Sample records for tandem cascade accelerator

  1. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  2. Cascaded chirped photon acceleration for efficient frequency conversion

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2018-05-01

    A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.

  3. The Naples University 3 MV tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campajola, L.; Brondi, A.

    2013-07-18

    The 3 MV tandem accelerator of the Naples University is used for research activities and applications in many fields. At the beginning of operation (1977) the main utilization was in the field of nuclear physics. Later, the realization of new beam lines allowed the development of applied activities as radiocarbon dating, ion beam analysis, biophysics, ion implantation etc. At present, the availability of different ion sources and many improvements on the accelerator allow to run experiments in a wide range of subjects. An overview of the characteristics and major activities of the laboratory is presented.

  4. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Educational activities with a tandem accelerator

    NASA Astrophysics Data System (ADS)

    Casolaro, P.; Campajola, L.; Balzano, E.; D'Ambrosio, E.; Figari, R.; Vardaci, E.; La Rana, G.

    2018-05-01

    Selected experiments in fundamental physics have been proposed for many years at the Tandem Accelerator of the University of Napoli ‘Federico II’s Department of Physics as a part of a one-semester laboratory course for graduate students. The aim of this paper is to highlight the educational value of the experimental realization of the nuclear reaction 19F(p,α)16O. With the purpose of verifying the mass-energy equivalence principle, different aspects of both classical and modern physics can be investigated, e.g. conservation laws, atomic models, nuclear physics applications to compositional analysis, nuclear cross-section, Q-value and nuclear spectroscopic analysis.

  6. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modification of the argon stripping target of the tandem accelerator.

    PubMed

    Makarov, A; Ostreinov, Yu; Taskaev, S; Vobly, P

    2015-12-01

    The tandem accelerator with vacuum insulation has been proposed and developed in Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1MV potential of the high-voltage electrode, converted into protons in the gas stripping target inside the electrode, and then protons are accelerated again by the same potential. A stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity, and 0.5% current stability is obtained now. To conduct Boron Neutron Capture Therapy it is planned to increase the proton beam current to at least 3 mA. The paper presents the results of experimental studies clarifying the reasons for limiting the current, and gives suggestions for modifying the gas stripping target in order to increase the proton beam current along with the stability of the accelerator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreiner, A. J.; Escuela de Ciencia y Tecnologia, Universidad de Gral San Martin; CONICET,

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  9. Gamma-resonance Contraband Detection using a high current tandem accelerator

    NASA Astrophysics Data System (ADS)

    Milton, B. F.; Beis, J.; Dale, D.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Rogers, J.; Ruegg, R.; Sredniawski, J.

    1999-04-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14N of gammas produced using 13C(p,γ)14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  10. Half-life of Si-32 from tandem-accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Elmore, D.; Anantaraman, N.; Fulbright, H. W.; Gove, H. E.; Nishiizumi, K.; Murrell, M. T.; Honda, M.; Hans, H. S.

    1980-01-01

    A newly developed mass-spectrometry technique employing a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector has been used to determine the half-life of Si-32. The result obtained, 108 plus or minus 18 yr, disagrees with the accepted value of 330 plus or minus 40 yr. The implications of the new half-life of Si-32, which is used for dating studies, are discussed.

  11. First experimental results from 2 MeV proton tandem accelerator for neutron production.

    PubMed

    Kudryavtsev, A; Belchenko, Yu; Burdakov, A; Davydenko, V; Ivanov, A; Khilchenko, A; Konstantinov, S; Krivenko, A; Kuznetsov, A; Mekler, K; Sanin, A; Shirokov, V; Sorokin, I; Sulyaev, Yu; Tiunov, M

    2008-02-01

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction (7)Li(p,n)(7)Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction (13)C(p,gamma)(14)N, absorption in nitrogen.

  12. Transmission of cluster ions through a tandem accelerator of several stripper gases.

    PubMed

    Saitoh, Yuichi; Chiba, Atsuya; Narumi, Kazumasa

    2009-10-01

    The transmissions of carbon cluster ion beams through a tandem accelerator using several stripper gases (He, N2, CO2, and SF6) with a terminal voltage of 2.5 MV were measured as a function of the gas pressure in investigating the most suitable gas for cluster ion acceleration. This resulted in it being demonstrated that the highest transmission could be obtained using the smaller size gas, i.e., helium displayed the best performance of the four gases used. In addition, the ratio of transmissions of C(n) with helium and nitrogen increased with increases in the n, thus revealing that helium gas should prove the most effective in larger cluster ion acceleration using the same energy.

