mountains. The Aleutians continue far to the west of this image. Fog surrounds the Aleutians, stretching from just off the southwestern Alaska mainland to the western Fox Islands group, then further southwest across the Pacific Ocean. It appears to give way to marine stratocumulus clouds in the west. Fog is common in the area, and can be a hazard to shipping. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. An original data treatment for infrared spectra of organic matter, application to extracted soil organic matter

    NASA Astrophysics Data System (ADS)

    Gomes Rossin, Bruna; Redon, Roland; Raynaud, Michel; Nascimento, Nadia Regina; Mounier, Stéphane

    2017-04-01

    Infrared spectra of extracted organic matter are easy and rapid to do, but generally hard to interpreted over the presence or not of certain organic functions. Indeed, the organic matter is a complex mixture of molecules often having absorption overlapping and it is also difficult to have a well calibrated or normalised spectra due to the difficulty to have a well known solid content or homogeneity for a sample (Monakhova et al. 2015, Tadini et al. 2015, Bardy et al. 2008). In this work, the IRTF (InfraRed Fourier Transform) spectra were treated by an original algorithm developed to obtain the principal components of the IRTF spectra and their contributions for each sample. This bilinear decomposition used a PCA initialisation and the principal components were estimated from vectors calculated by PCA and linearly combined to provide non-negative signals minimizing a criterion based on cross-correlation. Hence, using this decomposition, it is possible to define IRTF signal of organic matter fractions like humic acid or fulvic acid depending on their origin like surface of depth of soil profiles. The method was used on a set of sample from Upper Negro River Basin (Amazon, Brazil) (Bueno,2009), where three soils sequences from surface to two meter depth containing 10 slices each. The sequences were sampled on a podzol well drain, a hydromorphic podzol and a cryptopodzol. From the IRTF data five representative component spectra were defined for all the extracted organic matter , and using other chemical composition information, a mechanism of organic matter fate is proposed to explain the observed results. Bardy, M., E. Fritsch, S. Derenne, T. Allard, N. R. do Nascimento, and G. T. Bueno. 2008. "Micromorphology and Spectroscopic Characteristics of Organic Matter in Waterlogged Podzols of the Upper Amazon Basin." Geoderma 145 (3-4): 222-30. Bueno, G.T. Appauvrissement et podzolisation des latérites du baissin du Rio Negro et gênese dês Podzols dans le haut bassin amazonien. [PHD] .Universidade Estadual Paulista "Júlio de Mesquita Filho";2009. Monakhova, Yulia B., Alexey M. Tsikin, Svetlana P. Mushtakova, and Mauro Mecozzi. 2015. "Independent Component Analysis and Multivariate Curve Resolution to Improve Spectral Interpretation of Complex Spectroscopic Data Sets: Application to Infrared Spectra of Marine Organic Matter Aggregates." Microchemical Journal, Devoted to the Application of Microtechniques in All Branches of Science 118 (January): 211-22. Tadini, Amanda Maria, Gustavo Nicolodelli, Stephane Mounier, Célia Regina Montes, and Débora Marcondes Bastos Pereira Milori. 2015. "The Importance of Humin in Soil Characterisation: A Study on Amazonian Soils Using Different Fluorescence Techniques." The Science of the Total Environment 537 (December): 152-58.

  5. An improved pyrite pretreatment protocol for kinetic and isotopic studies

    NASA Astrophysics Data System (ADS)

    Mirzoyan, Natella; Kamyshny, Alexey; Halevy, Itay

    2014-05-01

    An improved pyrite pretreatment protocol for kinetic and isotopic studies Natella Mirzoyan1, Alexey Kamyshny Jr.2, Itay Halevy1 1Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel 2Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel Pyrite is one of the most abundant and widespread of the sulfide minerals with a central role in biogeochemical cycles of iron and sulfur. Due to its diverse roles in the natural and anthropogenic sulfur cycle, pyrite has been extensively studied in various experimental investigations of the kinetics of its dissolution and oxidation, the isotopic fractionations associated with these reactions, and the microbiological processes involved. Pretreatment of pyrite for removal of oxidation impurities to prevent experimental artifacts and inaccuracies is often practiced. While numerous pyrite-cleaning methods have been used in experiments, a common pyrite pretreatment method, often used to investigate pyrite chemistry by the isotopic fractionations associated with it, includes several rinses by HCl, acetone and deionized water. Elemental sulfur (S0) is a common product of incomplete pyrite oxidation. Removal of S0 is desirable to avoid experimental biases associated with its participation in pyrite transformations, but is more complicated than the removal of sulfate. Although rinsing with an organic solvent is in part aimed at removing S0, to the best of our knowledge, the extraction efficiency of S0 in existing protocols has not been assessed. We have developed and tested a new protocol for elemental sulfur removal from the surface of pyrite by ultrasonication with warm acetone. Our data demonstrate the presence of large fractions of S0 on untreated pyrite particle surfaces, of which only approximately 60% was removed by the commonly used pretreatment method. The new protocol described here was found to be more efficient at S0 removal than the commonly used method, and was capable of removing virtually all S0 from the pyrite grains. As pyrite oxidation and dissolution processes are surface-dependent, and even the slightest coating by Fe2+ or sulfide oxidation products can sharply decrease pyrite reactivity, the improved removal of S0 prevents such decreases and allows clearer insights into pyrite reaction mechanisms to be gained from experimental studies. In addition to S0 removal, the suggested method was shown not to introduce any biases in the particle size distribution. The main difference observed between the two protocols is the removal of larger amounts of surface-attached fine particles in the proposed method along with S0. This also removes a potential bias, associated with the surface area of pyrite available for chemical reaction. The suggested pyrite pretreatment protocol is more efficient in removal of S0 contamination from pyrite grains and provides multiple advantages for both kinetic and isotopic investigations of pyrite transformations under various environmental conditions.

  6. Hot Galactic Arms Point To Vicious Cycle

    NASA Astrophysics Data System (ADS)

