Sample records for tancitaro volcano mexico

  1. The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling

    NASA Astrophysics Data System (ADS)

    Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.

    2008-12-01

    The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size

  2. The Tancitaro Debris Avalanche: Characterization, propagation and modeling

    NASA Astrophysics Data System (ADS)

    Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola

    2010-06-01

    The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field

  3. Colima Volcano, Mexico

    NASA Image and Video Library

    1995-10-29

    STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.

  4. Colima Volcano, State of Jalisco, Mexico

    NASA Image and Video Library

    1991-05-06

    STS039-75-101 (28 April-6 May 1991) --- Spending over eight days in Earth orbit, the STS-39 crew was able to return with photographic coverage of highly variegated geographic scenery, including a number of volcanoes such as Mexico's Colima. Located south of Guadalajara, Colima is Mexico's most active volcano. The current activity started in the first part of March 1991 with avalanches occurring, followed by lava extrusion and ash emission. Colima is captured here in action. The steam plume drifts eastward from the 13,325 ft. summit. Scars from recent landslides can be seen on the southwest flank of the summit.

  5. Volcanoe southeast of Mexico City

    NASA Image and Video Library

    2001-01-23

    ISS01-E-5316 (23 January 2001) -- Popocatépetl, or Popo, the active volcano located about 70 kilometers southeast of Mexico City, sends a plume south on January 23, 2001. The Expedition One crew onboard the International Space Station (ISS) observed and recorded this image with a digital still camera as it orbited to the northeast of the volcano. Popo has been frequently active for six years. On this day, the eruption plume reportedly rose to more than 9 kilometers above sea level (for reference, Popo's summit elevation is 5426 meters). Note the smaller ash plume below the main plume. The perspective from the ISS allowed the crew members this unique three dimensional view. Popo is situated between two large population centers: Mexico City (more than 18 million people, and just out of this image at right) and Puebla (about 1.2 million people), partially visible at lower left.

  6. Colima Volcano, State of Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Located about 125 km south of Guadalajara, state of Jalisco, Mexico, the 13,325 ft. Colima (19.5N, 103.5W) is the most active volcano in Mexico. The activity depicted occurred in early March 1991 with avalanches followed soon after by lava extrusion with ash and steam emission from the caldera. The steam plume can be seen drifting eastward from the summit and groundscars from the earlier avalanches can also be seen on the southwest slope.

  7. Climbing in the high volcanoes of central Mexico

    USGS Publications Warehouse

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  8. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  9. Space Radar Image of Colima Volcano, Jalisco, Mexico

    NASA Image and Video Library

    1999-05-01

    This is an image of the Colima volcano in Jalisco, Mexico, a vigorously active volcano that erupted as recently as July 1994. The eruption partially destroyed a lava dome at the summit and deposited a new layer of ash on the volcano's southern slopes. Surrounding communities face a continuing threat of ash falls and volcanic mudflows from the volcano, which has been designated one of 15 high-risk volcanoes for scientific study during the next decade. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit on October 1, 1994. The image is centered at 19.4 degrees north latitude, 103.7 degrees west longitude. The area shown is approximately 35.7 kilometers by 37.5 kilometers (22 miles by 23 miles). This single-frequency, multi-polarized SIR-C image shows: red as L-band horizontally transmitted and received; green as L-band horizontally transmitted and vertically received; and blue as the ratio of the two channels. The summit area appears orange and the recent deposits fill the valleys along the south and southwest slopes. Observations from space are helping scientists understand the behavior of dangerous volcanoes and will be used to mitigate the effects of future eruptions on surrounding populations. http://photojournal.jpl.nasa.gov/catalog/PIA01739

  10. Recent Seismicity in the Ceboruco Volcano, Western Mexico

    NASA Astrophysics Data System (ADS)

    Nunez, D.; Chávez-Méndez, M. I.; Nuñez-Cornu, F. J.; Sandoval, J. M.; Rodriguez-Ayala, N. A.; Trejo-Gomez, E.

    2017-12-01

    The Ceboruco volcano is the largest (2280 m.a.s.l) of several volcanoes along the Tepic-Zacoalco rift zone in Nayarit state (Mexico). During the last 1000 years, this volcano had effusive-explosive episodes with eight eruptions providing an average of one eruption each 125 years. Since the last eruption occurred in 1870, 147 years ago, a new eruption likelihood is really high and dangerous due to nearby population centers, important roads and lifelines that traverse the volcano's slopes. This hazards indicates the importance of monitoring the seismicity associated with the Ceboruco volcano whose ongoing activity is evidenced by fumaroles and earthquakes. During 2003 and 2008, this region was registered by just one Lennartz Marslite seismograph featuring a Lennartz Le3D sensor (1 Hz) [Rodríguez Uribe et al. (2013)] where they observed that seismicity rates and stresses appear to be increasing indicating higher levels of activity within the volcano. Until July 2017, a semi-permanent network with three Taurus (Nanometrics) and one Q330 Quanterra (Kinemetrics) digitizers with Lennartz 3Dlite sensors of 1 Hz natural frequency was registering in the area. In this study, we present the most recent seismicity obtained by the semi-permanent network and a temporary network of 21 Obsidians 4X and 8X (Kinemetrics) covering an area of 16 km x 16 km with one station every 2.5-3 km recording from November 2016 to July 2017.

  11. The effects of volcanoes on health: preparedness in Mexico.

    PubMed

    Zeballos, J L; Meli, R; Vilchis, A; Barrios, L

    1996-01-01

    The article reviews the most important aspects of volcanic eruptions and presents a summary of the harmful materials they emit. The main health effects can be classified as either physical (trauma, respiratory diseases, etc.) or psychological (depression, anxiety, nightmares, neurosis, etc.). Popocatépetl, the most famous active volcano in Mexico, lies on the borders of the States of Mexico, Puebla and Morelos. In 1993, seismic activity intensified, as did as the emission of fumaroles, followed in December 1994 by moderate tremors and strong emissions of gases and ash. In 1996, a number of seismic events led to an unexpected explosion. A daily emission of 8,000 to 15,000 tonnes of sulfur dioxide has been measured. Popocatépetl is located in a densely populated region of Mexico. A complex network to monitor the volcano using sophisticated equipment has been set up, including visual surveillance, seismic, geochemical and geodesic monitoring. An early warning system (SINAPROC/CENAPRED) has been developed to keep the population permanently informed. The warning system uses colour codes: green for normal, yellow for alert, and red for warning and evacuation. An emergency plan has been prepared, including evacuation and preparation for medical centres and hospitals in the region, as well as intense public information campaigns.

  12. Precursory earthquakes of the 1943 eruption of Paricutin volcano, Michoacan, Mexico

    NASA Astrophysics Data System (ADS)

    Yokoyama, I.; de la Cruz-Reyna, S.

    1990-12-01

    Paricutin volcano is a monogenetic volcano whose birth and growth were observed by modern volcanological techniques. At the time of its birth in 1943, the seismic activity in central Mexico was mainly recorded by the Wiechert seismographs at the Tacubaya seismic station in Mexico City about 320 km east of the volcano area. In this paper we aim to find any characteristics of precursory earthquakes of the monogenetic eruption. Though there are limits in the available information, such as imprecise location of hypocenters and lack of earthquake data with magnitudes under 3.0. The available data show that the first precursory earthquake occurred on January 7, 1943, with a magnitude of 4.4. Subsequently, 21 earthquakes ranging from 3.2 to 4.5 in magnitude occurred before the outbreak of the eruption on February 20. The (S - P) durations of the precursory earthquakes do not show any systematic changes within the observational errors. The hypocenters were rather shallow and did not migrate. The precursory earthquakes had a characteristic tectonic signature, which was retained through the whole period of activity. However, the spectra of the P-waves of the Paricutin earthquakes show minor differences from those of tectonic earthquakes. This fact helped in the identification of Paricutin earthquakes. Except for the first shock, the maximum earthquake magnitudes show an increasing tendency with time towards the outbreak. The total seismic energy released by the precursory earthquakes amounted to 2 × 10 19 ergs. Considering that statistically there is a threshold of cumulative seismic energy release (10 17-18ergs) by precursory earthquakes in polygenetic volcanoes erupting after long quiescence, the above cumulative energy is exceptionally large. This suggests that a monogenetic volcano may need much more energy to clear the way of magma passage to the earth surface than a polygenetic one. The magma ascent before the outbreak of Paricutin volcano is interpretable by a model

  13. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  14. Late Holocene Eruptive History of Popocatepetl Volcano, Mexico: Implications for Future Hazards

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1995-01-01

    Detailed mapping of the strata around the Popocatepetl Volcano in central Mexico indicates that there have been major eruptions every 1000 to 2000 years. The last two of these destroyed pre- Columbian cities in the area, and a similar level of eruption today might require evacuation of as many as 30 million people.

  15. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  16. Space Radar Image of Colima Volcano, Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Colima volcano in Jalisco, Mexico, a vigorously active volcano that erupted as recently as July 1994. The eruption partially destroyed a lava dome at the summit and deposited a new layer of ash on the volcano's southern slopes. Surrounding communities face a continuing threat of ash falls and volcanic mudflows from the volcano, which has been designated one of 15 high-risk volcanoes for scientific study during the next decade. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit on October 1, 1994. The image is centered at 19.4 degrees north latitude, 103.7 degrees west longitude. The area shown is approximately 35.7 kilometers by 37.5 kilometers (22 miles by 23 miles). This single-frequency, multi-polarized SIR-C image shows: red as L-band horizontally transmitted and received; green as L-band horizontally transmitted and vertically received; and blue as the ratio of the two channels. The summit area appears orange and the recent deposits fill the valleys along the south and southwest slopes. Observations from space are helping scientists understand the behavior of dangerous volcanoes and will be used to mitigate the effects of future eruptions on surrounding populations. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), the C-band (6 cm) and the X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature

  17. Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes, central Mexico

    USGS Publications Warehouse

    Macias, J.L.; Garcia, P.A.; Arce, J.L.; Siebe, C.; Espindola, J.M.; Komorowski, J.C.; Scott, K.

    1997-01-01

    This field guide describes a five day trip to examine deposits of Late Pleistocene-Holocene cataclysmic eruptions at Nevado de Toluca and Jocotitlan volcanoes in central Mexico. We will discuss the stratigraphy, petrology, and sedimentological characteristics of these deposits which provide insights into the eruptive history, type of volcanic activity, and transport and emplacement mechanisms of pyroclastic materials. These parameters will allow us to discuss the kinds of hazards and the risk that they pose to populations around these volcanoes. The area to be visited is tectonically complex thus we will also discuss the location of the volcanoes with respect to the tectonic environment. The first four days of the field trip will be dedicated to Nevado de Toluca Volcano (19 degrees 09'N; 99 degrees 45'W) located at 23 km. southwest of the City of Toluca, and is the fourth highest peak in the country, reaching an elevation of 4,680 meters above sea level (m.a.s.l.). Nevado de Toluca is an andesitic-dacitic stratovolcano, composed of a central vent excavated upon the remains of older craters destroyed by former events. Bloomfield and Valastro, (1974, 1977) concluded that the last cycle of activity occurred nearly equal 11,600 yr. ago. For this reason Nevado de Toluca has been considered an extinct volcano. Our studies, however, indicate that Nevado de Toluca has had at least two episodes of cone destruction by sector collapse as well as several explosive episodes including plinian eruptions and dome-destruction events. These eruptions occurred during the Pleistocene but a very young eruption characterized by surge and ash flows occurred ca. 3,300 yr. BP. This new knowledge of the volcano's eruptive history makes the evaluation of its present state of activity and the geological hazards necessary. This is important because the area is densely populated and large cities such as Toluca and Mexico are located in its proximity.

  18. Upgrading the seismic and geodetic network of the Popocatépetl volcano (Mexico).

    NASA Astrophysics Data System (ADS)

    Calò, Marco; Iglesias Mendoza, Arturo; Legrand, Denis; Valdés González, Carlos Miguel; Perez Campos, Xyoli

    2017-04-01

    The Popocatépetl is one of the most active volcanoes in Mexico and is located only 70 km from Mexico City, populated by more than 20 millions of people, and only 35 km from the Puebla municipality with almost 1.5 millions of people living. The recent activity of the volcano is generally marked by explosions emitting ash plumes often reaching the densely populated regions. In the framework of the Mexican Fund for Prevention of Natural Disasters (FOPREDEN) we are renovating and upgrading the existing geodetic and seismic networks monitoring the volcano. In this project we are installing 10 broadband seismic stations (120s-050Hz) in shallow boreholes (3-5m depth) and 4 GPS with real time sampling rate of 1 Hz. All instruments are equipped with continuous recording systems for real time monitoring purposes and research. The Popocatépetl exceeds 5400m, and the altitude of the stations ranges from 2200 m to 4300 m making it difficult their installation and maintenance. Because of ash emissions and the hard working condition, the real-time transmission is split into two systems in order to ensure the monitoring of the volcano also during the highest expected activity. Therefore we set up a network of "first order", consisting of four stations located about 20 km from the crater and equipped with satellite transmission. These stations, being far enough from the crater, ensure the real time monitoring of the major events also during intense periods of activity of the volcano. The remaining six stations are installed near to the crater (less than 10 km) and take part of the "second order" network equipped with a telemetered radio system transmitting the data either directly to the National Center of Disaster Prevention (CENAPRED) and National Seismological Service (SSN) or to the first order stations (for the sites that have not direct visible line with the monitoring centers). The four GPS sensors are all installed in the second order sites in order to monitor the largest

  19. Monitoring Colima Volcano, Mexico, using satellite data

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Glaze, Lori; Sheridan, Michael

    1991-01-01

    The Colima Volcanic Complex at the western end of the Mexican Volcanic Belt is the most active andesitic volcano in Mexico. Short-wavelength infrared data from the Landsat Thematic Mapper satellite were used to determine the temperature and fractional area of radiant picture elements for two January data acquisitions in 1985 and 1986. The 1986 data showed four 28.5 m by 28.5 m pixels (picture elements) whose hot subpixel components had temperatures ranging from 511-774 C and areas of 1.8-13 sq m. The 1985 data had no radiating areas above background temperatures. Ground observations and measurements in November 1985 and February 1986 reported the presence of hot fumaroles at the summit with temperatures of 135-895 C. This study demonstrates the utility of satellite data for monitoring volcanic activity.

  20. Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Pérez Bustamante, J. C.; Correa Olan, J. C.; Gutiérrez Jiménez, A. J.; Adán González, N.; Bravo Cardona, E. F.

    2007-05-01

    Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacán-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tancítaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcán del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcán de Enmedio, VE; and Volcán del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759

  1. Observed inflation-deflation cycles at Popocatepetl volcano using tiltmeters and its possible correlation with regional seismic activity in Mexico

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, M. G., Sr.; Jimenez Velazquez, J. C., Sr.; Valdes Gonzalez, C. M., Sr.; Reyes Pimentel, T. A.; Galaviz Alonso, S. A.

    2014-12-01

    Popocatepetl, the smoking mountain, is a stratovolcano located in central Mexico with an elevation of 5450 masl. The active volcano, close to some of the largest urban centers in Mexico - 60 km and 30 km far from Mexico City and Puebla, respectively - poses a high hazard to an estimated population of 500 thousand people living in the vicinity of the edifice. Accordingly, in July 1994 the Popocatepetl Volcanological Observatory (POVO) was established. The observatory is operated and supported by the National Center for Disaster Prevention of Mexico (CENAPRED), and is equipped to fully monitor different aspects of the volcanic activity. Among the instruments deployed, we use in this investigation two tiltmometers and broad-band seismometers at two sites (Chipiquixtle and Encinos), which send the information gathered continuously to Mexico City.In this research, we study the characteristics of the tiltmeters signals minutes after the occurrence of certain earthquakes. The Popocatepetl volcano starts inflation-deflation cycles due to the ground motion generated by events located at certain regions. We present the analysis of the tiltmeters and seismic signals of all the earthquakes (Mw>5) occurred from January 2013 to June 2014, recorded at Chipiquixtle and Encinos stations. First, we measured the maximum tilt variation after each earthquake. Next, we apply a band-pass filter for different frequency ranges to the seismic signals of the two seismic stations, and estimated the total energy of the strong motion phase of the seismic record. Finally, we compared both measurements and observed that the maximum tilt variations were occurring when the maximum total energy of the seismic signals were in a specific frequency range. We also observed that the earthquake records that have the maximum total energy in that frequency range were the ones with a epicentral location south-east of the volcano. We conclude that our observations can be used set the ground for an early

  2. Bacterial diversity in fumarole environments of the Paricutín volcano, Michoacán (Mexico).

    PubMed

    Medrano-Santillana, Miguel; Souza-Brito, Elcia Margaret; Duran, Robert; Gutierrez-Corona, Felix; Reyna-López, Georgina Elena

    2017-05-01

    Active volcanoes are among the most extreme environments on Earth. The extreme temperatures, presence of toxic heavy metals and low nutrient bioavailability favor the development of extremophiles. We characterized the physical-chemical parameters of and bacterial communities (T-RFLP and 16S rRNA gene libraries) inhabiting fumarole niches of the Paricutín volcano located in Michoacán (Mexico). This volcano, which surged in 1943, is one of the youngest volcanoes on Earth and the microbial diversity in this area is yet to be characterized. The sampling stations were characterized in a pH range from 5.34 to 7.89 and showed different temperatures (soil, 27-87 °C; air, 13.6-56 °C) with high concentrations of metals such as iron and arsenic. The most abundant bacterial populations, confirmed by T-RFLP and 16S rRNA gene libraries, were related to members of Firmicutes and Proteobacteria phyla including sequences associated with thermophiles and sulfate reducing bacteria. Overall, the Paricutín volcano showed low bacterial diversity and its prokaryotic diversity was characterized by the impossibility of amplifying Archaea-related sequences.

  3. The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico

    NASA Astrophysics Data System (ADS)

    Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.

    2018-03-01

    Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.

  4. Update of the volcanic risk map of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nuñez Cornu, F. J.; Marquez-Azua, B.

    2010-12-01

    The Colima volcano, located in western Mexico (19° 30.696 N, 103° 37.026 W) began its current eruptive process in February 10, 1999. This event was the basis for the development of two volcanic hazard maps: one for ballistics (rock fall) lahars, and another one for ash fall. During the period of 2003 to 2008 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-Plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano thanks to the low population density and low socio-economic activities at the time The current volcanic activity has triggered ballistic projections, pyroclastic and ash flows, and lahars, all have exceeded the maps limits established in 1999. Vulnerable elements within these areas have gradually changed due to the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano. On the slopes of the northwest side, new blue agave Tequilana weber and avocado orchard crops have emerged along with important production of greenhouse tomato, alfalfa and fruit (citrus) crops that will eventually be processed and dried for exportation to the United States and Europe. Also, in addition to the above, large expanses of corn and sugar cane have been planted on the slopes of the volcano since the nineteenth century. The increased agricultural activity has had a direct impact in the reduction of the available forest land area. Coinciding with this increased activity, the 0.8% growth population during the period of 2000 - 2005, - due to the construction of the Guadalajara-Colima highway-, also increased this impact. The growth in vulnerability changed the level of risk with respect to the one identified in the year 1999 (Suarez, 2000), thus motivating us to perform an update to the risk map at 1:25,000 using vector models of the INEGI, SPOT images of different dates, and fieldwork done in order

  5. Risk perception at a persistently active volcano: warnings and trust at Popocatépetl volcano in Mexico, 2012-2014

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Ayala, Irasema Alcántara; Eiser, J. R.; Sparks, R. S. J.

    2018-05-01

    This paper presents data from an online survey carried out in Mexico from 2012 to 2014. The survey focussed on the risk to Mexico City from Popocatépetl, an active volcano 60 km from the city. During the time period, volcanic activity was variable, and the alert level changed accordingly. The survey showed that people surveyed at the higher alert level were generally more concerned about the volcano. Since these people were measured separately from those who responded at the lower alert level and yet self-reported on the same scale as more concerned, this provides a useful indicator that the raised alert level may be associated with higher risk perception, and that alert level systems act as boundary objects in the translation of scientific information. In general, trust in various groups was most strongly explained by the perceived knowledge of the groups, followed by their perceived motivation (whether or not they are viewed as working in society's interest), with accuracy a tertiary concern. Some respondents were anxious about false alarms—these people also tended to be concerned about scientific accuracy while those who favoured precaution tended to be more trusting. The perceived effectiveness of warning and evacuation plans was also a significant predictor for trust in official groups. In general, the results suggest that there are important links between trust, warning plans and the perceived motivation of particular groups as well as between trust and perceived knowledge.

  6. The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Espíndola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Schaaf, P.; Rodríguez, S. R.

    2010-11-01

    San Martín Tuxtla (N18.562°; W95.199°, 1659 masl) is a basaltic volcano located in southern Veracruz, a Mexican State bordering the Gulf of Mexico. It rises in a volcanic field strewn with monogenetic volcanic cones, maars and three other large volcanoes mostly dormant since the late Pliocene: Santa Marta, San Martín Pajapan and Cerro El Vigía. The latest eruptive event of San Martín occurred in 1793 and was described by Don José Mariano Moziño, a naturalist under the commission of the Viceroy of the then New Spain. In this work we present results of the study of this eruption based on historical accounts and field observations. We identified an ash deposit around the volcano related to the 1793 eruption, mapped its distribution and determined its granulometric, petrographic and geochemical characteristics. These studies suggest that the volcano began its activity with explosive phreatomagmatic explosions, which were followed by Strombolian activity; this period lasting from March to October 1793. The activity continued with an effusive phase that lasted probably 2 years. The eruption covered an area of about 480 km 2 with at least 1 cm of ash; the fines reaching distances greater than 300 km from the crater. A total mass of about 2.5 × 10 14 g was ejected and the volcanic columns probably reached altitudes of the order of 10 km during the most explosive phases. The lava emitted formed a coulee that descended the northern flank of the volcano and has an approximate volume of 2.0 × 10 7 m 3.

  7. Geology of El Chichon volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  8. Seismic structures beneath Popocatepetl (Mexico) and Gorely (Kamchatka) volcanoes derived from passive tomography studies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel; Koulakov, Ivan

    2014-05-01

    A number of active volcanoes are observed in different parts of the world, and they attract great interest of scientists. Comparing their characteristics helps in understanding the origin and mechanisms of their activity. One of the most effective methods for studying the deep structure beneath volcanoes is passive source seismic tomography. In this study we present results of tomographic inversions for two active volcanoes located in different parts of the world: Popocatepetl (Mexico) and Gorely (Kamchatka, Russia). In the past century both volcanoes were actively erupted that explains great interest to their detailed investigations. In both cases we made the full data analysis starting from picking the arrival times from local events. In the case of the Popocatepetl study, a temporary seismological network was deployed by GFZ for the period from December 1999 to July 2000. Note that during this period there were a very few events recorded inside the volcano. Most of recorded earthquakes occurred in surrounding areas and they probably have the tectonic nature. We performed a special analysis to ground the efficiency of using these data for studying seismic structure beneath the network installed on the volcano. The tomographic inversion was performed using the LOTOS code by Koulakov (2009). Beneath the Popocatepetl volcano we have found a zone of strong anti-correlation between P- and S-velocities that leaded to high values of Vp/Vs ratio. Similar features were found for some other volcanoes in previous studies. We interpret these anomalies as zones of high content of fluids and melts that are related to active magma sources. For the case of Gorely volcano we used the data of a temporary network just deployed in summer 2013 by our team from IPGG, Novosibirsk. Luckily, during the field works, the volcano started to manifest strong seismic activity. In this period, 100 - 200 volcanic events occurred daily. We collected the continuous seismic records from 20 stations

  9. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  10. Geomorphometric comparative analysis of Latin-American volcanoes

    NASA Astrophysics Data System (ADS)

    Camiz, Sergio; Poscolieri, Maurizio; Roverato, Matteo

    2017-07-01

    The geomorphometric classifications of three groups of volcanoes situated in the Andes Cordillera, Central America, and Mexico are performed and compared. Input data are eight local topographic gradients (i.e. elevation differences) obtained by processing each volcano raster ASTER-GDEM data. The pixels of each volcano DEM have been classified into 17 classes through a K-means clustering procedure following principal component analysis of the gradients. The spatial distribution of the classes, representing homogeneous terrain units, is shown on thematic colour maps, where colours are assigned according to mean slope and aspect class values. The interpretation of the geomorphometric classification of the volcanoes is based on the statistics of both gradients and morphometric parameters (slope, aspect and elevation). The latter were used for a comparison of the volcanoes, performed through classes' slope/aspect scatterplots and multidimensional methods. In this paper, we apply the mentioned methodology on 21 volcanoes, randomly chosen from Mexico to Patagonia, to show how it may contribute to detect geomorphological similarities and differences among them. As such, both its descriptive and graphical abilities may be a useful complement to future volcanological studies.

  11. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    NASA Astrophysics Data System (ADS)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  12. Faults and volcanoes: Main volcanic structures in the Acambay Graben, Mexico

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Suñe-Puchol, I.; Lacan, P.

    2016-12-01

    The Mexican Volcanic Belt (MVB) province is best known by the major stratovolcanoes, such as Popocatepetl and Colima, but most of the province is formed by modest size stratovolcanoes and monogenetic cones. Regional fault systems were developed together with the building of the volcanic province; the most notorious one is Chapala-Tula Fault System (CTFS), which runs parallel to the central sector of the MVB, and thus it is also referred to as the Intra-Arc fault system. Acambay graben (AG) is part of this central system. It is a 20 x 70 km depression located 100 km to the NW of Mexico City, at the easternmost end of the E-W trending CTFS, and was formed as the result of NS to NE oriented extension. Seismically active normal faults, such as the Acambay-Tixmadejé fault, with a mB =7 earthquake in 1912, delimit the AG. The graben includes several volcanic structures and associated deposits ranging in age from Miocene to 3 ka. The main structures are two stratovolcanoes, Altamirano (900 m high) and Temascalcingo (800 m high). There are also several Miocene-Pliocene lava domes, and Quaternary small cinder cones and shield volcanoes. Faulting of the Acambay graben affects all these volcanic forms, but depending on their ages, the volcanoes are cut by several faults or by a few. That is the case of Altamirano and Temascalcingo volcanoes, where the former is almost unaffected whereas the latter is highly dissected by faults. Altamirano is younger than Temascalcingo; youngest pyroclastic deposits from Altamirano are dated at 12-3 ka, and those from Temascalcingo at 40-25 ka (radiocarbon ages). The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally marked as an inactive volcanic zone, but activity could restart at any time. Supported by DGAPA-PAPIIT-UNAM grant IN-104615.

  13. The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)

    NASA Astrophysics Data System (ADS)

    Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.

    2007-12-01

    San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.

  14. Volcanic history of El Chichon Volcano (Chiapas, Mexico) during the Holocene, and its impact on human activity

    USGS Publications Warehouse

    Espindola, J.M.; Macias, J.L.; Tilling, R.I.; Sheridan, M.F.

    2000-01-01

    Before its devastating eruption in 1982, El Chichon Volcano was little known and did not appear on any listings of hazardous volcanoes. Subsequent geologic studies, based on stratigraphic and radiocarbon investigations, showed that at least three explosive eruptions had occurred previously at this volcano. In this paper, we present the result of recent studies on the stratigraphy of the volcano and new radiocarbon ages which show that at least 11 eruptions have taken place at El Chichon in the past 8000 years. Explosive events, most of them producing block-and-ash flow and surge deposits, occurred around 550, 900, 1250, 1500, 1600, 1900, 2000, 2500, 3100, 3700 and 7700 years BP. The juvenile products of these eruptions have a trachyandesitic composition with similar degree of evolution, as evidenced from their SiO2 abundance and depletion in MgO, CaO, TiO2, as well as trace and rare earth elements. This suggests segregation of olivine and orthopyroxene from the melt. Since human settlements in southeast Mexico and Central America can be traced as far back as approximately 2500 years BP, most of these events probably affected human activity. In fact, there are reports of pottery shards and other artifacts in deposits from the eruption of 1250 BP. Pottery fragments in deposits of an eruption that took place 2500 BP are also reported in this paper. Thus, the impact of the volcano on human activities has been frequent, with most of the repose intervals lasting between 100 to 600 years. The impact of the eruptions was probably of greater than local extent, because airfall tephra could reach distant sites and possibly even affect weather. The eruptive history of El Chichon also offers clues in the investigation of the Maya civilization. Several researchers have considered the volcano as an important factor in the answer to some intriguing questions such as the extensive use of volcanic ash in Late Classic Maya ceramics or, of greater importance, the causes of the

  15. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico

    NASA Astrophysics Data System (ADS)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.

    2007-05-01

    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  16. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    NASA Astrophysics Data System (ADS)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  17. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo; Walker, George P. L.; Herrero-Bervera, Emilio

    1995-05-01

    We sampled five basaltic lava flow-units from Xitle volcano, Mexico City, to study the variation of anisotropy of magnetic susceptibility within their cooling boundaries. We find that the mean maximum susceptibility parallels the geologically-inferred flow direction in the units that were emplaced on a steeper slope, whereas for those on a negligible slope the mean intermediate susceptibility points in the flow direction. We propose, however, that the maximum susceptibility always points in the direction of local movement, and that a change in slope produces a deviation of the local motion from that of the unit as a whole. The axis of susceptibility closest to the geologically-inferred flow direction usually plunges upflow in the basal part of the flow unit, comprising an imbrication which clearly marks the flow azimuth of the lava. Thus, the scenario of emplacement may influence the results in a predictable way. We suggest that the degree of anisotropy could bear a direct relationship to either the viscosity of the lava, the morphology of the flows or both, based on a comparison with lavas from Azufre (Argentina) and Ko'olau (O'ahu) volcanoes. Also, we suggest that the shape of the susceptibility ellipsoid may be related to the degree of internal deformation of the lava flows. We also compare the two methods currently available to calculate regions of confidence around the mean principal susceptibilities.

  18. Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.

    2013-12-01

    Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of

  19. Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Taran, Y. A.; Bernard, A.; Gavilanes, J.-C.; Lunezheva, E.; Cortés, A.; Armienta, M. A.

    2001-08-01

    Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996-1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95-98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from -26 to -57‰. A negative δD-Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of ;fresh; batches of magma and an increasing of volcanic activity, respectively. The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.

  20. GlobVolcano: Earth Observation Services for Global Monitroing of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgstrom, S.; Bianchi, M.; Bronson, W.; Tampellini, M. L.; Ratti, R.; Seifert, F. M.; Komorowski, J. C.; Kaminski, E.; Peltier, A.; Van der Voet, P.

    2010-03-01

    The GlobVolcano project (2007-2010) is part of the Data User Element (DUE) programme of the European Space Agency (ESA).The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcano Observatories and other mandate users (Civil Protection, volcano scientific community) in their monitoring activities.The set of offered EO based information products is the following:- Deformation Mapping- Surface Thermal Anomalies- Volcanic Gas Emission- Volcanic Ash TrackingThe Deformation Mapping service is performed exploiting either PSInSARTM or Conventional DInSAR (EarthView® InSAR). The processing approach is selected according to the availability of SAR data and users' requests.The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site.In a first phase, the GlobVolcano Information System was designed, implemented and validated, involving a limited number of test areas and respective user organizations (Colima in Mexico, Merapi in Indonesia, Soufrière Hills in Montserrat Island, Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli and Volcano in Italy). In particular Deformation Mapping results obtained for Piton de la Fournaise were compared with deformation rates measured by the volcano observatory using GPS stations and tiltmeters. IPGP (Institut de Physique du Globe de Paris) is responsible for the validation activities.The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are monitored and as many user organizations are involved and cooperating with the project team.In addition to the proprietary tools mentioned before, in

  1. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    USGS Publications Warehouse

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  2. Magma intrusion near Volcan Tancitaro: Evidence from seismic analysis

    DOE PAGES

    Pinzon, Juan I.; Nunez-Cornu, Francisco J.; Rowe, Charlotte Anne

    2016-11-17

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ~1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. Wemore » used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9–10 km and 3–4 km depth respectively. The average location error estimates are <1 km epicentrally, and <2 km in depth, for the largest event in each cluster. Depths of seismicity migrate upward from 16 to 3.5 km and exhibit a NE-SW trend. The swarm first migrated toward Paricutin Volcano but by mid-June began propagating back toward Volcán Tancítaro. In addition to its persistence, noteworthy aspects of this swarm include a quasi-exponential increase in the rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ~5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. As a result, these features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.« less

  3. Magma intrusion near Volcan Tancitaro: Evidence from seismic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, Juan I.; Nunez-Cornu, Francisco J.; Rowe, Charlotte Anne

    Between May and June 2006, an earthquake swarm occurred near Volcan Tancítaro in Mexico, which was recorded by a temporary seismic deployment known as the MARS network. We located ~1000 events from this seismic swarm. Previous earthquake swarms in the area were reported in the years 1997, 1999 and 2000. We relocate and analyze the evolution and properties of the 2006 earthquake swarm, employing a waveform cross-correlation-based phase repicking technique. Hypocenters from 911 events were located and divided into eighteen families having a correlation coefficient at or above 0.75. 90% of the earthquakes provide at least sixteen phase picks. Wemore » used the single-event location code Hypo71 and the P-wave velocity model used by the Jalisco Seismic and Accelerometer Network to improve hypocenters based on the correlation-adjusted phase arrival times. We relocated 121 earthquakes, which show clearly two clusters, between 9–10 km and 3–4 km depth respectively. The average location error estimates are <1 km epicentrally, and <2 km in depth, for the largest event in each cluster. Depths of seismicity migrate upward from 16 to 3.5 km and exhibit a NE-SW trend. The swarm first migrated toward Paricutin Volcano but by mid-June began propagating back toward Volcán Tancítaro. In addition to its persistence, noteworthy aspects of this swarm include a quasi-exponential increase in the rate of activity within the first 15 days; a b-value of 1.47; a jug-shaped hypocenter distribution; a shoaling rate of ~5 km/month within the deeper cluster, and a composite focal mechanism solution indicating largely reverse faulting. As a result, these features of the swarm suggest a magmatic source elevating the crustal strain beneath Volcan Tancítaro.« less

  4. Imaging an Active Volcano Edifice at Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli

    2008-08-01

    An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  5. Mexico City, Mexico as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image is the clearest photo of Mexico City, Mexico taken from U.S. Manned Spacecraft. North is to the upper right. Mexico City sits in a basin surrounded by large volcanoes. The restricted atmospheric circulation in the basin, coupled with the inevitable air emissions produced by a city of 20 million people has created a critical air pollution problem for the city. In most photographs of the region, Mexico City is obscured by haze. The clarity of the photograph allows many key cultural features to be identified, including all of the major boulevards, the horse track (western part of the city), the university (south of the city), and the museum areas. Large, man-made ponds east of the city also stand out.

  6. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes

    NASA Astrophysics Data System (ADS)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.

    2010-05-01

    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (< 5mm) has been performed at approximately 50 sites at varying longitudinal, lateral and vertical positions, and show a correlation with run

  7. Geology of El Chichon volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene

    1984-03-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic

  8. Albedo estimation using near infrared photography at Glaciar Norte of Citlaltepetl Volcano (Mexico).

    NASA Astrophysics Data System (ADS)

    Ontiveros, Guillermo; Delgado-Granados, Hugo

    2015-04-01

    In this work we show preliminary results of the application of the methodology proposed by Corripio (2004) for albedo estimation of a glacial surface using oblique photography. This analysis was performed for the Glaciar Norte of Citlaltepetl volcano (Mexico), using images obtained with a modified digital camera for capturing the portion of the near infrared spectrum starting at 950 nm and a digital elevation model with a grid of 2 m. The main goal was to obtain a picture of the spatial distribution of albedo on the glacier, in order to find out if there was any morphological evidence of the influence of the glacier energy balance. Some of the obtained results show a certain spatial distribution with comparatively higher albedo values at the lower parts of the glacier as compared with higher parts. The higher values may correspond to different metamorphism of snow/ice at different heights due to the effects of lower slope. Corripio, J. G. (2004). Snow surface albedo estimation using terrestrial photography. International journal of remote sensing, 25(24), 5705-5729.

  9. Geologic Map of The Volcanoes Quadrangle, Bernalillo and Sandoval Counties, New Mexico

    USGS Publications Warehouse

    Thompson, Ren A.; Shroba, Ralph R.; Menges, Christopher M.; Schmidt, Dwight L.; Personius, Stephen F.; Brandt, Theodore R.

    2009-01-01

    This geologic map, in support of the U.S. Geological Survey Middle Rio Grande Basin Geologic Mapping Project, shows the spatial distribution of surficial deposits, lava flows, and related sediments of the Albuquerque volcanoes, upper Santa Fe Group sediments, faults, and fault-related structural features. These deposits are on, along, and beneath the Llano de Albuquerque (West Mesa) west of Albuquerque, New Mexico. Some of these deposits are in the western part of Petroglyph National Monument. Artificial fill deposits are mapped chiefly beneath and near the City of Albuquerque Soil Amendment Facility and the Double Eagle II Airport. Alluvial deposits were mapped in and along stream channels, beneath terrace surfaces, and on the Llano de Albuquerque and its adjacent hill slopes. Deposits composed of alluvium and colluvium are also mapped on hill slopes. Wedge-shaped deposits composed chiefly of sandy sheetwash deposits, eolian sand, and intercalated calcic soils have formed on the downthrown-sides of faults. Deposits of active and inactive eolian sand and sandy sheetwash deposits mantle the Llano de Albuquerque. Lava flows and related sediments of the Albuquerque volcanoes were mapped near the southeast corner of the map area. They include eleven young lava flow units and, where discernable, associated vent and near-vent pyroclastic deposits associated with cinder cones. Upper Santa Fe Group sediments are chiefly fluvial in origin, and are well exposed near the western boundary of the map area. From youngest to oldest they include a gravel unit, pebbly sand unit, tan sand and mud unit, tan sand unit, tan sand and clay unit, and silty sand unit. Undivided upper Santa Fe Group sediments are mapped in the eastern part of the map area. Faults were identified on the basis of surface expression determined from field mapping and interpretation of aeromagnetic data where concealed beneath surficial deposits. Fault-related structural features are exposed and were mapped near

  10. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    USGS Publications Warehouse

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  11. The Colima volcano magmatic system

    NASA Astrophysics Data System (ADS)

    Spica, Z.; Perton, M.; Legrand, D.