  13. Gamma-resonance Contraband Detection using a high current tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton, B. F.; Beis, J.; Dale, D.

    1999-04-26

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by {sup 14}N of gammas produced using {sup 13}C(p,{gamma}){sup 14}N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerablemore » confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H{sup -} tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.« less

  14. A High Current Tandem Accelerator for Gamma-Resonance Contraband Detection

    NASA Astrophysics Data System (ADS)

    Milton, Bruce

    1997-05-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by ^14N of gammas produced using ^13C(p,γ)^14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non -resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H^- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  15. Transmission of cluster ions through a tandem accelerator of several stripper gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saitoh, Yuichi; Chiba, Atsuya; Narumi, Kazumasa

    2009-10-15

    The transmissions of carbon cluster ion beams through a tandem accelerator using several stripper gases (He, N{sub 2}, CO{sub 2}, and SF{sub 6}) with a terminal voltage of 2.5 MV were measured as a function of the gas pressure in investigating the most suitable gas for cluster ion acceleration. This resulted in it being demonstrated that the highest transmission could be obtained using the smaller size gas, i.e., helium displayed the best performance of the four gases used. In addition, the ratio of transmissions of C{sub n} with helium and nitrogen increased with increases in the n, thus revealing thatmore » helium gas should prove the most effective in larger cluster ion acceleration using the same energy.« less

  16. Stochastic Flow Cascades

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Shlesinger, Michael F.

    2012-01-01

    We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).

  17. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  18. Tandem accelerators in Romania: Multi-tools for science, education and technology

    NASA Astrophysics Data System (ADS)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  19. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  20. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhijun; Li, Wentao; Wang, Wentao

    2016-05-15

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less

  1. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A remote control console for the HHIRF 25-MV Tandem Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders, and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. Itmore » has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. This capability will be useful in the new Radioactive Ion Beam project of the division. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 with the aid of a communication protocol. Hardware configuration has been established, a software program that reads the pages from the shared memory, and a communication protocol have been developed. The following sections present the implementation strategy, work completed, future action plans, and the functional details of the communication protocol.« less

  3. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  4. Development of a remote control console for the HHIRF 25-MV tandem accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanul Basher, A.M.

    1991-09-01

    The CAMAC-based control system for the 25-MV Tandem Accelerator at HHIRF uses two Perkin-Elmer, 32-bit minicomputers: a message-switching computer and a supervisory computer. Two operator consoles are located on one of the six serial highways. Operator control is provided by means of a console CRT, trackball, assignable shaft encoders and meters. The message-switching computer transmits and receives control information on the serial highways. At present, the CRT pages with updated parameters can be displayed and parameters can be controlled only from the two existing consoles, one in the Tandem control room and the other in the ORIC control room. Itmore » has become necessary to expand the control capability to several other locations in the building. With the expansion of control and monitoring capability of accelerator parameters to other locations, the operators will be able to control and observe the result of the control action at the same time. Since the new control console will be PC-based, the existing page format will be changed. The PC will be communicating with the Perkin-Elmer through RS-232 and a communication software package. Hardware configuration has been established, a communication software program that reads the pages from the shared memory has been developed. In this paper, we present the implementation strategy, works completed, existing and new page format, future action plans, explanation of pages and use of related global variables, a sample session, and flowcharts.« less

  5. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less

  6. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Gan, W.; Liu, S.

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics.more » Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.« less

  7. Determination of cosmogenic Ca-41 in a meteorite with tandem accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kubik, P. W.; Elmore, D.; Conard, N. J.; Nishiizumi, K.; Arnold, J. R.