    2001-12-01

    NASA's Chandra X-ray Observatory has revealed the aftermath of a titanic explosion that wracked the elliptical galaxy known as NGC 4636. This eruption could be the latest episode in a cycle of violence that is triggered by gas falling into a central massive black hole. Chandra's images of NGC 4636 show spectacular symmetric arms, or arcs, of hot gas extending 25,000 light years into a huge cloud of multimillion-degree-Celsius gas that envelopes the galaxy. At a temperature of 10 million degrees, the arms are 30 percent hotter than the surrounding gas cloud. "The temperature jump, together with the symmetry and scale of the arms, suggests that we are observing the effects of a tremendous outburst that occurred in the center of the galaxy," said Christine Jones of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a paper on these observations scheduled for publication in Astrophysical Journal Letters. "The energy of this explosion would be the equivalent of several hundred thousand supernovas." The arms appear to be the leading edges of a galaxy-sized shock wave that is racing outward at 700 kilometers per second, or 1.6 million miles per hour. At this speed, it would take 3 million years for the structures to attain their present size. Cavities detected in the hot gas cloud to the east and west of the center of the galaxy support the shockwave explanation. The authors suggest that the explosion is part of a majestic cosmic feedback process that keeps the galaxy in a state of turmoil. Over a period of a few million years, a hot gas cloud that envelops the stars in the galaxy cools and falls inward toward a central, massive black hole. The feeding of the black hole by the infalling material leads to an explosion that heats the hot gaseous envelope, starting the cycle anew. NGC 4636 NGC 4636 Background Subtracted This feedback cycle may explain one puzzling feature of the galaxy - the lack of a strong radio source of the type that is usually observed in connection with galactic outbursts. "It may be that we are seeing an early stage of the cycle before the radio source has turned on," said team member William Forman also of the Harvard-Smithsonian Center for Astrophysics. "Or, it could be a new type of outburst that is not accompanied by strong radio emission." Other members of the team included Alexey Vikhlinin, Maxim Markevitch, Laurence David, Aryeh Warmflash, all of the CfA, and Paul Nulsen of the University of Wollongong in Australia. Chandra observed NGC 4636, an elliptical galaxy in the constellation Virgo some 50 million light years from Earth, with the Advanced CCD Imaging Spectrometer (ACIS) on Dec. 4-5, 1999 for 11,000 sec, and Jan. 26-27, 2000 for 53,000 seconds as part of a program led by Richard Mushotzky of NASA's Goddard Space Flight Center to study X-ray emission from elliptical galaxies. The ACIS instrument was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  7. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. Since this is a fast-moving field, there is absolutely no way of presenting definitive answers to all open questions, but we hope that this special section will provide an overview of the current state of knowledge regarding this topic. Furthermore, we hope that the exciting science and technology described in this section will attract and inspire other researchers and students working in related fields to enter into the study of ultrafast and nonlinear optical phenomena in carbon-based nanostructures. Ultrafast and nonlinear optics in carbon nanomaterials contents Ultrafast and nonlinear optics in carbon nanomaterialsJunichiro Kono The impact of pump fluence on carrier relaxation dynamics in optically excited grapheneT Winzer and E Malic Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behaviorS Winnerl, F Göttfert, M Mittendorff, H Schneider, M Helm, T Winzer, E Malic, A Knorr, M Orlita, M Potemski, M Sprinkle, C Berger and W A de Heer Nonlinear optics of graphene in a strong magnetic fieldXianghan Yao and Alexey Belyanin Theory of coherent phonons in carbon nanotubes and graphene nanoribbonsG D Sanders, A R T Nugraha, K Sato, J-H Kim3, J Kono3, R Saito and C J Stanton Non-perturbative effects of laser illumination on the electrical properties of graphene nanoribbons Hernán L Calvo, Pablo M Perez-Piskunow, Horacio M Pastawski, Stephan Roche and Luis E F Foa Torres Transient absorption microscopy studies of energy relaxation in graphene oxide thin film Sean Murphy and Libai Huang Femtosecond dynamics of exciton localization: self-trapping from the small to the large polaron limit F X Morrissey, J G Mance, A D Van Pelt and S L Dexheimer

  8. PREFACE: Nanoelectronics, sensors and single molecule biophysics Nanoelectronics, sensors and single molecule biophysics

    NASA Astrophysics Data System (ADS)

    Tao, Nongjian

    2012-04-01

    This special section of Journal of Physics: Condensed Matter (JPCM) is dedicated to Professor Stuart M Lindsay on the occasion of his 60th birthday and in recognition of his outstanding contributions to multiple research areas, including light scattering spectroscopy, scanning probe microscopy, biophysics, solid-liquid interfaces and molecular and nanoelectronics. It contains a collection of 14 papers in some of these areas, including a feature article by Lindsay. Each paper was subject to the normal rigorous review process of JPCM. In Lindsay's paper, he discusses the next generations of hybrid chemical-CMOS devices for low cost and personalized medical diagnosis. The discussion leads to several papers on nanotechnology for biomedical applications. Kawaguchi et al report on the detection of single pollen allergen particles using electrode embedded microchannels. Stern et al describe a structural study of three-dimensional DNA-nanoparticle assemblies. Hihath et al measure the conductance of methylated DNA, and discuss the possibility of electrical detection DNA methylation. Portillo et al study the electrostatic effects on the aggregation of prion proteins and peptides with atomic force microscopy. In an effort to understand the interactions between nanostructures and cells, Lamprecht et al report on the mapping of the intracellular distribution of carbon nanotubes with a confocal Raman imaging technique, and Wang et al focus on the intracellular delivery of gold nanoparticles using fluorescence microscopy. Park and Kristic provide theoretical analysis of micro- and nano-traps and their biological applications. This section also features several papers on the fundamentals of electron transport in single atomic wires and molecular junctions. The papers by Xu et al and by Wandlowksi et al describe new methods to measure conductance and forces in single molecule junctions and metallic atomic wires. Scullion et al report on the conductance of molecules with similar lengths but different energy barrier profiles in order to elucidate electron transport in the molecular junctions. Kiguchi and Murakoshi study metallic atomic wires under electrochemical potential control. Asai reports on a theoretical study of rectification in substituted atomic wires. Finally, Weiss et al report on a new method to pattern and functionalize oxide-free germanium surfaces with self-assembled organic monolayers, which provides interfaces between inorganic semiconductors and organic molecules. Nanoelectronics, sensors and single molecule biophysics contents Biochemistry and semiconductor electronics—the next big hit for silicon?Stuart Lindsay Electrical detection of single pollen allergen particles using electrode-embedded microchannelsChihiro Kawaguchi, Tetsuya Noda, Makusu Tsutsui, Masateru Taniguchi, Satoyuki Kawano and Tomoji Kawai Quasi 3D imaging of DNA-gold nanoparticle tetrahedral structuresAvigail Stern, Dvir Rotem, Inna Popov and Danny Porath Effects of cytosine methylation on DNA charge transportJoshua Hihath, Shaoyin Guo, Peiming Zhang and Nongjian Tao Effect of electrostatics on aggregation of prion protein Sup35 peptideAlexander M Portillo, Alexey V Krasnoslobodtsev and Yuri L Lyubchenko Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free techniqueC Lamprecht, N Gierlinger, E Heister, B Unterauer, B Plochberger, M Brameshuber, P Hinterdorfer, S Hild and A Ebner Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cellsXian Hao, Jiazhen Wu, Yuping Shan, Mingjun Cai, Xin Shang, Junguang Jiang and Hongda Wang Stability of an aqueous quadrupole micro-trapJae Hyun Park and Predrag S Krstić Electron transport properties of single molecular junctions under mechanical modulationsJianfeng Zhou, Cunlan Guo and Bingqian Xu An approach to measure electromechanical properties of atomic and molecular junctionsIlya V Pobelov, Gábor Mészáros, Koji Yoshida, Artem Mishchenko, Murat Gulcur, Martin R Bryce and Thomas Wandlowski Single-molecule conductance determinations on HS(CH2)4O(CH2)4SH and HS(CH2)2O(CH2)2O(CH2)2SH, and comparison with alkanedithiols of the same lengthLisa E Scullion, Edmund Leary, Simon J Higgins and Richard J Nichols Metal atomic contact under electrochemical potential controlManabu Kiguchi and Kei Murakoshi Rectification in substituted atomic wires: a theoretical insightYoshihiro Asai High-fidelity chemical patterning on oxide-free germaniumJ Nathan Hohman, Moonhee Kim, Jeffrey A Lawrence, Patrick D McClanahan and Paul S Weiss

  9. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its development to slow down." Vikhlinin and his colleagues used Chandra to observe the hot gas in dozens of galaxy clusters, which are the largest collapsed objects in the universe. Some of these clusters are relatively close and others are more than halfway across the universe. The results show the increase in mass of the galaxy clusters over time aligns with a universe dominated by dark energy. It is more difficult for objects like galaxy clusters to grow when space is stretched, as caused by dark energy. Vikhlinin and his team see this effect clearly in their data. The results are remarkably consistent with those from the distance measurements, revealing general relativity applies, as expected, on large scales. "For years, scientists have wanted to start testing how gravity works on large scales and now, we finally have," said William Forman, a co-author of the study from the Smithsonian Astrophysical Observatory. "This is a test that general relativity could have failed." When combined with other clues -- supernovas, the study of the cosmic microwave background, and the distribution of galaxies -- this new X-ray result gives scientists the best insight to date on the properties of dark energy. The study strengthens the evidence that dark energy is the cosmological constant. Although it is the leading candidate to explain dark energy, theoretical work suggests it should be about 10 raised to the power of 120 times larger than observed. Therefore, alternatives to general relativity, such as theories involving hidden dimensions, are being explored. "Putting all of this data together gives us the strongest evidence yet that dark energy is the cosmological constant, or in other words, that 'nothing weighs something'," said Vikhlinin. "A lot more testing is needed, but so far Einstein's theory is looking as good as ever." These results have consequences for predicting the ultimate fate of the universe. If dark energy is explained by the cosmological constant, the expansion of the universe will continue to accelerate, and the Milky Way and its neighbor galaxy, Andromeda, never will merge with the Virgo cluster. In that case, about a hundred billion years from now, all other galaxies ultimately would disappear from the Milky Way's view and, eventually, the local superclusters of galaxies also would disintegrate. The work by Vikhlinin and his colleagues will be published in two separate papers in the Feb. 10 issue of The Astrophysical Journal. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