    2016-12-01

    We show how and where magmas are produced and stored at Colima volcano, Mexico, by performing an ambient noise tomography inverting jointly the Rayleigh and Love wave dispersion curves for both phase and group velocities. We obtain shear wave velocity and radial anisotropy models. The shear wave velocity model shows a deep, large and well-delineated elliptic-shape magmatic reservoir below the Colima volcano complex at a depth of about 15 km. The radial anisotropy model shows an important negative feature rooting up to ≥35 km depth until the roof of the magma reservoir, suggesting the presence of vertical fractures where fluids migrate upward and accumulate in the magma reservoir. The convergence of both a low velocity zone and a negative anisotropy suggests that the magma is mainly stored in conduits or inter-fingered dykes as opposed to horizontally stratified magma reservoir.

  12. Analysis of Vulnerability Around The Colima Volcano, MEXICO

    NASA Astrophysics Data System (ADS)

    Carlos, S. P.

    2001-12-01

    The Colima volcano located in the western of the Trasmexican Volcanic Belt, in the central portion of the Colima Rift Zone, between the Mexican States of Jalisco and Colima. The volcano since January of 1998 presents a new activity, which has been characterized by two stages: the first one was an effusive phase that begin on 20 November 1998 and finish by the middle of January 1999. On February 10of 1999 a great explosion in the summit marked the beginning of an explosive phase, these facts implies that the eruptive process changes from an effusive model to an explosive one. Suárez-Plascencia et al, 2000, present hazard maps to ballistic projectiles, ashfalls and lahars for this scenario. This work presents the evaluation of the vulnerability in the areas identified as hazardous in the maps for ballistic, ashfalls and lahars, based on the economic elements located in the middle and lower sections of the volcano building, like agriculture, forestry, agroindustries and communication lines (highways, power, telephonic, railroad, etc). The method is based in Geographic Information Systems, using digital cartography scale 1:50,000, digital orthophotos from the Instituto Nacional de Estadística, Geografía e Informática, SPOT and Landsat satellite images from 1997 and 2000 in the bands 1, 2 and 3. The land use maps obtained for 1997 and 2000, were compared with the land use map reported by Suárez in 1992, from these maps an increase of the 5 porcent of the sugar cane area and corn cultivations were observed compared of those of 1990 (1225.7 km2) and a decrease of the forest surface, moving the agricultural limits uphill, and showing also some agave cultivation in the northwest and north hillslopes of the Nevado de Colima. This increment of the agricultural surface results in bigger economic activity in the area, which makes that the vulnerability also be increased to different volcanic products emitted during this phase of activity. The degradation of the soil by the

  13. Magmatic processes at Popocatepetl volcano, Mexico: petrology, geochemistry and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Stimac, J.; Siebe, C.; Mac¡as, J.

    2003-12-01

    Popocatepetl volcano is one of the most famous and most active stratovolcanoes of the Trans-Mexican Volcanic Belt (TMVB). It is located 60 km south-east of Mexico-City and 40 km west of the city of Puebla, both cities have more than 30 million inhabitants. In this contribution we present a study of Late Pleistocene to Recent products of Popocatépetl (Popo) volcano and surrounding scoria cones to better establish their genetic relationship and magmatic history. Popo and flanking vents are located within the central portion of the Trans Mexican Volcanic Belt, which is related to oblique subduction of young oceanic lithosphere. Current activity of Popo can be understood in the context of its past eruptions and those from surrounding scoria cones. The latest cycle of eruption began Dec. 21, 1994 with continuous to pulsating emission of phreatic ash. The last important event happened on July 19, 2003, covering Mexico-City with a thin ash-layer. Both Popo and surrounding scoria cones produced moderate-K, calc-alkaline rocks, with the two groups differing mainly in degree of differentiation, water content, and oxidation state. Some vent samples on the immediate flanks of Popo and have phenocryst assemblages and compositions transitional between typical flanking vent and stratovolcano samples. Monogenetic vents produced mainly basaltic andesites to andesites, primarily by crystal fractionation of Ol (Fo80-90)+chromite, 2PyxñOl, and 2PyxñPlagñHb assemblages, with minor assimilation of crustal debris. The andesitic to dacitic rocks of Popo are dominated by Plag-2Pyx-2OxideñHbl assemblages, with variable amounts of Ol (Fo70-90)+chromite xenocrysts. A few Popo samples contain locally abundant xenolithic debris of cognate-granitoid intrusions and their metasedimentary wallrocks. The two suites share parental Mg-rich basaltic andesite magmas, with the Popo magmas reflecting longer residence in the crust, and enhanced hydration and oxidation due to the resulting processes of

  14. Morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2018-03-01

    Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.

  15. Volcanic Risk Perception in Five Communities Located near the Chichón Volcano, Northern Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Novelo-Casanova, D. A.

    2010-12-01

    The Chichón volcano (17° 19’ N and 93° 15’ W) is located in the state of Chiapas, Mexico. This volcano is classified by UNESCO as one of the ten most dangerous volcanos in the world. The eruptions of March and April in 1982 affected at least 51 communities located in the surroundings of the volcano and caused the death of about 2000 people. In this work we evaluate the risk perception in five communities highly populated: Juárez, Ostuacán, Pichucalco, Reforma and Sunuapa. We selected these communities because they have a high possibility to be affected by a volcanic eruption in the future. Our survey was carried out during February and March 2006. A total of 222 families were interviewed using a questionnaire to measure risk perception. These questionnaires retrieved general information as how long people had been living there and their reasons to do so; their experiences during the 1982 events, their opinion about the authorities participation and their perception of volcanic risk; the plans of the community for disaster prevention and mitigation. Some of the most important results are: (1). People perceive a very low volcanic risk and the 70% of interviewees believe that a new eruption in the future is almost improbable because it happened in 1982. This result is particularly interesting because, according to the state government, more than 100,000 inhabitants will be directly affected in case of a new similar eruption; (2). About 95% of the population do not know the current activity of the volcano and consider that the authorities do not inform properly to their communities; (3). The response of the authorities during the events of 1982 was ranked as deficient mainly because they were unable provide shelters, storage facilities, food as well as medicine and health care access; (4). Approximately 60% of the community will accept to be re-located again in case of a new eruption; (5). About 70% of the population will not accept to be re-located because

  16. Vector analysis of chemical variation in the lavas of Parícutin volcano, Mexico

    USGS Publications Warehouse

    Miesch, A.T.

    1979-01-01

    Compositional variations in the lavas of Parícutin volcano, Mexico, have been examined by an extended method of Q-mode factor analysis. Each sample composition is treated as a vector projected from an original eight-dimensional space into a vector system of three dimensions. The compositions represented by the vectors after projection are closely similar to the original compositions except for Na2Oand Fe2O3.The vectors in the three-dimensional system cluster about three different planes that represent three stages of compositional change in the Parícutin lavas. Because chemical data on the compositions of the minerals in the lavas are presently lacking, interpretations of the mineral phases that may have been involved in fractional crystallization are based on CIPW norm calculations. Changes during the first stage are attributed largely to the fractional crystallization of plagioclase and olivine. Changes during the second stage can be explained by the separation of plagioclase and pyroxene. Changes during the final stage may have resulted mostly from the assimilation of a granitic material, as previously proposed by R. E. Wilcox.

  17. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely

  18. Reevaluation of tephra volumes for the 1982 eruption of El Chichón volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Fierstein, J.

    2012-12-01

    Reevaluation of tephra volumes for the 1982 eruption of El Chichón volcano, Mexico Manuel Nathenson and Judy Fierstein U.S. Geological Survey, 345 Middlefield Road MS-910, Menlo Park, CA 94025 In a recent numerical simulation of tephra transport and deposition for the 1982 eruption, Bonasia et al. (2012) used masses for the tephra layers (A-1, B, and C) based on the volume data of Carey and Sigurdsson (1986) calculated by the methodology of Rose et al. (1973). For reasons not clear, using the same methodology we obtained volumes for layers A-1 and B much less than those previously reported. For example, for layer A-1, Carey and Sigurdsson (1986) reported a volume of 0.60 km3, whereas we obtain a volume of 0.23 km3. Moreover, applying the more recent methodology of tephra-volume calculation (Pyle, 1989; Fierstein and Nathenson, 1992) and using the isopachs maps in Carey and Sigurdsson (1986), we calculate a total tephra volume of 0.52 km3 (A-1, 0.135; B, 0.125; and C, 0.26 km3). In contrast, Carey and Sigurdsson (1986) report a much larger total volume of 2.19 km3. Such disagreement not only reflects the differing methodologies, but we propose that the volumes calculated with the methodology of Pyle and of Fierstein and Nathenson—involving the use of straight lines on a log thickness versus square root of area plot—better represent the actual fall deposits. After measuring the areas for the isomass contours for the HAZMAPP and FALL3D simulations in Bonasia et al. (2012), we applied the Pyle-Fierstein and Nathenson methodology to calculate the tephra masses deposited on the ground. These masses from five of the simulations range from 70% to 110% of those reported by Carey and Sigurdsson (1986), whereas that for layer B in the HAZMAP calculation is 160%. In the Bonasia et al. (2012) study, the mass erupted by the volcano is a critical input used in the simulation to produce an ash cloud that deposits tephra on the ground. Masses on the ground (as calculated by us

  19. Sources of Magmatic Volatiles Discharging from Subduction Zone Volcanoes

    NASA Astrophysics Data System (ADS)

    Fischer, T.

    2001-05-01

    5.4 Mmol/a of non-mantle N2). Other subduction zone volcanoes are currently degassing a much more substantial amount of volatiles. Popocatepetl, Mexico, has degassed approximately 14 Mt of SO2 to the atmosphere over the past 6 years (Witter et al. 2000). Satsuma-Iwojima, Japan, has degassed for longer than 800 years and is currently releasing 500-1000 tones/day (Kazahaya et al. 2000). At these volcanoes CO2 and N2 discharges from the magma should also be balanced by the supply from slab and crustal sources. The rate of subduction off Mexico and Japan, however, is similar to the rate at the Kuriles. Therefore, large amounts of slab derived volatiles must be, in some fashion, stored in the "subduction factory" to supply the large amounts degassing passively from these volcanoes. Kazahaya et al. (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI. Witter et al (2000) Seventh Field Workshop on Volcanic Gases, IAVCEI.

  20. Mexico City, Mexico as seen from STS-62

    NASA Image and Video Library

    1994-03-05

    STS062-84-028 (4-18 March 1994) --- According to NASA scientists this image is the clearest photo of Mexico City taken from United States manned spacecraft. North is to the upper right. Mexico City sits in a basin surrounded by large volcanoes. The restricted atmospheric circulation in the basin, coupled with the inevitable air emissions produced by a city of 20 million people has created a critical air pollution problem for the city. In most photographs of the region, Mexico City is obscured by haze. Scientists feel the clear atmosphere in this photograph may be due, in part, to the stringent air emission restrictions now in place. The clarity of the photograph allows many key cultural features to be identified, including all of the major boulevards, the horse track (western part of the city), the university (south of the city), and the museum areas. Large, man-made ponds east of the city also stand out.

  1. Risk management of El Chichón and Tacaná Volcanoes: Lessons learned from past volcanic crises: Chapter 8

    USGS Publications Warehouse

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2015-01-01

    Before 1985, Mexico lacked civil-protection agencies with a mission to prevent and respond to natural and human-caused disasters; thus, the government was unprepared for the sudden eruption of El Chichón Volcano in March–April 1982, which produced the deadliest volcanic disaster in the country’s recorded history (~2,000 fatalities). With the sobering lessons of El Chichón still fresh, scientists and governmental officials had a higher awareness of possible disastrous outcome when Tacaná Volcano began to exhibit unrest in late 1985. Seismic and geochemical studies were quickly initiated to monitor activity. At the same time, scientists worked actively with officials of the Federal and local agencies to develop the “Plan Operativo” (Operational Plan)—expressly designed to effectively communicate hazards information and reduce confusion and panic among the affected population. Even though the volcano-monitoring data obtained during the Tacaná crisis were limited, when used in conjunction with protocols of the Operational Plan, they proved useful in mitigating risk and easing public anxiety. While comprehensive monitoring is not yet available, both El Chichón and Tacaná volcanoes are currently monitored—seismically and geochemically—within the scientific and economic resources available. Numerous post-eruption studies have generated new insights into the volcanic systems that have been factored into subsequent volcano monitoring and hazards assessments. The State of Chiapas is now much better positioned to deal with any future unrest or eruptive activity at El Chichón or Tacaná, both of which at the moment are quiescent as of 2014. Perhaps more importantly, the protocols first tested in 1986 at Tacaná have served as the basis for the development of risk-management practices for hazards from other active and potentially active volcanoes in Mexico. These practices have been most notably employed since 1994 at Volcán Popocatépetl since a major

  2. Stratigraphic reconstruction of the 13 ka BP debris avalanche deposit at Colima volcano (Mexico): effect of climatic conditions on the flow mobility

    NASA Astrophysics Data System (ADS)

    Roverato, M.; Capra, L.

    2010-12-01

    Colima volcano is an andesitic stratovolcano located in the western part of the Trans-Mexican Volcanic Belt (TMVB) and at the southern end of the N-S trending Colima graben, about 70 km from the Pacific Ocean coast. It is probably the most active Mexican volcano in historic time and one of the most active of North America. Colima volcano yielded numerous partial edifice collapses with emplacement of debris avalanche deposits (DADs) of contrasting volume, morphology, texture and origin. This work has the aim to provide the evidences of how the climatic condition during the 13 ka flank collapse of the Colima volcano affected the textural characteristic and the mobility of the debris avalanche and debris flow originated from this event that occurred just after the Last Glacial Maximum in Mexico (18.4-14.5 ka 14C BP with snow line at 3600 m a.s.l. up to 13 ka BP). The 13,000 yrs old debris avalanche deposit, here named Tonila (TDAD) presents the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) but at approximately 13 km from the source, the deposit transforms to an hybrid phase with debris avalanche fragments imbedded in a finer, homogenous and indurated matrix more similar to a debris flow deposit. The debris avalanche deposit is directly overly by debris flows, often more than 10 m thick that contains large amount of logs from pine tree, mostly accumulated toward the base and imbricated down flow. Fluvial deposits also occur throughout all successions, representing periods of stream and river reworking highly localized and re-establishment. All these evidences point to the presence of water in the mass previous to the failure. The event here described represent an anomalous event between the previously described deposit associated to volcanic complex, and evidence as climatic condition can alter and modifies the depositional sequences incrementing the hazard.

  3. Seismic pattern recognition techniques to predict large eruptions at the Popocatépetl, Mexico, volcano

    NASA Astrophysics Data System (ADS)

    Novelo-Casanova, D. A.; Valdés-González, C.

    2008-10-01

    Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April-30 June 1997 (Eruption 1; VEI ~ 2-3); 11 December 2000-23 January 2001 (Eruption 2; VEI ~ 3-4) and 7 June-4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred

  4. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island

  5. Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.

    2012-11-01

    During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  6. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  7. Susceptibility mapping in the Río El Estado watershed, Pico de Orizaba volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Lugo Hubp, J.; Paredes Mejía, L.; Aceves Quesada, F.

    2013-12-01

    In volcanic terrains, dormant stratovolcanoes are very common and can trigger landslides and debris flows continually along stream systems, thereby affecting human settlements and economic activities. It is important to assess their potential impact and damage through the use of landslide inventory maps and landslide models. This poster provides an overview of the on-going research project (Grant SEP-CONACYT no 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory and produce a landslide susceptibility map by using Geographic Information Systems (GIS). The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The catchment covers 5.2 km2 with elevations ranging from 2676.79 to 4248.2 m a.s.l. and hillslopes between 5° and 56°. The stream system of Río El Estado catchment erodes Tertiary and Quaternary lavas, pyroclastic flows, and fall deposits. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The method encompasses two main levels of analysis to assess landslide susceptibility. The first level builds a historic landslide inventory. In the study area, an inventory of more than 100 landslides was mapped from interpretation of multi-temporal aerial orthophotographs and local field surveys to assess and describe landslide distribution. All landslides were digitized into a GIS, and the spatial geo-database of landslides was constructed from standardized GIS datasets. The second level calculates the susceptibility for the watershed. Multiple Logistic Regression (MLR) was used to examine the relationship between landsliding and several independent variables (elevation, slope, terrain curvature, flow direction, saturation, contributing area, land use, and geology

  8. Metal enrichment of soils following the April 2012-2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico.

    PubMed

    Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado

    2015-11-01

    We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.

  9. Petrologic characteristics of the 1982 and pre-1982 eruptive products of El Chichon volcano, Chiapas, Mexico.

    USGS Publications Warehouse

    McGee, J.J.; Tilling, R.I.; Duffield, W.A.

    1987-01-01

    Studies on a suite of rocks from this volcano indicate that the juvenile materials of the 1982 and pre-1982 eruptions of the volcano have essentially the same mineralogy and chemistry. Data suggest that chemical composition changed little over the 0.3 m.y. sample period. Modally, plagioclase is the dominant phenocryst, followed by amphibole, clinopyroxene and minor phases including anhydrite. Plagioclase phenocrysts show complex zoning: the anorthite-rich zones are probably the result of changing volatile P on the magma and may reflect the changes in the volcano's magma reservoir in response to repetitive, explosive eruptive activity.-R.E.S.

  10. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  11. Reconstructing 800 years of historical eruptive activity at Popocatépetl Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Martin-Del Pozzo, Ana Lillian; Rodríguez, Alan; Portocarrero, Jorge

    2016-03-01

    Pictorial and written documents spanning 800 years were analyzed for information about historical eruptions at Popocatépetl volcano. These documents were prepared by several indigenous groups as well as by the Spanish conquistadors and missionaries during their military campaigns and long-term evangelization and colonization and later on, by Indian nobles and Spanish historians. Pre-Columbian drawings show flames coming out of Popocatépetl's crater while later descriptions from the Spanish colonial period in Mexico (1521 to 1821) refer to ash emission and ballistics, lahars, and some pumice falls, similar to what were depicted in the thirteenth to sixteenth century drawings. Graphic information from the pre-Columbian codices, colonial maps, and paintings referring to the eruptions were correlated with historical accounts and religious chronicles, thereby leading to the reconstruction of a more detailed sequence of eruptive events. From such information, it was possible for us to prepare ash distribution maps for the 1540, 1592, and 1664 eruptions. Most of the known historical eruptions seem to be similar to those that have been occurring at Popocatépetl since 1994, indicating the importance of ash emission and crater dome formation throughout its recent eruptive history. The strongest eruptions occurred in 1510, 1519, 1540, 1580, 1664, and 2001; these produced widespread ash falls that affected both populated and rural areas. Duration of eruptive episodes during the past 800 years were estimated to have ranged from less than a year to more than 30 years, separated by repose periods ranging between 7 and over 100 years.

  12. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  13. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  14. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  15. The diversity of mud volcanoes in the landscape of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  16. Geochemical surveillance of magmatic volatiles at Popocatepetl volcano, Mexico

    USGS Publications Warehouse

    Goff, F.; Janik, C.J.; Delgado, H.; Werner, C.; Counce, D.; Stimac, J.A.; Siebe, C.; Love, S.P.; Williams, S.N.; Fischer, T.; Johnson, L.

    1998-01-01

    Surveillance of Popocatepetl volcanic plume geochemistry and SO2 flux began in early 1994 after fumarolic and seismic activity increased significantly during 1993. Volatile traps placed around the summit were collected at near-monthly intervals until the volcano erupted on December 21, 1994. Additional trap samples were obtained in early 1996 before the volcano erupted again, emplacing a small dacite dome in the summit crater. Abundances of volatile constituents (ppm/day of Cl, Stotal, F, CO2, Hg, and As) vaaried, but most constituents were relatively high in earl\\y and late 1994. However, ratios of these constituents to Cl were highest in mid-1994. ??34S-Stotal in trap solutions ranged from 1.5??? to 6.4???; lowest values generally occurred during late 1994. ??13C-CO2 of trap solutions were greatly contaminated with atmospheric CO2 and affected by absorption kinetics. When trap data are combined with SO2 flux measurements made through November 1996, Popocatepetl released about 3.9 Mt SO2, 16 Mt CO2, 0.75 Mt HCl, 0.075 Mt HF, 260 t As, 2.6 t Hg, and roughly 200 Mt H2O. Near-vent gas concentrations in the volcanic plume measured by correlation spectrometer (COSPEC) and Fourier transform infrared (FTIR) commonly exceed human recommended exposure limits and may constitute a potential health hazard. Volatile geochemistry combined with petrologic observations and melt-inclusion studies show that mafic magma injection into a preexisting silicic chamber has accompanied renewed volcanism at Popocatepetl. Minor assimilation of Cretaceous wall rocks probably occurred in mid-1994.

  17. Stratigraphic and sedimetological study of relevant lahar deposits of La Lumbre ravine, Colima volcano (Mexico): preliminary results.

    NASA Astrophysics Data System (ADS)

    Sarocchi, D.; Rodriguez-Sedano, L. A.; Saucedo, R.; Capra, L.

    2009-04-01

    Volcán de Colima is the most active volcano of Mexico with more than fifty eruptions documented in the last four centuries. The great amount of pyroclastic material deposited in the volcano slopes represents a perfect source for an intense lahar activity. Despite the intense volcanic activity with production of explosive eruptions and pyroclastic flows, lahars are greatly the most dangerous phenomena at Volcán de Colima. Pyroclastic flows did not reach long distances, generally less than 5 km from the crater. In contrast, lahars travel long distances, up to 10 km, causing damage to infrastructure and being able to affect populated areas. For this reason in the last 100 years more than 350 people died for lahars in the Colima Volcanic Complex and only 8 lost their lives for pyroclastic flows in 1913 plinian eruption. "La Lumbre" ravine is a very important morphological feature in the western-southwestern sector of the volcano, there, it gathers the main drainage system and collects water from "El Playon", a wide intra-caldera basin delimited by the Volcán de Colima to the south and the "Paleofuego" caldera rim to the north. This ravine produced huge lahars such as the 1906 lahar which killed almost 325 people, or the lahars associated with the great 1913 eruption, other associated with de 1990-91 volcanic crisis, and is still very active, continuously remobilizing the 1998-99 pyroclastic flow deposits. In 2002 near the confluence between "La Lumbre" and "El Zarco" Ravine, a house was destroyed fortunately with no danger for people. In order to perform future accurate lahar numerical simulation and obtain reliable hazard study along this ravine, is very important to reconstruct the complex stratigraphy and understand which of such important deposits is related with the 1906, 1913 or 1991 eruptive crisis. For this reason we are performing a detailed stratigraphic study of the lahars sequence. We selected the best outcrops at different distances from the crater. In

  18. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  19. Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2002-01-01

    Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by

  20. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  1. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  2. Results of the radon measurements in the area of volcano Popocatepetl, Mexico

    NASA Astrophysics Data System (ADS)

    Kotsarenko, Anatoliy; Yustis, Vsevolod; Grimalsky, Vladimir; Medina Pérez, Ivan Luis; Koshevaya, Svetlana; Villegas Cerón, Reyna Alejandra; Pérez Enríquez, Hector Roman; López Cruz Abeyro, Jose Antonio; Valdés Gonzáles, Carlos

    2010-05-01

    Anomaly variation of the concentration of radon measured in the area of the volcano Popocatepetl and their analysis are presented. Permanent observations in the different sites during December 2007 - December 2009 revealed certain stable tendency: the character of radon variation in Tlamacas station area differs essentially from the similar measurements in all the other sites. Thus, numerous gradual depressions of the radon concentration with duration from about 12 hours up to several days were detected there as possible response to the major and moderate volcano eruptions. In order to determine presumed peculiarities of the Tlamacas site we realized detailed study of the natural radioactivity near Tlamacas and surrounding area, combining measurements of the Radon concentration in 25 sites in the mentioned area with radioactive spectroscopy (K, U and Th) study. Obtained distributions of the Rn, K, U and Th permit us to surmise a possible existence of a hidden tectono-volcanic structure in the area of Tlamacas mountain with anomalously enhanced emanation of radon.

  3. Late Holocene Peléan-style eruption at Tacaná volcano, Mexico and Guatemala: past, present, and future hazards

    USGS Publications Warehouse

    Macías, J. L.; Espíndola, J. M.; Garcia-Palomo, A.; Scott, K.M.; Hughes, S.; Mora, J C.

    2000-01-01

    Tacaná volcano, located on the border between Mexico and Guatemala, marks the northern extent of the Central American volcanic chain. Composed of three volcanic structures, it is a volcanic complex that has had periodic explosive eruptions for at least the past 40 k.y. The most recent major eruption occurred at the San Antonio volcano, the youngest volcanic edifice forming the complex, about 1950 yr ago. The Peléan style eruption, issued from the southwest part of the dome, and swept a 30° sector with a hot block and ash flow that traveled about 14 km along the Cahoacán ravine. Deposits from this event are well exposed around the town of Mixcun and were therefore given the name of that town, the Mixcun flow deposit. The Mixcun flow deposit is, in the channel facies, a light gray, massive, thick (>10 m), matrix-supported unit with dispersed lithic clasts of gravel to boulder size, divisible in some sections into a variable number of flow units. The overbank facies is represented by a thin (2 and has a minimum estimated volume of 0.12 km3. Basaltic-andesite inclusions (54% SiO2) and various signs of disequilibrium in the mineral assemblage of the two-pyroxene andesitic products (60%–63% SiO2) suggest that magma mixing may have triggered the eruption. Following deposition of the Mixcun flow deposit andesitic to dacitic (62%–64% SiO2) lava flows were extruded and a dacitic dome (64.4% SiO2) at the San Antonio summit formed. Syn-eruptive and posteruptive lahars flooded the main drainages of the Cahoacán and Izapa-Mixcun valleys in the area of the present city of Tapachula (population 250000) and the pre-Hispanic center of Izapa. Three radiocarbon ages date this event between A.D. 25 and 72 (range ±1σ, 38 B.C.–A.D. 216), which correlates with a halt in construction at Izapa (Hato phase of ca. 50 B.C.–A.D. 100), probably due to temporary abandonment of the city caused by lahars. Another similar event would produce extensive damage to the towns (population

  4. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  5. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  6. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  7. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  8. Scoria cone formation through a violent Strombolian eruption: Irao Volcano, SW Japan

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji; Horikawa, Yoshiyuki; Nagao, Takashi; Itaya, Tetsumaru; Connor, Charles B.; Tanaka, Kazuhiro

    2014-01-01

    Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943-1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10-1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K-Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4 ± 0.05 Ma.

  9. Recurrent Mudflows at Popocatepetl Volcano: Impact on the Population over several Thousand Years and possible Precursors.

    NASA Astrophysics Data System (ADS)

    Martin, A. L.; Nieto, A.; Portocarrero, J.; Jaimes-Viera, M. D. C.; Fonseca, R.

    2014-12-01

    Popocatepetl Volcano in central Mexico has been erupting since 1994 with relatively small Strombolian and Vulcanian eruptions, expect for the 2 larger eruptions in 1997 and 2001 that produced more widespread pumice and ash fall, mud flows and in 2001, pumice flows. As part of the recent studies that have focused on monitoring eruptive behavior for risk reduction in this heavily populated area, we are updating the Hazard Map (1995). Here we present the results of the new data for the northwestern sector of the volcano where large mudflows reached 40km from the volcano toward Mexico City (14Ka). The 5Ka mudflows are overlain by several flows that covered pre-Columbian pre-classic settlements at around 2Ka BP. Buildings with ceramics from the classic and postclassic periods (around 1.5Ka and 0.9Ka BP) also indicate that settlements were abandoned and resettled several hundred years later. So far, it seems that inhabitants fled at the beginning of these larger eruptions, since no bodies have been found in the excavations. Since the XVI century, several smaller mudflows have reached the towns, but many are related with secondary deposits (for example, the Nexapa 2010 mudflow reached 15 km from the crater). Although this area has been inhabited for thousands of years, increased population shows that risk is considerable.

  10. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  11. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination ofmore » the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.« less

  12. The volcano mouse Neotomodon alstoni of central Mexico, a biological model in the study of breeding, obesity and circadian rhythms.

    PubMed

    Miranda-Anaya, M; Pérez-Mendoza, M; Juárez-Tapia, C R; Carmona-Castro, A

    2018-04-24

    The "Mexican volcano mouse" Neotomodon alstoni, is endemic of the Transverse Neovolcanic Ridge in central Mexico. It is considered as least concern species and has been studied as a potential laboratory model from different perspectives. Two lines of research in neuroendocrinology have been addressed: reproduction and parental care, particularly focused on paternal attention and the influence of testosterone, and studies on physiology and behavior of circadian rhythms, focused on the circadian biology of the species, its circadian locomotor activity and daily neuroendocrine regulation of metabolic parameters related to energy balance. Some mice, when captive, spontaneously develop obesity, which allows for comparisons between lean and obese mice of daily changes in neuronal and metabolic parameters associated with changes in food intake and locomotor activity. This review includes studies that consider this species an attractive animal model where the alteration of circadian rhythms influences the pathogenesis of obesity, specifically with the basic regulation of food intake and metabolism and differences related to sex. This study can be considered as a reference to the comparative animal physiology among rodents. Copyright © 2018. Published by Elsevier Inc.

  13. Volcanoes

    MedlinePlus

    ... Oregon have the most active volcanoes, but other states and territories have active volcanoes, too. A volcanic eruption may involve lava and other debris that can flow up to 100 mph, destroying everything in their ...

  14. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  15. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    NASA Astrophysics Data System (ADS)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  16. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  17. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  18. Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implications for volcanic surveillance

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri; Inguaggiato, Salvatore; Taran, Yuri; Varley, Nicholas; Santiago S., José A.

    2009-04-01

    This study presents baseline data for future geochemical monitoring of the active Tacaná volcano-hydrothermal system (Mexico-Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500-2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal ( T from 25.7°C to 63.0°C) HCO3-SO4 waters are thought to have formed by the absorption of a H2S/SO2-CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as -128 and -19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of -3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio ( R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/ S (5.9 ± 0.5) and ( L + S)/ M

  19. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.

    2003-12-01

    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  20. Monitoring the Dynamic of a Fluvial Channel after Lahar Disturbance: Huiloac Gorge (Popocatepetl Volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Andres, N.; Palacios, D.; Zamorano, J. J.; Tanarro, L. M.; Renschler, C.; Sanjosé, J. J.; Atkinson, A.

    2009-04-01

    Capra, L.; Poblete, M.A. and Alvarado, R. 2004. The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards. Journal of Volcanology and Geothermal Research, 131: 351-369. Gran, K. y Montgomery, D., 2005. Spatial and temporal patterns in fluvial recovery following volcanic eruptions: Channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. GSA Bulletin, 117; 1-2: 195-211. Hayes, S.K., Montgomery, D.R. and Newhall, C.G., 2002, Fluvial sediment transport and deposition following the 1991 eruption of Mt. Pinatubo. Geomorphology. Vol. 45: 211-224. Major, J.J., Pierson, T.C., Dinehart, R.L. y Costa, J.E. 2000. Sediment yield following severe volcanic disturbance- A two-decade perspective from Mount St. Helens. Geology, 28, n° 9: 819-822. Major, J.J., 2003. Post-eruption hydrology and sediment transport in volcanic river systems, Water Resources IMPACT, 5(3): 10-15. Muñoz, E. 2007. Los lahares del Popocatépetl: tratamiento de la información para la prevención de catástrofes. (PhD thesis, Universidad Complutense de Madrid.) Palacios, D., 1995. Rockslide processes on the north slope of Popocatépetl Volcano, Mexico, Permafrost and Periglaciar Processes, 6: 345-356. Palacios, D., J.J. Zamorano and G. Parrilla. 1998. Proglacial debris flows in Popocatépetl North Face and their relation to 1995 eruption. Z. Geomorph. N. P., 42(3), 273-295 Palacios, D., J.J. Zamorano and A. Gómez. 2001. The impact of present lahars on the geomorphologic evolution of proglacial gorges: Popocatépetl, Mexico. Geomorphology, 37(1-2), 15-42.

  1. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  2. The Colima Volcano WebGIS: system acquisition, application and database development in an open-source environment

    NASA Astrophysics Data System (ADS)

    Manea, M.; Norini, G.; Capra, L.; Manea, V. C.

    2009-04-01

    The Colima Volcano is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. Researchers from different institutions (Mexico, USA, Germany, Italy, and Spain) are currently working on several aspects of the volcano, from remote sensing, field data of old and recent deposits, structural framework, monitoring (rain, seismicity, deformation and visual observations) and laboratory experiments (analogue models and numerical simulations). Each investigation is focused to explain a single process, but it is fundamental to visualize the global status of the volcano in order to understand its behavior and to mitigate future hazards. The Colima Volcano WebGIS represents an initiative aimed to collect and store on a systematic basis all the data obtained so far for the volcano and to continuously update the database with new information. The Colima Volcano WebGIS is hosted on the Computational Geodynamics Laboratory web server and it is based entirely on Open Source software. The web pages, written in php/html will extract information from a mysql relational database, which will host the information needed for the MapBender application. There will be two types of intended users: 1) researchers working on the Colima Volcano, interested in this project and collaborating in common projects will be provided with open access to the database and will be able to introduce their own data, results, interpretation or recommendations; 2) general users, interested in accessing information on Colima Volcano will be provided

  3. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  4. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  5. An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth

    NASA Technical Reports Server (NTRS)

    Brian, A. W.; Smrekar, S. E.; Stofan, E. R.

    2004-01-01

    Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.

  6. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  7. Inter-laboratory comparison of X-ray fluorescence analyses of eruptive products of El Chichón Volcano, Chiapas, Mexico

    USGS Publications Warehouse

    Tilling, Robert I.; Bornhorst, Theodore J.; Taggart, Joseph E.; Rose, William I.; McGee, James J.

    1987-01-01

    An inter-laboratory comparison has been made of X-ray fluorescence analyses of 10 samples of lava and pumices from El Chichón Volcano, Chiapas, Mexico. Some determinations of major-element constituents agree within analytical uncertainty, whereas others exchibit significant bias. Analyses carried out at the Michigan Technological University (MTU) laboratory are systematically lower in MgO (26–48%), Fetotal(5–18%), CaO (4–15%) and higher in K2O (0–15%) than analyses made at the U.S. Geological Survey (USGS) Denver laboratory. These differences are ascribed in part to a complex combination of calibration assumptionsand mineralogical and particle-size effects inherent in the use of pressed rock-powder pellets in the analytical procedure of the MTU laboratory. Other, but as yet unknown, differences in sample preparation and/or analytical technique may also be important; effects related to natural sample inhomogeneityare believed to be insignificant. The inter-laboratory differences in the analytical data complicated accurate assessment of whether El Chichón magmas have changed composition during the past 300 000 a. Knowledge of such change is needed for understanding petrogenetic history and for such related studies as evaluation of volcanic hazards.

  8. Lessons from Popocatepetl Volcano (Mexico): Ancient Settlement Buried by Lavas, Mudflows, and Air-Fall Deposits

    NASA Technical Reports Server (NTRS)

    Delgado, H.; Panfil, M.; Gonzalez, E. A.; Coyoacan, C. U.; Urangaela, G.; Plunket, P.; Gardner, T.; Abrams, M.

    1994-01-01

    Popocatepetl volcano is 5452 m in altitude and capped by glaciers with a long Late Pleistocene-Holocene history. Volcanic activity has been intense during the last 10 000 years. Therefore, the valleys at the NE foothills of the volcano, covered by air-fall ejecta and drained by the runoff of the glaciers, became very attractive to ancient inhabitants of the Xalizintla Valley (XV) west of Puebla City, because of fertility of soils. The XV was occupied by humans about 2000 years ago who witnessed five events related to volcanic activity related to Popo. These events, described in this paper, are being taken into account for volcanic risk evaluation since several towns with a population of more than 23 000 people reoccupied again the Xalizintla Valley.

  9. Syrian Volcano

    NASA Image and Video Library

    2006-07-23

    This MOC image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust

  10. Study of the structure changes caused by volcanic activity in Mexico applying the lineament analysis to the Aster (Terra) satellite data.

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Garcia, R. V.; Trejo-Soto, M.; Molina-Sauceda, E.