    1986-02-01

    The first use of tandem accelerator mass spectrometry (TAMS) to measure the content of Ca-41 in a natural sample, the iron Bogou meteorite, is reported. Ca in the samples was extracted by hydroxide precipitation and purified by means of a caution exchange resin (AG 50W-X8). After adding 4 percent ammonium oxide, the precipitate was ignited to CaO in a quartz vial at about 1100 C. The Ca-41/Ca ratios were determined following acceleration by alternate measurements of the Ca-40 beam current in an image Faraday cup. Ca-41 particles were also measured using a gas counter. The measured Ca-41/Ca ratio was 3.8 + or -0.6 x 10 to the 12th, which corresponds to a Ca-41 activity of 6.9 + or -1.1 d.p.m. per kg. Calculation of the half-life of Ca-41 in the Bogou meteorite yielded an age of 103,000 years.

  8. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring.

    PubMed

    Mello, S L A; Codeço, C F S; Magnani, B F; Sant'Anna, M M

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  9. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    NASA Astrophysics Data System (ADS)

    Mello, S. L. A.; Codeço, C. F. S.; Magnani, B. F.; Sant'Anna, M. M.

    2016-06-01

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up to 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.

  10. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J

    2011-12-01

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Transport of a high brightness proton beam through the Munich tandem accelerator

    NASA Astrophysics Data System (ADS)

    Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.

    2015-04-01

    Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.

  12. Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Vockenhuber, Christof; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Winkler, Stephan; Liechtenstein, Vitaly

    2002-12-01

    A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). The original design of the beam transport components allows the transport of ions of all elements, from the lightest to the heaviest. For light ions the suppression of neighboring masses was sufficient to measure isotopic ratios of {(14}) C/{(12}) C and {(26}) Al/{(27}) Al as low as 10{(-15}) and {(10}) Be/{(9}) Be down to 10{(-13}) . To suppress neighboring masses for the heaviest radionuclides in the energy range of 10-20 MeV, the resolution of VERA was increased both by improving the ion optics of existing elements at the injection side and by installing a new high-resolution electrostatic separator at the high-energy side. Interfering ions which pass all beam filters are identified with a Bragg-type ionization detector and a high-resolution time-of-flight system. Two ultra-thin diamond-like carbon (DLC) foils are used in the start and stop detector, which substantially reduces losses due to beam straggling. This improved set up enables us to measure even the heaviest long-lived radionuclides, where stable isobaric interferences are absent (e.g. {(236}) U and {(244}) Pu), down to environmental levels. Moreover, the advantage of a `small' and well manageable machine like VERA lies in its higher stability and reliability which allows to measure these heavy radionuclides more accurately, and also a large number of samples.

  13. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Alternative uses of a megavolt tandem accelerator for few-keV studies with ion-source SIMS monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mello, S. L. A., E-mail: smello@ufv.br; Codeço, C. F. S.; Magnani, B. F.

    2016-06-15

    We increase the versatility of a tandem electrostatic accelerator by implementing simple modifications to the standard operation procedure. While keeping its ability to deliver MeV ion beams, we show that the experimental setup can (i) provide good quality ion beams in the few-keV energy range and (ii) be used to study ion-beam surface modification with simultaneous secondary ion mass spectrometry. This latter task is accomplished without using any chamber connected to the accelerator exit. We perform mass spectrometry of the few-keV anions produced in the ion source by measuring their neutral counterparts at the accelerator exit with energies up tomore » 1.7 MeV. With an additional modification, a high-current few-keV regime is obtained, using the ion source as an irradiation chamber and the accelerator itself only as a mass spectrometer. As an example of application, we prepare a sample for the study of ion-beam assisted dewetting of a thin Au film on a Si substrate.« less

  15. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  16. A dedicated AMS setup for 53Mn/60Fe at the Cologne FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Dewald, A.; Feuerstein, C.; Altenkirch, R.; Stolz, A.; Heinze, S.

    2015-10-01

    Following demands for AMS measurements of medium mass isotopes, especially for 53Mn and 60Fe, we started to build a dedicated AMS setup at the Cologne FN tandem accelerator. This accelerator with a maximum terminal voltage of 10 MV can be reliably operated at a terminal voltage of 9.5 MV which corresponds to energies of 93-102 MeV for 60Fe or 53Mn beams using the 9+ or 10+ charge state. These charge states can be obtained by foil stripping with efficiencies of 30% and 20%, respectively. Energies around 100 MeV are sufficient to effectively suppress the stable isobars 60Ni and 53Cr by (dE/dx) techniques using combinations of energy degrader foils and dispersive elements like electrostatic analyzers and time of flight (TOF) systems as well as (dE/dx)E ion detectors. In this contribution we report on the actual status of the AMS setup and discuss details and expected features.