  10. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for their help in producing this special section. We hope that it conveys some of the excitement and significance of the field. Semiconducting oxides contents Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc) K G Godinho, B J Morgan, J P Allen, D O Scanlon and G W Watson Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviourShunyi Li, Cosmina Ghinea, Thorsten J M Bayer, Markus Motzko, Robert Schafranek and Andreas Klein Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronicsMareike V Hohmann, Péter Ágoston, André Wachau, Thorsten J M Bayer, Joachim Brötz, Karsten Albe and Andreas Klein Cathodoluminescence studies of electron irradiation effects in n-type ZnOCasey Schwarz, Yuqing Lin, Max Shathkin, Elena Flitsiyan and Leonid Chernyak Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputteringM F Cerqueira, M I Vasilevskiy, F Oliveira, A G Rolo, T Viseu, J Ayres de Campos, E Alves and R Correia Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesisM Sagmeister, M Postl, U Brossmann, E J W List, A Klug, I Letofsky-Papst, D V Szabó and R Würschum Charge compensation in trivalent cation doped bulk rutile TiO2Anna Iwaszuk and Michael Nolan Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniquesL Scheffler, Vl Kolkovsky, E V Lavrov and J Weber Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour depositionC David, T Girardeau, F Paumier, D Eyidi, B Lacroix, N Papathanasiou, B P Tinkham, P Guérin and M Marteau Multi-component transparent conducting oxides: progress in materials modellingAron Walsh, Juarez L F Da Silva and Su-Huai Wei Thickness dependence of the strain, band gap and transport properties of epitaxial In2O3 thin films grown on Y-stabilised ZrO2(111) K H L Zhang, V K Lazarov, T D Veal, F E Oropeza, C F McConville, R G Egdell and A Walsh Hydrogenated cation vacancies in semiconducting oxidesJ B Varley, H Peelaers, A Janotti and C G Van de Walle Reactive force field simulation of proton diffusion in BaZrO3 using an empirical valence bond approachPaolo Raiteri, Julian D Gale and Giovanni Bussi Conductivity in transparent oxide semiconductorsP D C King and T D Veal A theoretical study of a ZnO graphene analogue: adsorption on Ag(111) and hydrogen transportIlker Demiroglu, Daniele Stradi, Francesc Illas and Stefan T Bromley The interplay between dopants and oxygen vacancies in the magnetism of V-doped TiO2 Ricardo Grau-Crespo and Udo Schwingenschlögl Electron and hole stability in GaN and ZnOAron Walsh, C Richard A Catlow, Martina Miskufova and Alexey A Sokol Holes bound as small polarons to acceptor defects in oxide materials: why are their thermal ionization energies so high?O F Schirmer

  11. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.

  12. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    NASA Astrophysics Data System (ADS)

    Kazaryan, Konstantin

    2011-03-01

    The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia, Deputy Chairman of the Program CommitteeProf Alexander Aseev, AcademicianVice-president of Russian Academy of Sciences Director, A V Rzhanov-Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Sergey Bagaev, AcademicianDirector, Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Alexander Gintsburg, Ademician, Russian Academy of Medical SciencesDirector Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, RussiaProf Anatoly Grigoryev, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesVice-president, Russian Academy of Medical Sciences, RussiaProf Michael Kovalchuk, RAS Corresponding MemberDirector, Kurchatov Institute Russian Scientific Center, RussiaProf Valery Lunin, AcademicianDean, Department of Chemistry, Lomonosov Moscow State University, RussiaProf Valentin Parmon, Academician, DirectorBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Rem Petrov, AcademicianAdvisor, Russian Academy of Sciences, RussiaProf Konstantin Skryabin, AcademicianDirector, Bioinzheneriya Center, Russian Academy of Sciences, RussiaProf Vsevolod Tkachuk, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesDean, Faculty of Fundamental Medicine, Lomonosov Moscow State University, RussiaProf Vladimir Fortov, AcademicianDirector, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Alexey Khokhlov, AcademicianVice Principal, Head of Innovation, Information and International Scientific Affairs Department, Lomonosov Moscow State University, RussiaProf Valery Bukhtiyarov, RAS Corresponding MemberDirector, Physicochemical Research Methods Dept., Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Anatoly Dvurechensky, RAS Corresponding MemberDeputy Director, Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Vladimir Kvardakov, Corresponding Member of Russian Academy of SciencesExecutive Director, Kurchatov Center of Synchrotron Radiation and Nanotechnology, RussiaProf Edward Son, Corresponding member of Russian Academy of SciencesScientific Deputy Director, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Andrey GudkovSenior Vice President, Basic Science Chairman, Department of Cell Stress Biology, Roswell Park Cancer Institute, USAProf Robert NemanichChair, Department of Physics, Arizona State University, USAProf Kandlikar SatishProfessor, Rochester Institute of Technology, USAProf Xiang ZhangUC Berkeley, Director of NSF Nano-scale Science and Engineering Center (NSEC), USAProf Andrei ZvyaginProfessor, Macquarie University, AustraliaProf Sergey KalyuzhnyDirector of the Scientific and Technological Expertise Department, RUSNANO, RussiaKonstantin Kazaryan, PhDExpert of the Scientific and Technological Expertise Department, RUSNANO, Russia, Program Committee SecretarySimeon ZhavoronkovHead of Nanotechnology Programs Development Office, Rusnanotech Forum Fund for the Nanotechnology Development, Russia Editors of the proceedings: Section "Nanoelectronics" - Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS).Section "Nanophotonics" - Professor Vasily Klimov (Institute of Physics, RAS).Section "Nanodiagnostics" - Professor P Kashkarov (Russian Scientific Center, Kurchatov Institute).Section "Nanotechnology for power engineering" - Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS).Section "Catalysis and chemical industry" - Member of Russian Academy of Sciences, Professor Valentin Parmon (Institute of Catalysis SB RAS).Section "Nanomaterials" - E Obraztsova, PhD (Institute of Physics, RAS), Marat Gallamov PhD (Moscow State University).Section "Nanotechnology in medicine" - Denis Logunov, PhD (Gamaleya Research Institute of Epidemiology and Microbiology, RAMS).Section "Nanobiotechnology" - Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  13. List of Participants

    NASA Astrophysics Data System (ADS)