    Mexico is one of the most volcanically active regions in North America Volcanic activity in central Mexico is associated with the subduction of the Cocos and Rivera plates beneath the North American plate Periods of enhanced microseismic activity associated with the volcanic activity of the Colima and Popocapetl volcanoes are compared to some periods of low microseismic activity We detected changes in the number and orientation of lineaments associated with the microseismic activity due to lineament analysis of a temporal sequence of high resolution satellite images of both volcanoes 15 m resolution multispectral images provided by the ASTER VNIR instrument were used The Lineament Extraction and Stripes Statistic Analysis LESSA software package was employed for the lineament extraction

  11. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  12. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record

    NASA Astrophysics Data System (ADS)

    Erlund, E. J.; Cashman, K. V.; Wallace, P. J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H. Delgado

    2010-11-01

    The birth of Parícutin Volcano, Mexico, in 1943 provides an unprecedented opportunity to document the development of a monogenetic cinder cone and its associated lava flows and tephra blanket. Three 'type' sections provide a complete tephra record for the eruption, which is placed in a temporal framework by comparing both bulk tephra and olivine phenocryst compositions to dated samples of lava and tephra. Our data support the hypothesis of Luhr (2001) that the first four months of activity were fed by a magma batch (Phase 1) that was distinct from the magma that supplied the subsequent eight years of activity. We further suggest that the earliest erupted (vanguard) magma records evidence of temporary residence at shallow levels prior to eruption, suggesting early development of a dike and sill complex beneath the vent. Depletion of this early batch led to diminished eruptive activity in June and July of 1943, while arrival of the second magma batch (Phase 2) reinvigorated activity in late July. Phase 2 fed explosive activity from mid-1943 through 1946, although most of the tephra was deposited by the end of 1945. Phase 3 of the eruption began in mid-1947 with rapid evolution of magma compositions from basaltic andesite to andesite and dominance of lava effusion. The combined physical and chemical characteristics of the erupted material present a new interpretation of the physical conditions that led to compositional evolution of the magma. We believe that syn-eruptive assimilation of wall rock in a shallow complex of dikes and sills is more likely than pre-eruptive assimilation within a large magma chamber, as previously assumed. We further suggest that waning rates of magma supply from the deep feeder system allowed evolved, shallowly stored magma to enter the conduit in 1947, thus triggering the rapid observed change in the erupted magma composition. This physical model predicts that assimilation should be observable in other monogenetic eruptions, particularly

  13. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  14. Small Tharsis Volcano

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano located southwest of the giant volcano, Pavonis Mons, near 2.5oS, 109.4oW. Lava flows can be seen to have emanated from the summit region, which today is an irregularly-shaped collapse pit, or caldera. A blanket of dust mantles this volcano. Dust covers most martian volcanoes, none of which are young or active today. This picture covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  15. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  16. Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guanajuato Volcanic Field (Mexico)

    NASA Astrophysics Data System (ADS)

    Pérez-López, R.; Legrand, D.; Garduño-Monroy, V. H.; Rodríguez-Pascua, M. A.; Giner-Robles, J. L.

    2011-04-01

    The Michoacán-Guanajuato Volcanic Field displays about 1040 monogenetic volcanoes mainly composed of basaltic cinder cones. This monogenetic volcanic field is the consequence of a dextral transtensive tectonic regime within the Transmexican Volcanic Belt (TMVB), the largest intra continental volcanic arc around the world, related to the subduction of the Rivera and Cocos plates underneath the North American Plate. We performed a statistical analysis for the size-distribution of the basal diameter (Wco) for cinder cones. Dataset used here was compiled by Hasenaka and Carmichael (1985). Monogenetic volcanoes obey a power-law very similar to the Gutenberg-Richter law for earthquakes, with respect to their size-distribution: log 10 ( N >= Wco ) = α - β log10( Wco), with β = 5.01 and α = 2.98. Therefore, the monogenetic volcanoes exhibit a (Wco) size-distribution empirical power-law, suggesting a self-organized criticality phenomenon.

  17. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  18. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  19. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    NASA Astrophysics Data System (ADS)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  20. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  1. Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.

    2000-01-01

    Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.

  2. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  3. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  4. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  5. Image the heterogeneous structure of Colima volcano complex using ambient noise and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Yang, T.

    2017-12-01

    As one of the most active stratovolcano in present world, Colima volcano has aroused extensive researches about its structure and mechanism. Preceded studies have described the deep internal structure of Jalisco subduction zone and attributed the surface volcanism to the subduction of Rivera plate and Cocos plate here, but the image of crustal structure remains vague. Thus our work aims to depict the lithosphere structure and magma system, trying to understand the material transportation of Colima volcano. Two dense networks of temporary stations, CODEX and MARS, were deployed in the studying area during 2006-2007, collected adequate seismic data for tomography. We used ambient noise tomography to obtain both the phase velocity maps and azimuthal anisotropic character of crust. Those results show a shallow magma chamber right beneath the Colima volcano reaching a depth of 8km and its azimuthal anisotropic character ,which is of larger magnitude and northeast-ward in the connection part, indicates the material probably flow from central Mexico volcanic zone in the superficial crust. Hereafter, we combine the ambient noise tomography with surface wave tomography which corresponding to deeper structure. Phase velocity information from two methods are then used to invert a 3D heterogeneous model, which well presents the complex lithosphere structure of this area and shows the connection between the mantle window and magma chamber, giving the clues of how the magma materials transport from source to surface to support the constant eruption of Colima volcano.

  6. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  7. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  8. Klyuchevskaya Volcano

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.

  9. Volcano spacing and plate rigidity

    USGS Publications Warehouse

    ten Brink, Uri S.

    1991-01-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load of adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  10. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  11. Slope instability related to permafrost changes on Mexican volcanoes

    NASA Astrophysics Data System (ADS)

    Delgado Granados, Hugo; Molina, Victor Soto

    2015-04-01

    Permafrost is present above 4,500 meters at the three highest Mexican mountains, Citlaltépetl, Popocatépetl and Iztaccihuatl (5,675, 5,452 and 5,286m asl, respectively), all active volcanoes. During the rainy season in the central region of Mexico, the occurrence of small debris-flows in the ice-free parts of the mountains, as well as small lanslides is frequent. At Popocatépetl volcano, flows are mostly related to a combination of the eruptive activity and climatic factors. However, the volcanic activity is different at Citlaltépetl and Iztaccihuatl where there is no eruptive activity, but landslides have occurred in recent years on their steep slopes because its stability has been altered as a result of an increase in the air temperature which in turn has caused variations in the thickness of the active layer of permafrost, causing as a consequence, the increase of an even more unstable soil. Additionally, cracks in the rock walls are subject to an increasing hydrostatic pressure due to continuous daily freezing and thawing of seasonal water produced by a warmer and less solid precipitation accumulating in the cracks over time and in the unconsolidated potentially unstable material.

  12. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  13. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  14. The changing shapes of active volcanoes: History, evolution, and future challenges for volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.

    2006-01-01

    At the very heart of volcanology lies the search for the 'plumbing systems' that form the inner workings of Earth’s active volcanoes. By their very nature, however, the magmatic reservoirs and conduits that underlie these active volcanic systems are elusive; mostly they are observable only through circumstantial evidence, using indirect, and often ambiguous, surficial measurements. Of course, we can infer much about these systems from geologic investigation of materials brought to the surface by eruptions and of the exposed roots of ancient volcanoes. But how can we study the magmatic processes that are occurring beneath Earth’s active volcanoes? What are the geometry, scale, physical, and chemical characteristics of magma reservoirs? Can we infer the dynamics of magma transport? Can we use this information to better forecast the future behavior of volcanoes? These questions comprise some of the most fundamental, recurring themes of modern research in volcanology. The field of volcano geodesy is uniquely situated to provide critical observational constraints on these problems. For the past decade, armed with a new array of technological innovations, equipped with powerful computers, and prepared with new analytical tools, volcano geodesists have been poised to make significant advances in our fundamental understanding of the behavior of active volcanic systems. The purpose of this volume is to highlight some of these recent advances, particularly in the collection and interpretation of geodetic data from actively deforming volcanoes. The 18 papers that follow report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide

  15. Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.

    2015-12-01

    Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.

  16. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  17. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  18. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  19. Gender differences and regionalization of the cultural significance of wild mushrooms around La Malinche volcano, Tlaxcala, Mexico.

    PubMed

    Montoya, A; Torres-García, E A; Kong, A; Estrada-Torres, A; Caballero, J

    2012-01-01

    The purpose of this study was to determine the cultural significance of wild mushrooms in 10 communities on the slopes of La Malinche volcano, Tlaxcala. The frequency and order of mention of each mushroom species in interviews of 200 individuals were used as indicators of the relative cultural significance of each species. A X(2) analysis was used to compare the frequency of mention of each species between males and females, and a Mann-Whitney U test was used to compare the difference in the total number of fungi mentioned by either gender. Traditional names for mushroom species were documented and frequency of mention assessed through multivariate statistics. The fungi with highest frequency of mention were Amanita basii, Lyophyllum decastes, Boletus pinophilus, Gomphus floccosus and Cantharellus cibarius complex. We found significant differences in the frequency of mention of different fungi by males and females but no significant difference was found for the total number of fungi mentioned by either gender. Principal component analysis suggested a cultural regionalization of La Malinche volcano communities based on preferences for consumption and use of traditional names. We observed two groups: one formed by communities on the eastern part of the volcano (with mixed cultures) and the other including communities on the western slope (ethnic Nahua towns). San Isidro Buensuceso is the most distinct community, according to the criteria in this study.

  20. Submarine basalt from the Revillagigedo Islands region, Mexico

    USGS Publications Warehouse

    Moore, J.G.

    1970-01-01

    Ocean-floor dredging and submarine photography in the Revillagigedo region off the west coast of Mexico reveal that the dominant exposed rock of the submarine part of the large island-forming volcanoes (Roca Partida and San Benedicto) is a uniform alkali pillow basalt; more siliceous rocks are exposed on the upper, subaerial parts of the volcanoes. Basalts dredged from smaller seamounts along the Clarion fracture zone south of the Revillagigedo Islands are tholeiitic pillow basalts. Pillows of alkali basalts are more vesicular than Hawaiian tholeiitic pillows collected from the same depths. This difference probably reflects a higher original volatile content of the alkali basalts. Manganese-iron oxide nodules common in several dredge hauls generally contain nucleii of rhyolitic pumice or basalt pillow fragments. The pumice floated to its present site from subaerial eruptions, became waterlogged and sank, and was then coated with manganese-iron oxides. The thickness of palagonite rinds on the glassy pillow fragments is proportional to the thickness of manganese-iron oxide layers, and both are a measure of the age of the nodule. Both oldest basalts (10-100 m.y.) and youngest (less than 1 m.y.) are along the Clarion fracture zone, whereas basalts from Roca Partida and San Benedicto volcanoes are of intermediate age. ?? 1970.

  1. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  2. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  3. Earth's Volcanoes and their Eruptions; the 3rd edition of the Smithsonian Institution's Volcanoes of the World

    NASA Astrophysics Data System (ADS)

    Siebert, L.; Simkin, T.; Kimberly, P.

    2010-12-01

    The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene

  4. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  5. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Heliker, Christina C.; Griggs, J. D.; Takahashi, T. Jane; Wright, Thomas L.; Spall, Henry

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by frequent addition of new lava to its surface.  Because Hawaiian are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruptions.  The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary. has been in the forefront of volcanology since the 1900's.  This issue of Earthquakes and volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  6. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by the frequent addition of new lava to its surface. Because Hawaiian eruptions are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruption. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary, has been in the forefront of volcanology since the early 1900s. This issue of Earthquakes and Volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  7. Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, A.; Valdes-Gonzalez, C.; Dawson, P.

    2000-01-01

    Popocatepetl volcano entered an eruptive phase from December 21, 1994 to March 30, 1995, which was characterized by ash and fumarolic emissions. During this eruptive episode, the observed seismicity consisted of volcano-tectonic (VT) events, long-period (LP) events and sustained tremor. Before the initial eruption on December 21, VT seismicity exhibited no increase in number until a swarm of VT earthquakes was observed at 01:31 hours local time. Visual observations of the eruption occurred at dawn the next morning. LP activity increased from an average of 7 events a day in October 1994 to 22 events per day in December 1994. At the onset of the eruption, LP activity peaked at 49 events per day. LP activity declined until mid-January 1995 when no events were observed. Tremor was first observed about one day after the initial eruption and averaged 10 h per episode. By late February 1995, tremor episodes became more intermittent, lasting less than 5 min, and the number of LP events returned to pre-eruption levels (7 events per day). Using a spectral ratio technique, low-frequency oceanic microseismic noise with a predominant peak around 7 s was removed from the broadband seismic signal of tremor and LP events. Stacks of corrected tremor episodes and LP events show that both tremor and LP events contain similar frequency features with major peaks around 1.4 Hz. Frequency analyses of LP events and tremor suggest a shallow extended source with similar radiation pattern characteristics. The distribution of VT events (between 2.5 and 10 km) also points to a shallow source of the tremor and LP events located in the first 2500 m beneath the crater. Under the assumption that the frequency characteristics of the signals are representative of an oscillator we used a fluid-filled-crack model to infer the length of the resonator.

  8. Volcanic hazards at Atitlan volcano, Guatemala

    USGS Publications Warehouse

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  9. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  10. The California Volcano Observatory: Monitoring the state's restless volcanoes

    USGS Publications Warehouse

    Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.

    2014-01-01

    Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.

  11. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  12. Volcano deformation and gravity workshop synopsis and outcomes: The 2008 volcano deformation and temporal gravity change workshop

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  13. The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.

    2007-12-01

    Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the

  14. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  15. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-04

    STS068-273-060 (4 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this follow-up 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, five days earlier, but only a small steam plume was rising from the summit in this Day 5 photo. Tendrils of ash are airborne on the northern flank of the volcano. Scientists feel that the source of these plumes is from a flow down the mountain's northern flank. The entire summit region is covered in ash. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.

  16. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  17. Sheveluch Volcano, Kamchatka, Russia

    NASA Image and Video Library

    2010-04-05

    Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.

  18. Magnetotelluric data in the middle Rio Grande basin, Albuquerque volcanoes, New Mexico

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2002-01-01

    The population in the Albuquerque-Santa Fe region of New Mexico is rapidly growing. The Santa Fe Group aquifer in the Middle Rio Grande Basin is the main source of municipal water for the greater Albuquerque metropolitan area. The capacity of this aquifer is more limited than previously thought (Thorn et al., 1993). The Middle Rio Grande Basin, as defined hydrologically and used here, is the area within the Rio Grande Valley extending from Cochiti Dam downstream to the community of San Acacia (Figure 1). Because approximately 600,000 people (40 percent of the population of New Mexico) live in the study area (Bartolino, 1999), water shortfalls could have serious consequences. Future growth and land management in the region depends on accurate assessment and protection of the region’s groundwater resources. An important issue in defining the ground water resources is a better understanding of the hydrogeology of the Santa Fe Group and the other sedimentary deposits that fill the Rio Grande rift.

  19. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  20. For Kids | Volcano World | Oregon State University

    Science.gov Websites

    Volcanic Gases Volcanic Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Lightning Volcanic Sounds Volcanic Hazards Kids Only! Art Gallery Volcano Games Adventures and Fun Virtual volcano? Check out our games and fun section below! Kids' Volcano Art Gallery Games & Fun Stuff

  1. Volcano art at Hawai`i Volcanoes National Park—A science perspective

    USGS Publications Warehouse

    Gaddis, Ben; Kauahikaua, James P.

    2018-03-26

    Long before landscape photography became common, artists sketched and painted scenes of faraway places for the masses. Throughout the 19th century, scientific expeditions to Hawaiʻi routinely employed artists to depict images for the people back home who had funded the exploration and for those with an interest in the newly discovered lands. In Hawaiʻi, artists portrayed the broad variety of people, plant and animal life, and landscapes, but a feature of singular interest was the volcanoes. Painters of early Hawaiian volcano landscapes created art that formed a cohesive body of work known as the “Volcano School” (Forbes, 1992). Jules Tavernier, Charles Furneaux, and D. Howard Hitchcock were probably the best known artists of this school, and their paintings can be found in galleries around the world. Their dramatic paintings were recognized as fine art but were also strong advertisements for tourists to visit Hawaiʻi. Many of these masterpieces are preserved in the Museum and Archive Collection of Hawaiʻi Volcanoes National Park, and in this report we have taken the opportunity to match the artwork with the approximate date and volcanological context of the scene.

  2. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    NASA Astrophysics Data System (ADS)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo

  3. Eruption of Shiveluch Volcano, Kamchatka Peninsula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 29, 2007, the Shiveluch Volcano on the Russian Federation's Kamchatka Peninsula erupted. According to the Alaska Volcano Observatory the volcano underwent an explosive eruption between 01:50 and 2:30 UTC, sending an ash cloud skyward roughly 9,750 meters (32,000 feet), based on visual estimates. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Aqua satellite took this picture at 02:00 UTC on March 29. The top image shows the volcano and its surroundings. The bottom image shows a close-up view of the volcano at 250 meters per pixel. Satellites often capture images of volcanic ash plumes, but usually as the plumes are blowing away. Plumes have been observed blowing away from Shiveluch before. This image, however, is different. At the time the Aqua satellite passed overhead, the eruption was recent enough (and the air was apparently still enough) that the ash cloud still hovered above the summit. In this image, the bulbous cloud casts its shadow northward over the icy landscape. Volcanic ash eruptions inject particles into Earth's atmosphere. Substantial eruptions of light-reflecting particles can reduce temperatures and even affect atmospheric circulation. Large eruptions impact climate patterns for years. A massive eruption of the Tambora Volcano in Indonesia in 1815, for instance, earned 1816 the nickname 'the year without a summer.' Shiveluch is a stratovolcano--a steep-sloped volcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. One of Kamchatka's largest volcanoes, it sports a summit reaching 3,283 meters (10,771 feet). Shiveluch is also one of the peninsula's most active volcanoes, with an estimated 60 substantial eruptions in the past 10,000 years.

  4. Orographic Flow over an Active Volcano

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.

  5. Nyiragonga Volcano

    NASA Image and Video Library

    2002-02-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue. http://photojournal.jpl.nasa.gov/catalog/PIA03462

  6. Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by the EO-1 Spacecraft: Design and Operational Scenario.

    NASA Astrophysics Data System (ADS)

    Boudreau, K.; Cecava, J. R.; Behar, A.; Davies, A. G.; Tran, D. Q.; Abtahi, A. A.; Pieri, D. C.; Jpl Volcano Sensor Web Team, A

    2007-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors have been incorporated into expendable "Volcano Monitor" capsules to be placed downwind of the Pu'U 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors are collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. If SO2 readings exceed a predetermined threshold, the modem within the Volcano Monitor sends an alert to the Sensor Web, triggering a request for prompt Earth Observing-1 ( EO-1) spacecraft data acquisition. During pre-defined "critical events" as perceived by multiple sensors (which could include both in situ and spaceborne devices), however, the Sensor Web can order the SO2 sensors within the Volcano Monitor to increase their sampling frequency to once per minute (high power "burst mode"). Autonomous control of the sensors' sampling frequency enables the Sensor Web to monitor and respond to rapidly evolving conditions before and during an eruption, and allows near real-time compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1&5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable assistance.

  7. Ice-clad volcanoes

    USGS Publications Warehouse

    Waitt, Richard B.; Edwards, B.R.; Fountain, Andrew G.; Huggel, C.; Carey, Mark; Clague, John J.; Kääb, Andreas

    2015-01-01

    An icy volcano even if called extinct or dormant may be active at depth. Magma creeps up, crystallizes, releases gas. After decades or millennia the pressure from magmatic gas exceeds the resistance of overlying rock and the volcano erupts. Repeated eruptions build a cone that pokes one or two kilometers or more above its surroundings - a point of cool climate supporting glaciers. Ice-clad volcanic peaks ring the northern Pacific and reach south to Chile, New Zealand, and Antarctica. Others punctuate Iceland and Africa (Fig 4.1). To climb is irresistible - if only “because it’s there” in George Mallory’s words. Among the intrepid ascents of icy volcanoes we count Alexander von Humboldt’s attempt on 6270-meter Chimborazo in 1802 and Edward Whymper’s success there 78 years later. By then Cotopaxi steamed to the north.

  8. Space Radar Image of Colombian Volcano

    NASA Image and Video Library

    1999-01-27

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by NASA Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar SIR-C/X-SAR. The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations of Colombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. http://photojournal.jpl.nasa.gov/catalog/PIA01722

  9. Volcanoes: Coming Up from Under.

    ERIC Educational Resources Information Center

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  10. Exploring Geology on the World-Wide Web--Volcanoes and Volcanism.

    ERIC Educational Resources Information Center

    Schimmrich, Steven Henry; Gore, Pamela J. W.

    1996-01-01

    Focuses on sites on the World Wide Web that offer information about volcanoes. Web sites are classified into areas of Global Volcano Information, Volcanoes in Hawaii, Volcanoes in Alaska, Volcanoes in the Cascades, European and Icelandic Volcanoes, Extraterrestrial Volcanism, Volcanic Ash and Weather, and Volcano Resource Directories. Suggestions…

  11. San Cristobal Volcano, Nicaragua

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A white plume of smoke, from San Cristobal Volcano (13.0N, 87.5W) on the western coast of Nicaragua, blows westward along the Nicaraguan coast just south of the Gulf of Fonseca and the Honduran border. San Csistobal is a strato volcano some 1,745 meters high and is frequently active.

  12. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Eyjafjallajökull Volcano Plume Heights     View ... and stereo plume   Iceland's Eyjafjallajökull volcano produced its second major ash plume of 2010 beginning on May 7. Unlike ...

  13. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing

  14. Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-151-179 (28 April-6 May 1991) --- A large format frame of one of the USSR's volcanic complex (Kamchatka area) with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south was observed by the STS-39 crew almost three weeks later. The south side of the volcano is dirty from the ash fall and landslide activity. The summit is clearly visible, as is the debris flow from an earlier eruption. Just north of the Kamchatka River is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.

  15. Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Haddad, Bouchra; Palacios, David; Pastor, Manuel; Zamorano, José Juan

    2016-09-01

    Lahars are among the most catastrophic volcanic processes, and the ability to model them is central to mitigating their effects. Several lahars recently generated by the Popocatépetl volcano (Mexico) moved downstream through the Huiloac Gorge towards the village of Santiago Xalitzintla. The most dangerous was the 2001 lahar, in which the destructive power of the debris flow was maintained throughout the extent of the flow. Identifying the zone of hazard can be based either on numerical or empirical models, but a calibration and validation process is required to ensure hazard map quality. The Geoflow-SPH depth integrated numerical model used in this study to reproduce the 2001 lahar was derived from the velocity-pressure version of the Biot-Zienkiewicz model, and was discretized using the smoothed particle hydrodynamics (SPH) method. The results of the calibrated SPH model were validated by comparing the simulated deposit depth with the field depth measured at 16 cross sections distributed strategically along the gorge channel. Moreover, the dependency of the results on topographic mesh resolution, initial lahar mass shape and dimensions is also investigated. The results indicate that to accurately reproduce the 2001 lahar flow dynamics the channel topography needed to be discretized using a mesh having a minimum 5 m resolution, and an initial lahar mass shape that adopted the source area morphology. Field validation of the calibrated model showed that there was a satisfactory relationship between the simulated and field depths, the error being less than 20% for 11 of the 16 cross sections. This study demonstrates that the Geoflow-SPH model was able to accurately reproduce the lahar path and the extent of the flow, but also reproduced other parameters including flow velocity and deposit depth.

  16. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.

    In this work we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system of themore » detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  17. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE PAGES

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.; ...

    2016-02-16

    In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  18. Observation of cosmic ray hadrons at the top of the Sierra Negra volcano in Mexico with the SciCRT prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Valdés-Galicia, J. F.; Matsubara, Y.

    In this study we report the flux of protons and neutral emission measured at the top of the Sierra Negra volcano at 4600 m.a.s.l. (575 g/cm 2), in Eastern Mexico. As an example of the capability of the mini-SciCR as a cosmic ray detector we present the Forbush decrease recorded on March 7, 2012. These data were obtained with a cosmic ray detector prototype called mini-SciCR that was operating from October 2010 to July 2012. Our main aims were to measure the hadronic component flux of the secondary cosmic ray and to show the appropriate performance of all system ofmore » the detector. To separate the signals of protons from other charged particles we obtained the energy deposition pattern when they cross the detector using a Monte Carlo simulation, and to separate the signals of neutral emission we used an anticoincidence system between the edge bars and the internal bars of the detector. The mini-SciCR is a prototype of a new cosmic ray detector called SciBar Cosmic Ray Telescope (SciCRT) installed in the same place, which is in the process of calibration. The SciCRT will work mainly as a Solar Neutron and Muon Telescope, it is designed to achieve: (1) larger effective area than the current Solar Neutron Telescope, (2) higher energy resolution to determine the energy spectrum of solar neutrons, (3) lower energy threshold, and (4) higher particle identification ability.« less

  19. Monitoring of volcanic emissions for risk assessment at Popocatépetl volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Delgado, Hugo; Campion, Robin; Fickel, Matthias; Cortés Ramos, Jorge; Alvarez Nieves, José Manuel; Taquet, Noemi; Grutter, Michel; Osiris García Gómez, Israel; Darío Sierra Mondragón, Rubén; Meza Hernández, Israel

    2015-04-01

    In January 2014, the Mexican Agency FOPREDEN (Natural Disaster Prevention Fund) accepted to fund a project to renew, upgrade and complement the gas monitoring facilities. The UNAM-CENAPRED (National Center for Disaster Prevention) gas monitoring system currently consists of: • A COSPEC instrument and two mini-DOAS used for mobile traverse measurements • An SO2 camera used for punctual campaign • A network of three permanent scanning mini-DOAS (NOVAC type 1 instrument) and one permanent mini-DOAS (NOVAC type II, currently under repair). The activity planed in the framework of the new project, of which several of them are already successfully implemented, include: • Completely refurbished permanent scanning mini-DOAS network consisting of four stations and the punctual deployment of three RADES (Rapid Deployment System) for assessing plume geometry and chemistry or for responding to emergency situations. • Prolongation of the mobile traverse measurements in order to continuously update the 20 years-long SO2 flux database obtained with the COSPEC, now coupled with a mobile DOAS for redundancy. • The development and installation of a permanent SO2 camera, for monitoring in real time the short timescale variations of the SO2 emissions. • The installation of two permanent FTIR spectrometers, one measuring the plume thermal emissions and the other measuring with the solar occultation geometry, for frequent measurements of molecular ratio between SO2, HCl, HF and SiF4 • The exploitation in near-real time of the satellite imagery (OMI, MODIS and ASTER) available for the volcano. A special attention will be paid to increase the reliability and graphical representation of these data stream in order to facilitate their use for decision-making by the civil protection authority in charge of the volcano.

  20. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  1. Receiver Function Imaging of Crustal and Lithospheric Structure Beneath the Jalisco Block and Western Michoacan, Mexico.

    NASA Astrophysics Data System (ADS)

    Reyes Alfaro, G.; Cruz-Atienza, V. M.; Perez-Campos, X.; Reyes Dávila, G. A.

    2014-12-01

    We used a receiver function technique for imaging western Mexico, a unique area with several active seismic and volcanic zones like the triple junction of Rivera, Cocos and North American plates and the Colima volcano complex (CVC), the most active in Mexico. Clear images of the distribution of the crust and the lithosphere-asthenosphere boundary are obtained using P-to-S receiver functions (RF) from around ~80 broadband stations recorded by the Mapping the Rivera Subduction Zone (MARS), the Colima Volcano Deep Seismic Experiment (CODEX) and a local network (RESCO) that allowed us to considerably increase the teleseismic database used in the project. For imaging, we constructed several 2-D profiles of depth transformed RFs to delineate the seismic discontinuities of the region. Low seismic velocities associated with the Michoacan-Guanajuato and the Mascota-Ayutla-Tapalpa volcanic fields are also observed. Most impressive, a large and well delineated magma body 100 km underneath CVC is recognized along a surely related depression of the moho discontinuity just above it. We bring more tools for a better understanding of the deep processes that ultimately control eruptive behavior in the region.

  2. On the poorly known haplogynae spiders of the genus Ochyrocera Simon (Araneae, Ochyroceratidae) from Mexico: description of two new species with an updated identification key for Mexican species.

    PubMed

    Valdez-Mondragón, Alejandro

    2017-01-26

    Two new species of the spider genus Ochyrocera Simon 1891 are described from Mexico. Ochyrocera jarocha new species was collected under rotten trunks and hollow trunks in a tropical rainforest, in San Martin Volcano, Veracruz, Mexico. Ochyrocera pojoj new species was collected in a mixed forest, under rotten trunks, in La Trinitaria, Chiapas, Mexico, which represents the third species described from the state of Chiapas. With the description of the two new species herein, six species of Ochyrocera are recorded from Mexico. An updated taxonomic identification key and a distribution map to the Mexican species are provided.

  3. The Volcano Adventure Guide

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly

    2005-02-01

    This guide contains vital information for anyone wishing to visit, explore, and photograph active volcanoes safely and enjoyably. Following an introduction that discusses eruption styles of different types of volcanoes and how to prepare for an exploratory trip that avoids volcanic dangers, the book presents guidelines to visiting 42 different volcanoes around the world. It is filled with practical information that includes tour itineraries, maps, transportation details, and warnings of possible non-volcanic dangers. Three appendices direct the reader to a wealth of further volcano resources in a volume that will fascinate amateur enthusiasts and professional volcanologists alike. Rosaly Lopes is a planetary geology and volcanology specialist at the NASA Jet Propulsion Laboratory in California. In addition to her curatorial and research work, she has lectured extensively in England and Brazil and written numerous popular science articles. She received a Latinas in Science Award from the Comision Feminil Mexicana Nacional in 1991 and since 1992, has been a co-organizer of the United Nations/European Space Agency/The Planetary Society yearly conferences on Basic Science for the Benefit of Developing Countries.

  4. Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS (56.0N, 160.5E) is one of several active volcanoes in the CIS and is 15,584 ft. in elevation. Fresh ash fall on the south side of the caldera can be seen as a dirty smudge on the fresh snowfall. Just to the north of the Kamchatka River is Shiveluch, a volcano which had been active a short time previously. There are more than 100 volcanic edifices recognized on Kamchatka, 15 of which are still active.

  5. Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.

  6. Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Prestegaard, Karen L.

    1988-12-01

    Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.

  7. Air Quality in the Puebla-Tlaxcala Airshed in Mexico during April 2009

    NASA Astrophysics Data System (ADS)

    Ruiz Suarez, L. G.; Torres Jardón, R.; Torres Jaramillo, J. A.; Barrera, H.; Castro, T.; Mar Morales, B. E.; García Reynoso, J. A.; Molina, L. T.

    2012-04-01

    East of the Mexico Megacity, is the metropolitan area of Puebla-Tlaxcala which is reproducing the same patterns of urban sprawl as in the Mexico City Metropolitan Area. Is an area of high industrial density, the fragmented urban sprawl boost the use of particular cars in detrimental of public transport use. Emissions inventories reflect this fact; they also show a considerable use of biomass energy in households and small using a set of industries and service business. In April 2009 we carried out a preliminary field campaign in the basin, we deployed three mobile units, one in the north, in a site connecting with the valley of Mexico basin, one in the south where it may connect with the Cuautla-Cuernavaca Airshed and one in a receptor site to the Puebla Metropolitan Area. In addition to the available data from local air quality network within the City of Puebla. Analysis of the 2009 data show a complex flow pattern induced by the Popocateptl and Iztaccihuatl volcanoes to the west and La Malinche volcano to the east. Excess NOx emissions in the urban and industrial core lead to very low ozone levels within but high ozone concentrations are observed in the peri-urban and rural areas, exceeding the Mexican Air Quality Standards. In our presentation we will describe and explain these observations and will describe a field campaign to be carried out in March-April 2012 aiming to better document the air quality in the Puebla-Tlaxcala Airshed. Hybrid observation-model maps for ozone critical levels show the population exposed to exeedences to the official standards. AOT40 maps also show that crops and forests in the region are exposed to unhealthy ozone levels. These results add to those from MILAGRO and CARIEM field campaigns on the regional scale of the air quality issues in central Mexico. A point is made on the need to update the Mexicp Air Quality Standard for ozone.

  8. The chronology of the martian volcanoes

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.; Saunders, R. S.

    1979-01-01

    The volcanoes of Mars have been divided into three groups based on morphology: basaltic shields, domes and composite cones, and highland patera. A fourth group can be added to include the volcano-tectonic depressions. Using crater counts and the absolute chronology of Soderblom, an attempt is made to estimate the history of the volcanoes. Early in the martian history, about 2.5 b.y. ago, all three styles of volcanoes were active at various locations on the surface. At approximately 1.7-1.8 b.y. ago a transition occurred in the style and loci of volcanic construction. Volcanoes of younger age appear to be only of the basaltic shield group and are restricted to the Tharsis region. This same transition was noted by a change in the style of the basaltic shield group. Older shields were small low features, while the younger shields are significantly broader and taller.

  9. Thematic mapper studies of Andean volcanoes

    NASA Technical Reports Server (NTRS)

    Francis, P. W.

    1986-01-01

    The primary objective was to identify all the active volcanoes in the Andean region of Bolivia. Morphological features of the Tata Sabaya volcano, Bolivia, were studied with the thematic mapper. Details include marginal levees on lava and pyroclastic flows, and summit crater structure. Valley glacier moraine deposits, not easily identified on the multispectral band scanner, were also unambiguous, and provide useful marker horizons on large volcanic edifices which were built up in preglacial times but which were active subsequently. With such high resolution imagery, it is not only possible to identify potentially active volcanoes, but also to use standard photogeological interpretation to outline the history of individual volcanoes.

  10. Costa Rica's Chain of laterally collapsed volcanoes.

    NASA Astrophysics Data System (ADS)

    Duarte, E.; Fernandez, E.

    2007-05-01

    From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in

  11. Iceland: Eyjafjallajökull Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Ash from Eyjafjallajökull Volcano, Iceland Stretches over the North Atlantic   ... that occurred in late March 2010, the Eyjafjallajökull Volcano in Iceland began erupting again on April 14, 2010. The resulting ash ...

  12. Unzipping of the volcano arc, Japan

    USGS Publications Warehouse

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  13. Special issue: The changing shapes of active volcanoes: Recent results and advances in volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Newman, Andrew V.

    2006-01-01

    The 18 papers herein report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.

  14. Three active volcanoes in China and their hazards

    NASA Astrophysics Data System (ADS)

    Wei, H.; Sparks, R. S. J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; Zheng, Y.; Pan, Y.

    2003-02-01

    The active volcanoes in China are located in the Changbaishan area, Jingbo Lake, Wudalianchi, Tengchong and Yutian. Several of these volcanoes have historical records of eruption and geochronological evidence of Holocene activity. Tianchi Volcano is a well-preserved Cenozoic polygenetic central volcano, and, due to its recent history of powerful explosive eruptions of felsic magmas, with over 100,000 people living on its flanks is a high-risk volcano. Explosive eruptions at 4000 and 1000 years BP involved plinian and ignimbrite phases. The Millennium eruption (1000 years BP) involved at least 20-30 km 3 of magma and was large enough to have a global impact. There are 14 Cenozoic monogenetic scoria cones and associated lavas with high-K basalt composition in the Wudalianchi volcanic field. The Laoheishan and Huoshaoshan cones and related lavas were formed in 1720-1721 and 1776 AD. There are three Holocene volcanoes, Dayingshan, Maanshan, and Heikongshan, among the 68 Quaternary volcanoes in the Tengchong volcanic province. Three of these volcanoes are identified as active, based on geothermal activity, geophysical evidence for magma, and dating of young volcanic rocks. Future eruptions of these Chinese volcanoes pose a significant threat to hundreds of thousands of people and are likely to cause substantial economic losses.

  15. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  16. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    NASA Astrophysics Data System (ADS)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  17. Volcanoes and the Environment

    NASA Astrophysics Data System (ADS)

    Marti, Edited By Joan; Ernst, Gerald G. J.

    2005-10-01

    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  18. The 2014 eruptions of Pavlof Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Wallace, Kristi; Cameron, Cheryl E.; Schneider, David J.

    2017-12-22

    Pavlof Volcano is one of the most frequently active volcanoes in the Aleutian Island arc, having erupted more than 40 times since observations were first recorded in the early 1800s . The volcano is located on the Alaska Peninsula (lat 55.4173° N, long 161.8937° W), near Izembek National Wildlife Refuge. The towns and villages closest to the volcano are Cold Bay, Nelson Lagoon, Sand Point, and King Cove, which are all within 90 kilometers (km) of the volcano (fig. 1). Pavlof is a symmetrically shaped stratocone that is 2,518 meters (m) high, and has about 2,300 m of relief. The volcano supports a cover of glacial ice and perennial snow roughly 2 to 4 cubic kilometers (km3) in volume, which is mantled by variable amounts of tephra fall, rockfall debris, and pyroclastic-flow deposits produced during historical eruptions. Typical Pavlof eruptions are characterized by moderate amounts of ash emission, lava fountaining, spatter-fed lava flows, explosions, and the accumulation of unstable mounds of spatter on the upper flanks of the volcano. The accumulation and subsequent collapse of spatter piles on the upper flanks of the volcano creates hot granular avalanches, which erode and melt snow and ice, and thereby generate watery debris-flow and hyperconcentrated-flow lahars. Seismic instruments were first installed on Pavlof Volcano in the early 1970s, and since then eruptive episodes have been better characterized and specific processes have been documented with greater certainty. The application of remote sensing techniques, including the use of infrasound data, has also aided the study of more recent eruptions. Although Pavlof Volcano is located in a remote part of Alaska, it is visible from Cold Bay, Sand Point, and Nelson Lagoon, making distal observations of eruptive activity possible, weather permitting. A busy air-travel corridor that is utilized by a numerous transcontinental and regional air carriers passes near Pavlof Volcano. The frequency of air travel

  19. Tree-ring based reconstruction of rockfalls at Cofre de Perote volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Franco-Ramos, Osvaldo; Stoffel, Markus; Vázquez-Selem, Lorenzo

    2017-08-01

    In this study, dendrogeomorphic techniques are employed to analyse the temporal frequency and spatial distribution of rockfalls on a talus slope of La Teta valley, located on the NW slopes of Cofre de Perote volcano at 4000 m above sea level. Based on the interpretation of disturbance signals in growth rings of old-growth Pinus hartwegii Lindl. trees, we identify 100 growth disturbances related with rockfall events dated between 1780 and 2011, with slightly more than half of these events being dated to the last 50 years. The sectors most susceptible to rockfall correspond with the young rock lobes located at the foot of scarps. Roughly three in ten events has been triggered by regional, M > 6 earthquakes, whereas half of the events activity coincides with periods characterized by severe, prolonged summer rainfalls such as the ones occurred in 1995, 1998, 2005 and 2011.