  17. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  18. Experiments using a 200 kV implanter and a 5 MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Ishigami, Ryoya; Ito, Yoshifumi; Yasuda, Keisuke; Hatori, Satoshi

    2001-07-01

    N+ ions with an energy of 190 keV were implanted into an Al alloy (95% Al and 5% Mg) to a dose of 1.5×1019ions/cm2. A layer of AlN with 1.4 μm thickness was obtained. The amounts of InN deposited on GaAs or Al2O3 were measured by RBS using He2+ ions with an energy of 3.14 MeV generated by a tandem accelerator. The thickness was estimated to be 0.047 μm and 0.26 μm in each case. An experiment on transmission ERDA using He2+ ions with an energy of 15 MeV is proposed for the measurement of deuterons in thick Ti foil with good depth resolution.

  19. Experiments to increase the parameters of the vacuum insulation tandem accelerator for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D. A.; Kolesnikov, J. A.; Koshkarev, A. M.; Kuznetsov, A. S.; Makarov, A. N.; Sokolova, E. O.; Sorokin, I. N.; Sycheva, T. V.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-12-01

    An epithermal neutron source that is based on a vacuum insulation tandem accelerator (VITA) and lithium target was created in the Budker Institute of Nuclear Physics for the development of boron neutron capture therapy (BNCT). A stationary proton beam with 2 MeV energy and 1.6 mA current has been obtained. To carry out BNCT, it is necessary to increase the beam parameters up to 2.3 MeV and 3 mA. Ways to increase the parameters of the proton beam have been proposed and discussed in this paper. The results of the experiments are presented.

  20. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  1. A dedicated AMS setup for medium mass isotopes at the Cologne FN tandem accelerator

    NASA Astrophysics Data System (ADS)

    Schiffer, M.; Altenkirch, R.; Feuerstein, C.; Müller-Gatermann, C.; Hackenberg, G.; Herb, S.; Bhandari, P.; Heinze, S.; Stolz, A.; Dewald, A.

    2017-09-01

    AMS measurements of medium mass isotopes, e.g. of 53Mn and 60Fe, are gaining interest in various fields of operation, especially geoscience. Therefore a dedicated AMS setup has been built at the Cologne 10 MV FN tandem accelerator. This setup is designed to obtain a sufficient suppression of the stable isobars at energies around 100 MeV. In this contribution we report on the actual status of the new setup and the first in-beam tests of its individual components. The isobar suppression is done with (dE/dx) techniques using combinations of energy degrader foils with an electrostatic analyzer (ESA) and a time of flight (ToF) system, as well as a (dE/dx),E gas ionization detector. Furthermore, the upgraded ion source and its negative ion yield measurement for MnO- are presented.

  2. Quantum-engineered interband cascade photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.

    2013-12-18

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less

  3. Environmental solid particle effects on compressor cascade performance

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    The effect of suspended solid particles on the performance of the compressor cascade was investigated experimentally in a specially built cascade tunnel, using quartz sand particles. The cascades were made of NACA 65(10)10 airfoils. Three cascades were tested, one accelerating cascade and two diffusing cascades. The theoretical analysis assumes inviscid and incompressible two dimensional flow. The momentum exchange between the fluid and the particle is accounted for by the interphase force terms in the fluid momentum equation. The modified fluid phase momentum equations and the continuity equation are reduced to the conventional stream function vorticity formulation. The method treats the fluid phase in the Eulerian system and the particle phase in Lagrangian system. The experimental results indicate a small increase in the blade surface static pressures, while the theoretical results indicate a small decrease. The theoretical analysis, also predicts the loss in total pressure associated with the particulate flow through the cascade.

  4. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  5. Fifty years of accelerator based physics at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  6. Current- and lattice-matched tandem solar cell

    DOEpatents

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  7. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    PubMed

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Laser Accelerator

    DTIC Science & Technology

    2014-09-01

    hollow metal sphere. Voltages of over 10 MV can be reached if used with an insulating gas. Corona discharge limits all electrostatic accelerators to...laser field. Lasers can have strong electric fields with frequencies high enough to avoid corona formation and break- down. The key is to couple the...leading to a spark discharge in the accelerator and thus a breakdown of the electrostatic field [6], [7]. Figure 1.1: Cockroft-Walton cascade generator

  9. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes

    NASA Astrophysics Data System (ADS)

    Köhler, V.; Wilson, Y. M.; Dürrenberger, M.; Ghislieri, D.; Churakova, E.; Quinto, T.; Knörr, L.; Häussinger, D.; Hollmann, F.; Turner, N. J.; Ward, T. R.