    2011-09-01

    AbeTakashiUniversity of Tokyotabe@nt.phys.s.u-tokyo.ac.jp AmusiaMironRacah Institute of Physics, Jerusalemamusia@vms.huji.ac.il BaldoMarcelloINFN Cataniabaldo@ct.infn.it BansalManiePanjab University, Chandigarhbansalmanni@gmail.com BarrancoFranciscoUniversity of Sevillebarranco@us.es BertschGeorgeUniversity of Washington, Seattlebertsch@u.washington.edu BhagwatAmeeyaCBS Mumbaiameeya@kth.se BorderieBernardIPN Orsayborderie@ipno.in2p3.fr CarbonellJaumeLPSC Grenoblejaume.carbonell@lpsc.in2p3.fr CarlsonJoeLos Alamos National Laboratorycarlson@lanl.gov ColòGianlucaINFN - Università degli Studi di Milanocolo@mi.infn.it DanielewiczPawelNSCL, Michigan State Universitydanielewicz@nscl.msu.edu DescouvemontPierreUniversité Libre de Bruxellespdesc@ulb.ac.be Dohet-EralyJérémyUniversité Libre de Bruxellesjdoheter@ulb.ac.be DraayerJerryLouisiana State Universitydraayer@lsu.edu DufourMarianneIPHC, Université de Strasbourgmarianne.dufour@ires.in2p3.fr DuguetThomasCEA Saclaythomas.duguet@cea.fr DukelskyJorgeCSIC Madriddukelsky@iem.cfmac.csic.es EbranJean-PaulCEA-DAM, Arpajonebran@ipno.in2p3.fr FreerMartinUniversity of Birminghamm.freer@bham.ac.uk FujiiShinichiroUniversity of Tokyosfujii@cns.s.u-tokyo.ac.jp FunakiYasuroRIKEN Nishina Center, Wakofunaki@riken.jp GrassoMarcellaIPN Orsaygrasso@ipno.in2p3.fr HaginoKouichiTohoku Universityhagino@nucl.phys.tohoku.ac.jp HansenHubertUniversité Claude Bernard Lyon 1hansen@ipnl.in2p3.fr HolzmannMarkusLPMMC Grenoblemarkus@lptl.jussieu.fr HoriuchiHisashiRCNP, Osaka Universityhoriuchi@rcnp.osaka-u.ac.jp HoriuchiWataruGSI Darmstadtw.horiuchi@gsi.de HupinGuillaumeGANIL, Caenhupin@ganil.fr JinMengHuazhong Normal University, Wuhanjinm@iopp.ccnu.edu.cn KamimuraMasayasuRIKEN Nishina Center, Wakomkamimura@riken.jp Kanada-En'yoYoshikoKyoto Universityyenyo@ruby.scphys.kyoto-u.ac.jp KatoKiyoshiHokkaido University, Sapporokato@nucl.sci.hokudai.ac.jp KawabataTakahiroKyoto Universitykawabata@scphys.kyoto-u.ac.jp KhanEliasIPN Orsaykhan@ipno.in2p3.fr KhodelVictorKurchatov Institute, Moscowvak@wuphys.wustl.edu KimuraMasaakiHokkaido University, Sapporomasaaki@nucl.sci.hokudai.ac.jp LacroixDenisGANIL, Caenlacroix@ganil.fr LiangHaozhaoPeking University, Beijinghzliang@pku.edu.cn MargueronJérômeIPN Orsayjerome.margueron@ipno.in2p3.fr MassotElisabethIPN Orsaymassot@ipno.in2p3.fr MengJiePeking University, Beijingmengj@pku.edu.cn MillerTomaszWarsaw University of Technologymillert@student.mini.pw.edu.pl MoghrabiKassemIPN Orsaymoghrabi@ipno.in2p3.fr NapolitaniPaoloIPN Orsaynapolita@ipno.in2p3.fr NeffThomasGSI Darmstadtt.neff@gsi.de NguyenVan GiaiIPN Orsaynguyen@ipno.in2p3.fr OtsukaTakaharuUniversity of Tokyootsuka@phys.s.u-tokyo.ac.jp PilletNathalie-MarieCEA-DAM, Arpajonnathalie.pillet@cea.fr QiChongKTH Stockholmchongq@kth.se RamananSunethraICTP Triestesramanan@ictp.it RingPeterTU Munichring@ph.tum.de Rios HuguetArnauUniversity of Surreya.rios@surrey.ac.uk RivetMarie-FranceIPN Orsayrivet@ipno.in2p3.fr RobledoLuisUniversidad Autonoma de Madridluis.robledo@uam.es Roca MazaXavierINFN Milanoxavier.roca.maza@mi.infn.it RöpkeGerdRostock Universitygerd.roepke@uni-rostock.de RowleyNeilIPN Orsayrowley@ipno.in2p3.fr SagawaHiroyukiUniversity of Aizusagawa@u-aizu.ac.jp SandulescuNicolaeIFIN-HH, Bucharestsandulescu@theory.nipne.ro SchuckPeterIPN Orsayschuck@ipno.in2p3.fr SedrakianArmenGoethe Universität Frankfurtsedrakian@th.physik.uni-frankfurt.de SeveryukhinAlexeyJINR Dubnasever@theor.jinr.ru SogoTakaakiIPN Orsaysogo@ipno.in2p3.fr SomàVittorioCEA Saclayvittorio.soma@cea.fr StrinatiGiancarloUniversità di Camerinogiancarlo.strinati@gmail.com SuharaTadahiroKyoto Universitysuhara@ruby.scphys.kyoto-u.ac.jp SukhoruchkinSergeiPetersburg Nuclear Physics Institutesergeis@pnpi.spb.ru SuzukiToruTokyo Metropolitan Universitysuzukitr@tmu.ac.jp SuzukiToshioNihon University, Tokyosuzuki@chs.nihon-u.ac.jp TarpanovDimitarINRNE, Sofiadimitert@yahoo.co.uk Tohsaki-SuzukiAkihiroOsaka Universitytohsaki@rcnp.osaka-u.ac.jp TypelStefanGSI Darmstadts.typel@gsi.de UesakaTomohiroUniversity of Tokyouesaka@cns.s.u-tokyo.ac.jp UrbanMichaelIPN Orsayurban@ipno.in2p3.fr Van IsackerPietGANIL Caenisacker@ganil.fr VigezziEnricoINFN Milanovigezzi@mi.infn.it ViñasXavierUniversitat de Barcelonaxavier@ecm.ub.es Vinh MauNicoleIPN Orsayvinhmau@ipno.in2p3.fr VitturiAndreaINFN Padovavitturi@pd.infn.it Von OertzenWolframHelmholtz Zentrum Berlinoertzen@helmholtz-berlin.de WambachJochenTechnische Universität Darmstadtjochen.wambach@physik.tu-darmstadt.de WlazłowskiGabrielWarsaw University of Technologygabrielw@if.pw.edu.pl YamadaTaiichiKanto Gakuin University, Yokohamayamada@kanto-gakuin.ac.jp YoshidaKenichiRIKEN Nishina Center, Wakokenichi.yoshida@riken.jp YoshidaSatoshiHosei University, Tokyos_yoshi@i.hosei.ac.jp

  14. Einstein's Theory Fights off Challengers

    NASA Astrophysics Data System (ADS)