  20. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  1. Volcano warning systems: Chapter 67

    USGS Publications Warehouse

    Gregg, Chris E.; Houghton, Bruce F.; Ewert, John W.

    2015-01-01

    Messages conveying volcano alert level such as Watches and Warnings are designed to provide people with risk information before, during, and after eruptions. Information is communicated to people from volcano observatories and emergency management agencies and from informal sources and social and environmental cues. Any individual or agency can be both a message sender and a recipient and multiple messages received from multiple sources is the norm in a volcanic crisis. Significant challenges to developing effective warning systems for volcanic hazards stem from the great diversity in unrest, eruption, and post-eruption processes and the rapidly advancing digital technologies that people use to seek real-time risk information. Challenges also involve the need to invest resources before unrest to help people develop shared mental models of important risk factors. Two populations of people are the target of volcano notifications–ground- and aviation-based populations, and volcano warning systems must address both distinctly different populations.

  2. Volcano hazards in the Three Sisters region, Oregon

    USGS Publications Warehouse

    Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.

    2001-01-01

    Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the

  3. Volcanoes Distribution in Linear Segmentation of Mariana Arc

    NASA Astrophysics Data System (ADS)

    Andikagumi, H.; Macpherson, C.; McCaffrey, K. J. W.

    2016-12-01

    A new method has been developed to describe better volcanoes distribution pattern within Mariana Arc. A previous study assumed the distribution of volcanoes in the Mariana Arc is described by a small circle distribution which reflects the melting processes in a curved subduction zone. The small circle fit to this dataset used in the study, comprised 12 -mainly subaerial- volcanoes from Smithsonian Institute Global Volcanism Program, was reassessed by us to have a root-mean-square misfit of 2.5 km. The same method applied to a more complete dataset from Baker et al. (2008), consisting 37 subaerial and submarine volcanoes, resulted in an 8.4 km misfit. However, using the Hough Transform method on the larger dataset, lower misfits of great circle segments were achieved (3.1 and 3.0 km) for two possible segments combination. The results indicate that the distribution of volcanoes in the Mariana Arc is better described by a great circle pattern, instead of small circle. Variogram and cross-variogram analysis on volcano spacing and volume shows that there is spatial correlation between volcanoes between 420 and 500 km which corresponds to the maximum segmentation lengths from Hough Transform (320 km). Further analysis of volcano spacing by the coefficient of variation (Cv), shows a tendency toward not-random distribution as the Cv values are closer to zero than one. These distributions are inferred to be associated with the development of normal faults at the back arc as their Cv values also tend towards zero. To analyse whether volcano spacing is random or not, Cv values were simulated using a Monte Carlo method with random input. Only the southernmost segment has allowed us to reject the null hypothesis that volcanoes are randomly spaced at 95% confidence level by 0.007 estimated probability. This result shows infrequent regularity in volcano spacing by chance so that controlling factor in lithospheric scale should be analysed with different approach (not from random

  4. Mobile Response Team Saves Lives in Volcano Crises

    USGS Publications Warehouse

    Ewert, John W.; Miller, C. Dan; Hendley, James W.; Stauffer, Peter H.

    1997-01-01

    The world's only volcano crisis response team, organized and operated by the USGS, can be quickly mobilized to assess and monitor hazards at volcanoes threatening to erupt. Since 1986, the team has responded to more than a dozen volcano crises as part of the Volcano Disaster Assistance Program (VDAP), a cooperative effort with the Office of Foreign Disaster Assistance of the U.S. Agency for International Development. The work of USGS scientists with VDAP has helped save countless lives, and the valuable lessons learned are being used to reduce risks from volcano hazards in the United States.

  5. SO2 camera measurements at Lastarria volcano and Lascar volcano in Chile

    NASA Astrophysics Data System (ADS)

    Lübcke, Peter; Bobrowski, Nicole; Dinger, Florian; Klein, Angelika; Kuhn, Jonas; Platt, Ulrich

    2015-04-01

    The SO2 camera is a remote-sensing technique that measures volcanic SO2 emissions via the strong SO2 absorption structures in the UV using scattered solar radiation as a light source. The 2D-imagery (usually recorded with a frame rate of up to 1 Hz) allows new insights into degassing processes of volcanoes. Besides the large advantage of high frequency sampling the spatial resolution allows to investigate SO2 emissions from individual fumaroles and not only the total SO2 emission flux of a volcano, which is often dominated by the volcanic plume. Here we present SO2 camera measurements that were made during the CCVG workshop in Chile in November 2014. Measurements were performed at Lastarria volcano, a 5700 m high stratovolcano and Lascar volcano, a 5600 m high stratovolcano both in northern Chile on 21 - 22 November, 2014 and on 26 - 27 November, 2014, respectively. At both volcanoes measurements were conducted from a distance of roughly 6-7 km under close to ideal conditions (low solar zenith angle, a very dry and cloudless atmosphere and an only slightly condensed plume). However, determination of absolute SO2 emission rates proves challenging as part of the volcanic plume hovered close to the ground. The volcanic plume therefore is in front of the mountain in our camera images. An SO2 camera system consisting of a UV sensitive CCD and two UV band-pass filters (centered at 315 nm and 330 nm) was used. The two band-pass filters are installed in a rotating wheel and images are taken with both filter sequentially. The instrument used a CCD with 1024 x 1024 pixels and an imaging area of 13.3 mm x 13.3 mm. In combination with the focal length of 32 mm this results in a field-of-view of 25° x 25°. The calibration of the instrument was performed with help of a DOAS instrument that is co-aligned with the SO2 camera. We will present images and SO2 emission rates from both volcanoes. At Lastarria gases are emitted from three different fumarole fields and we will attempt

  6. Lahar hazards at Agua volcano, Guatemala

    USGS Publications Warehouse

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  7. Miocene-Pliocene ice-volcano interactions at monogenetic volcanoes near Hobbs Coast, Marie Byrd Land, Antarctica

    USGS Publications Warehouse

    Wilch, T.I.; McIntosh, W.C.

    2007-01-01

    Ar geochronology of seven eroded monogenetic volcanoes near the Hobbs Coast, Marie Byrd Land, West Antarctica provide proxy records of WAIS paleo-ice-levels in Miocene-Pliocene times. Interpretations, based on lithofacies analysis, indicate whether the volcanoes erupted below, near, or above the level of the ice sheet. Our interpretations differ significantly from previous interpretations as they highlight the abundant evidence for ice-volcano interactions at emergent paleoenvironments but limited evidence of higher-than-present syn-eruptive ice-levels. Evidence for subglacial volcanic paleoenvironments is limited to Kennel Peak, a ~8 Ma volcano where a pillow lava sequence extending 25 m above current ice level overlies an inferred glacial till and unconformity. A major complication in the Hobbs Coast region is that the volcanism occurred on interfluves between regions of fast-flowing ice. Such a setting precludes establishing precise regional paleo-ice-levels although the presence or absence of ice at times of eruptions can be inferred.

  8. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    USGS Publications Warehouse

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.

    2001-01-01

    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Geologic map of Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  10. Santa Maria Volcano, Guatemala

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The eruption of Santa Maria volcano in 1902 was one of the largest eruptions of the 20th century, forming a large crater on the mountain's southwest flank. Since 1922, a lava-dome complex, Santiaguito, has been forming in the 1902 crater. Growth of the dome has produced pyroclastic flows as recently as the 2001-they can be identified in this image. The city of Quezaltenango (approximately 90,000 people in 1989) sits below the 3772 m summit. The volcano is considered dangerous because of the possibility of a dome collapse such as one that occurred in 1929, which killed about 5000 people. A second hazard results from the flow of volcanic debris into rivers south of Santiaguito, which can lead to catastrophic flooding and mud flows. More information on this volcano can be found at web sites maintained by the Smithsonian Institution, Volcano World, and Michigan Tech University. ISS004-ESC-7999 was taken 17 February 2002 from the International Space Station using a digital camera. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Searching and viewing of additional images taken by astronauts and cosmonauts is available at the NASA-JSC Gateway to

  11. Exploring the Llaima Volcano Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Bishop, J. W.; Biryol, C.; Lees, J. M.

    2016-12-01

    The Llaima volcano in Chile is one of the most active volcanos in the Southern Andes, erupting at least 50 times since 1640. To understand the eruption dynamics behind these frequent paroxysms, it is important to identify the depth and extent of the magma chamber beneath the volcano. Furthermore, it is also important to identify structural controls on the magma storage regions and volcanic plumbing system, such as fault and fracture zones. To probe these questions, a dense, 26 station broadband seismic array was deployed around the Llaima volcano for 3 months (January to March, 2015). Additionally, broadband seismic data from 7 stations in the nearby Observatorio Volcanológico de Los Andes del Sur (OVDAS) seismic network was also obtained for this period. Teleseismic receiver functions were calculated from this combined data using an iterative deconvolution technique. Receiver function stacks (both H-K and CCP) yield seismic images of the deep structure beneath the volcano. Initial results depict two low velocity layers at approximately 4km and 12km. Furthermore, Moho calculations are 5-8 km deeper than expected from regional models, but a shallow ( 40 km) region is detected beneath the volcano peak. A large high Vp/Vs ratio anomaly (Vp/Vs > 0.185) is discernable to the east of the main peak of the volcano.

  12. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  13. Penguin Bank: A Loa-Trend Hawaiian Volcano

    NASA Astrophysics Data System (ADS)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  14. Remote sensing of volcanos and volcanic terrains

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.

    1989-01-01

    The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.

  15. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-05

    STS068-155-094 (30 September-11 October 1994) --- (Kliuchevskoi Volcano) The crewmembers used a Linhof large format Earth observation camera to photograph this nadir view of the Kamchatka peninsula's week-old volcano. The eruption and the follow-up environmental activity was photographed from 115 nautical miles above Earth. Six NASA astronauts spent a week and a half aboard the Space Shuttle Endeavour in support of the Space Radar Laboratory 2 (SRL-2) mission.

  16. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    NASA Astrophysics Data System (ADS)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  17. Spreading and collapse of big basaltic volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  18. Multiphase modelling of mud volcanoes

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  19. Efficient inversion of volcano deformation based on finite element models : An application to Kilauea volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Charco, María; González, Pablo J.; Galán del Sastre, Pedro

    2017-04-01

    The Kilauea volcano (Hawaii, USA) is one of the most active volcanoes world-wide and therefore one of the better monitored volcanoes around the world. Its complex system provides a unique opportunity to investigate the dynamics of magma transport and supply. Geodetic techniques, as Interferometric Synthetic Aperture Radar (InSAR) are being extensively used to monitor ground deformation at volcanic areas. The quantitative interpretation of such surface ground deformation measurements using geodetic data requires both, physical modelling to simulate the observed signals and inversion approaches to estimate the magmatic source parameters. Here, we use synthetic aperture radar data from Sentinel-1 radar interferometry satellite mission to image volcano deformation sources during the inflation along Kilauea's Southwest Rift Zone in April-May 2015. We propose a Finite Element Model (FEM) for the calculation of Green functions in a mechanically heterogeneous domain. The key aspect of the methodology lies in applying the reciprocity relationship of the Green functions between the station and the source for efficient numerical inversions. The search for the best-fitting magmatic (point) source(s) is generally conducted for an array of 3-D locations extending below a predefined volume region. However, our approach allows to reduce the total number of Green functions to the number of the observation points by using the, above mentioned, reciprocity relationship. This new methodology is able to accurately represent magmatic processes using physical models capable of simulating volcano deformation in non-uniform material properties distribution domains, which eventually will lead to better description of the status of the volcano.

  20. Klyuchevskaya, Volcano, Kamchatka Peninsula, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-77-010 (28 April 1991) --- The Kamchatka Peninsula, USSR. This oblique view of the eastern margin of the Kamchatka Peninsula shows pack-ice along the coast, which is drifting along with local currents and delineates the circulation patterns. Also visible are the Kamchatka River (left of center), and the volcanic complex with the active volcano Klyuchevskaya (Kloo-chevs'-ska-ya), 15,584 feet in elevation. The last reported eruption of the volcano was on April 8, but an ash and steam plume extending to the south can be seen in this photograph, taken almost three weeks later (April 28). On April 29, the crew observed and photographed the volcano again, and it was no longer visibly active. However, the flanks of the mountain are dirty from the ash fall. Just north of the Kamchatka River (to the left, just off frame) is Shiveluch, a volcano which was active in early April. There are more than 100 volcanic edifices recognized on Kamchatka, with 15 classified as active.

  1. Infrared surveys of Hawaiian volcanoes

    USGS Publications Warehouse

    Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain.Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities.Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected.Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  2. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    ERIC Educational Resources Information Center

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  3. The critical role of volcano monitoring in risk reduction

    USGS Publications Warehouse

    Tilling, R.I.

    2008-01-01

    Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks - ground-based as well space-based - has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions) are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. Helens (Washington, USA) in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines) in 1991. However, even with the ever-improving state-ofthe-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  4. Effects of Volcanoes on the Natural Environment

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.

    2005-01-01

    The primary focus of this project has been on the development of techniques to study the thermal and gas output of volcanoes, and to explore our options for the collection of vegetation and soil data to enable us to assess the impact of this volcanic activity on the environment. We originally selected several volcanoes that have persistent gas emissions and/or magma production. The investigation took an integrated look at the environmental effects of a volcano. Through their persistent activity, basaltic volcanoes such as Kilauea (Hawaii) and Masaya (Nicaragua) contribute significant amounts of sulfur dioxide and other gases to the lower atmosphere. Although primarily local rather than regional in its impact, the continuous nature of these eruptions means that they can have a major impact on the troposphere for years to decades. Since mid-1986, Kilauea has emitted about 2,000 tonnes of sulfur dioxide per day, while between 1995 and 2000 Masaya has emotted about 1,000 to 1,500 tonnes per day (Duffel1 et al., 2001; Delmelle et al., 2002; Sutton and Elias, 2002). These emissions have a significant effect on the local environment. The volcanic smog ("vog" ) that is produced affects the health of local residents, impacts the local ecology via acid rain deposition and the generation of acidic soils, and is a concern to local air traffic due to reduced visibility. Much of the work that was conducted under this NASA project was focused on the development of field validation techniques of volcano degassing and thermal output that could then be correlated with satellite observations. In this way, we strove to develop methods by which not only our study volcanoes, but also volcanoes in general worldwide (Wright and Flynn, 2004; Wright et al., 2004). Thus volcanoes could be routinely monitored for their effects on the environment. The selected volcanoes were: Kilauea (Hawaii; 19.425 N, 155.292 W); Masaya (Nicaragua; 11.984 N, 86.161 W); and Pods (Costa Rica; 10.2OoN, 84.233 W).

  5. Spreading And Collapse Of Big Basaltic Volcanoes

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bonforte, A.; Guglielmino, F.; Peltier, A.; Poland, M. P.

    2015-12-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. Our work aims to investigate the relation between basement setting and volcanic activity and stability at Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These volcanoes, due to their similarities and differences, coupled with

  6. Volcano Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-549, 19 November 2003

    The volcanic plains to the east, southeast, and south of the giant Tharsis volcano, Pavonis Mons, are dotted by dozens of small volcanoes. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 2.1oS, 109.1oW. The elongate depression in the lower left (southwest) quarter of the image is the collapsed vent area for this small, unnamed volcano. A slightly sinuous, leveed channel runs from the depression toward the upper right (north-northeast); this is the trace of a collapsed lava tube. The entire scene has been mantled by dust, such that none of the original volcanic rocks are exposed--except minor occurrences on the steepest slopes in the vent area. The scene is 3 km (1.9 mi) wide and illuminated by sunlight from the left/upper left.

  7. Ubinas Volcano Activity in Peruvian Andes

    NASA Image and Video Library

    2014-05-01

    On April 28, 2014, NASA Terra spacecraft spotted signs of activity at Ubinas volcano in the Peruvian Andes. The appearance of a new lava dome in March 2014 and frequent ash emissions are signs of increasing activity at this volcano.

  8. The Early Oligocene Copperas Creek Volcano and geology along New Mexico Higway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument, Grant and Catron Counties, New Mexico

    USGS Publications Warehouse

    Ratté, James C.; Mack, Greg; Witcher, James; Lueth, Virgil W.

    2008-01-01

    The section of New Mexico Highway 15 between the intersection of NM-15 and NM 35 (aka Sapillo junction) at the south and the Gila Cliff Dwellings National Monument at the north end of NM –15 occupies an approximately 18 mile long, mile wide, corridor through the eastern part of the Gila Wilderness (Fig. 1). Whereas most of the Gila Wilderness is dominated by silicic, caldera-forming supervolcanoes of Eocene to Oligocene age, this part of NM-15 traverses a volcanic terrain of similar age, but composed mainly of intermediate composition lava flows and minor associated rhyolitic intrusions and pyroclastic rocks, which are related to the here-named Copperas Creek volcano. This volcanic complex is bounded by Basin and Range structures: on the south by the Sapillo Creek graben, and on the north by the Gila Hot Springs graben, both of which are filled with Gila Conglomerate of late Tertiary to Pleistocene(?) age. Hot springs in the Gila River valley are localized along faults in the deepest part of the Gila Hot Springs graben. The cliff dwellings of the National Monument were constructed in caves in Gila Conglomerate in the western part of the Gila Hot Springs graben. The eastern edge of the Gila Cliff Dwellings caldera is buried by younger rocks east of the cliff dwellings, but spectacular cliffs of Bloodgood Canyon Tuff, which fills the caldera, can be viewed along the West Fork of the Gila River from the trail starting at the cliff dwellings. Although this is not intended as a formal road log, highway mileage markers (MM) will be used to locate geologic features more or less progressively from south to north along NM-15.

  9. Hazard Assessment for POPOCATÉPETL Volcano Using Hasset: a Probability Event Tree Tool to Evaluate Future Eruptive Scenarios

    NASA Astrophysics Data System (ADS)

    Ferrés, D.; Reyes Pimentel, T. A.; Espinasa-Pereña, R.; Nieto, A.; Sobradelo, R.; Flores, X.; González Huesca, A. E.; Ramirez, A.

    2013-05-01

    Popocatépetl volcano is one of the most active in Latin America. During its last cycle of activity, beginning at the end of 1994, more than 40 episodes of dome construction and destruction have occurred inside the summit crater. Most of these episodes finished with eruptions of VEI 1-2. Eruptions of higher intensity were also registered in 1997, 2001 and 2009, of VEI≥3, which produced eruptive columns up to 8 km high and abundant and frequent ash falls on the villages at the eastern sector of the volcano. The January 22nd 2001 eruption also produced pyroclastic flows that followed several streams on the volcanic cone, reaching 4 to 6 km, and transforming to mudflows with ranges up to 15 km. The capital, Mexico City, is within the radius of 80 km from Popocatépetl volcano and can be affected by ash fall during the first months of the rainy season (May to July). Other important cities, such as Puebla and Atlixco, are located 15 to 30 km from the crater. Several villages of the states of México, Puebla and Morelos, which have a total population of 40,000 people, are inside the radius of 12 to 15 km, where the impacts of any of the products of an eruption, including pyroclastic flows, are possible. This high exposure of people and infrastructure around Popocatépetl volcano emphasizes the need of tools for early warning and the development of preventive actions to protect the population from volcanic phenomena. The diagnosis of the volcanic activity, based on the information provided by the monitoring systems, and the prognosis of the evolution of the volcano in the short-term is made by the Scientific Advisory Committee, formed by volcanologists of the National Autonomous University of Mexico, and by CENAPRED staff. From this prognosis, the alert level for the people is determined and it is spread by the code of the traffic light of volcanic alert. A volcanic event tree was constructed with the advisory of the scientific committee in the recent seismic

  10. A Probabilistic Approach for Real-Time Volcano Surveillance

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Maronno, P.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Gambino, S.; Coltelli, M.

    2016-12-01

    Continuous evaluation of the state of potentially dangerous volcanos plays a key role for civil protection purposes. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the coupling of highly non-linear and complex volcanic dynamic processes leads to measurable effects that can show a large variety of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, the volcano state needs to be expressed in probabilistic terms, thus making the fast volcano state assessment sometimes impracticable for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, we present a probabilistic graphical model to estimate automatically the ongoing volcano state from all the available different kind of measurements. The model consists of a Bayesian network able to represent a set of variables and their conditional dependencies via a directed acyclic graph. The model variables are both the measurements and the possible states of the volcano through the time. The model output is an estimation of the probability distribution of the feasible volcano states. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision making purposes.

  11. Lahar hazards at Mombacho Volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  12. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    USGS Publications Warehouse

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  13. Volcano Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    When the violent energy of a volcano is unleashed, the results are often catastrophic. The risks to life, property, and infrastructure from volcanoes are escalating as more and more people live, work, play, and travel in volcanic regions. Since 1980, 45 eruptions and 15 cases of notable volcanic unrest have occurred at 33 U.S. volcanoes. Lava flows, debris avalanches, and explosive blasts have invaded communities, swept people to their deaths, choked major riverways, destroyed bridges, and devastated huge tracts of forest. Noxious volcanic gas emissions have caused widespread lung problems. Airborne ash clouds have disrupted the health, lives, and businesses of hundreds of thousands of people; caused millions of dollars of aircraft damage; and nearly brought down passenger flights.

  14. Eruption history of the Tharsis shield volcanoes, Mars

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1993-01-01

    The Tharsis Montes volcanoes and Olympus Mons are giant shield volcanoes. Although estimates of their average surface age have been made using crater counts, the length of time required to build the shields has not been considered. Crater counts for the volcanoes indicate the constructs are young; average ages are Amazonian to Hesperian. In relative terms; Arsia Mons is the oldest, Pavonis Mons intermediate, and Ascreaus Mons the youngest of the Tharsis Montes shield; Olympus Mons is the youngest of the group. Depending upon the calibration, absolute ages range from 730 Ma to 3100 Ma for Arsia Mons and 25 Ma to 100 Ma for Olympus Mons. These absolute chronologies are highly model dependent, and indicate only the time surficial volcanism ceased, not the time over which the volcano was built. The problem of estimating the time necessary to build the volcanoes can be attacked in two ways. First, eruption rates from terrestrial and extraterrestrial examples can be used to calculate the required period of time to build the shields. Second, some relation of eruptive activity between the volcanoes can be assumed, such as they all began at a speficic time or they were active sequentially, and calculate the eruptive rate. Volumes of the shield volcanoes were derived from topographic/volume data.

  15. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  16. How Do Volcanoes Affect Human Life? Integrated Unit.

    ERIC Educational Resources Information Center

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  17. The Powell Volcano Remote Sensing Working Group Overview

    NASA Astrophysics Data System (ADS)

    Reath, K.; Pritchard, M. E.; Poland, M. P.; Wessels, R. L.; Biggs, J.; Carn, S. A.; Griswold, J. P.; Ogburn, S. E.; Wright, R.; Lundgren, P.; Andrews, B. J.; Wauthier, C.; Lopez, T.; Vaughan, R. G.; Rumpf, M. E.; Webley, P. W.; Loughlin, S.; Meyer, F. J.; Pavolonis, M. J.

    2017-12-01

    Hazards from volcanic eruptions pose risks to the lives and livelihood of local populations, with potential global impacts to businesses, agriculture, and air travel. The 2015 Global Assessment of Risk report notes that 800 million people are estimated to live within 100 km of 1400 subaerial volcanoes identified as having eruption potential. However, only 55% of these volcanoes have any type of ground-based monitoring. The only methods currently available to monitor these unmonitored volcanoes are space-based systems that provide a global view. However, with the explosion of data techniques and sensors currently available, taking full advantage of these resources can be challenging. The USGS Powell Center Volcano Remote Sensing Working Group is working with many partners to optimize satellite resources for global detection of volcanic unrest and assessment of potential eruption hazards. In this presentation we will describe our efforts to: 1) work with space agencies to target acquisitions from the international constellation of satellites to collect the right types of data at volcanoes with forecasting potential; 2) collaborate with the scientific community to develop databases of remotely acquired observations of volcanic thermal, degassing, and deformation signals to facilitate change detection and assess how these changes are (or are not) related to eruption; and 3) improve usage of satellite observations by end users at volcano observatories that report to their respective governments. Currently, the group has developed time series plots for 48 Latin American volcanoes that incorporate variations in thermal, degassing, and deformation readings over time. These are compared against eruption timing and ground-based data provided by the Smithsonian Institute Global Volcanism Program. Distinct patterns in unrest and eruption are observed at different volcanoes, illustrating the difficulty in developing generalizations, but highlighting the power of remote sensing

  18. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    San Salvador volcano is one of many volcanoes along the volcanic arc in El Salvador (figure 1). This volcano, having a volume of about 110 cubic kilometers, towers above San Salvador, the country’s capital and largest city. The city has a population of approximately 2 million, and a population density of about 2100 people per square kilometer. The city of San Salvador and other communities have gradually encroached onto the lower flanks of the volcano, increasing the risk that even small events may have serious societal consequences. San Salvador volcano has not erupted for more than 80 years, but it has a long history of repeated, and sometimes violent, eruptions. The volcano is composed of remnants of multiple eruptive centers, and these remnants are commonly referred to by several names. The central part of the volcano, which contains a large circular crater, is known as El Boquerón, and it rises to an altitude of about 1890 meters. El Picacho, the prominent peak of highest elevation (1960 meters altitude) to the northeast of the crater, and El Jabali, the peak to the northwest of the crater, represent remnants of an older, larger edifice. The volcano has erupted several times during the past 70,000 years from vents central to the volcano as well as from smaller vents and fissures on its flanks [1] (numerals in brackets refer to end notes in the report). In addition, several small cinder cones and explosion craters are located within 10 kilometers of the volcano. Since about 1200 A.D., eruptions have occurred almost exclusively along, or a few kilometers beyond, the northwest flank of the volcano, and have consisted primarily of small explosions and emplacement of lava flows. However, San Salvador volcano has erupted violently and explosively in the past, even as recently as 800 years ago. When such eruptions occur again, substantial population and infrastructure will be at risk. Volcanic eruptions are not the only events that present a risk to local

  19. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  20. Small-scale volcanoes on Mars: distribution and types

    NASA Astrophysics Data System (ADS)

    Broz, Petr; Hauber, Ernst

    2015-04-01

    Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (volcano size might be expected. Martian small-scale volcanoes were not intensely studied for a long time due to a lack of high-resolution data enabling their proper identification; however their existence and basic characteristics were predicted on theoretical grounds. Streams of new high-resolution images now enable discovering and studying kilometer-size volcanoes with various shapes in unprecedented detail. Several types of small-scale volcanoes in various regions on Mars were recently described. Scoria cones provide a record of magmatic volatile content and have been identified in Tharsis (Ulysses Colles), on flanks of large volcanoes (e.g., Pavonis Mons), in the caldera of Ulysses Patera, in chaotic terrains or other large depressions (Hydraotes Colles, Coprates Chasma) and in the northern lowlands. Tuff rings and tuff cones, formed as a result of water-magma interaction, seem to be relatively rare on Mars and were only tentatively identified in three locations (Nepenthes/Amenthes region, Arena Colles and inside Lederberg crater), and alternative interpretations (mud volcanoes) seem possible. Other relatively rare volcanoes seem to be lava domes, reported only from two regions (Acracida Planitia and Terra Sirenum). On the other hand, small shields and rootless cones (which are not primary volcanic landforms) represent widely spread phenomena recognized in Tharsis and Elysium. Based on these new observations, the distribution of small volcanoes on Mars seems to be much more widespread than anticipated a decade

  1. Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): Insights into pre-failure conditions and climate influence

    NASA Astrophysics Data System (ADS)

    Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G.

    2011-10-01

    Throughout its history, Colima Volcano has experienced numerous partial edifice collapses with associated emplacement of debris avalanche deposits of contrasting volume, morphology and texture. A detailed stratigraphic study in the south-eastern sector of the volcano allowed the recognition of two debris avalanche deposits, named San Marcos (> 28,000 cal yr BP, V = ~ 1.3 km 3) and Tonila (15,000-16,000 cal yr BP, V = ~ 1 km 3 ). This work sheds light on the pre-failure conditions of the volcano based primarily on a detailed textural study of debris avalanche deposits and their associated pyroclastic and volcaniclastic successions. Furthermore, we show how the climate at the time of the Tonila collapse influenced the failure mechanisms. The > 28,000 cal yr BP San Marcos collapse was promoted by edifice steep flanks and ongoing tectonic and volcanotectonic deformation, and was followed by a magmatic eruption that emplaced pyroclastic flow deposits. In contrast, the Tonila failure occurred just after the Last Glacial Maximum (22,000-18,000 cal BP) and, in addition to the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) it shows a hybrid facies characterized by debris avalanche blocks embedded in a finer, homogenous and partially cemented matrix, a texture more characteristic of debris flow deposits. The Tonila debris avalanche is directly overlain by a 7-m thick hydromagmatic pyroclastic succession. Massive debris flow deposits, often more than 10 m thick and containing large amounts of tree trunk logs, represent the top unit in the succession. Fluvial deposits also occur throughout all successions; these represent periods of highly localized stream reworking. All these lines of evidence point to the presence of water in the edifice prior to the Tonila failure, suggesting it may have been a weakening factor. The Tonila failure appears to represent an anomalous event related to the particular climatic

  2. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    NASA Astrophysics Data System (ADS)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  3. A Reassessment of the Seismicity Related to the 1998-1999 Eruption of Colima Volcano, Western Mexico.

    NASA Astrophysics Data System (ADS)

    Zamora-Camacho, A.; Nuñez-Cornu, F. J.; Espindola, J. M.

    2014-12-01

    The 1998-1999 activity of Colima volcano (19.514°N, 103.62°W, 3850 m a.s.l.) consisted of a climactic episode on 20 November, 1998. On this date, a dome formed on the small summit crater during the previous few days, collapsed generating block-and-ash flows. The event was preceded by almost twelve months of seismic activity, which continued afterwards for several more months. In a previous work (Zamora-Camacho et al., 2007; Pure Appl. Geophys. 164, 39-52) we analyzed the seismic activity occurred from 20 March, 1998 to 31 March, 1999. However the seismicity related to the activity did not dwindled down to pre-eruptive levels until January 2000. In this work we present the results of our analysis of the period March-December 1999, which completes the sequence of events related to the eruption. This analysis is of importance because constitutes the most complete study of the seismicity of an eruptive period of Colima volcano, in the sense that we determined most of the events recorded by the seismic net (RESCO) and located all of those that were amenable to location. The whole period of seismic activity consisted of more than 11,000 events of which 1156 belonging to the period March-December 1999 were located. Of this group 1082 have magnitude (Mc) between 1 and 3.5 and depths mostly in the 0-10 km range.

  4. Lahar Hazards at Concepción volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.

    2001-01-01

    Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.

  5. Interdisciplinary studies of eruption at Chaiten Volcano, Chile

    Treesearch

    John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli

    2010-01-01

    There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...

  6. Chikurachki Volcano

    Atmospheric Science Data Center

    2013-04-16

    ... southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano ...

  7. Nyiragonga Volcano

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the

  8. Geology of kilauea volcano

    USGS Publications Warehouse

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  9. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  10. Geology and structure of the Malpaso caldera and El Ocote ignimbrite, Aguascalientes, Mexico

    NASA Astrophysics Data System (ADS)

    Nieto-Obregón, Jorge; Aguirre-Díaz, Gerardo

    2008-10-01

    A new caldera, named Malpaso, is reported west of the city of Aguascalientes, Mexico. The Malpaso caldera is a volcano-tectonic depression, highly fractured and faulted, and was filled by voluminous pyroclastic products related to the caldera collapse. Due to these characteristics it as a graben caldera. It is truncated by younger normal faults of the Calvillo and Aguascalientes grabens. In this work we present a summary of the geologic and structural observations on this caldera, as well as a description of the main caldera product, the high-grade El Ocote ignimbrite.

  11. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.

  12. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  13. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  14. Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.

    2016-12-01

    It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the

  15. Studies of volcanoes of Alaska by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Z.; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite

  16. NASA Satellite Images Erupting Russian Volcano

    NASA Image and Video Library

    2017-08-22

    Klyuchevskoi, one of the world's most active volcanoes, is seen poking through above a solid cloud deck, with an ash plume streaming to the west. Located on the Kamchatka Peninsula in far eastern Russia, it is one of many active volcanoes on the Peninsula. Nearby, to the south, the smaller Bezymianny volcano can be seem with a small steam plume coming from its summit. The image was acquired Aug. 20, 2017, covers an area of 12 by 14 miles (19.5 by 22.7 kilometers), and is located at 56.1 degrees north, 160.6 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21878

  17. "Curso de Vulcanología General": Web-education efforts on volcanic hazards for the Latin American region from Mexico.

    NASA Astrophysics Data System (ADS)

    Delgado, Hugo

    2016-04-01

    Education of volcanic hazards is a never-ending task in countries where volcanoes erupt very frequently as they do in the Latin American region (LAR). Eleven countries in the LAR have active volcanoes within their territories and some volcanoes are located in between countries so the volcanic hazards associated to the eruption of those volcanoes affect more than one country. Besides, countries without volcanoes within their territory (i. e. Belize, Honduras or Brazil) can be impacted as well. Personnel working at several volcano observatories in the LAR need training in Volcanology and, more importantly, in Volcanic Hazards. Unfortunately, Volcanology is a discipline that is not taught at universities of some countries. Even worse, Earth Sciences are not even taught at high education centers in some countries of the LAR. Thus, there is an important need for the acquisition of volcanological knowledge by the personnel working at volcano observatories but there are no possibilities for them to study at their countries or they are impended for travel abroad for training. The international course: "Curso de Vulcanología General" taught from Mexico City at the Universidad Nacional Autónoma de México (UNAM) has been successfully implemented and has been active over the last five years. Nearly 700 students have participated in this course although only ~150 have been awarded the certificate UNAM grants to the students who have concluded the course successfully. This course has been sponsored by UNAM, ALVO (Latin American Volcanological Association) and IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior). More than 50 lecturers from LAR, Europe and US have been involved in these courses. Here, Reflections on the course, the opportunities sparkled, the educational tools, benefits, statistics and virtues of the course are presented.

  18. The First Historical Eruption of Kambalny Volcano in 2017 .

    NASA Astrophysics Data System (ADS)

    Gordeev, E.

    2017-12-01

    The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.

  19. Flux rates and sulfur isotopic composition of pore fluids from three mud volcanoes in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Ruppel, C. D.; Dickens, G. R.; Berg, P.; Macko, S. A.

    2010-12-01

    Chloride and sulfate pore water analyses were performed on a total of 29 piston and gravity cores collected along center to flank transects across 3 mud volcanoes, which were located on the Louisiana continental slope in Garden Banks (GB425), Green Canyon (CG185), and Mississippi Canyon (MC852). All three sites are known areas of oil and gas discharge. In addition, seepage at GC185 and GB425 supports highly developed chemosynthetic communities, whereas no known communities have been observed at MC852. Comparison of pore water chemistry (sulfur concentrations and sulfur isotope compositions) among these 3 sites provides initial insight about fluid migration processes and advection rates and about the connection between fluid flux and the establishment of chemosynthetic communities. Pore water advection velocities were calculated from chloride profiles using a steady-state one dimensional advection-diffusion model. In general, chloride concentrations increased with depth to more than four times seawater concentrations. Incidences of pore water freshening are likely associated with hydrate dissociation. Chloride profiles show characteristic concave-up shapes at the center of each mud volcano and concave-down shapes along the flanks, a pattern that we previously interpreted and modeled (doi:10.1029/2004GL021909; doi:10.1111/j.1468-8123.2007.00191.x) in terms of seawater recharge-discharge. The depth of the sulfate-methane interface (SMI) shoals toward the center of the mud volcanoes, indicating potentially rapid anaerobic methane oxidation in these areas. Where the SMI is shallow, pore water sulfide S-isotope values are correspondingly elevated (~ +10 ‰) relative to seawater sulfate (δ34S = +21‰) and presumably represent near-quantitative reduction of pore water sulfate at GB425 and MC852. There is no such pattern at GC185. Such differences potentially reflect advection rates, the ages of the fluids, timing of fluid efflux, and differences in their chemistry.

  20. Three Short Videos by the Yellowstone Volcano Observatory

    USGS Publications Warehouse

    Wessells, Stephen; Lowenstern, Jake; Venezky, Dina

    2009-01-01

    This is a collection of videos of unscripted interviews with Jake Lowenstern, who is the Scientist in Charge of the Yellowstone Volcano Observatory (YVO). YVO was created as a partnership among the U.S. Geological Survey (USGS), Yellowstone National Park, and University of Utah to strengthen the long-term monitoring of volcanic and earthquake unrest in the Yellowstone National Park region. Yellowstone is the site of the largest and most diverse collection of natural thermal features in the world and the first National Park. YVO is one of the five USGS Volcano Observatories that monitor volcanoes within the United States for science and public safety. These video presentations give insights about many topics of interest about this area. Title: Yes! Yellowstone is a Volcano An unscripted interview, January 2009, 7:00 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic features at Yellowstone: 'How do we know Yellowstone is a volcano?', 'What is a Supervolcano?', 'What is a Caldera?','Why are there geysers at Yellowstone?', and 'What are the other geologic hazards in Yellowstone?' Title: Yellowstone Volcano Observatory An unscripted interview, January 2009, 7:15 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions about the Yellowstone Volcano Observatory: 'What is YVO?', 'How do you monitor volcanic activity at Yellowstone?', 'How are satellites used to study deformation?', 'Do you monitor geysers or any other aspect of the Park?', 'Are earthquakes and ground deformation common at Yellowstone?', 'Why is YVO a relatively small group?', and 'Where can I get more information?' Title: Yellowstone Eruptions An unscripted interview, January 2009, 6.45 Minutes Description: USGS Scientist-in-Charge of Yellowstone Volcano Observatory, Jake Lowenstern, answers the following questions to explain volcanic

  1. Morphological classification and spatial distribution of Philippine volcanoes

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Kervyn, M.; Grosse, P.