    2013-02-01

    Enzymatic catalysis and homogeneous catalysis offer complementary means to address synthetic challenges, both in chemistry and in biology. Despite its attractiveness, the implementation of concurrent cascade reactions that combine an organometallic catalyst with an enzyme has proven challenging because of the mutual inactivation of both catalysts. To address this, we show that incorporation of a d6-piano stool complex within a host protein affords an artificial transfer hydrogenase (ATHase) that is fully compatible with and complementary to natural enzymes, thus enabling efficient concurrent tandem catalysis. To illustrate the generality of the approach, the ATHase was combined with various NADH-, FAD- and haem-dependent enzymes, resulting in orthogonal redox cascades. Up to three enzymes were integrated in the cascade and combined with the ATHase with a view to achieving (i) a double stereoselective amine deracemization, (ii) a horseradish peroxidase-coupled readout of the transfer hydrogenase activity towards its genetic optimization, (iii) the formation of L-pipecolic acid from L-lysine and (iv) regeneration of NADH to promote a monooxygenase-catalysed oxyfunctionalization reaction.

  10. Thermodynamic efficiency limits of classical and bifacial multi-junction tandem solar cells: An analytical approach

    NASA Astrophysics Data System (ADS)

    Alam, Muhammad Ashraful; Khan, M. Ryyan

    2016-10-01

    Bifacial tandem cells promise to reduce three fundamental losses (i.e., above-bandgap, below bandgap, and the uncollected light between panels) inherent in classical single junction photovoltaic (PV) systems. The successive filtering of light through the bandgap cascade and the requirement of current continuity make optimization of tandem cells difficult and accessible only to numerical solution through computer modeling. The challenge is even more complicated for bifacial design. In this paper, we use an elegantly simple analytical approach to show that the essential physics of optimization is intuitively obvious, and deeply insightful results can be obtained with a few lines of algebra. This powerful approach reproduces, as special cases, all of the known results of conventional and bifacial tandem cells and highlights the asymptotic efficiency gain of these technologies.

  11. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  12. Harmonic cascade FEL designs for LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, G.; Reinsch, M.; Wurtele, J.

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1more » keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.« less

  13. Developments and applications of accelerator system at the Wakasa Wan Energy Research Center

    NASA Astrophysics Data System (ADS)

    Hatori, S.; Kurita, T.; Hayashi, Y.; Yamada, M.; Yamada, H.; Mori, J.; Hamachi, H.; Kimura, S.; Shimoda, T.; Hiroto, M.; Hashimoto, T.; Shimada, M.; Yamamoto, H.; Ohtani, N.; Yasuda, K.; Ishigami, R.; Sasase, M.; Ito, Y.; Hatashita, M.; Takagi, K.; Kume, K.; Fukuda, S.; Yokohama, N.; Kagiya, G.; Fukumoto, S.; Kondo, M.

    2005-12-01

    At the Wakasa Wan Energy Research Center (WERC), an accelerator system with a 5 MV tandem accelerator and a 200 MeV proton synchrotron is used for ion beam analyses and irradiation experiments. The study of cancer therapy with a proton beam is also performed. Therefore, the stable operation and efficient sharing of beam time of the system are required, based on the treatment standard. Recent developments and the operation status of the system put stress on the tandem accelerator operation, magnifying the problems.

  14. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  15. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  16. Status of the University of Rochester tandem upgrade

    NASA Astrophysics Data System (ADS)

    Cross, Clinton; Miller, Thomas

    1986-05-01

    The status of the University of Rochester tandem Van de Graaff accelerator upgrade is reviewed. The accelerator upgrade to 18 MV consists of extended tubes, shielded resistors, dead-section ion pumping, two rotating insulating power shaft systems to provide power to the dead sections and terminal, and a pelletron charging system to replace the charging belt. Control of many of the accelerator operating systems will be done by two IBM personal computers. The negative ion injector diffusion pump, isolation transformer, preacceleration high-voltage power supply, and high-voltage corona enclosure will all be replaced. Finally, the SF6 gas handling system will be improved with the addition of a second set of gas dryers and a larger recirculating pump.