    2010-04-01

    Two new and independent studies have put Einstein's General Theory of Relativity to the test like never before. These results, made using NASA's Chandra X-ray Observatory, show Einstein's theory is still the best game in town. Each team of scientists took advantage of extensive Chandra observations of galaxy clusters, the largest objects in the Universe bound together by gravity. One result undercuts a rival gravity model to General Relativity, while the other shows that Einstein's theory works over a vast range of times and distances across the cosmos. The first finding significantly weakens a competitor to General Relativity known as "f(R) gravity". "If General Relativity were the heavyweight boxing champion, this other theory was hoping to be the upstart contender," said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. "Our work shows that the chances of its upsetting the champ are very slim." In recent years, physicists have turned their attention to competing theories to General Relativity as a possible explanation for the accelerated expansion of the universe. Currently, the most popular explanation for the acceleration is the so-called cosmological constant, which can be understood as energy that exists in empty space. This energy is referred to as dark energy to emphasize that it cannot be directly detected. In the f(R) theory, the cosmic acceleration comes not from an exotic form of energy but from a modification of the gravitational force. The modified force also affects the rate at which small enhancements of matter can grow over the eons to become massive clusters of galaxies, opening up the possibility of a sensitive test of the theory. Schmidt and colleagues used mass estimates of 49 galaxy clusters in the local universe from Chandra observations, and compared them with theoretical model predictions and studies of supernovas, the cosmic microwave background, and the large-scale distribution of galaxies. They found no evidence that gravity is different from General Relativity on scales larger than 130 million light years. This limit corresponds to a hundred-fold improvement on the bounds of the modified gravitational force's range that can be set without using the cluster data. "This is the strongest ever constraint set on an alternative to General Relativity on such large distance scales," said Schmidt. "Our results show that we can probe gravity stringently on cosmological scales by using observations of galaxy clusters." The reason for this dramatic improvement in constraints can be traced to the greatly enhanced gravitational forces acting in clusters as opposed to the universal background expansion of the universe. The cluster-growth technique also promises to be a good probe of other modified gravity scenarios, such as models motivated by higher-dimensional theories and string theory. A second, independent study also bolsters General Relativity by directly testing it across cosmological distances and times. Up until now, General Relativity had been verified only using experiments from laboratory to Solar System scales, leaving the door open to the possibility that General Relativity breaks down on much larger scales. To probe this question, a group at Stanford University compared Chandra observations of how rapidly galaxy clusters have grown over time to the predictions of General Relativity. The result is nearly complete agreement between observation and theory. "Einstein's theory succeeds again, this time in calculating how many massive clusters have formed under gravity's pull over the last five billion years," said David Rapetti of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University and SLAC National Accelerator Laboratory, who led the new study. "Excitingly and reassuringly, our results are the most robust consistency test of General Relativity yet carried out on cosmological scales." Rapetti and his colleagues based their results on a sample of 238 clusters detected across the whole sky by the now-defunct ROSAT X-ray telescope. These data were enhanced by detailed mass measurements for 71 distant clusters using Chandra, and 23 relatively nearby clusters using ROSAT, and combined with studies of supernovas, the cosmic microwave background, the distribution of galaxies and distance estimates to galaxy clusters. Galaxy clusters are important objects in the quest to understand the Universe as a whole. Because the observations of the masses of galaxy clusters are directly sensitive to the properties of gravity, they provide crucial information. Other techniques such as observations of supernovas or the distribution of galaxies measure cosmic distances, which depend only on the expansion rate of the universe. In contrast, the cluster technique used by Rapetti and his colleagues measure in addition the growth rate of the cosmic structure, as driven by gravity. "Cosmic acceleration represents a great challenge to our modern understanding of physics," said Rapetti's co-author Adam Mantz of NASA's Goddard Space Flight Center in Maryland. "Measurements of acceleration have highlighted how little we know about gravity at cosmic scales, but we're now starting to push back our ignorance." The paper by Fabian Schmidt was published in Physics Review D, Volume 80 in October 2009 and is co-authored by Alexey Vikhlinin of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and Wayne Hu of the University of Chicago, Illinois. The paper by David Rapetti was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society and is co-authored by Mantz, Steve Allen of KIPAC at Stanford and Harald Ebeling of the Institute for Astronomy in Hawaii. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  15. Preface: Proceedings of the 13th Conference on Liquid and Amorphous Metals (LAM13) (Ekaterinburg, Russia, 8 14 July 2007)

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy

    2008-03-01

    The most recent developments in the field of liquid and amorphous metals and alloys are regularly updated through two complementary international conferences: the liquid and amorphous metals conference (LAM) and the rapidly quenched materials (RQ) conference. The first series of conferences started as LM1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semiconductors, quasicrystals etc, are also accepted. The conference tradition strongly encourages participation from junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and the Ural State Pedagogical University (USPU), and held from 8-14 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). Two hundred and forty two active participants and about 60 guest participants from 20 countries attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale oral reports (25 min), and brief oral reports (15 min). The program included ten sessions, ranging from purely theoretical subjects to the technological application of molten and amorphous alloys. The following sessions took place: A: Electronic structure and transport, magnetic properties; B: Phase transitions; C: Structure; D: Atomic dynamics and transport; E: Thermodynamics; F: Modelling, simulation; G: Surface and interface; H: Mechanical properties and new materials; I: Quasicrystals; J: Industrial applications. The largest sessions were E, C, D and F with 53, 47, 43 and 40 reports, respectively. Posters were exhibited during the first (sessions A-E) or last (sessions F-J) three days of the conference. As usual, each oral session started with an invited talk. In accordance with contemporary tendencies the first invited talk of M Yao (Kyoto University) was devoted to interrelations between liquid metal studies and nanoscience. He pointed out that the physics of disordered matter, especially liquid metals, has provided nanoscience with basic ideas and theoretical tools such as ab initio molecular dynamics (MD) simulation. K Tamura (Kyoto University) reported experimental investigation results of expanded liquid rubidium, showing that observed structural features are originated from the instability of low-density electron gas. Modern theory has predicted that interacting electron gas suffers negative compressibility and the static dielectric function (DF) becomes negative when electron density is sufficiently reduced. Negative DF is of special interest when considering the possibility of new types of superconductors. In the next invited lecture, M I Mendelev and J R Morris (USA) described how MD simulations were performed to study phase transformations in supercooled liquid Al. The authors found that the widely used EAM potential for Al enables vitrification for cooling rates achievable in classical MD simulation, while other Al potentials enable crystallization under the same conditions. The reason for this difference was discussed, as well as features of vitrification in the EA Al. P Häussler (Chemnitz Univeristy) spoke about fundamental structure-forming processes in liquid and amorphous materials. He proposed the resonance model as an autonomous missing link between the microscopic description of atoms/molecules of Schrödinger's equation, and crystals, where global concepts such as planar resonances exist and Bloch's theorem is applied. D Holland-Moritz (Institut für Materialphysik, Köln) presented the first results of the quasielastic neutron scattering experiments on electromagnetically levitated metallic melts. The studies were indicative of Arrhenius behavior of the diffusion constants over the whole temperature regime investigated, ranging from temperatures above the melting temperature up to the metastable regime of an undercooled liquid. L Son (USPU) discussed the existing analytical theories of liquid-liquid phase transitions that have been assumed for a wide variety of liquids, but are poorly understood analytically. The application of these theories to liquid metal systems was also demonstrated. An approach to the study of dynamics and kinetics of cavitation in stretched liquid metals by the classical MD method was presented in the talk of G E Norman (Institute for High Temperatures, Moscow). Both quantitative and qualitative disagreements with the classic theory of homogeneous nucleation were found. Analytic extentions of MD results beyond the space and temporal limits accessible for the MD method were also discussed. G Wilde (University of Muenster) spoke about the experimental investigation into the impact of interface properties and, more specifically, of interface morphology in matrix-encased metallic nanoparticles on macroscopic properties, such as melting transition by a combination of microscopic, microanalytical and calorimetric measurements. The results were discussed with respect to the underlying mechanisms that lead to size dependent phase equilibria. In the invited talk of V Keryvin (University of Rennes) the indentation ability was proposed as a probe for pressure sensitivity in metallic glasses. The main conclusion was that the indentation test provides a good means to study the elasto-plastic behavior of these materials as well as being a relevant tool to subject metallic glasses to multiaxial loadings. The influence of changes in local ordering of precursor melt on the formation of the amorphous state and subsequent crystallization was the subject of a report presented by P Śvec (Institute of Physics, Bratislava). The effect was shown for a rapidly quenched Fe-Mo-B system with addition of Cu and substitution of Fe by Co prepared under varying conditions of planar flow casting and using master alloys with specific melt treatment. Approximately 320 abstracts were received and 180 manuscripts were finally submitted for publication. Papers from invited lectures and full-scale oral reports are published in Journal of Physics: Condensed Matter for this special issue. All papers from brief oral reports and posters were collected for an issue of Journal of Physics: Conference Series. All were edited by staff from Ekaterinburg. It was decided during the joint meeting of both the International Advisory Board and International Program Committee that the next conference in the LAM series, LAM14, will be arranged by the groups of A Di Cicco (Camerino University) and T Scopigno (University of Rome 'La Sapienza'), and will take place in Rome, Italy, in 2010. It is no easy task to outline new scientific tendencies in the field of liquid and amorphous alloys just after the LAM conference. It takes one or two years to estimate the significance of the event. Only one conclusion is obvious: the LAM13 conference has opened a door between the global scientific community and Russian scientists, who have special expertise in the field but could not actively participate at the LAM conferences before because of the economic situation in Russia. We are grateful to the Advisory and Program Committees of the LAM12 conference in Metz and especially to Dr Monique Calvo-Dahlborg for the opportunity to manage such an event in Russia. In addition we would like to give our sincere thanks to: the authorities of the Ural Branch of the Russian Academy of Sciences and the Ural State Pedagogical University who did their best to help us with all our problems, especially to Boris Igoshev and Nikolay Vatolin; all the sponsors who supported the conference: the Russian Foundation for Basic Research, the Ural Mining and Metallurgical Company headed by Andrey Kozicyn, the Open Joint Stock Company 'Uralsvjazinform' (Alexey Ufimkin), the A A Baikov Institute of Metallurgy and Materials Science, RAS (July Kovneristii), the Institute for Physics and Power Engineering (Alexandre Ephanov), the Nuclear Power Plant 'Beloyarskaya' (Nikolay Oshkanov), the South Ural State University (German Vjatkin), Ural Technical Institute of Communications and Informatics (Evgeny Subbotin), Physical-Technical Institute UB RAS (Vladimir Lad'yanov), Metallurgical Department of the Ural State Technical University (Victor Shimov), Academy of Sciences of Chechen Republic (Raikom Dadashev) and NETZSCH-Gerätebau GmbH; the invited lecturers who immediately answered positively to the invitation and contributed to the high level of success of LAM13; the colleagues who acted as chairmen in the various sessions; Graham Douglas and Richard Palmer who kindly answered our queries and tried to satisfy our requirements; the seniors of the LAM series who could not participate at the 13th conference but helped us to manage it in the best way, namely J Dupuy, M Silbert, F Sommer, W C Pilgrim, W Freyland, K Lu, J Brmejo and F Hensel. We dedicate the LAM13 conference to the 80 year jubilee of Professor Nikolay Vatolin who is one of the leaders of Russian investigation in the field of liquid and amorphous metals, and who managed 12 similar conferences in our country. One of us (PP) commemorates his father, Professor Stanislav Popel, who was a known specialist in high temperature capillarity and sadly left us six months before the event.