    2016-12-01

    The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of

  2. Gravity Survey at the Ceboruco Volcano Area (Nayarit, Mexico): a 3-D Model of the Subsurface Structure

    NASA Astrophysics Data System (ADS)

    Fernandez-Cordoba, Jhonattan; Zamora-Camacho, Araceli; Espindola, Juan Manuel

    2017-10-01

    Ceboruco volcano (-104°30', 21°7', 2150 m asl) is located in the western portion of the trans-Mexican volcanic belt and NW extreme of the Tepic-Zacoalco rift zone, a structure composed of a series of NNW-trending en echelon fault-bounded basins constituting the NE boundary between the north-American plate and the Jalisco block (JB). Ceboruco experimented a Plinian eruption about 1000 years ago and several more of different styles afterward; the last one in 1870 CE. This volcano poses a significant risk because of the relatively large population in its surroundings. Ceboruco has been studied by mostly from the point of view of petrology, geochemistry, and physical volcanology; however, no geophysical studies about its internal structure have been published. In this paper, we present the results of a gravimetric survey carried out in its surroundings and a model of the internal structure obtained from inversion of the data. The Ceboruco area is characterized by a negative Bouguer anomaly spanning the volcanic structure. The probable causative body modeled with the data of the survey is located about 1 km below mean sea level and has a volume of 163 km3. We propose that this body is the magma chamber from where the products of its eruptions in the last 1000 years ensued.

  3. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  4. Iridium emissions from Hawaiian volcanoes

    NASA Technical Reports Server (NTRS)

    Finnegan, D. L.; Zoller, W. H.; Miller, T. M.

    1988-01-01

    Particle and gas samples were collected at Mauna Loa volcano during and after its eruption in March and April, 1984 and at Kilauea volcano in 1983, 1984, and 1985 during various phases of its ongoing activity. In the last two Kilauea sampling missions, samples were collected during eruptive activity. The samples were collected using a filterpack system consisting of a Teflon particle filter followed by a series of 4 base-treated Whatman filters. The samples were analyzed by INAA for over 40 elements. As previously reported in the literature, Ir was first detected on particle filters at the Mauna Loa Observatory and later from non-erupting high temperature vents at Kilauea. Since that time Ir was found in samples collected at Kilauea and Mauna Loa during fountaining activity as well as after eruptive activity. Enrichment factors for Ir in the volcanic fumes range from 10,000 to 100,000 relative to BHVO. Charcoal impregnated filters following a particle filter were collected to see if a significant amount of the Ir was in the gas phase during sample collection. Iridium was found on charcoal filters collected close to the vent, no Ir was found on the charcoal filters. This indicates that all of the Ir is in particulate form very soon after its release. Ratios of Ir to F and Cl were calculated for the samples from Mauna Loa and Kilauea collected during fountaining activity. The implications for the KT Ir anomaly are still unclear though as Ir was not found at volcanoes other than those at Hawaii. Further investigations are needed at other volcanoes to ascertain if basaltic volcanoes other than hot spots have Ir enrichments in their fumes.

  5. Darwin's triggering mechanism of volcano eruptions

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  6. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  7. Receiver Function Analyses of Uturuncu Volcano, Bolivia and Lastarria/Cordon Del Azufre Volcanoes, Chile

    NASA Astrophysics Data System (ADS)

    Mcfarlin, H. L.; Christensen, D. H.; Thompson, G.; McNutt, S. R.; Ryan, J. C.; Ward, K. M.; Zandt, G.; West, M. E.

    2014-12-01

    Uturuncu Volcano and a zone between Lastarria and Cordon del Azufre Volcanoes (also calledLazufre), have seen much attention lately because of significant and rapid inflation of one to twocentimeters per year over large areas. Uturuncu is located near the Bolivian-Chilean border, andLazufre is located near the Chilean-Argentine border. The PLUTONS Project deployed 28broadband seismic stations around Uturuncu Volcano, from April 2009 to Octobor 2012, and alsodeployed 9 stations around Lastarria and Cordon del Azufre volcanoes, from November, 2011 toApril 2013. Teleseismic receiver functions were generated using the time-domain iterativedeconvolution algorithm of Ligorria and Ammon (1999) for each volcanic area. These receiverfunctions were used to better constrain the depths of magma bodies under Uturuncu and Lazufre,as well as the ultra low velocity layer within the Altiplano-Puna Magma Body (APMB). Thelow velocity zone under Uturuncu is shown to have a top around 10 km depth b.s.l and isgenerally around 20 km thick with regional variations. Tomographic inversion shows a well resolved,near vertical, high Vp/Vs anomaly directly beneath Uturuncu that correlates well with adisruption in the receiver function results; which is inferred to be a magmatic intrusion causing alocal thickening of the APMB. Preliminary results at Lazufre show the top of a low velocityzone around 5-10 km b.s.l with a thickness of 15-30 km.

  8. Sulfur volcanoes on Io?

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Fink, J. H.

    1984-07-01

    The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.

  9. Sulfur volcanoes on Io?

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J. H.

    1984-01-01

    The unusual rheological properties of sulfur are discussed in order to determine the distinctive volcanic flow morphologies which indicate the presence of sulfur volcanoes on the Saturnian satellite Io. An analysis of high resolution Voyager imagery reveals three features which are considered to be possible sulfur volcanoes: Atar Patera, Daedalus Patera, and Kibero Patera. All three features are distinguished by circular-to-oval central masses surrounded by irregular widespread flows. The central zones of the features are interpreted to be domes formed of high temperature sulfur. To confirm the interpretations of the satellite data, molten sulfur was extruded in the laboratory at a temperature of 210 C on a flat surface sloping 0.5 deg to the left. At this temperature, the sulfur formed a viscous domelike mass over the event. As parts of the mass cooled to 170 C the viscosity decreased to a runny stage, forming breakout flows. It is concluded that a case can be made for sulfur volcanoes on Io sufficient to warrant further study, and it is recommended that the upcoming Galileo mission examine these phenomena.

  10. Modeling volcano growth on the Island of Hawaii: deep-water perspectives

    USGS Publications Warehouse

    Lipman, Peter W.; Calvert, Andrew T.

    2013-01-01

    Recent ocean-bottom geophysical surveys, dredging, and dives, which complement surface data and scientific drilling at the Island of Hawaii, document that evolutionary stages during volcano growth are more diverse than previously described. Based on combining available composition, isotopic age, and geologically constrained volume data for each of the component volcanoes, this overview provides the first integrated models for overall growth of any Hawaiian island. In contrast to prior morphologic models for volcano evolution (preshield, shield, postshield), growth increasingly can be tracked by age and volume (magma supply), defining waxing alkalic, sustained tholeiitic, and waning alkalic stages. Data and estimates for individual volcanoes are used to model changing magma supply during successive compositional stages, to place limits on volcano life spans, and to interpret composite assembly of the island. Volcano volumes vary by an order of magnitude; peak magma supply also varies sizably among edifices but is challenging to quantify because of uncertainty about volcano life spans. Three alternative models are compared: (1) near-constant volcano propagation, (2) near-equal volcano durations, (3) high peak-tholeiite magma supply. These models define inconsistencies with prior geodynamic models, indicate that composite growth at Hawaii peaked ca. 800–400 ka, and demonstrate a lower current rate. Recent age determinations for Kilauea and Kohala define a volcano propagation rate of 8.6 cm/yr that yields plausible inception ages for other volcanoes of the Kea trend. In contrast, a similar propagation rate for the less-constrained Loa trend would require inception of Loihi Seamount in the future and ages that become implausibly large for the older volcanoes. An alternative rate of 10.6 cm/yr for Loa-trend volcanoes is reasonably consistent with ages and volcano spacing, but younger Loa volcanoes are offset from the Kea trend in age-distance plots. Variable magma flux

  11. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  12. Eruptions of Hawaiian volcanoes - Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.

    2010-01-01

    Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally

  13. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  14. NASA Spacecraft Captures Fury of Russian Volcano

    NASA Image and Video Library

    2011-01-27

    This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.

  15. Eruption of Alaska volcano breaks historic pattern

    USGS Publications Warehouse

    Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.

    2009-01-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  16. Eruption of Alaska Volcano Breaks Historic Pattern

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica; Neal, Christina; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick

    2009-05-01

    In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (˜2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud “thunder,” lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.

  17. Geology of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, R.B.; Trusdell, F.A.

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less

  18. Assessing landslide susceptibility, hazards and sediment yield in the Río El Estado watershed, Pico de Orizaba volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Lugo Hubp, J.; Aceves Quesada, J. F.

    2014-12-01

    This work provides an overview of the on-going research project (Grant SEP-CONACYT # 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, analyze the distribution of landslides, and characterize landforms that are prone to slope instability by using Geographic Information Systems (GIS). The study area is the Río El Estado watershed that covers 5.2 km2 and lies on the southwestern flank of Pico de Orizaba volcano.The watershed was studied by using aerial photographs, fieldwork, and adaptation of the Landslide Hazard Zonation Protocol of the Washington State Department of Natural Resources, USA. 107 gravitational slope failures of six types were recognized: shallow landslides, debris-avalanches, deep-seated landslides, debris flows, earthflows, and rock falls. This analysis divided the watershed into 12 mass-wasting landforms on which gravitational processes occur: inner gorges, headwalls, active scarps of deep-seated landslides, meanders, plains, rockfalls, non-rule-identified inner gorges, non-rule-identified headwalls, non-rule-identified converging hillslopes and three types of hillslopes classified by their gradient: low, moderate, and high. For each landform the landslide area rate and the landslide frequency rate were calculated as well as the overall hazard rating. The slope-stability hazard rating has a range that goes from low to very high. The overall hazard rating for this watershed was very high. The shallow slide type landslide was selected and area and volume of individual landslides were retrieved from the watershed landslide inventory geo-database, to establish an empirical relationship between area and volume that takes the form of a power law. The relationship was used to estimate the total volume of landslides in the study area. The findings are important to understand the long-term evolution of the southwestern flank stream system of Pico de

  19. Iceland: Grímsvötn Volcano

    Atmospheric Science Data Center

    2013-04-17

    article title:  Grímsvötn Volcano Injects Ash into the Stratosphere     ... p.m. local time (1730 UTC) on Saturday, May 21, 2011. The volcano, located approximately 140 miles (220 kilometers) east of the capital ...

  20. The Anatahan volcano-monitoring system

    NASA Astrophysics Data System (ADS)

    Marso, J. N.; Lockhart, A. B.; White, R. A.; Koyanagi, S. K.; Trusdell, F. A.; Camacho, J. T.; Chong, R.

    2003-12-01

    A real-time 24/7 Anatahan volcano-monitoring and eruption detection system is now operational. There had been no real-time seismic monitoring on Anatahan during the May 10, 2003 eruption because the single telemetered seismic station on Anatahan Island had failed. On May 25, staff from the Emergency Management Office (EMO) of the Commonwealth of the Northern Mariana Islands and the U. S. Geological Survey (USGS) established a replacement telemetered seismic station on Anatahan whose data were recorded on a drum recorder at the EMO on Saipan, 130 km to the south by June 5. In late June EMO and USGS staff installed a Glowworm seismic data acquisition system (Marso et al, 2003) at EMO and hardened the Anatahan telemetry links. The Glowworm system collects the telemetered seismic data from Anatahan and Saipan, places graphical display products on a webpage, and exports the seismic waveform data in real time to Glowworm systems at Hawaii Volcano Observatory and Cascades Volcano Observatory (CVO). In early July, a back-up telemetered seismic station was placed on Sarigan Island 40 km north of Anatahan, transmitting directly to the EMO on Saipan. Because there is currently no population on the island, at this time the principal hazard presented by Anatahan volcano would be air traffic disruption caused by possible erupted ash. The aircraft/ash hazard requires a monitoring program that focuses on eruption detection. The USGS currently provides 24/7 monitoring of Anatahan with a rotational seismic duty officer who carries a Pocket PC-cell phone combination that receives SMS text messages from the CVO Glowworm system when it detects large seismic signals. Upon receiving an SMS text message notification from the CVO Glowworm, the seismic duty officer can use the Pocket PC - cell phone to view a graphic of the seismic traces on the EMO Glowworm's webpage to determine if the seismic signal is eruption related. There have been no further eruptions since the monitoring system was

  1. Hawaii Volcano Observatory 75th anniversary

    USGS Publications Warehouse

    Wright, Thomas L.; Decker, Robert W.

    1988-01-01

    The 75th anniversary of the founding of the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) was celebrated in January 1987. The festivities began on January 9 with the opening in Hilo of a major exhibit at the Wailoa Center on the current work of HVO, its history, and its special relationship to Hawaii Volcanoes National Park.

  2. Iceland's Grímsvötn volcano erupts

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-05-01

    About 13 months after Iceland's Eyjafjallajökull volcano began erupting on 14 April 2010, which led to extensive air traffic closures over Europe, Grímsvötn volcano in southeastern took its turn. Iceland's most active volcano, which last erupted in 2004 and lies largely beneath the Vatnajökull ice cap, began its eruption activity on 21 May, with the ash plume initially reaching about 20 kilometers in altitude, according to the Icelandic Meteorological Office. Volcanic ash from Grímsvötn has cancelled hundreds of airplane flights and prompted U.S. president Barack Obama to cut short his visit to Ireland. As Eos went to press, activity at the volcano was beginning to subside.

  3. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  4. Volcano Monitoring in Ecuador: Three Decades of Continuous Progress of the Instituto Geofisico - Escuela Politecnica Nacional

    NASA Astrophysics Data System (ADS)

    Ruiz, M. C.; Yepes, H. A.; Hall, M. L.; Mothes, P. A.; Ramon, P.; Hidalgo, S.; Andrade, D.; Vallejo Vargas, S.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Palacios, P.; Alvarado, A. P.; Enriquez, W.; Vasconez, F.; Vaca, M.; Arrais, S.; Viracucha, G.; Bernard, B.

    2014-12-01

    In 1988, the Instituto Geofisico (IG) began a permanent surveillance of Ecuadorian volcanoes, and due to activity on Guagua Pichincha, SP seismic stations and EDM control lines were then installed. Later, with the UNDRO and OAS projects, telemetered seismic monitoring was expanded to Tungurahua, Cotopaxi, Cuicocha, Chimborazo, Antisana, Cayambe, Cerro Negro, and Quilotoa volcanoes. In 1992 an agreement with the Instituto Ecuatoriano de Electrificacion strengthened the monitoring of Tungurahua and Cotopaxi volcanoes with real-time SP seismic networks and EDM lines. Thus, background activity levels became established, which was helpful because of the onset of the 1999 eruptive activity at Tungurahua and Guagua Pichincha. These eruptions had a notable impact on Baños and Quito. Unrest at Cotopaxi volcano was detected in 2001-2002, but waned. In 2002 Reventador began its eruptive period which continues to the present and is closely monitored by the IG. In 2006 permanent seismic BB stations and infrasound sensors were installed at Tungurahua and Cotopaxi under a cooperative program supported by JICA, which allowed us to follow Tungurahua's climatic eruptions of 2006 and subsequent eruptions up to the present. Programs supported by the Ecuadorian Secretaria Nacional de Ciencia y Tecnologia and the Secretaria Nacional de Planificacion resulted in further expansion of the IG's monitoring infrastructure. Thermal and video imagery, SO2 emission monitoring, geochemical analyses, continuous GPS and tiltmeters, and micro-barometric surveillance have been incorporated. Sangay, Soche, Ninahuilca, Pululahua, and Fernandina, Cerro Azul, Sierra Negra, and Alcedo in the Galapagos Islands are now monitored in real-time. During this time, international cooperation with universities (Blaise Pascal & Nice-France, U. North Carolina, New Mexico Tech, Uppsala-Sweden, Nagoya, etc.), and research centers (USGS & UNAVCO-USA, IRD-France, NIED-Japan, SGC-Colombia, VAAC, MIROVA) has introduced

  5. July 1973 ground survey of active Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. Ground survey has shown that thermal anomalies of various sizes associated with volcanic activity at several Central American volcanoes should be detectable from Skylab. Anomalously hot areas of especially large size (greater than 500 m in diameter) are now found at Santiaguito and Pacaya volcanoes in Guatemala and San Cristobal in Nicaragua. Smaller anomalous areas are to be found at least seven other volcanoes. This report is completed after ground survey of eleven volcanoes and ground-based radiation thermometry mapping at these same points.

  6. Venus small volcano classification and description

    NASA Technical Reports Server (NTRS)

    Aubele, J. C.

    1993-01-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  7. Mount Rainier: A decade volcano

    NASA Astrophysics Data System (ADS)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  8. System for ranking relative threats of U.S. volcanoes

    USGS Publications Warehouse

    Ewert, J.W.

    2007-01-01

    A methodology to systematically rank volcanic threat was developed as the basis for prioritizing volcanoes for long-term hazards evaluations, monitoring, and mitigation activities. A ranking of 169 volcanoes in the United States and the Commonwealth of the Northern Mariana Islands (U.S. volcanoes) is presented based on scores assigned for various hazard and exposure factors. Fifteen factors define the hazard: Volcano type, maximum known eruptive explosivity, magnitude of recent explosivity within the past 500 and 5,000 years, average eruption-recurrence interval, presence or potential for a suite of hazardous phenomena (pyroclastic flows, lahars, lava flows, tsunami, flank collapse, hydrothermal explosion, primary lahar), and deformation, seismic, or degassing unrest. Nine factors define exposure: a measure of ground-based human population in hazard zones, past fatalities and evacuations, a measure of airport exposure, a measure of human population on aircraft, the presence of power, transportation, and developed infrastructure, and whether or not the volcano forms a significant part of a populated island. The hazard score and exposure score for each volcano are multiplied to give its overall threat score. Once scored, the ordered list of volcanoes is divided into five overall threat categories from very high to very low. ?? 2007 ASCE.

  9. Volcano geodesy in the Cascade arc, USA

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  10. Volcano geodesy in the Cascade arc, USA

    USGS Publications Warehouse

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  11. Volcanoes and climate

    NASA Technical Reports Server (NTRS)

    Toon, O. B.

    1982-01-01

    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.

  12. Morphological changes at Colima volcano caused the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Navarro, Carlos; Arambula, Raul; Salzer, Jackie; Reyes, Gabriel

    2016-04-01

    Colima is one of the most active volcanoes in Latin America, with frequent dome building eruptions and pyroclastic flow hazards. In July 2015 Colima had a new climax of eruptive activity, profoundly changing the summit morphology and redistributing volcanic ashes to the lower volcano apron. These unconsolidated ashes are prone to be mobilized by rainfall events, and therefore required close monitoring. A major hurricane then had landfall in western Mexico in October 2015, accumulating c. 450 mm of rainfall at a meteorological station at Nevado de Colima (3461 m) and immense lahar and ash deposit mobilization from Colima Volcano. Hurricane Patricia was the largest ever recorded category 5 storm, directly crossing the state of Colima. Due to the successful scientific advice and civil protection no human losses were directly associated to this lahar hazards. We have conducted drone overflight in profound valleys that directed the pyroclastic flows and lahars two days before and three days after the hurricane. Over 8,000 close range aerial photographs could be recorded, along with GPS locations of ground stations. Images were processed using the structure from motion methodology, and digital elevation models compared. Erosion locally exceeded 10 m vertically and caused significant landscape change. Mass mobilization unloaded the young pyroclastic deposits and led to significant underground heat loss and water boiling in the affected areas. We also firstly report the use of camera array set-ups along the same valley to monitor lahar deposition and erosion from different perspectives. Combining these photos using photogrammetric techniques allow time series of digital elevation change studies at the deepening erosional ravines, with large potential for future geomorphic monitoring. This study shows that photo monitoring is very useful for studying the link of volcano landscape evolution and hydrometerological extremes and for rapid assessment of indirect volcanic hazards.

  13. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  14. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  15. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  16. 2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PARKING LOT AT JAGGAR MUSEUM, VOLCANO OBSERVATORY. VIEW OF MEDIAN. NOTE VOLCANIC STONE CURBING (EDGING) TYPICAL OF MOST PARKING AREAS; TRIANGLING AT END NOT TYPICAL. MAUNA LOA VOLCANO IN BACK. - Crater Rim Drive, Volcano, Hawaii County, HI

  17. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    NASA Astrophysics Data System (ADS)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  18. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    All seaward flank movement occurs along a detachment fault, or décollement, that forms within the mixture of pelagic clays and volcaniclastic deposits on the old seafloor and pushes up a bench of debris along the distal margin of the flank. The offshore uplift that builds this bench is generated by décollement slip that terminates upward into the overburden along thrust faults. Finite strain and finite strength models for volcano growth on a low-friction décollement reproduce this bench structure, as well as much of the morphology and patterns of faulting observed on the actively growing volcanoes of Mauna Loa and Kīlauea. These models show how stress is stored within growing volcano flanks, but not how rapid, potentially seismic slip is triggered along their décollements. The imbalance of forces that triggers large, rapid seaward displacement of the flank after decades of creep may result either from driving forces that change rapidly, such as magma pressure gradients; from resisting forces that rapidly diminish with slip, such as those arising from coupling of pore pressure and dilatancy within décollement sediment; or, from some interplay between driving and resisting forces that produces flank motion. Our understanding of the processes of flank motion is limited by available data, though recent studies have increased our ability to quantitatively address flank instability and associated hazards.

  19. ICE-VOLC Project: unravelling the dynamics of Antarctica volcanoes

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Del Carlo, Paola; Giudice, Gaetano; Giuffrida, Giovanni; Larocca, Graziano; Liuzzo, Marco

    2017-04-01

    Melbourne and Rittmann volcanoes are located in the Victoria Land. Whilst Rittmann's last eruption dates probably to Pleistocene, Melbourne's most recent eruption between 1862 and 1922, testifying it is still active. At present, both volcanoes display fumarolic activity. Melbourne was discovered in 1841 by James Clark Ross, Rittmann during the 4th Italian Expedition (1988/1989). Our knowledge on both volcanoes is really little. The position of these volcanoes in the Antarctic region (characterised by absence of anthropic noise) and its proximity with the Italian Mario Zucchelli Station makes them ideal sites for studying volcano seismic sources, geothermal emissions, seismo-acoustic signals caused by cryosphere-hydrosphere-atmosphere dynamics, and volcanic gas impact on environment. Hence, the main aim of the ICE-VOLC ("multiparametrIC Experiment at antarctica VOLCanoes: data from volcano and cryosphere-ocean-atmosphere dynamics") project is the study of Melbourne and Rittmann, by acquisition, analysis and integration of multiparametric geophysical, geochemical and thermal data. Complementary objectives include investigation of the relationship between seismo-acoustic activity recorded in Antarctica and cryosphere-hydrosphere-atmosphere dynamics, evaluation of the impact of volcanic gas in atmosphere. This project involves 26 researchers, technologists and technicians from University of Perugia and from Istituto Nazionale di Geofisica e Vulcanologia of Catania, Palermo, Pisa and Rome. In this work, we show the preliminary results obtained after the first expedition in Antarctica, aiming to perform geochemical-thermal surveys in the volcano ice caves, as well as to collect ash samples and to install temporary seismic stations.

  20. Seismic unrest at Katla Volcano- southern Iceland

    NASA Astrophysics Data System (ADS)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  1. Search for Impact Craters in the Volcanic and Volcano-Sedimentary Terrains of Mexico

    NASA Astrophysics Data System (ADS)

    Bartali, R.; Fucugauchi, J. U.

    2011-12-01

    It has long been recognized that the numbers of impact craters documented in the terrestrial record are small compared to those of the Moon and other planets and satellites. Processes acting on the Earth surface including tectonics, volcanism and erosion contribute to erase, modify and cover evidence of crater-forming impacts that have occurred through Earth's history. Even evidence on large impact structures is limited to few examples, with only three complex multi-ring structures so far recognized. Chicxulub is a ~200 km diameter multi-ring crater formed by an impact in the southern Gulf of Mexico about 65.5 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub is the only impact structure documented in Mexico, Central and northern South America (http:www.unb.ca/passc/ImpactDatabase). Chicxulub, located in the Yucatan platform buried under a kilometer of carbonate rocks, was initially identified from its concentric semi-circular gravity and magnetic anomaly patterns. Yucatan peninsula has a low-relief topography and high contrasts in physical properties between carbonate rocks, impact lithologies and deformed target rocks. In contrast, most of the country has an abrupt topography with limited outcrops of Paleozoic and Precambrian terrains. The extensive igneous cover of the Sierra Madre Occidental, Trans-Mexican volcanic belt and Sierra Madre del Sur makes search for impact craters a difficult task. Early attempts were limited by the numerous volcanic craters and lack of high-resolution geophysical data. As part of a new country-wide search program, we have been conducting studies in northern Mexico using remote sensing and geophysical data to document circular and semi-circular crater-like features. The search has identified several structures, some well exposed and characterized by simple crater morphologies and topographic rims. These landforms have been mapped, estimating their dimensions, distribution and characterizing the surrounding terrains

  2. Interferometric Synthetic Aperture radar studies of Alaska volcanoes

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy

    2003-01-01

    In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.

  3. NASA Spacecraft Spots Signs of Erupting Russian Volcano

    NASA Image and Video Library

    2014-05-20

    Winter still grips the volcanoes on Russia Kamchatka peninsula. NASA Terra spacecraft acquired this image showing the mantle of white, disturbed by dark ash entirely covering Sheveluch volcano from recent eruptions.

  4. Geochemical evolution of Kohala Volcano, Hawaii

    USGS Publications Warehouse

    Lanphere, M.A.; Frey, F.A.

    1987-01-01

    Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source. ?? 1987 Springer-Verlag.

  5. Relative chronology of Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Landheim, R.; Barlow, N. G.

    1991-01-01

    Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history.

  6. The Evolution of Galápagos Volcanoes: An Alternative Perspective

    NASA Astrophysics Data System (ADS)

    Harpp, Karen S.; Geist, Dennis J.

    2018-05-01

    The older eastern Galápagos are different in almost every way from the historically active western Galápagos volcanoes. The western Galápagos volcanoes have steep upper slopes and are topped by large calderas, whereas none of the older islands has a caldera, an observation that is supported by recent gravity measurements. Moreover, the eastern islands tend to have been constructed by linear fissure systems and many are cut by faults. Most of the western volcanoes erupt evolved basalts with an exceedingly small range of Mg#, Lan/Smn, and Smn/Ybn. This is attributed to homogenization in a crustal-scale magmatic mush column, which is maintained in a thermochemical steady state, owing to high magma supply directly over the Galápagos mantle plume. The exceptions are volcanoes at the leading edge of the hotspot, which have yet to develop mush columns, and volcanoes that are waning in activity, because they are being carried away from the plume. In contrast, the eastern volcanoes erupt relatively primitive magmas, with a large range in Mg#, Lan/Smn, and Smn/Ybn. This is attributed to isolated, ephemeral magmatic plumbing systems supplied by smaller magmatic fluxes throughout their histories. Consequently, each batch of magma follows an independent course of evolution, owing to the low volume of hypersolidus material beneath these volcanoes. The magmatic flux to Galápagos volcanoes negatively correlates with the distance to the Galápagos Spreading Center (GSC). When the ridge was close to the plume, most of the plume-derived magma was directed to the ridge. Currently, the active volcanoes are much farther from the GSC, thus most of the plume-derived magma erupts on the Nazca Plate and can be focused beneath the large young shields. We define an intermediate sub-province comprising Rabida, Santiago and Pinzon volcanoes, which were most active about 1 Ma. They have all erupted dacites, rhyolites, and trachytes, similar to the dying stage of the western volcanoes

  7. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  8. Augustine Volcano, Cook Inlet, Alaska January 31, 2006

    NASA Image and Video Library

    2006-02-02

    Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.

  9. Augustine Volcano, Cook Inlet, Alaska January 12, 2006

    NASA Image and Video Library

    2006-02-02

    Since last spring, the U.S. Geological Survey Alaska Volcano Observatory AVO has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. This image is from NASA Terra spacecraft.

  10. Experimental simulation and morphological quantification of volcano growth

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu; Gallland, Olivier; Delcamp, Audray; Poppe, Sam

    2016-04-01

    Volcanoes display very diverse morphologies as a result of a complex interplay of several constructive and destructive processes. Here the role played by the spatial distribution of eruption centre and by an underlying strike-slip fault in controlling the long term growth of volcanoes is investigated with analogue models. Volcano growth was simulated by depositing loads of granular material (sand-kaolin mixtures) from a point source. An individual load deposited at a fixed location produces a simple symmetrical cone with flank slopes at the angle of repose of the granular material (~33°) that can be considered as the building-block for the experiments. Two sets of experiments were undertaken: (1) the location of deposition of the granular material (i.e. the volcano growth location) was shifted with time following specific probability density functions simulating shifts or migrations in vent location; (2) the location of deposition was kept fixed, but the deposition rate (i.e. the volcano growth rate) was varied coupled with the movement of a basal plate attached to a step-motor simulating a strike-slip displacement under the growing cone (and hence deformation of the cone). During the progression of the experiments, the models were photographed at regular time intervals using four digital cameras positioned at slightly different angles over the models. The photographs were used to generate synthetic digital elevation models (DEMs) with 0.2 mm spatial resolution of each step of the models by applying the MICMAC digital stereo-photogrammetry software. Morphometric data were extracted from the DEMs by applying two IDL-language algorithms: NETVOLC, used to automatically calculate the volcano edifice basal outline, and MORVOLC, used to extract a set of morphometric parameters that characterize the volcano edifice in terms of size, plan shape, profile shape and slopes. Analysis of the DEM-derived morphometric parameters allows to quantitatively characterize the growth

  11. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2009-02-07

    ISS018-E-028898 (7 Feb. 2009) --- The summit of Popocatepetl Volcano in Mexico is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Volcano Popocatepetl, a large stratovolcano located approximately 70 kilometers to the southeast of Mexico City, is considered by many volcanologists to be ?the planet?s riskiest volcano?. The volcano warrants this distinction because of its proximity to one of the most densely populated megacities on Earth (population near 23 million in 2009). The variety of potential volcanic hazards at Popocatepetl is also considerable, including explosive eruptions of ash, pyroclastic flows (hot, fluidized masses of rock and gas that flow rapidly downhill), and debris avalanches. This detailed photograph of the summit crater of Popocatepetl (center) also highlights Ventorillo and Noroccidental Glaciers ? together with ice on nearby Iztaccihuatl Volcano and Pico de Orizaba (Mexico?s highest peak and the highest volcano in North America), these are the only mountain glaciers in tropical North America. The presence of glaciers on Popocatepetl is also connected with another volcanic hazard ? the creation of dangerous mudflows, or lahars, should the ice melt during eruptive activity. At the time this image was taken, steam and ash plumes were observed at the volcano ? a faint white steam plume is visible against gray ash deposits on the eastern and southern flanks of the volcano.

  12. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to

  13. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  14. Space Radar Image of Pinacate Volcanic Field, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers (93 miles) southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image. More than 300 volcanic vents occur in the Pinacate field, including cinder cones that experienced small eruptions as recently as 1934. The larger circular craters seen in the image are a type of volcano known as a 'maar', which erupts violently when rising magma encounters groundwater, producing highly pressurized steam that powers explosive eruptions. The highest elevations in the volcanic field, about 1200 meters (4000 feet), occur in the 'shield volcano' structure shown in bright white, occupying most of the left half of the image. Numerous cinder cones dot the flanks of the shield. The yellow patches to the right of center are newer, rough-textured lava flows that strongly reflect the long wavelength radar signals. Along the left edge of the image are sand dunes of the Gran Desierto. The dark areas are smooth sand and the brighter brown and purple areas have vegetation on the surface. Radar data provide a unique means to study the different types of lava flows and wind-blown sands. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 18, 1994. The image is 57 kilometers by 48 kilometers (35 miles by 30 miles) and is centered at 31.7 degrees north latitude, 113.4 degrees West longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  15. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, Jim; Poland, Mike

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Kilauea volcano (Figure 1)—one of the most active volcanoes on Earth—has provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  16. One hundred years of volcano monitoring in Hawaii

    USGS Publications Warehouse

    Kauahikaua, J.; Poland, M.

    2012-01-01

    In 2012 the Hawaiian Volcano Observatory (HVO), the oldest of five volcano observatories in the United States, is commemorating the 100th anniversary of its founding. HVO's location, on the rim of Klauea volcano (Figure 1)one of the most active volcanoes on Earthhas provided an unprecedented opportunity over the past century to study processes associated with active volcanism and develop methods for hazards assessment and mitigation. The scientifically and societally important results that have come from 100 years of HVO's existence are the realization of one man's vision of the best way to protect humanity from natural disasters. That vision was a response to an unusually destructive decade that began the twentieth century, a decade that saw almost 200,000 people killed by the effects of earthquakes and volcanic eruptions.

  17. Near-specular acoustic scattering from a buried submarine mud volcano.

    PubMed

    Gerig, Anthony L; Holland, Charles W

    2007-12-01

    Submarine mud volcanoes are objects that form on the seafloor due to the emission of gas and fluidized sediment from the Earth's interior. They vary widely in size, can be exposed or buried, and are of interest to the underwater acoustics community as potential sources of active sonar clutter. Coincident seismic reflection data and low frequency bistatic scattering data were gathered from one such buried mud volcano located in the Straits of Sicily. The bistatic data were generated using a pulsed piston source and a 64-element horizontal array, both towed over the top of the volcano. The purpose of this work was to appropriately model low frequency scattering from the volcano using the bistatic returns, seismic bathymetry, and knowledge of the general geoacoustic properties of the area's seabed to guide understanding and model development. Ray theory, with some approximations, was used to model acoustic propagation through overlying layers. Due to the volcano's size, scattering was modeled using geometric acoustics and a simple representation of volcano shape. Modeled bistatic data compared relatively well with experimental data, although some features remain unexplained. Results of an inversion for the volcano's reflection coefficient indicate that it may be acoustically softer than expected.

  18. Volcanoes in the Classroom--an Explosive Learning Experience.

    ERIC Educational Resources Information Center

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  19. Chemical changes in spring waters at Tacaná volcano, Chiapas, Mexico: A possible precursor of the May 1986 seismic crisis and phreatic explosion

    NASA Astrophysics Data System (ADS)

    de la Cruz-Reyna, S.; Armienta, M. A.; Zamora, V.; Juárez, F.

    1989-09-01

    Local seismic activity consisting of sharp earthquakes accompanied by thunderous noise was reported starting in late December 1985 around Tacaná volcano (15.13°N, 92.10°W). Portable seismic stations were established in the area by late January 1986 and sampling of the only known thermal spring on the volcano flanks started at the same time. A marked increase in SO 42- concentration in the spring water preceded by two months the occurrence of a seismic swarm crisis and a small phreatic explosion. A model involving a crystalline basement fractured by tectonic stresses is proposed to explain the chemical and seismic anomalies, and the consequences on risk of volcanic activity are briefly discussed in terms of the observed behaviour.

  20. Shiveluch and Klyuchevskaya Volcanoes

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  1. 4D volcano gravimetry

    USGS Publications Warehouse

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  2. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  3. Establishment, test and evaluation of a prototype volcano surveillance system

    NASA Technical Reports Server (NTRS)

    Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.

    1973-01-01

    A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.

  4. Ground survey of active Central American volcanoes in November - December 1973

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1974-01-01

    The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes.

  5. Volcaniclastic stratigraphy of Gede volcano in West Java

    NASA Astrophysics Data System (ADS)

    Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.

    2012-12-01

    Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano

  6. Space Radar Image of Sakura-Jima Volcano, Japan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international 'Decade Volcano' program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received.

  7. Space Radar Image of Sakura-Jima Volcano, Japan

    NASA Image and Video Library

    1999-04-15

    The active volcano Sakura-Jima on the island of Kyushu, Japan is shown in the center of this radar image. The volcano occupies the peninsula in the center of Kagoshima Bay, which was formed by the explosion and collapse of an ancient predecessor of today's volcano. The volcano has been in near continuous eruption since 1955. Its explosions of ash and gas are closely monitored by local authorities due to the proximity of the city of Kagoshima across a narrow strait from the volcano's center, shown below and to the left of the central peninsula in this image. City residents have grown accustomed to clearing ash deposits from sidewalks, cars and buildings following Sakura-jima's eruptions. The volcano is one of 15 identified by scientists as potentially hazardous to local populations, as part of the international "Decade Volcano" program. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 9, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered at 31.6 degrees North latitude and 130.6 degrees East longitude. North is toward the upper left. The area shown measures 37.5 kilometers by 46.5 kilometers (23.3 miles by 28.8 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01777

  8. Operational Monitoring of Volcanoes Using Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2007-12-01

    Volcanoes are some of the most geologically powerful, dynamic, visually appealing structures on the Earth's landscape. Volcanic eruptions are hard to predict, difficult to quantify and impossible to prevent, making effective monitoring a difficult proposition. In Alaska, volcanoes are an intrinsic part of the culture, with over 100 volcanoes and volcanic fields that have been active in historic time monitored by the Alaska Volcano Observatory (AVO). Observations and research are performed using a suite of methods and tools in the fields of remote sensing, seismology, geodesy and geology, producing large volumes of geospatial data. Keyhole Markup Language (KML) offers a context in which these different, and in the past disparate, data can be displayed simultaneously. Dynamic links keep these data current, allowing it to be used in an operational capacity. KML is used to display information from the aviation color codes and activity alert levels for volcanoes to locations of thermal anomalies, earthquake locations and ash plume modeling. The dynamic refresh and time primitive are used to display volcano webcam and satellite image overlays in near real-time. In addition a virtual globe browser using KML, such as Google Earth, provides an interface to further information using the hyperlink, rich- text and flash-embedding abilities supported within object description balloons. By merging these data sets in an easy to use interface, a virtual globe browser provides a better tool for scientists and emergency managers alike to mitigate volcanic crises.