  17. Formate as a CO surrogate for cascade processes: Rh-catalyzed cooperative decarbonylation and asymmetric Pauson-Khand-type cyclization reactions.

    PubMed

    Lee, Hang Wai; Chan, Albert S C; Kwong, Fuk Yee

    2007-07-07

    A rhodium-(S)-xyl-BINAP complex-catalyzed tandem formate decarbonylation and [2 + 2 + 1] carbonylative cyclization is described; this cooperative process utilizes formate as a condensed CO source, and the newly developed cascade protocol can be extended to its enantioselective version, providing up to 94% ee of the cyclopentenone adducts.

  18. Non-Thermal Spectra from Pulsar Magnetospheres in the Full Electromagnetic Cascade Scenario

    NASA Astrophysics Data System (ADS)

    Peng, Qi-Yong; Zhang, Li

    2008-08-01

    We simulated non-thermal emission from a pulsar magnetosphere within the framework of a full polar-cap cascade scenario by taking the acceleration gap into account, using the Monte Carlo method. For a given electric field parallel to open field lines located at some height above the surface of a neutron star, primary electrons were accelerated by parallel electric fields and lost their energies by curvature radiation; these photons were converted to electron-positron pairs, which emitted photons through subsequent quantum synchrotron radiation and inverse Compton scattering, leading to a cascade. In our calculations, the acceleration gap was assumed to be high above the stellar surface (about several stellar radii); the primary and secondary particles and photons emitted during the journey of those particles in the magnetosphere were traced using the Monte Carlo method. In such a scenario, we calculated the non-thermal photon spectra for different pulsar parameters and compared the model results for two normal pulsars and one millisecond pulsar with the observed data.

  19. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the

  20. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge...

  1. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  2. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  3. Haptic information provided by the "anchor system" reduces trunk sway acceleration in the frontal plane during tandem walking in older adults.

    PubMed

    Costa, Andréia Abud da Silva; Manciopi, Priscila Abbári Rossi; Mauerberg-deCastro, Eliane; Moraes, Renato

    2015-11-16

    This study assessed whether the use of an "anchor system" benefited older adults who performed a tandem walking task. Additionally, we tested the effects of practice with the anchor system during walking on trunk stability, in the frontal plane, of older adults. Forty-four older adults were randomly assigned to three groups: control group, 0g anchor group, and 125g anchor group. Individuals in each group performed a tandem walking task on the GaitRite system with an accelerometer placed on the cervical region. The participants in the 125g anchor group held, in each hand, a flexible cable with a light mass attached at the end of the cable, which rested on the ground. While the participants walked, they pulled on the cables just enough to keep them taut as the masses slid over the ground. The 0g anchor group held an anchor tool without any mass attached to the end portion. The results of this study demonstrated that the use of the anchor system contributed to the reduction of trunk acceleration in the frontal plane. However, this effect did not persist after removal of the anchors, which suggests that the amount of practice with this tool was insufficient to generate any lasting effect, or that the task was not sufficiently challenging, or both. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Nuclear electromagnetic cascades from nuclei with Z larger than or equal to 3

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1971-01-01

    A Monte Carlo simulation method was developed for studying nuclear-electromagnetic cascades initiated by high energy nuclei with Z or = 3 incident on heavy absorbers. The calculations are based on a cascade model which was first adjusted until it agreed with measurements made with protons at an accelerator. Modifications of the model used for protons include the incorporation of the probabilities for fragmentation of heavy nuclei into lighter nuclei, alpha particles, and nucleons. Mean values and fluctuations of the equivalent numbers of particles in the cascades at various depths in an iron absorber are presented for protons, carbon, and iron nuclei over the 30 to 300 GeV/nucleon energy range.

  5. Evaluation of a commercial system for CAMAC-based control of the Chalk River Laboratories tandem-accelerator-superconducting-cyclotron complexcomplex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, B.F.; Caswell, D.J.; Slater, W.R.