  16. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    The state of the art in the field of liquid and amorphous metals and alloys is regularly updated through two series of complementary international conferences, the LAM (Liquid and Amorphous Metals) and the RQ (Rapidly Quenched Materials). The first series of the conferences started as LM-1 in 1966 at Brookhaven for the basic understanding of liquid metals. The subsequent LM conferences were held in Tokyo (1972) and Bristol (1976). The conference was renewed in Grenoble (1980) as a LAM conference including amorphous metals and continued in Los Angeles (1983), Garmisch-Partenkirchen (1986), Kyoto (1989), Vienna (1992), Chicago (1995), Dortmund (1998), Yokohama (2001) and Metz (2004). The conferences are mainly devoted to liquid and amorphous metals and alloys. However, communications on some non-metallic systems such as semi conductors, quasicrystals etc, were accepted as well. The conference tradition strongly encourages the participation of junior researchers and graduate students. The 13th conference of the LAM series was organized in Ekaterinburg, Russia, by the Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences (IMet UB RAS) and Ural State Pedagogical University (USPU) and held on 8-13 July 2007 under the chairmanship of Professors Pjotr Popel (USPU) and Boris Gelchinskii (IMet UB RAS). There were 242 active and about 60 guest participants from 20 countries who attended the conference. There were no parallel sessions and all oral reports were separated into three groups: invited talks (40 min), full-scale (25 min) and brief (15 min) oral reports. The program included 10 sessions, ranging from purely theoretical subjects to technological application of molten and amorphous alloys. The following sessions took place: A) Electronic structure and transport, magnetic properties; B) Phase transitions; C) Structure; D) Atomic dynamics and transport; E) Thermodynamics; F) Modelling, simulation; G) Surface and interface; H) Mechanical properties and new materials; I) Quasicrystals; J) Industrial applications. The most representative sessions were E (53 reports), C (47), D (43) and F (40). All posters were exhibited during the first (sections A-E) or the last (sections F-J) three days of the conference. All the sessions took place in the Government House of Sverdlovsk Region where, in addition, everyone was able to enjoy dishes of Russian cuisine during lunches and coffee breaks. As usual, each oral session started from an invited talk. Therefore, 10 invited lecturers presented their reports. In accordance with contemporary tendency the first invited talk of M Yao (Kyoto University) was devoted to interrelations between liquid metal studies and nano-science. He pointed out that physics of disordered matter, especially liquid metals, has provided nano-science with basic ideas and theoretical tools such as ab initio MD simulation. K Tamura (Kyoto University) reported results of experimental investigation of expanded liquid rubidium showing that observed structural features originate from the instability of the low-density electron gas. Modern theory has predicted that interacting electron gas suffers a negative compressibility and the static dielectric-function (DF) becomes negative when electron density is sufficiently reduced. The negative DF is of special interest in connection with the possibility of a new type of superconductor. In the invited lecture of M I Mendelev and J R Morris (USA) MD simulations were performed to study phase transformations in supercooled liquid Al. The authors found that widely used EAM potential for Al provides vitrification for the cooling rates achievable in classical MD simulation, while other Al potentials provide crystallization under the same conditions. The reason for this difference, as well as features of the vitrification in the EA Al, were discussed. P Häussler (Chemnitz University) spoke about fundamental structure-forming processes in liquid and amorphous materials. He had proposed the resonance model as an autonomous missing link between the microscopic description of atoms/molecules, described by Schrödinger's equation, and the crystals where global concepts as planar resonances exist and Bloch's theorem is applied. D Holland-Moritz (Institut für Materialphysik, Köln) presented results of the first quasielastic neutron scattering experiments on electromagnetically levitated metallic melts. The studies are indicative of Arrhenius behaviour of the diffusion constants in the whole investigated temperature regime ranging from temperatures above the melting temperature up to the metastable regime of an undercooled liquid. L Son (USPU) discussed the existing analytical theories of liquid-liquid phase transitions that have been supposed for a wide variety of liquids, but are rather poorly understood analytically. The application of these theories to liquid metal systems was also demonstrated. An approach to study dynamics and kinetics of cavitation in stretched liquid metals by the classical molecular dynamics (MD) method was presented in the talk of G E Norman (Institute for High Temperatures, Moscow). Both quantitative and qualitative disagreements with the classic theory of homogeneous nucleation were found. Analytic extentions of MD results beyond the space and temporal limits accessible for the MD method were discussed also. G Wilde (University of Münster) spoke about experimental investigation of the impact of interface properties and, more specifically, of the interface morphology in matrix-encased metallic nanoparticles on macroscopic properties, such as melting transition by a combination of microscopic, microanalytical and calorimetric measurements. These results are discussed with respect to the underlying mechanisms that leads to size dependent phase equilibria. In the invited talk of V Keryvin (University of Rennes) the indentation ability was proposed to be used as a probe for pressure-sensitivity in metallic glasses. The main conclusion was: the indentation test provides good means to study the elasto-plastic behaviour of these materials as well as a relevant tool to subject them to multiaxial loadings. The influence of changes in local ordering of precursor melt on the formation of amorphous state and subsequent crystallization was a subject of a report presented by P Švec (Institute of Physics, Bratislava). The effect was shown for rapidly quenched Fe-Mo-B system with addition of Cu and substitution of Fe by Co prepared under varying conditions of planar flow casting and using master alloys with specific melt treatment. About 320 abstracts were received and 180 manuscripts were finally submitted for publication. All the papers followed invited lectures and full-scale oral reports were sent to the Journal of Physics: Condensed Matter for publication in a special issue. These papers will be published according to the current standard practices, policies and procedures of the Journal. All the papers following brief oral reports and posters were collected for this volume of Journal of Physics: Conference Series. All of them were edited by editors from Ekaterinburg. The Journal will provide access to all of the accepted papers free of charge via its web server. Afterwards, to publish and ship hardcopies of both the journals (Journal of Physics: Condensed Matter and Journal of Physics: Conference Series) and CDs containing all Conference papers. It was decided during the joint meeting of both the International Advisory Board and International Program Committee that the next conference in the LAM series, LAM14, will be arranged by the groups of A Di Cicco, Camerino University, and T Scopigno, University Roma `La Sapienza', in Rome, Italy. It is not an easy task to comment on new scientific tendencies in the field of liquid and amorphous alloys just after the conference. It takes one or two years to estimate the significance of the event. Only one conclusion is obvious: the LAM13 Conference had opened a door between the world scientific community and Russian scientists who have high expertise in the field but could not actively participate in the conferences of the LAM series before because of the situation in Russian economics. We are thankful to the Advisory and Program Committees of previous LAM12 conference in Metz and especially to Dr Monique Calvo-Dahlborg for their trust and the opportunity to manage such an outstanding event in Russia. In addition we would like to give all our sincere thanks to:

  17. the authorities of the Russian Academy of Sciences, its Ural Branch and Ural State Pedagogical University who have done their best and who helped us with all problems, especially to Boris Igoshev and Nikolay Vatolin;
  18. all sponsors who supported the conference: Russian Foundation for Basic Research, Ural Mining and Metallurgical Company headed by Andrey Kozicyn, Open Joint Stock Company `Uralsvjazinform' (Alexey Ufimkin), A A Baikov Institute of Metallurgy and Materials Science RAS (July Kovneristii), Institute for Physics and Power Engineering (Alexandre Ephanov), Nuclear Power Plant `Beloyarskaya' (Nikolay Oshkanov), South Ural State University (German Vjatkin), Ural Technical Institute of Communications and Informatics (Evgeny Subbotin), Physical - Technical Institute UB RAS (Vladimir Lad'yanov), Metallurgical Department of the Ural State Technical University (Victor Shimov), Academy of Sciences of Chechen Republic (Raikom Dadashev) and NETZSCH-Gerätebau GmbH;
  19. the invited lecturers who have immediately answered positively to the invitation and contributed to the high level of LAM13;
  20. all the colleagues who have not hesitated to act as chairmen in the various sessions;
  21. Graham Douglas and Richard Palmer from IOP Publishing, who have kindly answered all our emails and found solutions to all our questions and demands;
  22. wise seniors of the LAM series who could not participate at the 13th conference but helped us to manage it in the best way, namely to J Dupuy, M Silbert, F Sommer, W C Pilgrim, W Freyland, K Lu, J Brmejo and F Hensel.
  23. We dedicate the LAM13 conference to the 80-year jubilee of Professor Nikolay Vatolin who is the leader of Russian investigations in the field of liquid and amorphous metals and who managed twelve(!) similar conferences in our country. One of us (PP) commemorates his father, Professor Stanislav Popel, who was a known specialist in high temperature capillarity and left us half a year before the event. Pjotr Popel, Boris Gelchinskii, Valeriy Sidorov, Leonid Son, Alexandre Sabirzjanov Ekaterinburg, January 14 2008