  9. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  10. Geology of Medicine Lake Volcano, Northern California Cascade Range

    USGS Publications Warehouse

    Donnelly-Nolan, Julie

    1990-01-01

    Medicine Lake volcano (MLV) is located in an E-W extensional environment on the Modoc Plateau just east of the main arc of the Cascades. It consists mainly of mafic lavas, although drillhole data indicate that a larger volume of rhyolite is present than is indicated by surface mapping. The most recent eruption was rhyolitic and occurred about 900 years ago. At least seventeen eruptions have occurred since 12,000 years ago, or between 1 and 2 eruptions per century on average, although activity appears to be strongly episodic. The calculated eruptive rate is about 0.6 km3 per thousand years during the entire history of the volcano. Drillhole data indicate that the plateau surface underlying the volcano has been downwarped by 0.5 km under the center of MLV. The volcano may be even larger than the estimated 600 km3, already the largest volcano by volume in the Cascades.

  11. Expert Systems for Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  12. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  13. Volcano hazards program in the United States

    USGS Publications Warehouse

    Tilling, R.I.; Bailey, R.A.

    1985-01-01

    Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions

  14. A Volcano of Mud or Lava?

    NASA Image and Video Library

    2018-06-11

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows a hill with a central crater. Such features have been interpreted as both mud volcanoes (really a sedimentary structure) and as actual volcanoes (the erupting lava kind). They occur on the floor of Valles Marineris below a closed topographic contour that could have held a lake, and the compaction of wet sediments may have created mud volcanoes. The fracture pattern of the bright flow unit surrounding the hill resembles mud cracks. However, there have also been observations from the CRISM instrument interpreted as high-temperature minerals, suggesting actual volcanism, although not necessarily at this location. Fine layers in the hill are consistent with either volcanism or mud flows. Either way, this activity is relatively recent in geologic time and may mark habitable subsurface environments. https://photojournal.jpl.nasa.gov/catalog/PIA22514

  15. Swarms of small volcano-tectonic events preceding paroxysmal explosions of Tungurahua volcano (Ecuador)

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Hidalgo, S.; Douchain, J. M.; Pacheco, D. A.; Cordova, J.; Alvarado, A. P.; Parra, R.

    2017-12-01

    Tungurahua (5023 m a.s.l.) is an andesitic volcano located in Central Ecuador. It has been erupting since September 1999. It's activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. These phases display a great variability of eruptive patterns. In particular the onsets of these phases are quite variable, ranging from progressive increase of surface activity to violent paroxysmal explosions eventually generating pyroclastic flows and plumes up to 13.000 m elevation. The volcano is monitored by the Instituto Geofisico in Quito whose permanent monitoring network include 6 broadband and 6 short period stations. These instruments record various signals related to eruptive processes as well as Long Period and volcano-tectonique (VT) events. However, most of the VT events are scattered around the volcano at depths up to 5-10 km b.s.l.. Their relationship with eruptive activity and precursory aspect are unclear. Since October 2013, we operate a temporary network of 13 broadband stations located up to 4275 m a.s.l., including on the Eastern flank which is remote. We examined data from a reference station located near the summit (3900 m a.s.l.) with a detection and classification procedure, searching for families of similar events. This processing enlights the presence of several families of small VTs previously poorly identified. We located manually some of these events and proceeded with similarity picking using cross-correlation and waveform similarity for nearly 400 events. Finally we applied precise relocation techniques. These events are located 2-3 km below the summit and define vertically elongated streaks. Their temporal evolution shows that they occur in swarms during the days or hours preceding the paroxysmal vent opening explosions in February and April 2014. These short-term precursors could indicate the rupturing of a barrier prior to the large explosions of Tungurahua.

  16. Catalogue of Icelandic Volcanoes

    NASA Astrophysics Data System (ADS)

    Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna

    2017-04-01

    The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.

  17. Alaska Volcano Observatory at 20

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2008-12-01

    The Alaska Volcano Observatory (AVO) was established in 1988 in the wake of the 1986 Augustine eruption through a congressional earmark. Even within the volcanological community, there was skepticism about AVO. Populations directly at risk in Alaska were small compared to Cascadia, and the logistical costs of installing and maintaining monitoring equipment were much higher. Questions were raised concerning the technical feasibility of keeping seismic stations operating through the long, dark, stormy Alaska winters. Some argued that AVO should simply cover Augustine with instruments and wait for the next eruption there, expected in the mid 90s (but delayed until 2006), rather than stretching to instrument as many volcanoes as possible. No sooner was AVO in place than Redoubt erupted and a fully loaded passenger 747 strayed into the eruption cloud between Anchorage and Fairbanks, causing a powerless glide to within a minute of impact before the pilot could restart two engines and limp into Anchorage. This event forcefully made the case that volcano hazard mitigation is not just about people and infrastructure on the ground, and is particularly important in the heavily traveled North Pacific where options for flight diversion are few. In 1996, new funding became available through an FAA earmark to aggressively extend volcano monitoring far into the Aleutian Islands with both ground-based networks and round-the-clock satellite monitoring. Beyond the Aleutians, AVO developed a monitoring partnership with Russians volcanologists at the Institute of Volcanology and Seismology in Petropavlovsk-Kamchatsky. The need to work together internationally on subduction phenomena that span borders led to formation of the Japan-Kamchatka-Alaska Subduction Processes (JKASP) consortium. JKASP meets approximately biennially in Sapporo, Petropavlovsk, and Fairbanks. In turn, these meetings and support from NSF and the Russian Academy of Sciences led to new international education and

  18. Spying on volcanoes

    NASA Astrophysics Data System (ADS)

    Watson, Matthew

    2017-07-01

    Active volcanoes can be incredibly dangerous, especially to those who live nearby, but how do you get close enough to observe one in action? Matthew Watson explains how artificial drones are providing volcanologists with insights that could one day save human lives

  19. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes

  20. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  1. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    PubMed

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  2. Three dimensional volcano-acoustic source localization at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Rowell, Colin

    We test two methods of 3-D acoustic source localization on volcanic explosions and small-scale jetting events at Karymsky Volcano, Kamchatka, Russia. Recent infrasound studies have provided evidence that volcanic jets produce low-frequency aerodynamic sound (jet noise) similar to that from man-made jet engines. Man-made jets are known to produce sound through turbulence along the jet axis, but discrimination of sources along the axis of a volcanic jet requires a network of sufficient topographic relief to attain resolution in the vertical dimension. At Karymsky Volcano, the topography of an eroded edifice adjacent to the active cone provided a platform for the atypical deployment of five infrasound sensors with intra-network relief of ˜600 m in July 2012. A novel 3-D inverse localization method, srcLoc, is tested and compared against a more common grid-search semblance technique. Simulations using synthetic signals indicate that srcLoc is capable of determining vertical source locations for this network configuration to within +/-150 m or better. However, srcLoc locations for explosions and jetting at Karymsky Volcano show a persistent overestimation of source elevation and underestimation of sound speed by an average of ˜330 m and 25 m/s, respectively. The semblance method is able to produce more realistic source locations by fixing the sound speed to expected values of 335 - 340 m/s. The consistency of location errors for both explosions and jetting activity over a wide range of wind and temperature conditions points to the influence of topography. Explosion waveforms exhibit amplitude relationships and waveform distortion strikingly similar to those theorized by modeling studies of wave diffraction around the crater rim. We suggest delay of signals and apparent elevated source locations are due to altered raypaths and/or crater diffraction effects. Our results suggest the influence of topography in the vent region must be accounted for when attempting 3-D

  3. A New Statistical Model for Eruption Forecasting at Open Conduit Volcanoes: an Application to Mt Etna and Kilauea Volcanoes

    NASA Astrophysics Data System (ADS)

    Passarelli, Luigi; Sanso, Bruno; Laura, Sandri; Marzocchi, Warner

    2010-05-01

    One of the main goals in volcanology is to forecast volcanic eruptions. A trenchant forecast should be made before the onset of a volcanic eruption, using the data available at that time, with the aim of mitigating the volcanic risk associated to the volcanic event. In other words, models implemented with forecast purposes have to take into account the possibility to provide "forward" forecasts and should avoid the idea of a merely "retrospective" fitting of the data available. In this perspective, the main idea of the present model is to forecast the next volcanic eruption after the end of the last one, using only the data available at that time. We focus our attention on volcanoes with open conduit regime and high eruption frequency. We assume a generalization of the classical time predictable model to describe the eruptive behavior of open conduit volcanoes and we use a Bayesian hierarchical model to make probabilistic forecast. We apply the model to Kilauea volcano eruptive data and Mt. Etna volcano flank eruption data. The aims of this model are: 1) to test whether or not the Kilauea and Mt Etna volcanoes follow a time predictable behavior; 2) to discuss the volcanological implications of the time predictable model parameters inferred; 3) to compare the forecast capabilities of this model with other models present in literature. The results obtained using the MCMC sampling algorithm show that both volcanoes follow a time predictable behavior. The numerical values of the time predictable model parameters inferred suggest that the amount of the erupted volume could change the dynamics of the magma chamber refilling process during the repose period. The probability gain of this model compared with other models already present in literature is appreciably greater than zero. This means that our model performs better forecast than previous models and it could be used in a probabilistic volcanic hazard assessment scheme. In this perspective, the probability of

  4. In Brief: U.S. Volcano Early Warning System; Bill provides clear mandate for NOAA

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2005-05-01

    The U.S. Geological Survey on 29 April released a comprehensive review of the 169 U.S. volcanoes, and established a framework for a National Volcano Early Warning System that is being formulated by the Consortium of U.S. Volcano Observatories. The framework proposes an around-the-clock Volcano Watch Office and improved instrumentation and monitoring at targeted volcanoes. The report, authored by USGS scientists John Ewert, Marianne Guffanti, and Thomas Murray, notes that although a few U.S. volcanoes are well-monitored, half of the most threatening volcanoes are monitored at a basic level and some hazardous volcanoes have no ground-based monitoring.

  5. Large landslides from oceanic volcanoes

    USGS Publications Warehouse

    Holcomb, R.T.; Searle, R.C.

    1991-01-01

    Large landslides are ubiquitous around the submarine flanks of Hawaiian volcanoes, and GLORIA has also revealed large landslides offshore from Tristan da Cunha and El Hierro. On both of the latter islands, steep flanks formerly attributed to tilting or marine erosion have been reinterpreted as landslide headwalls mantled by younger lava flows. These landslides occur in a wide range of settings and probably represent only a small sample from a large population. They may explain the large volumes of archipelagic aprons and the stellate shapes of many oceanic volcanoes. Large landslides and associated tsunamis pose hazards to many islands. -from Authors

  6. Kilauea volcano eruption seen from orbit

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.

  7. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    PubMed

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  8. An overview of a GIS method for mapping landslides and assessing landslide hazards at Río El Estado watershed, on the SW flank of Pico de Orizaba Volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Contreras, T.; Polenz, M.; Ramírez Herrera, M.; Paredes Mejía, L.; Arana Salinas, L.

    2012-12-01

    This poster provides an overview of the on-going research project (Grant SEP-CONACYT no 167495) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, produce a landslide susceptibility map, and estimate sediment production by using Geographic Information Systems (GIS). The Río El Estado watershed on the southwestern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The catchment covers 5.2 km2 with elevations ranging from 2676.79 to 4248.2 m a.s.l. and hillslopes between 0° and 56°. The stream system of Río El Estado catchment erodes Tertiary and Quaternary lavas, pyroclastic flows, and fall deposits. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The methodology encompasses three main stages of analysis to assess landslide hazards: Stage 1 builds a historic landslide inventory. In the study area, an inventory of more than 170 landslides is created from multi-temporal aerial-photo-interpretation and local field surveys to assess landslide distribution. All landslides were digitized into a geographic information system (GIS), and a spatial geo-database of landslides was constructed from standardized GIS datasets. Stage 2 Calculates the susceptibility for the watershed. During this stage, Multiple Logistic Regression and SINMAP) will be evaluated to select the one that provides scientific accuracy, technical accessibility, and applicability. Stage 3 Estimate the potential total material delivered to the main stream drainage channel by all landslides in the catchment. Detailed geometric measurements of individual landslides visited during the field work will be carried out to obtain the landslide area and volume. These measurements revealed an empirical relationship between area and volume that took the

  9. Solar absorption Fourier Transform Infrared spectroscopy applied to detect SO2 plumes above Mexico City

    NASA Astrophysics Data System (ADS)

    Aldana-Vazquez, A.; Stremme, W.; Grutter, M.

    2010-12-01

    There are sources of emissions of sulfur dioxide (SO2) that disperse to the Metropolitan Area of Mexico City (MCMA). The sources can be divided into three categories: a) The active Popocatepetl volcano located 70 km SE from the center of Mexico City, b) the industrial area located approximately 70 km to the and c) other local sources located in the surroundings from the measurement.. Solar absorption infrared spectra are being recorded since 2007 above the campus of the Universidad Nacional Autónoma de México (UNAM, 19.33 N, 99.18 W, 2260 m.a.s.l.). The column of SO2 was retrieved from all the spectra recorded in 2008 with the retrieval code SFIT2. Enhancement of the SO2 column could be identified in different time periods. The origin of the detected SO2 is determined by correlating the SO2 column with a) its surface concentration measured in the surroundings by the monitoring stations from the city’s monitoring network of (RAMA), b) the height of the mixing layer measured at UNAM, and c) meteorological wind data (REDMET, NCEP-NARR, and SMN). The result shows that the extraordinary events are correlated with the mentioned sources, and the analysis confirms prior studies that the plume travels at different altitudes. The plume of the Popocatepetl volcano is transported according to the wind at 5000 m.a.s.l. while emissions from the industrial area northwest of the MCMA are dispersed at lower altitudes within the mixing layer.

  10. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  11. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  12. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  13. Predicting the Timing and Location of the next Hawaiian Volcano

    ERIC Educational Resources Information Center

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  14. Real-Time Data Received from Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Aster, Richard; McIntosh, William; Kyle, Philip; Esser, Richard; Bartel, Beth Ann; Dunbar, Nelia; Johns, Bjorn; Johnson, Jeffrey B.; Karstens, Richard; Kurnik, Chuck; McGowan, Murray; McNamara, Sara; Meertens, Chuck; Pauley, Bruce; Richmond, Matt; Ruiz, Mario

    2004-03-01

    Internal and eruptive volcano processes involve complex interactions of multi-phase fluids with the solid Earth and the atmosphere, and produce diverse geochemical, visible, thermal, elastic, and anelastic effects. Multidisciplinary experimental agendas are increasingly being employed to meet the challenge of understanding active volcanoes and their hazards [e.g., Ripepe et al., 2002; Wallace et al., 2003]. Mount Erebus is a large (3794 m) stratovolcano that forms the centerpiece of Ross Island, Antarctica, the site of the principal U.S. (McMurdo) and New Zealand (Scott) Antarctic bases. With an elevation of 3794 m and a volume of ~1670 km3, Erebus offers exceptional opportunities for extended study of volcano processes because of its persistent, low-level, strombolian activity (Volcano Explosivity Index 0-1) and exposed summit magma reservoir (manifested as a long-lived phonolitic lava lake). Key scientific questions include linking conduit processes to near-field deformations [e.g., Aster et al., 2003], explosion physics [e.g., Johnson et al., 2003], magmatic differentiation and residence [e.g., Kyle et al., 1992], and effects on Antarctic atmospheric and ice geochemistry [e.g., Zreda-Gostynska et al., 1997]. The close proximity of Erebus (35 km) to McMurdo, and its characteristic dry, windy, cold, and high-elevation Antarctic environment, make the volcano a convenient test bed for the general development of volcano surveillance and other instrumentation under extreme conditions.

  15. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  16. Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P. R.; Mchone, J. F.; Asmerom, Y.; Zimbelman, J. R.

    1984-01-01

    The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters.

  17. Ice and water on Newberry Volcano, central Oregon

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Jensen, Robert A.; O'Connor, Jim; Madin, Ian P.; Dorsey, Rebecca

    2009-01-01

    Newberry Volcano in central Oregon is dry over much of its vast area, except for the lakes in the caldera and the single creek that drains them. Despite the lack of obvious glacial striations and well-formed glacial moraines, evidence indicates that Newberry was glaciated. Meter-sized foreign blocks, commonly with smoothed shapes, are found on cinder cones as far as 7 km from the caldera rim. These cones also show evidence of shaping by flowing ice. In addition, multiple dry channels likely cut by glacial meltwater are common features of the eastern and western flanks of the volcano. On the older eastern flank of the volcano, a complex depositional and erosional history is recorded by lava flows, some of which flowed down channels, and interbedded sediments of probable glacial origin. Postglacial lava flows have subsequently filled some of the channels cut into the sediments. The evidence suggests that Newberry Volcano has been subjected to multiple glaciations.

  18. Volcanism offshore of Vesuvius Volcano in Naples Bay

    USGS Publications Warehouse

    Milia, A.; Mirabile, L.; Torrente, M.M.; Dvorak, J.J.

    1998-01-01

    High-resolution seismic reflection data are used to identify structural features in Naples Bay near Vesuvius Volcano. Several buried seismic units with reflection-free interiors are probably volcanic deposits erupted during and since the formation of the breached crater of Monte Somma Volcano, which preceded the growth of Vesuvius. The presumed undersea volcanic deposits are limited in extent; thus, stratigraphie relationships cannot be established among them. Other features revealed by our data include (a) the warping of lowstand marine deposits by undersea cryptodomes located approximately 10 km from the summit of Vesuvius, (b) a succession of normal step faults that record seaward collapse of the volcano, and (c) a small undersea slump in the uppermost marine deposits of Naples Bay, which may be the result of nue??e ardentes that entered the sea during a major eruption of Vesuvius in 1631. Detection of these undersea features illustrates some capabilities of making detailed seismic reflection profiles across undersea volcanoes.

  19. Volcano-earthquake interaction at Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Amelung, Falk

    2006-05-01

    The activity at Mauna Loa volcano, Hawaii, is characterized by eruptive fissures that propagate into the Southwest Rift Zone (SWRZ) or into the Northeast Rift Zone (NERZ) and by large earthquakes at the basal decollement fault. In this paper we examine the historic eruption and earthquake catalogues, and we test the hypothesis that the events are interconnected in time and space. Earthquakes in the Kaoiki area occur in sequence with eruptions from the NERZ, and earthquakes in the Kona and Hilea areas occur in sequence with eruptions from the SWRZ. Using three-dimensional numerical models, we demonstrate that elastic stress transfer can explain the observed volcano-earthquake interaction. We examine stress changes due to typical intrusions and earthquakes. We find that intrusions change the Coulomb failure stress along the decollement fault so that NERZ intrusions encourage Kaoiki earthquakes and SWRZ intrusions encourage Kona and Hilea earthquakes. On the other hand, earthquakes decompress the magma chamber and unclamp part of the Mauna Loa rift zone, i.e., Kaoiki earthquakes encourage NERZ intrusions, whereas Kona and Hilea earthquakes encourage SWRZ intrusions. We discuss how changes of the static stress field affect the occurrence of earthquakes as well as the occurrence, location, and volume of dikes and of associated eruptions and also the lava composition and fumarolic activity.

  20. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    NASA Astrophysics Data System (ADS)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  1. Soufriere Hills Volcano

    NASA Image and Video Library

    2002-11-07

    In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit. This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03880

  2. Volcano hazards at Fuego and Acatenango, Guatemala

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  3. U.S. Geological Survey Volcano Hazards Program—Assess, forecast, prepare, engage

    USGS Publications Warehouse

    Stovall, Wendy K.; Wilkins, Aleeza M.; Mandeville, Charles W.; Driedger, Carolyn L.

    2016-07-13

    At least 170 volcanoes in 12 States and 2 territories have erupted in the past 12,000 years and have the potential to erupt again. Consequences of eruptions from U.S. volcanoes can extend far beyond the volcano’s immediate area. Many aspects of our daily life are vulnerable to volcano hazards, including air travel, regional power generation and transmission infrastructure, interstate transportation, port facilities, communications infrastructure, and public health. The U.S. Geological Survey has the Federal responsibility to issue timely warnings of potential volcanic activity to the affected populace and civil authorities. The Volcano Hazards Program (VHP) is funded to carry out that mission and does so through a combination of volcano monitoring, short-term warnings, research on how volcanoes work, and community education and outreach.

  4. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    PubMed

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-10-13

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  5. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    PubMed Central

    Hosein, Riad; Haque, Shirin; Beckles, Denise M.

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region. PMID:25370529

  6. Kamchatka and North Kurile Volcano Explosive Eruptions in 2015 and Danger to Aviation

    NASA Astrophysics Data System (ADS)

    Girina, Olga; Melnikov, Dmitry; Manevich, Alexander; Demyanchuk, Yury; Nuzhdaev, Anton; Petrova, Elena

    2016-04-01

    There are 36 active volcanoes in the Kamchatka and North Kurile, and several of them are continuously active. In 2015, four of the Kamchatkan volcanoes (Sheveluch, Klyuchevskoy, Karymsky and Zhupanovsky) and two volcanoes of North Kurile (Alaid and Chikurachki) had strong and moderate explosive eruptions. Moderate gas-steam activity was observing of Bezymianny, Kizimen, Avachinsky, Koryaksky, Gorely, Mutnovsky and other volcanoes. Strong explosive eruptions of volcanoes are the most dangerous for aircraft because they can produce in a few hours or days to the atmosphere and the stratosphere till several cubic kilometers of volcanic ash and aerosols. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. The eruptive activity of Sheveluch volcano began since 1980 (growth of the lava dome) and is continuing at present. Strong explosive events of the volcano occurred in 2015: on 07, 12, and 15 January, 01, 17, and 28 February, 04, 08, 16, 21-22, and 26 March, 07 and 12 April: ash plumes rose up to 7-12 km a.s.l. and extended more 900 km to the different directions of the volcano. Ashfalls occurred at Ust'-Kamchatsk on 16 March, and Klyuchi on 30 October. Strong and moderate hot avalanches from the lava dome were observing more often in the second half of the year. Aviation color code of Sheveluch was Orange during the year. Activity of the volcano was dangerous to international and local aviation. Explosive-effusive eruption of Klyuchevskoy volcano lasted from 01 January till 24 March. Strombolian explosive volcanic activity began from 01 January, and on 08-09 January a lava flow was detected at the Apakhonchich chute on the southeastern flank of the volcano. Vulcanian activity of the volcano began from 10 January. Ashfalls

  7. Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Okuno, Mitsuru; Harijoko, Agung; Wayan Warmada, I.; Watanabe, Koichiro; Nakamura, Toshio; Taguchi, Sachihiro; Kobayashi, Tetsuo

    2017-12-01

    A landform of the post-caldera volcanoes (Lesung, Tapak, Sengayang, Pohen, and Adeng) in the Buyan-Bratan caldera on the island of Bali, Indonesia can be classified by topographic interpretation. The Tapak volcano has three craters, aligned from north to south. Lava effused from the central crater has flowed downward to the northwest, separating the Tamblingan and Buyan Lakes. This lava also covers the tip of the lava flow from the Lesung volcano. Therefore, it is a product of the latest post-caldera volcano eruption. The Lesung volcano also has two craters, with a gully developing on the pyroclastic cone from the northern slope to the western slope. Lava from the south crater has flowed down the western flank, beyond the caldera rim. Lava distributed on the eastern side from the south also surrounds the Sengayang volcano. The Adeng volcano is surrounded by debris avalanche deposits from the Pohen volcano. Based on these topographic relationships, Sengayang volcano appears to be the oldest of the post-caldera volcanoes, followed by the Adeng, Pohen, Lesung, and Tapak volcanoes. Coarse-grained scoria falls around this area are intercalated with two foreign tephras: the Samalas tephra (1257 A.D.) from Lombok Island and the Penelokan tephra (ca. 5.5 kBP) from the Batur caldera. The source of these scoria falls is estimated to be either the Tapak or Lesung volcano, implying that at least two volcanoes have erupted during the Holocene period.

  8. ASTER Images Mt. Usu Volcano

    NASA Image and Video Library

    2000-04-26

    On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet. This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. "Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption," said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption. In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles

  9. Major Martian Volcanoes from MOLA - Olympus Mons

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Two views of Olympus Mons, shown as topography draped over a Viking image mosaic. MOLA's regional topography has shown that this volcano sits off to the west of the main Tharsis rise rather than on its western flank. The topography also clearly shows the relationship between the volcano's scarp and massive aureole deposit that was produced by flank collapse. The vertical exaggeration is 10:1.

  10. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  11. Bi-directional volcano-earthquake interaction at Mauna Loa Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Amelung, F.

    2004-12-01

    At Mauna Loa volcano, Hawaii, large-magnitude earthquakes occur mostly at the west flank (Kona area), at the southeast flank (Hilea area), and at the east flank (Kaoiki area). Eruptions at Mauna Loa occur mostly at the summit region and along fissures at the southwest rift zone (SWRZ), or at the northeast rift zone (NERZ). Although historic earthquakes and eruptions at these zones appear to correlate in space and time, the mechanisms and implications of an eruption-earthquake interaction was not cleared. Our analysis of available factual data reveals the highly statistical significance of eruption-earthquake pairs, with a random probability of 5-to-15 percent. We clarify this correlation with the help of elastic stress-field models, where (i) we simulate earthquakes and calculate the resulting normal stress change at volcanic active zones of Mauna Loa, and (ii) we simulate intrusions in Mauna Loa and calculate the Coulomb stress change at the active fault zones. Our models suggest that Hilea earthquakes encourage dike intrusion in the SWRZ, Kona earthquakes encourage dike intrusion at the summit and in the SWRZ, and Kaoiki earthquakes encourage dike intrusion in the NERZ. Moreover, a dike in the SWRZ encourages earthquakes in the Hilea and Kona areas. A dike in the NERZ may encourage and discourage earthquakes in the Hilea and Kaoiki areas. The modeled stress change patterns coincide remarkably with the patterns of several historic eruption-earthquake pairs, clarifying the mechanisms of bi-directional volcano-earthquake interaction for Mauna Loa. The results imply that at Mauna Loa volcanic activity influences the timing and location of earthquakes, and that earthquakes influence the timing, location and the volume of eruptions. In combination with near real-time geodetic and seismic monitoring, these findings may improve volcano-tectonic risk assessment.

  12. Volcano Deformation and Eruption Forecasting using Data Assimilation: Case of Grimsvötn volcano in Iceland

    NASA Astrophysics Data System (ADS)

    Bato, Mary Grace; Pinel, Virginie; Yan, Yajing

    2016-04-01

    The recent advances in Interferometric Synthetic Aperture Radar (InSAR) imaging and the increasing number of continuous Global Positioning System (GPS) networks recorded on volcanoes provide continuous and spatially extensive evolution of surface displacements during inter-eruptive periods. For basaltic volcanoes, these measurements combined with simple dynamical models (Lengliné et al. 2008 [1], Pinel et al, 2010 [2], Reverso et al, 2014 [3]) can be exploited to characterise and constrain parameters of one or several magmatic reservoirs using inversion methods. On the other hand, data assimilation-a time-stepping process that best combines models and observations, sometimes a priori information based on error statistics to predict the state of a dynamical system-has gained popularity in various fields of geoscience (e.g. ocean-weather forecasting, geomagnetism and natural resources exploration). In this work, we aim to first test the applicability and benefit of data assimilation, in particular the Ensemble Kalman Filter [4], in the field of volcanology. We predict the temporal behaviors of the overpressures and deformations by applying the two-magma chamber model of Reverso et. al., 2014 [3] and by using synthetic deformation data in order to establish our forecasting strategy. GPS time-series data of the recent eruptions at Grimsvötn volcano is used for the real case applicability of the method. [1] Lengliné, O., D Marsan, J Got, V. Pinel, V. Ferrazzini, P. Obuko, Seismicity and deformation induced by magma accumulation at three basaltic volcanoes, J. Geophys. Res., 113, B12305, 2008. [2] V. Pinel, C. Jaupart and F. Albino, On the relationship between cycles of eruptive activity and volcanic edifice growth, J. Volc. Geotherm. Res, 194, 150-164, 2010 [3] T. Reverso, J. Vandemeulebrouck, F. Jouanne, V. Pinel, T. Villemin, E. Sturkell, A two-magma chamber as a source of deformation at Grimsvötn volcano, Iceland, JGR, 2014 [4] Evensen, G., The Ensemble Kalman

  13. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  14. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  15. Eruptive history of the youngest Mexican Shield and Mexico's most voluminous Holocene eruption: Cerro El Metate

    NASA Astrophysics Data System (ADS)

    Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus

    2016-04-01

    Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by

  16. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  17. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  18. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  19. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  20. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park. (a...

  1. UAVSAR Acquires False-Color Image of Galeras Volcano, Colombia

    NASA Image and Video Library

    2013-04-03

    This false-color image of Colombia Galeras Volcano, was acquired by UAVSAR on March 13, 2013. A highly active volcano, Galeras features a breached caldera and an active cone that produces numerous small to moderate explosive eruptions.

  2. Database for the Geologic Map of Newberry Volcano, Deschutes, Klamath, and Lake Counties, Oregon

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; MacLeod, Norman S.; Sherrod, David R.; Chitwood, Lawrence A.; Jensen, Robert A.

    2013-01-01

    Newberry Volcano, one of the largest Quaternary volcanoes in the conterminous United States, is a broad shield-shaped volcano measuring 60 km north-south by 30 km east-west with a maximum elevation of more than 2 km. Newberry Volcano is the product of deposits from thousands of eruptions, including at least 25 in the past approximately 12,000 years (Holocene Epoch). Newberry Volcano has erupted as recently as 1,300 years ago, but isotopic ages indicate that the volcano began its growth as early as 0.6 million years ago. Such a long eruptive history and recent activity suggest that Newberry Volcano is likely to erupt in the future. This geologic map database of Newberry Volcano distinguishes rocks and deposits based on their composition, age, and lithology.

  3. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  4. A wireless sensor network for monitoring volcano-seismic signals

    NASA Astrophysics Data System (ADS)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  5. Comparison with Offshore and Onshore Mud Volcanoes in the Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Su, C. C.; Chen, T. T.; Liu, C. S.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Hsu, H. H.

    2017-12-01

    The offshore area southwest (SW) of Taiwan is on the convergent boundary between the Eurasian and Philippine Sea plates. The plate convergence manifests in this unique geological setting as a fold-and-thrust-belt. Multi-channel seismic profiles, and bathymetry and gravity anomaly data collected from Taiwan offshore to the SW show the presence of a large amount of mud volcanoes and diapirs with NE-SW orientations. In the absence of comprehensive sampling and detailed geochemistry data from submarine mud volcanoes, the relation between onshore and offshore mud volcanoes remains ambiguous. During two MBARI and IONTU joint cruises conducted in 2017 we collected high-resolution multibeam bathymetry data (1-m-resolution) and chirp sub-bottom profiles with an autonomous underwater vehicle (AUV) from submarine Mud Volcano III (MV3), and obtained precisely located samples and video observations with a remotely operated vehicle (ROV). MV3 is an active submarine mud volcano at 465 m water depth offshore SW Taiwan. This cone-shape mud volcano is almost 780 m wide, 150 m high, with 8° slopes, and a 30 m wide mound on the top. Several linear features are observed in the southwest of the mound, and these features are interpreted as a series of marks caused by rolling rocks that erupted from the top of MV3. We collected three rocks and push cores from MV3 and its top with the ROV, in order to compare their chemical and mineralogical composition to that of samples collected from mud volcanoes along the Chishan fault. The surface and X-radiography imaging, 210Pb chronology, grain size and X-ray diffractometer analyses were conducted to compare geochemical and sedimentary properties of offshore and onshore mud volcanoes. The results indicate that the offshore and onshore mud volcanoes have similar characteristics. We suggest that offshore and onshore mud volcanoes of SW Taiwan are no different in the source of their materials and their mechanism of creation and evolution.

  6. Examining the interior of Llaima Volcano with receiver functions

    NASA Astrophysics Data System (ADS)

    Bishop, J. W.; Lees, J. M.; Biryol, C. B.; Mikesell, T. D.; Franco, L.

    2018-02-01

    Llaima Volcano in Chile is one of the largest and most active volcanoes in the southern Andes, with over 50 eruptions since the 1600s. After years of persistent degassing, Llaima most recently erupted in a series of violent Strombolian eruptions in 2007-2009. This period had few precursory signals, which highlights the need to obtain accurate magma storage information. While petrologic advancements have been made in understanding magma degassing and crystallization trends, a comprehensive seismic study has yet to be completed. Here, we present results of a receiver function survey utilizing a dense seismic array surrounding Llaima volcano. Application of H-κ stacking and common conversion point stacking techniques reveals a new Moho estimate and two structural anomalies beneath Llaima Volcano. We interpret a low velocity zone between 8 and 13 km depth as a newly imaged magma body.

  7. Anaglyph of the Basal Scarp of Olympus Mons Volcano

    NASA Image and Video Library

    2007-01-17

    This anaglyph from NASA Mars Reconnaissance Orbiter spacecraft, shows Olympus Mons, the largest volcano in the Solar System. Constructed of lava flows, many aspects of this titanic volcano remain puzzling. 3D glasses are necessary to view this image.

  8. An overview of a GIS method for mapping landslides and assessing landslide susceptibility in the Río La Carbonera watershed, on the SE flank of Pico de Orizaba Volcano, Mexico.

    NASA Astrophysics Data System (ADS)

    Legorreta Paulin, G.; Bursik, M. I.; Contreras, T.

    2015-12-01

    This poster provides an overview of the on-going research project (Grant PAPIIT # IN102115) from the Institute of Geography at the National Autonomous University of Mexico (UNAM) that seeks to conduct a multi-temporal landslide inventory, produce a landslide susceptibility map, and estimate sediment production by using Geographic Information Systems (GIS). The Río La Carbonera watershed on the southeastern flank of Pico de Orizaba volcano, the highest mountain in Mexico, is selected as a study area. The catchment covers 71.9 km2 with elevations ranging from 1224 to 3643 m a.s.l. and hillslopes between <5° and 68°. The stream system of Río La Carbonera catchment erodes Tertiary and Quaternary lavas, pyroclastic flows, and fall deposits. The geologic and geomorphologic factors in combination with high seasonal precipitation, high degree of weathering, and steep slopes predispose the study area to landslides. The methodology encompasses three main stages of analysis to assess landslide hazards: Stage 1 builds a historic landslide inventory. In the study area, an inventory of more than 200 landslides is created from multi-temporal aerial-photo-interpretation and local field surveys to assess landslide distribution. All landslides were digitized into a geographic information system (GIS), and a spatial geo-database of landslides was constructed from standardized GIS datasets. Stage 2 calculates the susceptibility for the watershed. During this stage, (SINMAP using default values) is evaluated. Stage 3 Estimate the potential total material delivered to the main stream drainage channel by all landslides in the catchment. Detailed geometric measurements of individual landslides visited during the field work will be carried out to obtain the landslide area and volume. These measurements revealed an empirical relationship between area and volume that took the form of a power law. This relationship will be used to estimate the potential volume of material delivered to the

  9. NASA Earth Observing-1 Keeps Watchful Eye on South American Volcano Copahue

    NASA Image and Video Library

    2013-06-07

    NASA Earth Observing-1 EO-1 spacecraft observed Copahue volcano, a 2965 meter high volcano on the Chile-Argentina border, on Jun. 4, 2013. Having recently displayed signs of unrest, the volcano is under close scrutiny by local volcanologists.

  10. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  11. Nighttime Look at Ambrym Volcano, Vanuatu by NASA Spacecraft

    NASA Image and Video Library

    2014-02-12

    Ambrym volcano in Vanuatu is one of the most active volcanoes in the world. A large summit caldera contains two active vent complexes, Marum and Benbow is seen in this February 12, 2014 nighttime thermal infrared image from NASA Terra spacecraft.

  12. Interactive Volcano Studies and Education Using Virtual Globes

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2006-12-01

    Internet-based virtual globe programs such as Google Earth provide a spatial context for visualization of monitoring and geophysical data sets. At the Alaska Volcano Observatory, Google Earth is being used to integrate satellite imagery, modeling of volcanic eruption clouds and seismic data sets to build new monitoring and reporting tools. However, one of the most useful information sources for environmental monitoring is under utilized. Local populations, who have lived near volcanoes for decades are perhaps one of the best gauges for changes in activity. Much of the history of the volcanoes is only recorded through local legend. By utilizing the high level of internet connectivity in Alaska, and the interest of secondary education in environmental science and monitoring, it is proposed to build a network of observation nodes around local schools in Alaska and along the Aleutian Chain. A series of interactive web pages with observations on a volcano's condition, be it glow at night, puffs of ash, discolored snow, earthquakes, sounds, and even current weather conditions can be recorded, and the users will be able to see their reports in near real time. The database will create a KMZ file on the fly for upload into the virtual globe software. Past observations and legends could be entered to help put a volcano's long-term activity in perspective. Beyond the benefit to researchers and emergency managers, students and teachers in the rural areas will be involved in volcano monitoring, and gain an understanding of the processes and hazard mitigation efforts in their community. K-12 students will be exposed to the science, and encouraged to participate in projects at the university. Infrastructure at the university can be used by local teachers to augment their science programs, hopefully encouraging students to continue their education at the university level.