    1992-04-01

    This paper discusses the control system of the Tandem Accelerator Superconducting Cyclotron (TASCC) of AECL Research at its Chalk River Laboratories which is presently based on a PDP-11 computer and the IAS operating system. The estimated expense of a custom conversion of the system to a current, equivalent operating system is prohibitive. The authors have evaluated a commercial control package from VISTA Control Systems based on VAX microcomputers and the VMS operating system. Vsystem offers a modern, graphical operator interface, an extensive software toolkit for configuration of the system and a multi-feature data-logging capability, all of which far surpass themore » functionality of the present control system. However, the implementation of some familiar, practical features that TASCC operators find to be essential has proven to be challenging. The assessment of Vsystem, which is described in terms of presently perceived strengths and weaknesses, is, on balance, very positive.« less

  6. Artificial seismic acceleration

    USGS Publications Warehouse

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  7. A New Accelerator-Based Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gove, H. E.

    1983-01-01

    Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)

  8. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  9. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; hide

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  10. Accelerating object detection via a visual-feature-directed search cascade: algorithm and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Kyrkou, Christos; Theocharides, Theocharis

    2016-07-01

    Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.

  11. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.

    PubMed

    Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J

    2012-01-01

    MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com

  12. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    PubMed

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    PubMed Central

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2012-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385

  14. Preparation and comparative testing of advanced diamond-like carbon foils for tandem accelerators and time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Liechtenstein, V. Kh.; Ivkova, T. M.; Olshanski, E. D.; Baranov, A. M.; Repnow, R.; Hellborg, R.; Weller, R. A.; Wirth, H. L.

    1999-12-01

    The sputter preparation technique for thin diamond-like carbon (DLC) foils, advantageously used for ion-beam stripping and timing in accelerator experiments, has been optimized to improve the quality and the performance of the foils. Irradiation lifetimes of 5 μg/cm 2 DLC foils prepared by this technique have been compared with those for foils of approximately the same thickness, prepared by laser plasma ablation and for ethylene cracked foils when bombarded by 11 MeV Cu - - and Au --ion beams of ˜1 μA beam current at the Heidelberg MP-tandem. Standard carbon arc-evaporated foils were used as references. In these experiments, DLC stripper foils appeared to have a mean lifetime approximately two times longer than ethylene-cracked foils regardless of ion species, and compared favorably with foils prepared by laser ablation method. All these foils lasted at least, 10 times longer than standard carbon foils, when irradiated in the MP terminal. Approximately, the same improvement factor was confirmed with 3 μg/cm 2 DLC stripper foils irradiated with 2.3 MeV Ni-beams at the Pelletron accelerator in Lund. Unlike standard carbon foils, most of the advanced lifetime foils exhibited thinning during long irradiation, under clean vacuum. This suggests that sputtering of the foil by the heavy-ion beam might be a dominant process, responsible for the observed failure of these long-lived strippers. Along with specifically corrugated self-supporting DLC beam strippers, we succeeded in the fabrication of very smooth and ultra thin (˜0.5 μg/cm 2) DLC foils, mounted on grids and used as start foils for the ToF spectrometers applied in ion beam analysis.

  15. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-11-23

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms.

  16. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade.

    PubMed

    Park, David S; Lee, Hyangkyu; Frank, Philippe G; Razani, Babak; Nguyen, Andrew V; Parlow, Albert F; Russell, Robert G; Hulit, James; Pestell, Richard G; Lisanti, Michael P

    2002-10-01

    It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.

  17. Pair cascades in the magnetospheres of strongly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; Lai, Dong

    2010-08-01

    We present numerical simulations of electron-positron pair cascades in the magnetospheres of magnetic neutron stars for a wide range of surface fields (Bp = 1012-1015 G), rotation periods (0.1-10 s) and field geometries. This has been motivated by the discovery in recent years of a number of radio pulsars with inferred magnetic fields comparable to those of magnetars. Evolving the cascade generated by a primary electron or positron after it has been accelerated in the inner gap of the magnetosphere, we follow the spatial development of the cascade until the secondary photons and electron-positron pairs leave the magnetosphere, and we obtain the pair multiplicity and the energy spectra of the cascade pairs and photons under various conditions. Going beyond previous works, which were restricted to weaker fields (B <~ afew × 1012 G), we have incorporated in our simulations detailed treatments of physical processes that are potentially important (especially in the high-field regime) but were either neglected or crudely treated before, including photon splitting with the correct selection rules for photon polarization modes, one-photon pair production into low Landau levels for the e+/-, and resonant inverse Compton scattering from polar cap hotspots. We find that even for B >> BQ = 4 × 1013 G, photon splitting has a small effect on the multiplicity of the cascade since a majority of the photons in the cascade cannot split. One-photon decay into e+ e- pairs at low Landau levels, however, becomes the dominant pair production channel when B >~ 3 × 1012 G; this tends to suppress synchrotron radiation so that the cascade can develop only at a larger distance from the stellar surface. Nevertheless, we find that the total number of pairs and their energy spectrum produced in the cascade depend mainly on the polar cap voltage BpP-2, and are weakly dependent on Bp (and P) alone. We discuss the implications of our results for the radio pulsar death line and for the hard X