  24. List of Participants

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Mohab Abou ZeidInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Ido AdamMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Henrik AdorfLeibniz Universität Hannover Mohammad Ali-AkbariIPM, Tehran Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Martin Ammon Max-Planck-Institut für Physik, München Christopher AndreyÉcole Polytechnique Fédérale de Lausanne (EPFL) Laura AndrianopoliPolitecnico di Torino David AndriotLPTHE, Université UPMC Paris VI Carlo Angelantonj Università di Torino Pantelis ApostolopoulosUniversitat de les Illes Balears, Palma Gleb ArutyunovInstitute for Theoretical Physics, Utrecht University Davide AstolfiUniversità di Perugia Spyros AvramisUniversité de Neuchâtel Mirela BabalicChalmers University, Göteborg Foday BahDigicom Ioannis Bakas University of Patras Igor BandosUniversidad de Valencia Jose L F BarbonIFTE UAM/CSIC Madrid Till BargheerMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marco Baumgartl Eidgenössische Technische Hochschule (ETH), Zürich James BedfordImperial College London Raphael BenichouLaboratoire de Physique Théorique, École Normale Supérieure, Paris Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Alice BernamontiVrije Universiteit, Brussel Julia BernardLaboratoire de Physique Théorique, École Normale Supérieure, Paris Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure, Paris Marco Billo' Università di Torino Matthias Blau Université de Neuchâtel Guillaume BossardAlbert-Einstein-Institut, Golm Leonardo BriziÉcole Polytechnique Fédérale de Lausanne (EPFL) Johannes BroedelLeibniz Universität Hannover (AEI) Tom BrownQueen Mary, University of London Ilka BrunnerEidgenössische Technische Hochschule (ETH), Zürich Erling BrynjolfssonUniversity of Iceland Dmitri BykovSteklov Institute, Moscow and Trinity College, Dublin Joan CampsUniversitat de Barcelona Davide CassaniLaboratoire de Physique Théorique, École Normale Supérieure, Paris Alejandra CastroUniversity of Michigan Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare, Università di Torino Athanasios ChatzistavrakidisNational Technical University of Athens Wissam ChemissanyCentre for Theoretical Physics, University of Groningen Eugen-Mihaita CioroianuUniversity of Craiova Andres CollinucciTechnische Universität Wien Paul CookUniversità di Roma, Tor Vergata Lorenzo CornalbaUniversità di Milano-Bicocca Aldo CotroneKatholieke Universiteit Leuven Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Riccardo D'AuriaPolitecnico di Torino Gianguido Dall'AgataUniversity of Padova Jose A de AzcarragaUniversidad de Valencia Jan de BoerInstituut voor Theoretische Fysica, Universiteit van Amsterdam Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Marius de LeeuwUtrecht University Frederik De RooVrije Universiteit, Brussel Jan De Rydt Katholieke Universiteit Leuven and CERN, Geneva Bernard de WitInstitute for Theoretical Physics, Utrecht University Stephane DetournayIstituto Nazionale di Fisica Nucleare, Sezione di Milano Paolo Di Vecchia Niels Bohr Institute, København Eugen DiaconuUniversity of Craiova Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Nick DoreyUniversity of Cambridge Hajar Ebrahim NajafabadiIPM, Tehran Federico Elmetti Università di Milano Oleg Evnin Vrije Universiteit, Brussel Francesco Fiamberti Università di Milano Davide Forcella SISSA, Trieste and CERN, Geneva Valentina Forini Humboldt-Universität zu Berlin Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Marialuisa Frau Università di Torino Matthias Gaberdiel Eidgenössische Technische Hochschule (ETH), Zürich Diego Gallego SISSA/ISAS, Trieste Maria Pilar Garcia del MoralIstituto Nazionale di Fisica Nucleare, Università di Torino Valentina Giangreco Marotta PulettiUppsala University Valeria L GiliQueen Mary, University of London Luciano GirardelloUniversità di Milano-Bicocca Gian GiudiceCERN, Geneva Kevin Goldstein Institute for Theoretical Physics, Utrecht University Joaquim Gomis Universitat de Barcelona Pietro Antonio GrassiUniversità del Piemonte Orientale, Alessandria Viviane GraßLudwig-Maximilians-Universität, München Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Johannes GrosseJagiellonian University, Krakow Umut Gursoy École Polytechnique, Palaiseau Norberto Gutierrez RodriguezUniversity of Oviedo Babak HaghighatPhysikalisches Institut, Universität Bonn Troels Harmark Niels Bohr Institute, København Robert HaslhoferEidgenössische Technische Hochschule (ETH), Zürich Tae-Won HaPhysikalisches Institut, Universität Bonn Alexander HauptImperial College London and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marc HenneauxUniversité Libre de Bruxelles Johannes HennLAPTH, Annecy-le-Vieux Shinji HiranoNiels Bohr Institute, København Stefan HoheneggerEidgenössische Technische Hochschule (ETH), Zürich Jan HomannLudwig-Maximilians-Universität, München Gabriele Honecker CERN, Geneva Joost HoogeveenInstituut voor Theoretische Fysica, Universiteit van Amsterdam Mechthild HuebscherUniversidad Autónoma de Madrid Chris HullImperial College London Carmen-Liliana IonescuUniversity of Craiova Ella JasminUniversité Libre de Bruxelles Konstantin KanishchevInstitute of Theoretical Physics, University of Warsaw Stefanos Katmadas Utrecht University Alexandros KehagiasNational Technical University of Athens Christoph Keller Eidgenössische Technische Hochschule (ETH), Zürich Patrick Kerner Max-Planck-Institut für Physik, München Rebiai KhaledLaboratoire de Physique Mathématique et Physique Subatomique, Université Mentouri, Constantine Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Denis KleversPhysikalisches Institut, Universität Bonn Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Karl KollerLudwig-Maximilians-Universität, München Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Alexey KoshelevVrije Universiteit, Brussel Costas KounnasÉcole Normale Supérieure, Paris Daniel KreflCERN, Geneva Charlotte KristjansenNiels Bohr Institute, København Finn LarsenCERN, Geneva and University of Michigan Arnaud Le DiffonÉcole Normale Supérieure, Lyon Michael LennekCentre de Physique Théorique, École Polytechnique, Palaiseau Alberto Lerda Università del Piemonte Orientale, Alessandria Andreas LiberisUniversity of Patras Maria A Lledo Universidad de Valencia Oscar Loaiza-Brito CINVESTAV, Mexico Florian Loebbert Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Yolanda Lozano University of Oviedo Dieter Luest Ludwig-Maximilians-Universität, München Tomasz Łukowski Jagiellonian University, Krakow Diego Mansi University of Crete Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Andrea Mauri University of Crete Liuba Mazzanti École Polytechnique, Palaiseau Sean McReynoldsUniversità di Milano-Bicocca AKM Moinul Haque Meaze Chittagong University Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Carlo MeneghelliUniversità di Parma and Albert-Einstein-Institut, Golm Lotta Mether University of Helsinki and CERN, Geneva René Meyer Max-Planck-Institut für Physik, München Georgios MichalogiorgakisCenter de Physique Théorique, École Polytechnique, Palaiseau Giuseppe Milanesi Eidgenössische Technische Hochschule (ETH), Zürich Samuel Monnier Université de Genève Wolfgang MueckUniversità di Napoli Federico II Elena Méndez Escobar University of Edinburgh Iulian Negru University of Craiova Emil NissimovInstitute for Nuclear Research and Nuclear Energy, Sofia Teake NutmaCentre for Theoretical Physics, University of Groningen Niels Obers Niels Bohr Institute, København Olof Ohlsson SaxUppsala University Rodrigo OleaIstituto Nazionale di Fisica Nucleare, Sezione di Milano Domenico OrlandoUniversité de Neuchâtel Marta Orselli Niels Bohr Institute, København Tomas OrtinInstituto de Física Teórica, Universidad Autónoma de Madrid Yaron OzTel Aviv University Enrico PajerLudwig-Maximilians-Universität, München Angel Paredes GalanUtrecht University Sara PasquettiUniversité de Neuchâtel Silvia PenatiUniversità di Milano-Bicocca Jan PerzKatholieke Universiteit Leuven Igor PesandoUniversità di Torino Tassos PetkouUniversity of Crete Marios PetropoulosCenter de Physique Théorique, École Polytechnique, Palaiseau Franco PezzellaIstituto Nazionale di Fisica Nucleare, Sezione di Napoli Moises Picon PonceUniversity of Padova Marco PirroneUniversità di Milano-Bicocca Andrea PrinslooUniversity of Cape Town Joris RaeymaekersKatholieke Universiteit Leuven Alfonso RamalloUniversidade de Santiago de Compostela Carlo Alberto RattiUniversità di Milano-Bicocca Marco RauchPhysikalisches Institut, Universität Bonn Ronald Reid-EdwardsUniversity of Hamburg Patricia RitterUniversity of Edinburgh Peter RoenneDESY, Hamburg Jan RosseelUniversità di Torino Clement RuefService de Physique Théorique, CEA Saclay Felix RustMax-Planck-Institut für Physik, München Thomas RyttovNiels Bohr Institute, København and CERN, Geneva Agustin Sabio VeraCERN, Geneva Christian SaemannTrinity College, Dublin Houman Safaai SISSA, Trieste Henning SamtlebenÉcole Normale Supérieure, Lyon Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Silviu Constantin SararuUniversity of Craiova Ricardo SchiappaCERN, Geneva Ionut Romeo SchiopuChalmers University, Göteborg Cornelius Schmidt-ColinetEidgenössische Technische Hochschule (ETH), Zürich Johannes SchmudeSwansea University Waldemar SchulginLaboratoire de Physique Théorique, École Normale Supérieure, Paris Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Igor ShenderovichSt Petersburg State University Jonathan ShockUniversidade de Santiago de Compostela Massimo SianiUniversità di Milano-Bicocca Christoph SiegUniversità Degli Studi di Milano Joan SimonUniversity of Edinburgh Paul SmythUniversity of Hamburg Luca SommovigoUniversidad de Valencia Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Christos SourdisUniversity of Patras Wieland StaessensVrije Universiteit, Brussel Ivan StefanovUniversity of Patras Sigurdur StefanssonUniversity of Iceland Kellogg Stelle Imperial College London Giovanni Tagliabue Università di Milano Laura Tamassia Katholieke Universiteit Leuven Javier TarrioUniversidade de Santiago de Compostela Dimitri TerrynVrije Universiteit, Brussel Larus Thorlacius University of Iceland Mario ToninDipartimento Di Fisica, Sezione Di Padova Mario Trigiante Politecnico di Torino Efstratios TsatisUniversity of Patras Arkady TseytlinImperial College London Pantelis TziveloglouCornell University, New York and CERN, Geneva Angel Uranga CERN, Geneva Dieter Van den Bleeken Katholieke Universiteit Leuven Ernst van Eijk Università di Napoli Federico II Antoine Van Proeyen Katholieke Universiteit Leuven Maaike van ZalkUtrecht University Pierre Vanhove Service de Physique Théorique, CEA Saclay Silvia Vaula Instituto de Física Teórica, Universidad Autónoma de Madrid Cristian Vergu Service de Physique Théorique, CEA Saclay Alessandro VichiÉcole Polytechnique Fédérale de Lausanne (EPFL) Marlene WeissCERN, Geneva and Eidgenössische Technische Hochschule (ETH), Zürich Sebastian Weiss Université de Neuchâtel Alexander WijnsUniversity of Iceland Linus WulffUniversity of Padova Thomas WyderKatholieke Universiteit Leuven Ahmed YoussefAstroParticule et Cosmologie (APC), Université Paris Diderot Daniela ZanonUniversità Degli Studi di Milano Andrea ZanziPhysikalisches Institut, Universität Bonn Andrey ZayakinInstitute for Theoretical and Experimental Physics (ITEP), Moscow Tobias ZinggUniversity of Iceland Dimitrios ZoakosUniversidade de Santiago de Compostela Emanuele ZorzanUniversità di Milano Konstantinos ZoubosNiels Bohr Institute, København

Top