  13. Schoolyard Volcanoes: A Unit in Volcanology and Hazards

    NASA Astrophysics Data System (ADS)

    Lechner, H. N.; Gochis, E. E.; Brill, K. A.

    2014-12-01

    How do you teach volcanology and volcanic hazards to students when there is no volcano nearby? You bring the volcano to them! At Michigan Technological University we have developed a four-lesson-unit for middle and high school students which incorporates virtual, analogue and numerical models to increase students' interests in geosciences while simultaneously expanding the community of earth-science-literate individuals necessary for a disaster resilient society. The unit aims to build on students' prior geoscience knowledge by examining the physical properties that influence volcanic eruptions and introduces them to challenges and methods of communicating hazards and risk. Lesson one engages students in a series of hands-on investigations that explore the "3-Vs" of volcanology: Viscosity, Volatiles and Volume. The students learn about the relationship between magma composition and viscosity and the influence on eruption style, behavior and morphology of different volcanoes. Lesson two uses an analogue model of a volcano to demonstrate the forces involved in an explosive eruption and associated hazards. Students think critically about the factors that affect hazards and risk as well as the variables (such as topography) that affect the eruption and the hazard. During lesson three students use Google Earth for a virtual field trip to Pacaya volcano, Guatemala to examine changes in the landscape over time and other evidence of volcanic activity to make interpretations about the volcano. The final lesson has the students use numerical models and GIS to create hazard maps based on probabilistic lahar scenarios. Throughout the unit students are engaged in an inquiry-based exploration that covers several Next Generation Science Standards (NGSS) content and practices. This four lesson unit has been field tested in two school districts and during a summer engineering program. Results from student work and post-surveys show that this strategy raises interests in and

  14. Time Series of SO2 Flux from Popocatépetl Volcano by an Ultra-Violet Camera with a Set of Different Band-Pass Filters

    NASA Astrophysics Data System (ADS)

    Schiavo, B.; Stremme, W.; Grutter, M.; Campion, R.; Rivera, C. I.; Inguaggiato, S.

    2017-12-01

    The measurement of SO2flux from active volcanoes are of great importance, for monitoring and hazard of volcanic activity, environmental impact and flux emissions related to changes of magmatic activity. Sulfur dioxide total flux from Popocatépetl volcano was determinad using a ultra-violet camera (or SO2 camera) with different band-pass filter. The flux is obteined from the product of the gas concentration over integrated the plume cross-section (slant column in molec/cm2 or ppm*m) and wind velocity data. Model of plume altitude and wind speed measurement are used to calculate a wind velocity, but a new method of sequential images is widely used in several years for this calculation. Volcanic plume measurements, for a total of about 60 days from from January to March 2017, were collected and utilized to generate the SO2 time series. The importance of monitoring and the time series of volcanic gas emissions is described and proven by many scientific studies. A time series of the Popocatépetl volcano will allow us to detect the volcanic gas as well as anomalies in volcanic processes and help to estimate the average SO2 flux of the volcano. We present a detailed description of the posterior correction of the dilution effect, which occurs due to a simplification of the radiative transfer equation. The correction scheme is especial applicable for long term monitoring from a permanent observation site. Images of volcanic SO2 plumes from the active Popocatépetl volcano in Mexico are presented, showing persistent passive degassing. The measurment are taken from the Altzomoni Atmospheric Observatory (19.12N, -98.65W, 3,985 m.a.s.l.), which forms part of the RUOA (www.ruoa.unam.mx) and NDACC (https://www2.acom.ucar.edu/irwg) networks. It is located north of the crater at 11 km distance. The data to calculate SO2 flux (t/d or kg/s) were recorded with the QSI UV camera and processed using Python scripts.

  15. Three-dimensional displacements of a large volcano flank movement during the May 2010 eruptions at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Schaefer, L. N.; Wang, T.; Escobar-Wolf, R.; Oommen, T.; Lu, Z.; Kim, J.; Lundgren, P. R.; Waite, G. P.

    2017-01-01

    Although massive flank failure is fairly common in the evolution of volcanoes, measurements of flank movement indicative of instability are rare. Here 3-D displacements from airborne radar amplitude images derived using an amplitude image pixel offset tracking technique show that the west and southwest flanks of Pacaya Volcano in Guatemala experienced large ( 4 m), discrete landsliding that was ultimately aborted. Pixel offset tracking improved measurement recovery by nearly 50% over classic interferometric synthetic aperture radar techniques, providing unique measurements at the event. The 3-D displacement field shows that the flank moved coherently downslope along a complex failure surface involving both rotational and along-slope movement. Notably, the lack of continuous movement of the slide in the years leading up to the event emphasizes that active movement should not always be expected at volcanoes for which triggering factors (e.g., magmatic intrusions and eruptions) could precipitate sudden major flank instability.

  16. In search of ancestral Kilauea volcano

    USGS Publications Warehouse

    Lipman, P.W.; Sisson, T.W.; Ui, T.; Naka, J.

    2000-01-01

    Submersible observations and samples show that the lower south flank of Hawaii, offshore from Kilauea volcano and the active Hilina slump system, consists entirely of compositionally diverse volcaniclastic rocks; pillow lavas are confined to shallow slopes. Submarine-erupted basalt clasts have strongly variable alkalic and transitional basalt compositions (to 41% SiO2, 10.8% alkalies), contrasting with present-day Kilauea tholeiites. The volcaniclastic rocks provide a unique record of ancestral alkalic growth of an archetypal hotspot volcano, including transition to its tholeiitic shield stage, and associated slope-failure events.

  17. NASA Spacecraft Watches as Eruption Reshapes African Volcano

    NASA Image and Video Library

    2017-02-23

    On Jan. 24, 2017, the Hyperion Imager on NASA's Earth Observing 1 (EO-1) spacecraft observed a new eruption at Erta'Ale volcano, Ethiopia, from an altitude of 438 miles (705 kilometers). Data were collected at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths and were combined to create these images. A visible-wavelength image is on the left. An infrared image is shown on the right. The infrared image emphasizes the hottest areas and reveals a spectacular rift eruption, where a crack opens and lava gushes forth, fountaining into the air. The lava flows spread away from the crack. Erta'Ale is the location of a long-lived lava lake, and it remains to be seen if this survives this new eruption. The observation was scheduled via the Volcano Sensor Web, a network of sensors linked by artificial intelligence software to create an autonomous global monitoring program of satellite observations of volcanoes. The Volcano Sensor Web was alerted to this new activity by data from another spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA11239

  18. Volcano-Tectonic Activity at Deception Island Volcano Following a Seismic Swarm in the Bransfield Rift (2014-2015)

    NASA Astrophysics Data System (ADS)

    Almendros, J.; Carmona, E.; Jiménez, V.; Díaz-Moreno, A.; Lorenzo, F.

    2018-05-01

    In September 2014 there was a sharp increase in the seismic activity of the Bransfield Strait, Antarctica. More than 9,000 earthquakes with magnitudes up to 4.6 located SE of Livingston Island were detected over a period of 8 months. A few months after the series onset, local seismicity at the nearby (˜35 km) Deception Island volcano increased, displaying enhanced long-period seismicity and several outbursts of volcano-tectonic (VT) earthquakes. Before February 2015, VT earthquakes occurred mainly at 5-20 km SW of Deception Island. In mid-February the numbers and sizes of VT earthquakes escalated, and their locations encompassed the whole volcanic edifice, suggesting a situation of generalized unrest. The activity continued in anomalously high levels at least until May 2015. Given the spatial and temporal coincidence, it is unlikely that the Livingston series and the Deception VT swarm were unrelated. We propose that the Livingston series may have produced a triggering effect on Deception Island volcano. Dynamic stresses associated to the seismic swarm may have induced overpressure in the unstable volcanic system, leading to a magmatic intrusion that may in turn have triggered the VT swarm. Alternatively, both the Livingston earthquakes and the VT swarm could be consequences of a magmatic intrusion at Deception Island. The Livingston series would be an example of precursory distal VT swarm, which seems to be a common feature preceding volcanic eruptions and magma intrusions in long-dormant volcanoes.

  19. Venus - Volcano With Massive Landslides

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Magellan full-resolution mosaic which covers an area 143 by 146 kilometers (89 by 91 miles) is centered at 55 degrees north latitude, 266 degrees east longitude. The bright feature, slightly south of center is interpreted to be a volcano, 15-20 kilometers (9.3 to 12.4 miles) in diameter with a large apron of blocky debris to its right and some smaller aprons to its left. A preferred explanation is that several massive catastrophic landslides dropped down steep slopes and were carried by their momentum out into the smooth, dark lava plains. At the base of the east-facing or largest scallop on the volcano is what appears to be a large block of coherent rock, 8 to 10 kilometers (5 to 6 miles) in length. The similar margin of both the scallop and block and the shape in general is typical of terrestrial slumped blocks (masses of rock which slide and rotate down a slope instead of breaking apart and tumbling). The bright lobe to the south of the volcano may either be a lava flow or finer debris from other landslides. This volcanic feature, characterized by its scalloped flanks is part of a class of volcanoes called scalloped or collapsed domes of which there are more than 80 on Venus. Based on the chute-like shapes of the scallops and the existence of a spectrum of intermediate to well defined examples, it is hypothesized that all of the scallops are remnants of landslides even though the landslide debris is often not visible. Possible explanations for the missing debris are that it may have been covered by lava flows, the debris may have weathered or that the radar may not be recognizing it because the individual blocks are too small

  20. What Are Volcano Hazards?

    MedlinePlus

    ... related fact sheets published by the U.S. Geological Survey PDF version of this fact sheet Disponible también ... 144-00 (ese documento es PDF) U.S. GEOLOGICAL SURVEY—REDUCING THE RISK FROM VOLCANO HAZARDS Learn more ...

  1. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  2. Volcano spacings and lithospheric attenuation in the Eastern Rift of Africa

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Wood, C. A.

    1976-01-01

    The Eastern Rift of Africa runs the gamut of crustal and lithospheric attenuation from undeformed shield through attenuated rift margin to active neo-oceanic spreading zones. It is therefore peculiarly well suited to an examination of relationships between volcano spacings and crust/lithosphere thickness. Although lithospheric thickness is not well known in Eastern Africa, it appears to have direct expression in the surface spacing of volcanoes for any given tectonic regime. This applies whether the volcanoes are essentially basaltic, silicic, or alkaline-carbonatitic. No evidence is found for control of volcano sites by a pre-existing fracture grid in the crust.

  3. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  4. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  5. Mount Rainier: living safely with a volcano in your backyard

    USGS Publications Warehouse

    Driedger, Carolyn L.; Scott, William E.

    2008-01-01

    Majestic Mount Rainier soars almost 3 miles (14,410 feet) above sea level and looms over the expanding suburbs of Seattle and Tacoma, Washington. Each year almost two million visitors come to Mount Rainier National Park to admire the volcano and its glaciers, alpine meadows, and forested ridges. However, the volcano's beauty is deceptive - U.S. Geological Survey (USGS) research shows that Mount Rainier is one of our Nation's most dangerous volcanoes. It has been the source of countless eruptions and volcanic mudflows (lahars) that have surged down valleys on its flanks and buried broad areas now densely populated. To help people live more safely with the volcano, USGS scientists are working closely with local communities, emergency managers, and the National Park Service.

  6. Volcano plots in analyzing differential expressions with mRNA microarrays.

    PubMed

    Li, Wentian

    2012-12-01

    A volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log(10)(p-value) from the t-test). We review the basic and interactive use of the volcano plot and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide a unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility of applying volcano plots to other fields beyond microarray.

  7. The Influence of Plumbing System Structure on Volcano Dimensions and Topography

    NASA Astrophysics Data System (ADS)

    Castruccio, Angelo; Diez, Mikel; Gho, Rayen

    2017-11-01

    Volcano morphology has been traditionally studied from a descriptive point of view, but in this work we took a different more quantitative perspective. Here we used volcano dimensions such as height and basal radius, together with the topographic profile as indicators of key plumbing system properties. We started by coupling models for the ascent of magma and extrusion of lava flows with those for volcano edifice construction. We modeled volcanic edifices as a pile of lavas that are emitted from a single vent and reduce in volume with time. We then selected a number of arc-volcano examples to test our physical relationships and estimate parameters, which were compared with independent methods. Our results indicate that large volcanoes (>2,000 m height and base radius >10 km) usually are basaltic systems with overpressured sources located at more than 15 km depth. On the other hand, smaller volcanoes (<2,000 m height and basal radius <10 km) are associated with more evolved systems where the chambers feeding eruptions are located at shallower levels in the crust (<10 km). We find that surface observations on height and basal radius of a volcano and its lavas can give estimates of fundamental properties of the plumbing system, specifically the depth and size of the magma chamber feeding eruptions, as the structure of the magmatic system determines the morphology of the volcanic edifice.

  8. Mexico.

    ERIC Educational Resources Information Center

    Semaan, Leslie

    The text explores Mexico's history, geography, art, religion, and lifestyles in the context of its complex economy. The text focuses on Mexico's economy and reasons for its current situation. Part I of this teaching unit includes: Teacher Overview, Why Study Mexico, Mexico Fact Sheet, Map of Mexico, the Land and Climate, History, Government,…

  9. New geophysical views of Mt.Melbourne Volcano (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Gambetta, M.; Ferraccioli, F.; Corr, H.; Bozzo, E.

    2009-05-01

    Mt. Melbourne volcano is located along the transition between the Transantarctic Mountains and the West Antarctic Rift System. Recent volcanic activity is suggested by the occurrence of blankets of pyroclastic pumice and scoria fall around the eastern and southern flanks of Mt Melbourne and by pyroclastic layers interbedded with the summit snows. Geothermal activity in the crater area of Mount Melbourne may be linked to the intrusion of dykes within the last 200 years. Geophysical networks suggest that Mount Melbourne is a quiescent volcano, possibly characterised by slow internal dynamics. During the 2002-2003 Italian Antarctic campaign a high-resolution aeromagnetic survey was performed within the TIMM (Tectonics and Interior of Mt. Melbourne area) project. This helicopter-borne survey was flown at low-altitude and in drape-mode configuration (305 m above terrain) with a line separation less than 500 m. Our new high-resolution magnetic maps reveal the largely ice-covered magmatic and tectonic patters in the Mt. Melbourne volcano area. Additionally, in the frame of the UK-Italian ISODYN-WISE project (2005-06), an airborne ice-sounding radar survey was flown. We combine the sub-ice topography with images and models of the interior of Mt. Melbourne volcano, as derived from the high resolution aeromagnetic data and land gravity data. Our new geophysical maps and models also provide a new tool to study the regional setting of the volcano. In particular we re-assess whether there is geophysical evidence for coupling between strike-slip faulting, the Terror Rift, and Mount Melbourne volcano.

  10. Toward continuous 4D microgravity monitoring of volcanoes

    USGS Publications Warehouse

    Williams-Jones, G.; Rymer, H.; Mauri, G.; Gottsmann, J.; Poland, M.; Carbone, D.

    2008-01-01

    Four-dimensional or time-lapse microgravity monitoring has been used effectively on volcanoes for decades to characterize the changes in subsurface volcanic systems. With measurements typically lasting from a few days to weeks and then repeated a year later, the spatial resolution of theses studies is often at the expense of temporal resolution and vice versa. Continuous gravity studies with one to two instruments operating for a short period of time (weeks to months) have shown enticing evidence of very rapid changes in the volcanic plumbing system (minutes to hours) and in one case precursory signals leading to eruptive activity were detected. The need for true multi-instrument networks is clear if we are to have both the temporal and spatial reso-lution needed for effective volcano monitoring. However, the high cost of these instruments is currently limiting the implementation of continuous microgravity networks. An interim approach to consider is the development of a collaborative network of researchers able to bring multiple instruments together at key volcanoes to investigate multitemporal physical changes in a few type volcanoes. However, to truly move forward, it is imperative that new low-cost instruments are developed to increase the number of instruments available at a single site. Only in this way can both the temporal and spatial integrity of monitoring be maintained. Integration of these instruments into a multiparameter network of continuously recording sensors is essential for effective volcano monitoring and hazard mitigation. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  11. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic

  12. Density Imaging of Puy de Dôme Volcano with Atmospheric Muons in French Massif Central as a Case Study for Volcano Muography

    NASA Astrophysics Data System (ADS)

    Carloganu, Cristina; Le Ménédeu, Eve

    2016-04-01

    High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013

  13. Geothermal Exploration of Newberry Volcano, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three yearsmore » have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.« less

  14. The JPL ASTER Volcano Archive: the development and capabilities of a 15 year global high resolution archive of volcano data.

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Sanchez, R. M.

    2014-12-01

    The physical and temporal systematics of the world's volcanic activity is a compelling and productive arena for the exercise of orbital remote sensing techniques, informing studies ranging from basic volcanology to societal risk. Comprised of over 160,000 frames and spanning 15 years of the Terra platform mission, the ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov) is the world's largest (100+Tb) high spatial resolution (15-30-90m/pixel), multi-spectral (visible-SWIR-TIR), downloadable (kml enabled) dedicated archive of volcano imagery. We will discuss the development of the AVA, and describe its growing capability to provide new easy public access to ASTER global volcano remote sensing data. AVA system architecture is designed to facilitate parameter-based data mining, and for the implementation of archive-wide data analysis algorithms. Such search and analysis capabilities exploit AVA's unprecedented time-series data compilations for over 1,550 volcanoes worldwide (Smithsonian Holocene catalog). Results include thermal anomaly detection and mapping, as well as detection of SO2 plumes from explosive eruptions and passive SO2 emissions confined to the troposphere. We are also implementing retrospective ASTER image retrievals based on volcanic activity reports from Volcanic Ash Advisory Centers (VAACs) and the US Air Force Weather Agency (AFWA). A major planned expansion of the AVA is currently underway, with the ingest of the full 1972-present LANDSAT, and NASA EO-1, volcano imagery for comparison and integration with ASTER data. Work described here is carried out under contract to NASA at the Jet Propulsion Laboratory as part of the California Institute of Technology.

  15. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  16. Volcano ecology: Disturbance characteristics and assembly of biological communities

    USDA-ARS?s Scientific Manuscript database

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  17. False Color Image of Volcano Sapas Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This false-color image shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio (8 degrees north latitude and 188 degrees east longitude). The area shown is approximately 650 kilometers (404 miles) on a side. Sapas Mons measures about 400 kilometers (248 miles) across and 1.5 kilometers (0.9 mile) high. Its flanks show numerous overlapping lava flows. The dark flows on the lower right are thought to be smoother than the brighter ones near the central part of the volcano. Many of the flows appear to have been erupted along the flanks of the volcano rather than from the summit. This type of flank eruption is common on large volcanoes on Earth, such as the Hawaiian volcanoes. The summit area has two flat-topped mesas, whose smooth tops give a relatively dark appearance in the radar image. Also seen near the summit are groups of pits, some as large as one kilometer (0.6 mile) across. These are thought to have formed when underground chambers of magma were drained through other subsurface tubes and lead to a collapse at the surface. A 20 kilometer-diameter (12-mile diameter) impact crater northeast of the volcano is partially buried by the lava flows. Little was known about Atla Regio prior to Magellan. The new data, acquired in February 1991, show the region to be composed of at least five large volcanoes such as Sapas Mons, which are commonly linked by complex systems of fractures or rift zones. If comparable to similar features on Earth, Atla Regio probably formed when large volumes of molten rock upwelled from areas within the interior of Venus known as'hot spots.' Magellan is a NASA spacecraft mission to map the surface of Venus with imaging radar. The basic scientific instrument is a synthetic aperture radar, or SAR, which can look through the thick clouds perpetually shielding the surface of Venus. Magellan is in orbit around Venus which completes one turn around its axis in 243 Earth days. That period of time, one Venus day

  18. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    NASA Astrophysics Data System (ADS)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  19. HUBBLE SPACE TELESCOPE RESOLVES VOLCANOES ON IO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993. Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes. Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity. The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium. The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole. The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced

  20. Continuous monitoring of volcanoes with borehole strainmeters

    NASA Astrophysics Data System (ADS)

    Linde, Alan T.; Sacks, Selwyn

    Monitoring of volcanoes using various physical techniques has the potential to provide important information about the shape, size and location of the underlying magma bodies. Volcanoes erupt when the pressure in a magma chamber some kilometers below the surface overcomes the strength of the intervening rock, resulting in detectable deformations of the surrounding crust. Seismic activity may accompany and precede eruptions and, from the patterns of earthquake locations, inferences may be made about the location of magma and its movement. Ground deformation near volcanoes provides more direct evidence on these, but continuous monitoring of such deformation is necessary for all the important aspects of an eruption to be recorded. Sacks-Evertson borehole strainmeters have recorded strain changes associated with eruptions of Hekla, Iceland and Izu-Oshima, Japan. Those data have made possible well-constrained models of the geometry of the magma reservoirs and of the changes in their geometry during the eruption. The Hekla eruption produced clear changes in strain at the nearest instrument (15 km from the volcano) starting about 30 minutes before the surface breakout. The borehole instrument on Oshima showed an unequivocal increase in the amplitude of the solid earth tides beginning some years before the eruption. Deformational changes, detected by a borehole strainmeter and a very long baseline tiltmeter, and corresponding to the remote triggered seismicity at Long Valley, California in the several days immediately following the Landers earthquake are indicative of pressure changes in the magma body under Long Valley, raising the question of whether such transients are of more general importance in the eruption process. We extrapolate the experience with borehole strainmeters to estimate what could be learned from an installation of a small network of such instruments on Mauna Loa. Since the process of conduit formation from the magma sources in Mauna Loa and other

  1. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Image and Video Library

    1999-05-01

    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the

  2. Seismicity of Cascade Volcanoes: Characterization and Comparison

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.

    2016-12-01

    Here we summarize and compare the seismicity around each of the Very High Threat Volcanoes of the Cascade Range of Washington, Oregon and California as defined by the National Volcanic Early Warning System (NVEWS) threat assessment (Ewert et al., 2005). Understanding the background seismic activity and processes controlling it is critical for assessing changes in seismicity and their implications for volcanic hazards. Comparing seismicity at different volcanic centers can help determine what critical factors or processes affect the observed seismic behavior. Of the ten Very High Threat Volcanoes in the Cascade Range, five volcanoes are consistently seismogenic when considering earthquakes within 10 km of the volcanic center or caldera edge (Mount Rainier, Mount St. Helens, Mount Hood, Newberry Caldera, Lassen Volcanic Center). Other Very High Threat volcanoes (South Sister, Mount Baker, Glacier Peak, Crater Lake and Mount Shasta) have comparatively low rates of seismicity and not enough recorded earthquakes to calculate catalog statistics. Using a swarm definition of 3 or more earthquakes occurring in a day with magnitudes above the largest of the network's magnitude of completenesses (M 0.9), we find that Lassen Volcanic Center is the "swarmiest" in terms of percent of seismicity occurring in swarms, followed by Mount Hood, Mount St. Helens and Rainier. The predominance of swarms at Mount Hood may be overstated, as much of the seismicity is occurring on surrounding crustal faults (Jones and Malone, 2005). Newberry Caldera has a relatively short record of seismicity since the permanent network was installed in 2011, however there have been no swarms detected as defined here. Future work will include developing discriminates for volcanic versus tectonic seismicity to better filter the seismic catalog and more precise binning of depths at some volcanoes so that we may better consider different processes. Ewert J. W., Guffanti, M. and Murray, T. L. (2005). An

  3. State of stress, faulting, and eruption characteristics of large volcanoes on Mars

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1993-01-01

    The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.

  4. Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, Carolina; Berndt, Christian; Klaeschen, Dirk; Mienert, Jürgen; Haffert, Laura; Depreiter, Davy; Haeckel, Matthias

    2011-05-01

    Mud volcanoes are seafloor expressions of focused fluid flow that are common in compressional tectonic settings. New high-resolution 3-D seismic data from the Mercator mud volcano (MMV) and an adjacent buried mud volcano (BMV) image the internal structure of the top 800 m of sediment at both mud volcanoes, revealing that both are linked and have been active episodically. The total volumes of extruded mud range between 0.15 and 0.35 km3 and 0.02-0.05 km3 for the MMV and the BMV, respectively. The pore water composition of surface sediment samples suggests that halokinesis has played an important role in the evolution of the mud volcanoes. We propose that erosion of the top of the Vernadsky Ridge that underlies the mud volcanoes activated salt movement, triggering deep migration of fluids, dissolution of salt, and sediment liquefaction and mobilization since the end of the Pliocene. Since beginning of mud volcanism in this area, the mud volcanoes erupted four times while there was only one reactivation of salt tectonics. This implies that there are other mechanisms that trigger mud eruptions. The stratigraphic relationship of mudflows from the MMV and BMV indicates that the BMV was triggered by the MMV eruptions. This may either be caused by loading-induced hydrofracturing within the BMV or due to a common feeder system for both mud volcanoes. This study shows that the mud volcanoes in the El Arraiche mud volcano field are long-lived features that erupt with intervals of several tens of thousands of years.

  5. SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.

    2009-12-01

    We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in

  6. Geoheritage value of the UNESCO site at Leon Viejo and Momotombo volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Navarro, Martha; Espinoza, Eveling; Delgado, Hugo

    2017-04-01

    The Momotombo volcano has a special place in the history of Nicaragua. It is perfectly visible from the Capital, Managua, and from the major city of Leon. The old capital "Leon Viejo", founded in 1524 was abandoned in 1610, after a series of earthquakes and some major eruptions from Momotombo. The site was subsequently covered by Momotombo ash. A major geothermal power plant stands at the base of the volcano. Momotombo had been dormant for a hundred years, but had maintained high fumarole temperatures (900°C), indicating magma had been close to the surface for decades. In recent years, seismic activity has increased around the volcano. In December 2015, after a short ash eruption phase the volcano erupted lava, then a string of Vulcanian explosions. The volcano is now in a phase of small Vulcanian explosions and degassing. The Leon Viejo World Heritage site is at risk to mainly ash fall from the volcano, but the abandonment of the old city was primarily due to earthquakes. Additional risks come from high rainfall during hurricanes. There is an obvious link between the cultural site (inscribed under UNESCO cultural criteria) and the geological environment. First, the reactivation of Momotombo volcano makes it more important to revise the hazard of the site. At the same time, Leon Viejo can provide a portal for outreach related to the volcano and for geological risk in general. To maximise this, we provide a geosite inventory of the main features of Momotombo, and it's environs, that can be used as the first base for such studies. The volcano was visited by many adventure tourists before the 2015/2016 eruption, but is out of bounds at present. Alternative routes, around the volcano could be made, to adapt to the new situation and to show to visitors more of the geodiversity of this fascinating volcano-tectonic and cultural area.

  7. Volcano Geodesy: Recent developments and future challenges

    USGS Publications Warehouse

    Fernandez, Jose F.; Pepe, Antonio; Poland, Michael; Sigmundsson, Freysteinn

    2017-01-01

    Ascent of magma through Earth's crust is normally associated with, among other effects, ground deformation and gravity changes. Geodesy is thus a valuable tool for monitoring and hazards assessment during volcanic unrest, and it provides valuable data for exploring the geometry and volume of magma plumbing systems. Recent decades have seen an explosion in the quality and quantity of volcano geodetic data. New datasets (some made possible by regional and global scientific initiatives), as well as new analysis methods and modeling practices, have resulted in important changes to our understanding of the geodetic characteristics of active volcanism and magmatic processes, from the scale of individual eruptive vents to global compilations of volcano deformation. Here, we describe some of the recent developments in volcano geodesy, both in terms of data and interpretive tools, and discuss the role of international initiatives in meeting future challenges for the field.

  8. Mechanism of the 1996-97 non-eruptive volcano-tectonic earthquake swarm at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Roman, D.C.; Power, J.A.

    2011-01-01

    A significant number of volcano-tectonic(VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption.These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust.Real-time assessment of the likelihood that a VTswarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996-June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations,we aim to test the hypothesis that the 1996-97 swarm represented a shallow intrusion, or "failed" eruption.Observations of the 1996-97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption. ?? 2011 Springer-Verlag.

  9. Space radar image of Galeras Volcano, Colombia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the area surrounding the Galeras volcano in southern Colombia shows the ability of a multi-frequency radar to map volcanic structures that can be dangerous to study on the ground. Galeras has erupted more than 20 times since the area was first visited by European explorers in the 1500s. Volcanic activity levels have been high in the last five years, including an eruption in January 1993 that killed nine people on a scientific expedition to the volcano summit. Galeras is the light green area near the center of the image. The active cone, with a small summit pit, is the red feature nestled against the lower right edge of the caldera (crater) wall. The city of Pasto, with a population of 300,000, is shown in orange near the bottom of the image, just 8 kilometers (5 miles) from the volcano. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 96th orbit on April 15, 1994. North is toward the upper right. The area shown is 49.1 by 36.0 kilometers (30.5 by 22.3 miles), centered at 1.2 degrees north latitude and 77.4 degrees west longitude. The radar illumination is from the top of the image. The false colors in this image were created using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Galeras is one of 15 volcanoes worldwide that are being monitored by the scientific community as an 'International Decade Volcano' because of the hazard that it represents to the local population.

  10. Mauna Kea volcano's ongoing 18-year swarm

    NASA Astrophysics Data System (ADS)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  11. The recent seismicity of Teide volcano, Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    D'Auria, L.; Albert, G. W.; Calvert, M. M.; Gray, A.; Vidic, C.; Barrancos, J.; Padilla, G.; García-Hernández, R.; Perez, N. M.

    2017-12-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk of the island.On 02/10/2016 a remarkable swarm of long-period events was recorded and was interpreted as the effect of a transient massive fluid discharge episode occurring within the deep hydrothermal system of Teide volcano. Actually, since Oct. 2016, the hydrothermal system of the volcano underwent a progressive pressurization, testified by the marked variation of different geochemical parameters. The most striking observation is the increase in the diffuse CO2 emission from the summit crater of Teide volcano which started increasing from a background value of about 20 tons/day and reaching a peak of 175 tons/day in Feb. 2017.The pressurization process has been accompanied by an increase in the volcano-tectonic seismicity of. Teide volcano, recorded by the Red Sísmica Canaria, managed by Instituto Volcanológico de Canarias (INVOLCAN). The network began its full operativity in Nov. 2016 and currently consists of 15 broadband seismic stations. Since Nov. 2016 the network detected more than 100 small magnitude earthquakes, located beneath Teide volcano at depths usually ranging between 5 and 15 km. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest ever recorded since decades. Most of the events show typical features of the microseismicity of hydrothermal systems: high spatial and temporal clustering and similar waveforms of individual events which often are overlapped.We present the spatial and temporal distribution of the seismicity of Teide volcano since Nov. 2016, comparing it also with the past seismicity of the volcano. Furthermore we analyze the statistical properties of the numerous swarms recorded until now with the aid of a template

  12. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  13. Single-station monitoring of volcanoes using seismic ambient noise

    NASA Astrophysics Data System (ADS)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  14. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  15. Digital Data for Volcano Hazards of the Three Sisters Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Iverson, R.M.

    2008-01-01

    Three Sisters is one of three active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. The major composite volcanoes of this area are clustered near the center of the region and include South Sister, Middle Sister, and Broken Top. Additionally, hundreds of mafic volcanoes are scattered throughout the Three Sisters area. These range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. Scientists at the Cascades Volcano Observatory created a geographic information system (GIS) data set which depicts proximal and distal lahar hazard zones as well as a regional lava flow hazard zone for Three Sisters (USGS Open-File Report 99-437, Scott and others, 1999). The various distal lahar zones were constructed from LaharZ software using 20, 100, and 500 million cubic meter input flow volumes. Additionally, scientists used the depositional history of past events in the Three Sisters Region as well as experience and judgment derived from the

  16. Spatial Databases for CalVO Volcanoes: Current Status and Future Directions

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.

    2013-12-01

    The U.S. Geological Survey (USGS) California Volcano Observatory (CalVO) aims to advance scientific understanding of volcanic processes and to lessen harmful impacts of volcanic activity in California and Nevada. Within CalVO's area of responsibility, ten volcanoes or volcanic centers have been identified by a national volcanic threat assessment in support of developing the U.S. National Volcano Early Warning System (NVEWS) as posing moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. To better understand the extent of potential hazards at these and other volcanoes and volcanic centers, the USGS Volcano Science Center (VSC) is continually compiling spatial databases of volcano information, including: geologic mapping, hazards assessment maps, locations of geochemical and geochronological samples, and the distribution of volcanic vents. This digital mapping effort has been ongoing for over 15 years and early databases are being converted to match recent datasets compiled with new data models designed for use in: 1) generating hazard zones, 2) evaluating risk to population and infrastructure, 3) numerical hazard modeling, and 4) display and query on the CalVO as well as other VSC and USGS websites. In these capacities, spatial databases of CalVO volcanoes and their derivative map products provide an integrated and readily accessible framework of VSC hazards science to colleagues, emergency managers, and the general public.

  17. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  18. Geologic Mapping of the Olympus Mons Volcano, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  19. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  20. Seismic detection of the summit magma complex of kilauea volcano, hawaii.

    PubMed

    Thurber, C H

    1984-01-13

    Application of simultaneous inversion of seismic P-wave arrival time data to the investigation of the crust beneath Kilauea Volcano yields a detailed picture of the volcano's heterogeneous structure. Zones of anomalously high seismic velocity are found associated with the volcano's rift zones. A low-velocity zone at shallow depth directly beneath the caldera coincides with an aseismic region interpreted as being the locus of Kilauea's summit magma complex.

  1. Tephra compositions from Late Quaternary volcanoes around the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kraus, S.

    2009-12-01

    Crustal extension and rifting processes opened the Bransfield Strait between the South Shetland Islands and the Antarctic Peninsula during the last 4 Ma. Similar processes on the Peninsula's eastern side are responsible for volcanism along Larsen Rift. There are at least 11 volcanic centers with known or suspected Late Pleistocene / Holocene explosive activity (Fig. 1). Fieldwork was carried out on the islands Deception, Penguin, Bridgeman and Paulet, moreover at Melville Peak (King George Is.) and Rezen Peak (Livingston Is.). Of special importance is the second ever reported visit and sampling at Sail Rock, and the work on never before visited outcrops on the northern slopes and at the summit of Cape Purvis volcano (Fig. 1). The new bulk tephra ICP-MS geochemical data provide a reliable framework to distinguish the individual volcanic centers from each other. According to their Mg-number, Melville Peak and Penguin Island represent the most primitive magma source. Nb/Y ratios higher than 0.67 in combination with elevated Th/Yb and Ta/Yb ratios and strongly enriched LREE seem to be diagnostic to distinguish the volcanoes located along the Larsen Rift from those associated with Bransfield Rift. Sr/Y ratios discriminate between the individual Larsen Rift volcanoes, Paulet Island showing considerably higher values than Cape Purvis volcano. Along Bransfield Rift, Bridgeman Island and Melville Peak have notably lower Nb/Y and much higher Th/Nb than Deception Island, Penguin Island and Sail Rock. The latter displays almost double the Th/Yb ratio as compared to Deception Island, and also much higher LREE enrichment but extraordinarily low Ba/Th, discriminating it from Penguin Island. Such extremely low Ba/Th ratios are also typical for Melville Peak, but for none of the other volcanoes. Penguin Island has almost double the Ba/Th and Sr/Y ratios higher than any other investigated volcano. Whereas the volcanoes located in the northern part of Bransfield Strait have Zr

  2. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  3. Seismo-volcano source localization with triaxial broad-band seismic array

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Mars, J. I.; Métaxian, J. P.; O'Brien, G. S.; Macedo, O.

    2011-10-01

    Seismo-volcano source localization is essential to improve our understanding of eruptive dynamics and of magmatic systems. The lack of clear seismic wave phases prohibits the use of classical location methods. Seismic antennas composed of one-component (1C) seismometers provide a good estimate of the backazimuth of the wavefield. The depth estimation, on the other hand, is difficult or impossible to determine. As in classical seismology, the use of three-component (3C) seismometers is now common in volcano studies. To determine the source location parameters (backazimuth and depth), we extend the 1C seismic antenna approach to 3Cs. This paper discusses a high-resolution location method using a 3C array survey (3C-MUSIC algorithm) with data from two seismic antennas installed on an andesitic volcano in Peru (Ubinas volcano). One of the main scientific questions related to the eruptive process of Ubinas volcano is the relationship between the magmatic explosions and long-period (LP) swarms. After introducing the 3C array theory, we evaluate the robustness of the location method on a full wavefield 3-D synthetic data set generated using a digital elevation model of Ubinas volcano and an homogeneous velocity model. Results show that the backazimuth determined using the 3C array has a smaller error than a 1C array. Only the 3C method allows the recovery of the source depths. Finally, we applied the 3C approach to two seismic events recorded in 2009. Crossing the estimated backazimuth and incidence angles, we find sources located 1000 ± 660 m and 3000 ± 730 m below the bottom of the active crater for the explosion and the LP event, respectively. Therefore, extending 1C arrays to 3C arrays in volcano monitoring allows a more accurate determination of the source epicentre and now an estimate for the depth.

  4. Book Review: Dangerous Neighbors: Volcanoes and Cities

    DOE PAGES

    Caporuscio, Florie Andre

    2013-01-01

    Here, Grant Heiken, a world-renowned volcanologist, has written a book based on his long history investigating volcanic hazards that is absolutely riveting. Eight of the ten chapters focus on the interplay between major metropolises and destructive volcanoes. The introductory chapter sets the stage for the remainder of the book. This chapter touches on various types of volcanic events; from Nyiragongo lava flows that disrupted the city of Goma, DRC, to debris flows from Nevado del Ruiz that killed 23,000 residents in Armero, Columbia, to the Eyjafjallajokull volcano in Iceland which spewed an ash column into the jet stream and disruptedmore » air travel to 32 European countries for 6 days. Other issues weaved into the introduction are the social and political fallout when a predicted eruption does not occur (Soufriere de Guadeloupe), how hazard evaluation processes change, and why do major populations reside near high risk volcanoes.« less

  5. Record of late holocene debris avalanches and lahars at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Miller, T.P.; Beget, J.E.

    2000-01-01

    Iliamna Volcano is a 3053-meter high, glaciated stratovolcano in the southern Cook Inlet region of Alaska and is one of seven volcanoes in this region that have erupted multiple times during the past 10,000 yr. Prior to our studies of Iliamna Volcano, little was known about the frequency, magnitude, and character of Holocene volcanic activity. Here we present geologic evidence of the most recent eruptive activity of the volcano and provide the first outline of Late Holocene debris-avalanche and lahar formation. Iliamna has had no documented historical eruptions but our recent field investigations indicate that the volcano has erupted at least twice in the last 300 yr. Clay-rich lahar deposits dated by radiocarbon to ???1300 and ???90 yr BP are present in two major valleys that head on the volcano. These deposits indicate that at least two large, possibly deep-seated, flank failures of the volcanic edifice have occurred in the last 1300 yr. Noncohesive lahar deposits likely associated with explosive pyroclastic eruptions date to 2400-1300,>1500,???300, and <305 yr BP. Debris-avalanche deposits from recent and historical small-volume slope failures of the hydrothermally altered volcanic edifice cover most of the major glaciers on the volcano. Although these deposits consist almost entirely of hydrothermally altered rock debris and snow and ice, none of the recently generated debris avalanches evolved to lahars. A clay-rich lahar deposit that formed <90??60 radiocarbon yr BP and entered the Johnson River Valley southeast of the volcano cannot be confidently related to an eruption of Iliamna Volcano, which has had no known historical eruptions. This deposit may record an unheralded debris avalanche and lahar. ?? 2000 Elsevier Science B.V. All rights reserved.

  6. A model of diffuse degassing at three subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik

    Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.

  7. Linking petrology and seismology at an active volcano.

    PubMed

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.

  8. Design of smart sensing components for volcano monitoring

    USGS Publications Warehouse

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  9. Postshield stage transitional volcanism on Mahukona Volcano, Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Calvert, A.T.

    2009-01-01

    Age spectra from 40Ar/39Ar incremental heating experiments yield ages of 298??25 ka and 310??31 ka for transitional composition lavas from two cones on submarine Mahukona Volcano, Hawaii. These ages are younger than the inferred end of the tholeiitic shield stage and indicate that the volcano had entered the postshield alkalic stage before going extinct. Previously reported elevated helium isotopic ratios of lavas from one of these cones were incorrectly interpreted to indicate eruption during a preshield alkalic stage. Consequently, high helium isotopic ratios are a poor indicator of eruptive stage, as they occur in preshield, shield, and postshield stage lavas. Loihi Seamount and Kilauea are the only known Hawaiian volcanoes where the volume of preshield alkalic stage lavas can be estimated. ?? Springer-Verlag 2008.

  10. Living with a volcano in your backyard: an educator's guide with emphasis on Mount Rainier

    USGS Publications Warehouse

    Driedger, Carolyn L.; Doherty, Anne; Dixon, Cheryl; Faust, Lisa M.

    2005-01-01

    The National Park Service and the U.S. Geological Survey’s Volcano Hazards Program (USGS-VHP) support development and publication of this educator’s guide as part of their mission to educate the public about volcanoes. The USGS-VHP studies the dynamics of volcanoes, investigates eruption histories, develops hazard assessments, monitors volcano-related activity, and collaborates with local officials to lower the risk of disruption when volcanoes become restless.

  11. Characterizing and comparing seismicity at Cascade Range (USA) volcanoes

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Thelen, W. A.

    2010-12-01

    The Cascade Range includes 13 volcanic systems across Washington, Oregon, and northern California that are considered to have the potential to erupt at any time, including two that have erupted in the last 100 years (Mount St. Helens (MSH) and Lassen Peak). We investigated how seismicity compares among these volcanoes, and whether the character of seismicity (rate, type, style of occurrence over time, etc.) is related to eruptive activity at the surface. Seismicity at Cascade volcanoes has been monitored by seismic networks of variable apertures, station densities, and lengths of operation, which makes a direct comparison of seismicity among volcanoes somewhat problematic. Here we present results of two non-network-dependent approaches to making such seismicity comparisons. In the first, we used network geometry and a grid-search method to compute the minimum magnitude required for a network to locate an earthquake (“theoretical location threshold”, defined as an event recorded on at least 4 stations with gap of <135o) for each volcano out to 7 km. We then selected earthquakes with magnitudes greater than the highest theoretical location threshold determined for any Cascade volcano. To account for improving network densities with time, we used M 2.1 (location threshold for the Three Sisters 1980s-90s network) for 1987-1999 and M 1.6 (threshold for the Crater Lake 2000s network) for 2000-2010. In order to include only background seismicity, we excluded earthquakes occurring at any volcano during the 2004-2008 MSH eruption. We found that Mount Hood, Lassen Peak, and MSH had the three highest seismicity rates over that period, with Mount Hood, Medicine Lake volcano, and MSH having the three highest cumulative seismic energy releases. The Medicine Lake energy release is dominated by a single swarm in September 1988; if that swarm is removed, then Lassen would have the third-highest cumulative seismic energy release. For the second comparison, we determined the

  12. Shiveluch Volcano, Kamchatka Peninsula, Russia

    NASA Image and Video Library

    2002-01-03

    On the night of June 4, 2001, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 2,447 meters (8,028 feet). The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25-kilometer (15-mile) ash plume, seen as a cold "cloud" streaming from the summit. At least 60 large eruptions have occurred here during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and Asia, this area is constantly monitored for potential ash hazards to aircraft. The area is part of the "Ring of Fire," a string of volcanoes that encircles the Pacific Ocean. The lower image is the same as the upper, except it has been color-coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas. The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA03514

  13. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a

  14. Kilauea volcano, hawaii: a search for the volcanomagnetic effect.

    PubMed

    Davis, P M; Jackson, D B; Field, J; Stacey, F D

    1973-04-06

    Brief excursions of magnetic field differences between a base station and two satellite station magnetometers show only slight correlation with ground tilt at Kilauea Volcano. This result suggests that only transient, localized stresses occur during prolonged periods of deformation and that the volcano can support no large-scale pattern of shear stresses.

  15. Seismicity at Fuego, Pacaya, Izalco, and San Cristobal Volcanoes, Central America, 1973-1974

    USGS Publications Warehouse

    McNutt, S.R.; Harlow, D.H.

    1983-01-01

    Seismic data collected at four volcanoes in Central America during 1973 and 1974 indicate three sources of seismicity: regional earthquakes with hypocentral distances greater than 80 km, earthquakes within 40 km of each volcano, and seismic activity originating at the volcanoes due to eruptive processes. Regional earthquakes generated by the underthrusting and subduction of the Cocos Plate beneath the Caribbean Plate are the most prominent seismic feature in Central America. Earthquakes in the vicinity of the volcanoes occur on faults that appear to be related to volcano formation. Faulting near Fuego and Pacaya volcanoes in Guatemala is more complex due to motion on a major E-W striking transform plate boundary 40 km north of the volcanoes. Volcanic activity produces different kinds of seismic signatures. Shallow tectonic or A-type events originate on nearby faults and occur both singly and in swarms. There are typically from 0 to 6 A-type events per day with b value of about 1.3. At very shallow depths beneath Pacaya, Izalco, and San Cristobal large numbers of low-frequency or B-type events are recorded with predominant frequencies between 2.5 and 4.5 Hz and with b values of 1.7 to 2.9. The relative number of B-type events appears to be related to the eruptive states of the volcanoes; the more active volcanoes have higher levels of seismicity. At Fuego Volcano, however, low-frequency events have unusually long codas and appear to be similar to tremor. High-amplitude volcanic tremor is recorded at Fuego, Pacaya, and San Cristobal during eruptive periods. Large explosion earthquakes at Fuego are well recorded at five stations and yield information on near-surface seismic wave velocities (??=3.0??0.2 km/sec.). ?? 1983 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  16. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  17. A Comparison of Slow Slip Events at Etna and Kilauea Volcanoes

    NASA Astrophysics Data System (ADS)

    Mattia, M.; Montgomery-Brown, E. K.; Bruno, V.; Scandura, D.

    2016-12-01

    Mt. Etna and Kilauea Volcano are both large basaltic volcanoes with unstable flanks, on which slow slip events have been observed by continuous GPS networks. The slow slip events (SSEs) last about two days at both volcanoes, although there are some differences in the depths and frequencies. While recurrence intervals were initially somewhat irregular at Kilauea, the most recent 5 events have become more regular with an inter-event time of about 2.4 years. At Mt. Etna, these events seem to be more frequent (about 2 per year) and are often related to the main recharge phases of the volcano. Ground deformation data have been used on both volcanoes for determining the source of the anomalous displacements and, from this point of view, the two volcanoes seem very different. Although slow slip events at Mt. Etna and Kilauea are much shallower than many subduction zone slow slip events, slip at Kilauea occurs on a discrete decollement at about 8 km deep. At Mt. Etna, a variety of data suggest that the sliding could be much shallower and more diffuse. In this work, we show some preliminary results of a "block-like" model of Mt. Etna's slow slip events that is able to explain the source of the flank displacements with slip on the Giarre Wedge near the coast. This work will allow a possible classification of different types of slip events affecting the flanks of large basaltic volcanoes, often densely populated, with a significant impact on the evaluation of seismic and volcanic hazard.

  18. Monitoring Mount Baker Volcano

    USGS Publications Warehouse

    Malone, S.D.; Frank, D.

    1976-01-01

    Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future  volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken. 

  19. Sulfur volcanoes on Io?

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Fink, J.

    1985-04-01

    The unusual rheological properties of molten sulfur, in which viscosity decreases approximately four orders of magnitude as it cools from 170 to 120 C, may result in distinctive volcanic flow morphologies that allow sulfur flows and volcanoes to be identified on Io. Search of high resolution Voyager images reveals three features--Atar Patera, Daedalus Patera, and Kibero Patera--considered to be possible sulfur volcanoes based on their morphology. All three average 250 km in diameter and are distinguished by circular-to-oval central masses surrounded by irregular, widespread flows. Geometric relations indicate that the flows were emplaced after the central zone and appear to have emanated from their margins. The central zones are interpreted to be domes representing the high temperature stage of sulfur formed initially upon eruption. Rapid quenching formed a crust which preserved this phase of the emplacement. Upon cooling to 170 C, the sulfur reached a low viscosity runny stage and was released as the thin, widespread flows.

  20. Sulfur Volcanoes on Io?

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J.

    1985-01-01

    The unusual rheological properties of molten sulfur, in which viscosity decreases approximately four orders of magnitude as it cools from 170 to 120 C, may result in distinctive volcanic flow morphologies that allow sulfur flows and volcanoes to be identified on Io. Search of high resolution Voyager images reveals three features--Atar Patera, Daedalus Patera, and Kibero Patera--considered to be possible sulfur volcanoes based on their morphology. All three average 250 km in diameter and are distinguished by circular-to-oval central masses surrounded by irregular, widespread flows. Geometric relations indicate that the flows were emplaced after the central zone and appear to have emanated from their margins. The central zones are interpreted to be domes representing the high temperature stage of sulfur formed initially upon eruption. Rapid quenching formed a crust which preserved this phase of the emplacement. Upon cooling to 170 C, the sulfur reached a low viscosity runny stage and was released as the thin, widespread flows.

  1. Volcanoes Ceraunius Tholus and Uranius Tholus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Acquired in March 2002, this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view shows the martian volcanoes, Ceraunius Tholus (lower) and Uranius Tholus (upper). The presence of impact craters on these volcanoes, particularly on Uranius Tholus; indicates that they are quite ancient and are not active today. The light-toned area on the southeastern face (toward lower right) of Ceraunius Tholus is a remnant of a once more extensive deposit of dust from the global dust storm events that occurred in 2001. The crater at the summit of Ceraunius Tholus is about 25 km (15.5 mi) across. Sunlight illuminates the scene from the lower left.

  2. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    USGS Publications Warehouse

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  3. Linear scaling relationships and volcano plots in homogeneous catalysis - revisiting the Suzuki reaction.

    PubMed

    Busch, Michael; Wodrich, Matthew D; Corminboeuf, Clémence

    2015-12-01

    Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening.

  4. Soufriere Hills Volcano Resumes Activity

    NASA Image and Video Library

    2017-12-08

    A massive eruption of Montserrat’s Soufrière Hills Volcano covered large portions of the island in debris. The eruption was triggered by a collapse of Soufrière Hills’ summit lava dome on February 11, 2010. Pyroclastic flows raced down the northern flank of the volcano, leveling trees and destroying buildings in the village of Harris, which was abandoned after Soufrière Hills became active in 1995. The Montserrat Volcano Observatory reported that some flows, about 15 meters (49 feet) thick, reached the sea at Trant’s Bay. These flows extended the island’s coastline up to 650 meters (2,100 feet). These false-color satellite images show the southern half of Montserrat before and after the dome collapse. The top image shows Montserrat on February 21, 2010, just 10 days after the event. For comparison, the bottom image shows the same area on March 17, 2007. Red areas are vegetated, clouds are white, blue/black areas are ocean water, and gray areas are covered by flow deposits. Fresh deposits tend to be lighter than older deposits. On February 21, the drainages leading down from Soufrière Hills, including the White River Valley, the Tar River Valley, and the Belham River Valley, were filled with fresh debris. According to the Montserrat Volcano Observatory, pyroclastic flows reached the sea through Aymers Ghaut on January 18, 2010, and flows entered the sea near Plymouth on February 5, 2010. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. To read more go to: earthobservatory.nasa.gov/IOTD/view.php?id=42792 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  5. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-07-01

    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  6. Regional fracture patterns around volcanoes: Possible evidence for volcanic spreading on Venus

    NASA Astrophysics Data System (ADS)

    López, I.; Lillo, J.; Hansen, V. L.

    2008-06-01

    Magellan data show that the surface of Venus is dominated by volcanic landforms including large flow fields and a wide range of volcanic edifices that occur in different magmatic and tectonic environments. This study presents the results from a comprehensive survey of volcano-rift interaction in the BAT region and its surroundings. We carried out structural mapping of examples where interaction between volcanoes and regional fractures results in a deflection of the fractures around the volcanic features and discuss the nature of the local volcano-related stress fields that might be responsible for the observed variations of the regional fracture systems. We propose that the deflection of the regional fractures around these venusian volcanoes might be related to volcanic spreading, a process recognized as of great importance in the tectonic evolution of volcanoes on Earth and Mars, but not previously described on Venus.

  7. Measuring Gases Using Drones at Turrialba Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Stix, J.; Alan, A., Jr.; Corrales, E.; D'Arcy, F.; de Moor, M. J.; Diaz, J. A.

    2016-12-01

    We are currently developing a series of drones and associated instrumentation to study Turrialba volcano in Costa Rica. This volcano has shown increasing activity during the last 20 years, and the volcano is currently in a state of heightened unrest as exemplified by recent explosive activity in May-August 2016. The eruptive activity has made the summit area inaccessible to normal gas monitoring activities, prompting development of new techniques to measure gas compositions. We have been using two drones, a DJI Spreading Wings S1000 octocopter and a Turbo Ace Matrix-i quadcopter, to airlift a series of instruments to measure volcanic gases in the plume of the volcano. These instruments comprise optical and electrochemical sensors to measure CO2, SO2, and H2S concentrations which are considered the most significant species to help forecast explosive eruptions and determine the relative proportions of magmatic and hydrothermal components in the volcanic gas. Additionally, cameras and sensors to measure air temperature, relative humidity, atmospheric pressure, and GPS location are included in the package to provide meteorological and geo-referenced information to complement the concentration data and provide a better picture of the volcano from a remote location. The integrated payloads weigh 1-2 kg, which can typically be flown by the drones in 10-20 minutes at altitudes of 2000-4000 meters. Preliminary tests at Turrialba in May 2016 have been very encouraging, and we are in the process of refining both the drones and the instrumentation packages for future flights. Our broader goals are to map gases in detail with the drones in order to make flux measurements of each species, and to apply this approach at other volcanoes.

  8. Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy

    2010-01-01

    Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting

  9. Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Andrés, N.; Zamorano, J. J.; Palacios, D.; Renschler, C. S.

    2010-10-01

    Popocatépetl volcano (19°02' N, 98°62' W, 5424 m) began its most recent period of volcanic activity in December 1994. The interaction of volcanic and glacier activity triggered the formation of lahars through the Huiloac Gorge, located on the northern flank of the volcano, causing significant morphological changes in the channel. The most powerful lahars occurred in April 1995, July 1997 and January 2001, and were followed by secondary lahars that formed during the post-eruptive period. This study interprets the geomorphological evolution of the Huiloac Gorge after the January 2001 lahar. Variations in channel morphology at a 520 m-long research site located mid-way down the gorge were recorded over a 4 year period from February 2002 to March 2005, and depicted in five geomorphological maps (scale 1:200) for 14 February and 15 October 2002, 27 September 2003, 9 February 2004, and 16 March 2006. A GIS was used to calculate the surface area for the landforms identified for each map and detected changes and erosion-deposition processes of the landforms using the overlay function for different dates. Findings reveal that secondary lahars and others types of flows, like sediment-laden or muddy streamflows caused by precipitation, rapidly modified the gorge channel following the January 2001 non-eruptive lahar, a period associated with volcanic inactivity and the disappearance of the glacier once located at the headwall of the gorge. Field observations also confirmed that secondary flows altered the dynamics and geomorphological development of the channel. These flows incised and destroyed the formations generated by the primary lahars (1997 and 2001), causing a widening of the channel that continues today. After February 2004, a rain-triggered lahar and other flows infilled the channel with materials transported by these flows. The deposits on the lateral edges of the channel form terraces. A recent lull in lahar activity contrasts with the increasing instability of

  10. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  11. Volcano growth and evolution of the island of Hawaii

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    1992-01-01

    The seven volcanoes comprising the island of Hawaii and its submarine base are, in order of growth, Mahukona, Kohala, Mauna Kea, Hualalai, Mauna Loa, Kilauea, and Loihi. The first four have completed their shield-building stage, and the timing of this event can be determined from the depth of the slope break associated with the end of shield building, calibrated using the ages and depths of a series of dated submerged coral reefs off northwest Hawaii. On each volcano, the transition from eruption of tholeiitic to alkalic lava occurs near the end of shield building. The rate of southeastern progression of the end of shield building in the interval from Haleakala to Hualalai is about 13 cm/yr. Based on this rate and an average spacing of volcanoes on each loci line of 40-60km, the volcanoes required about 600 thousand years to grow from the ocean floor to the time of the end of shield building. They arrive at the ocean surface about midway through this period. -from Authors

  12. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  13. Gas hydrate accumulation at the Hakon Mosby Mud Volcano

    USGS Publications Warehouse

    Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.

    1999-01-01

    Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.

  14. Sutter Buttes-the lone volcano in California's Great Valley

    USGS Publications Warehouse

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  15. Earth Girl Volcano: An Interactive Game for Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    Kerlow, Isaac

    2017-04-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards. Earth Girl is a friendly character that kids can easily connect with and she helps players understand how to best minimize volcanic risk. Our previous award-winning game, Earth Girl Tsunami, has seen success on social media, and is available as a free app for both Android and iOS tables and large phones in seven languages: Indonesian, Thai, Tamil, Japanese, Chinese, Spanish, French and English. This is the first public viewing of the Earth Girl Volcano new game prototype.

  16. Alaska Volcano's Latest Eruption

    Atmospheric Science Data Center

    2017-06-06

    ... the Alaskan Volcano Observatory to issue a red alert for air travel in the area. Volcanic ash can cause major damage to aircraft engines, ...   On May 28, 2017, at approximately 2:23 p.m. local time, NASA's Terra satellite passed over Bogoslof, less than 10 minutes after ...

  17. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  18. Comparative features of volcanoes on Solar system bodies

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2018-05-01

    The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.

  19. Volcan Baru: Eruptive History and Volcano-Hazards Assessment

    USGS Publications Warehouse

    Sherrod, David R.; Vallance, James W.; Tapia Espinosa, Arkin; McGeehin, John P.

    2008-01-01

    Volcan Baru is a potentially active volcano in western Panama, about 35 km east of the Costa Rican border. The volcano has had four eruptive episodes during the past 1,600 years, including its most recent eruption about 400?500 years ago. Several other eruptions occurred in the prior 10,000 years. Several seismic swarms in the 20th century and a recent swarm in 2006 serve as reminders of a restless tectonic terrane. Given this history, Volcan Baru likely will erupt again in the near or distant future, following some premonitory period of seismic activity and subtle ground deformation that may last for days or months. Future eruptions will likely be similar to past eruptions?explosive and dangerous to those living on the volcano?s flanks. Outlying towns and cities could endure several years of disruption in the wake of renewed volcanic activity. Described in this open-file report are reconnaissance mapping and stratigraphic studies, radiocarbon dating, lahar-inundation modeling, and hazard-analysis maps. Existing data have been compiled and included to make this report as comprehensive as possible. The report is prepared in coooperation with National Secretariat for Science, Technology and Innovation (SENACYT) of the Republic of Panama and the U.S. Agency for International Development (USAID).

  20. Plenty of Deep Long-Period Earthquakes Beneath Cascade Volcanoes

    NASA Astrophysics Data System (ADS)

    Nichols, M. L.; Malone, S. D.; Moran, S. C.; Thelen, W. A.; Vidale, J. E.

    2009-12-01

    The Pacific Northwest Seismic Network (PNSN) records and locates earthquakes within Washington and Oregon, including those occurring at 10 Cascade volcanic centers. In an earlier study (Malone and Moran, EOS 1997), a total of 11 deep long-period (DLP) earthquakes were reported beneath 3 Washington volcanoes. They are characterized by emergent P- and S- arrivals, long and ringing codas, and contain most of their energy below 5 Hz. DLP earthquakes are significant because they have been observed to occur prior to or in association with eruptions at several volcanoes, and as a result are inferred to represent movement of deep-seated magma and associated fluids in the mid-to-lower crust. To more thoroughly characterize DLP occurrence in Washington and Oregon, we employed a two-step algorithm to systematically search the PNSN’s earthquake catalogue for DLP events occurring between 1980 and 2008. In the first step we applied a spectral ratio test to the demeaned and tapered triggered event waveforms to distinguish long-period events from the more common higher frequency volcano-tectonic and regional tectonic earthquakes. In the second step we visually analyzed waveforms of the flagged long-period events to distinguish DLP earthquakes from long-period rockfalls, explosions, shallow low-frequency events, and glacier quakes. We identified 56 DLP earthquakes beneath 7 Cascade volcanic centers. Of these, 31 occurred at Mount Baker, where the background flux of magmatic gases is greater than at the other volcanoes in our study. The other 6 volcanoes with DLPs (counts in parentheses) are Glacier Peak (5), Mount Rainier (9), Mount St. Helens (9), Mount Hood (1), Three Sisters (1), and Crater Lake (1). No DLP events were identified beneath Mount Adams, Mount Jefferson, or Newberry Volcano. The events are 10-40 km deep and have an average magnitude of around 1.5 (Mc), with both the largest and deepest DLPs occurring beneath Mount Baker. Cascade DLP earthquakes occur mostly as

  1. Density imaging of volcanos with atmospheric muons

    NASA Astrophysics Data System (ADS)

    Fehr, Felix; Tomuvol Collaboration

    2012-07-01

    Their long range in matter renders high-energy atmospheric muons a unique probe for geophysical explorations, permitting the cartography of density distributions which can reveal spatial and possibly also temporal variations in extended geological structures. A Collaboration between volcanologists and (astro-)particle physicists, TOMUVOL, was formed in 2009 to study tomographic muon imaging of volcanos with high-resolution tracking detectors. Here we discuss preparatory work towards muon tomography as well as the first flux measurements taken at the Puy de Dôme, an inactive lava dome volcano in the Massif Central.

  2. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  3. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  4. Galactic Super-volcano in Action

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  5. Field-trip guide to the geologic highlights of Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jensen, Robert A.; Donnelly-Nolan, Julie M.

    2017-08-09

    Newberry Volcano and its surrounding lavas cover about 3,000 square kilometers (km2) in central Oregon. This massive, shield-shaped, composite volcano is located in the rear of the Cascades Volcanic Arc, ~60 km east of the Cascade Range crest. The volcano overlaps the northwestern corner of the Basin and Range tectonic province, known locally as the High Lava Plains, and is strongly influenced by the east-west extensional environment. Lava compositions range from basalt to rhyolite. Eruptions began about half a million years ago and built a broad composite edifice that has generated more than one caldera collapse event. At the center of the volcano is the 6- by 8-km caldera, created ~75,000 years ago when a major explosive eruption of compositionally zoned tephra led to caldera collapse, leaving the massive shield shape visible today. The volcano hosts Newberry National Volcanic Monument, which encompasses the caldera and much of the northwest rift zone where mafic eruptions occurred about 7,000 years ago. These young lava flows erupted after the volcano was mantled by the informally named Mazama ash, a blanket of volcanic ash generated by the eruption that created Crater Lake about 7,700 years ago. This field trip guide takes the visitor to a variety of easily accessible geologic sites in Newberry National Volcanic Monument, including the youngest and most spectacular lava flows. The selected sites offer an overview of the geologic story of Newberry Volcano and feature a broad range of lava compositions. Newberry’s most recent eruption took place about 1,300 years ago in the center of the caldera and produced tephra and lava of rhyolitic composition. A significant mafic eruptive event occurred about 7,000 years ago along the northwest rift zone. This event produced lavas ranging in composition from basalt to andesite, which erupted over a distance of 35 km from south of the caldera to Lava Butte where erupted lava flowed west to temporarily block the Deschutes

  6. Validation and Analysis of SRTM and VCL Data Over Tropical Volcanoes

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.

    2004-01-01

    The focus of our investigation was on the application of digital topographic data in conducting first-order volcanological and structural studies of tropical volcanoes, focusing on the Java, the Philippines and the Galapagos Islands. Kilauea volcano, Hawaii, served as our test site for SRTM data validation. Volcanoes in humid tropical environments are frequently cloud covered, typically densely vegetated and erode rapidly, so that it was expected that new insights into the styles of eruption of these volcanoes could be obtained from analysis of topographic data. For instance, in certain parts of the world, such as Indonesia, even the regional structural context of volcanic centers is poorly known, and the distribution of volcanic products (e.g., lava flows, pyroclastic flows, and lahars) are not well mapped. SRTM and Vegetation Canopy Lidar (VCL) data were expected to provide new information on these volcanoes. Due to the cancellation of the VCL mission, we did not conduct any lidar studies during the duration of this project. Digital elevation models (DEMs) such as those collected by SRTM provide quantitative information about the time-integrated typical activity on a volcano and allow an assessment of the spatial and temporal contributions of various constructional and destructional processes to each volcano's present morphology. For basaltic volcanoes, P_c?w!m-d and Garbed (2000) have shown that gradual slopes (less than 5 deg.) occur where lava and tephra pond within calderas or in the saddles between adjacent volcanoes, as well as where lava deltas coalesce to form coastal plains. Vent concentration zones (axes of rift zones) have slopes ranging from 10 deg. to 12 deg. Differential vertical growth rates between vent concentration zones and adjacent mostly-lava flanks produce steep constructional slopes up to 40". The steepest slopes (locally approaching 90 deg.) are produced by fluvial erosion, caldera collapse, faulting, and catastrophic avalanches, all of

  7. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  8. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    NASA Astrophysics Data System (ADS)

    Nichols, M. L.; Malone, S. D.; Moran, S. C.; Thelen, W. A.; Vidale, J. E.

    2011-03-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust.

  9. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    USGS Publications Warehouse

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  10. Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel

    2018-02-01

    Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.

  11. Detection, Source Location, and Analysis of Volcano Infrasound

    NASA Astrophysics Data System (ADS)

    McKee, Kathleen F.

    The study of volcano infrasound focuses on low frequency sound from volcanoes, how volcanic processes produce it, and the path it travels from the source to our receivers. In this dissertation we focus on detecting, locating, and analyzing infrasound from a number of different volcanoes using a variety of analysis techniques. These works will help inform future volcano monitoring using infrasound with respect to infrasonic source location, signal characterization, volatile flux estimation, and back-azimuth to source determination. Source location is an important component of the study of volcano infrasound and in its application to volcano monitoring. Semblance is a forward grid search technique and common source location method in infrasound studies as well as seismology. We evaluated the effectiveness of semblance in the presence of significant topographic features for explosions of Sakurajima Volcano, Japan, while taking into account temperature and wind variations. We show that topographic obstacles at Sakurajima cause a semblance source location offset of 360-420 m to the northeast of the actual source location. In addition, we found despite the consistent offset in source location semblance can still be a useful tool for determining periods of volcanic activity. Infrasonic signal characterization follows signal detection and source location in volcano monitoring in that it informs us of the type of volcanic activity detected. In large volcanic eruptions the lowermost portion of the eruption column is momentum-driven and termed the volcanic jet or gas-thrust zone. This turbulent fluid-flow perturbs the atmosphere and produces a sound similar to that of jet and rocket engines, known as jet noise. We deployed an array of infrasound sensors near an accessible, less hazardous, fumarolic jet at Aso Volcano, Japan as an analogue to large, violent volcanic eruption jets. We recorded volcanic jet noise at 57.6° from vertical, a recording angle not normally feasible

  12. Detection and Identification of Mars Analogue Volcano — Ice Interaction Environments

    NASA Astrophysics Data System (ADS)

    Cousins, C. R.; Crawford, I.; Gunn, M.; Harris, J. K.; Steele, A.

    2012-03-01

    Volcano-ice interaction produces many environments available to microbial colonisation. Similar processes are likely to have occurred on Mars, and are prime exobiology targets. Multi-instrument analyses of volcano-ice deposits are presented.

  13. Catalog of the historically active volcanoes of Alaska

    USGS Publications Warehouse

    Miller, T.P.; McGimsey, R.G.; Richter, D.H.; Riehle, J.R.; Nye, C.J.; Yount, M.E.; Dumoulin, Julie A.

    1998-01-01

    Alaska hosts within its borders over 80 major volcanic centers that have erupted during Holocene time (< 10,000 years). At least 29 of these volcanic centers (table 1) had historical eruptions and 12 additional volcanic centers may have had historical eruptions. Historical in Alaska generally means the period since 1760 when explorers, travelers, and inhabitants kept written records. These 41 volcanic centers have been the source for >265 eruptions reported from Alaska volcanoes. With the exception of Wrangell volcano, all the centers are in, or near, the Aleutian volcanic arc, which extends 2500 km from Hayes volcano 145 km west of Anchorage in the Alaska-Aleutian Range to Buldir Island in the western Aleutian Islands (fig. 1). The volcanic arc, a subduction-related feature associated with underthrusting of the Pacific plate beneath the North American plate is divided between oceanic island arc and continental margin segments, the boundary occurring at about 165° W longitude (fig. 1). An additional 7 volcanic centers in the Aleutian arc (table 2; fig. 1 A) have active fumarole fields but no reported historical eruptions.This report discusses the location, physiography and structure, eruptive history, and geology of those volcanoes in Alaska that have experienced one or more eruptions that have been recorded in the written history (i.e., in historical time). It is part of the group of catalogs entitled Catalogue of Active Volcanoes of the World published beginning in 1951 under the auspices of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI). A knowledge of the information contained in such catalogs aids in understanding the type and scale of activity that might be expected during a particular eruption, the hazards the eruption may pose, and even the prediction of eruptions. The catalog will thus be of value not only to the inhabitants of Alaska but to government agencies concerned with emergency response, air traffic

  14. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  15. Air-cooled volcanoes ? New insights on convective airflow process within Miyakejima and Piton de la Fournaise volcanoes

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Geshi, N.; Kurita, K.; Aoki, Y.; Ichihara, M.; Staudacher, T.; Bachelery, P.

    2012-04-01

    Subsurface airflow in the unsaturated zone of the soil has been extensively investigated in a variety of disciplines such as mining, nuclear waste or agriculture science. In volcanology, the recent discovery of subsurface airflow close to the terminal cone of Piton de La Fournaise volcano (La Réunion Island, France) provides for the first time insights into the convective behavior of air within the unsaturated layer [1]. The characteristics of the aerothermal system, its occurrence in other volcanoes, its ability to transport heat during quiescent periods and the perturbation of this system before eruptions are the key questions we want to address following this discovery. In this study, we present observations of subsurface convective airflow within opened fractures located at the summit of Miyakejima and Piton de la Fournaise volcanoes from anemometric and temperature data. Two anemometers and thermocouples were placed at the surface and at the center of the fracture at two-meter depth during a diurnal cycle. Six thermocouples also measured the temperature at 1 meter-depth, on a profile set perpendicularly to the fracture. Finally, a thermal camera was used to make punctual measurements of the surface temperature of the fracture. At Miyakejima, two surveys were realized in winter 2010 and summer 2011. During the winter, mild air exit was detected from the fracture with a central vertical velocity of 20 to 50 cm/s. The temperature of the site was constant during the diurnal cycle (~ 22°C), leading to a maximum temperature contrast of 15°C between the fracture and the atmosphere just before sunrise. During summer, a different hydrodynamic behavior was observed: Air inflow was detected during the whole diurnal cycle with a mean velocity of 20 cm/s. The temperature of the fracture followed the temperature of the atmosphere at 2 meters-depth. In the case of Piton de la Fournaise volcano, the same convective behavior was observed at two different fractures during

  16. Syn- and posteruptive hazards of maar diatreme volcanoes

    NASA Astrophysics Data System (ADS)

    Lorenz, Volker

    2007-01-01

    Maar-diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar-diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle. Syneruptive hazards of maar-diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive

  17. Decision Analysis Tools for Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  18. Workshops on Volcanoes at Santiaguito (Guatemala): A community effort to inform and highlight the outstanding science opportunities at an exceptional laboratory volcano

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Escobar-Wolf, R. P.; Pineda, A.

    2016-12-01

    Santiaguito is one of Earth's most reliable volcanic spectacles and affords opportunity to investigate dome volcanism, including hourly explosions, pyroclastic flows, block lava flows, and sporadic paroxysmal eruptions. The cubic km dome, active since 1922, comprises four coalescing structures. Lava effusion and explosions are ideally observed from a birds-eye perspective at the summit of Santa Maria volcano (1200 m above and 2700 km from the active Caliente vent). Santiaguito is also unstable and dangerous. Thousands of people in farms and local communities are exposed to hazards from frequent lahars, pyroclastic flows, and potentially large sector-style dome collapses. In January 2016 more than 60 volcano scientists, students, postdocs, and observatory professionals traveled to Santiaguito to participate in field study and discussion about the science and hazards of Santiaguito. The event facilitated pre- and syn-workshop field experiments, including deployment of seismic, deformation, infrasound, multi-spectral gas and thermal sensing, UAV reconnaissance, photogrammetry, and petrologic and rheologic sampling. More than 55 participants spent the night on the 3770-m summit of Santa Maria to partake in field observations. The majority of participants also visited lahar and pyroclastic flow-impacted regions south of the volcano. A goal of the workshop was to demonstrate how multi-disciplinary observations are critical to elucidate volcano eruption dynamics. Integration of geophysical and geochemical observation, and open exchange of technological advances, is vital to achieve the next generation of volcano discovery. Toward this end data collected during the workshop are openly shared within the broader volcanological community. Another objective of the workshop was to bring attention to an especially hazardous and little-studied volcanic system. The majority of workshop attendees had not visited the region and their participation was hoped to seed future

  19. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  20. Taking the pulse of Mars via dating of a plume-fed volcano.

    PubMed

    Cohen, Benjamin E; Mark, Darren F; Cassata, William S; Lee, Martin R; Tomkinson, Tim; Smith, Caroline L

    2017-10-03

    Mars hosts the solar system's largest volcanoes. Although their size and impact crater density indicate continued activity over billions of years, their formation rates are poorly understood. Here we quantify the growth rate of a Martian volcano by 40 Ar/ 39 Ar and cosmogenic exposure dating of six nakhlites, meteorites that were ejected from Mars by a single impact event at 10.7 ± 0.8 Ma (2σ). We find that the nakhlites sample a layered volcanic sequence with at least four discrete eruptive events spanning 93 ± 12 Ma (1416 ± 7 Ma to 1322 ± 10 Ma (2σ)). A non-radiogenic trapped 40 Ar/ 36 Ar value of 1511 ± 74 (2σ) provides a precise and robust constraint for the mid-Amazonian Martian atmosphere. Our data show that the nakhlite-source volcano grew at a rate of ca. 0.4-0.7 m Ma -1 -three orders of magnitude slower than comparable volcanoes on Earth, and necessitating that Mars was far more volcanically active earlier in its history.Mars hosts the solar system's largest volcanoes, but their formation rates remain poorly constrained. Here, the authors have measured the crystallization and ejection ages of meteorites from a Martian volcano and find that its growth rate was much slower than analogous volcanoes on Earth.