  18. WHISTLER TURBULENCE FORWARD CASCADE VERSUS INVERSE CASCADE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph, E-mail: ouliang@usc.edu, E-mail: pgary@lanl.gov, E-mail: josephjw@usc.edu

    2015-02-20

    We present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta β {sub e} = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inversemore » cascade regime is much weaker than that in the forward cascade regime.« less

  19. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  20. Long-term reliability study and failure analysis of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Nguyen, Hong-Ky; Leblanc, Herve; Hughes, Larry; Wang, Jie; Miller, Dean J.; Lascola, Kevin

    2017-02-01

    Here we present lifetime test results of 4 groups of quantum cascade lasers (QCL) under various aging conditions including an accelerated life test. The total accumulated life time exceeds 1.5 million device·hours, which is the largest QCL reliability study ever reported. The longest single device aging time was 46.5 thousand hours (without failure) in the room temperature test. Four failures were found in a group of 19 devices subjected to the accelerated life test with a heat-sink temperature of 60 °C and a continuous-wave current of 1 A. Visual inspection of the laser facets of failed devices revealed an astonishing phenomenon, which has never been reported before, which manifested as a dark belt of an unknown substance appearing on facets. Although initially assumed to be contamination from the environment, failure analysis revealed that the dark substance is a thermally induced oxide of InP in the buried heterostructure semiinsulating layer. When the oxidized material starts to cover the core and blocks the light emission, it begins to cause the failure of QCLs in the accelerated test. An activation energy of 1.2 eV is derived from the dependence of the failure rate on laser core temperature. With the activation energy, the mean time to failure of the quantum cascade lasers operating at a current density of 5 kA/cm2 and heat-sink temperature of 25°C is expected to be 809 thousand hours.

  1. Electrostatic accelerators with high energy resolution

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.

    1991-05-01

    Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.

  2. Design and fabrication of cascaded dichromate gelatin holographic filters for spectrum-splitting PV systems

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2018-01-01

    The technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single- and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two- and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system.

  3. Southern cascades bioregion

    Treesearch

    Carl N. Skinner; Alan H. Taylor

    2006-01-01

    The Cascade Range extends from British Columbia, Canada, south to northern California where it meets the Sierra Nevada. The Southern Cascades bioregion in California is bounded on the west by the Sacramento Valley and the Klamath Mountains, and on the east by the Modoc Plateau and Great Basin. The bioregion encompasses the Southern Cascades section of Miles and Goudey...

  4. Indole synthesis by palladium-catalyzed tandem allylic isomerization - furan Diels-Alder reaction.

    PubMed

    Xu, Jie; Wipf, Peter

    2017-08-30

    A Pd(0)-catalyzed elimination of an allylic acetate generates a π-allyl complex that is postulated to initiate a novel intramolecular Diels-Alder cycloaddition to a tethered furan (IMDAF). Under the reaction conditions, this convergent, microwave-accelerated cascade process provides substituted indoles in moderate to good yields after Pd-hydride elimination, aromatization by dehydration, and in situ N-Boc cleavage.

  5. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  6. Conjunctival Tear Layer Temperature, Evaporation, Hyperosmolarity, Inflammation, Hyperemia, Tissue Damage, and Symptoms: A Review of an Amplifying Cascade.

    PubMed

    McMonnies, Charles W

    2017-12-01

    This review examines the evidence for and significance of pre-conjunctival tear temperature being higher than central pre-corneal temperature with associated more rapid evaporation of warmer pre-conjunctival tears in normal eyes but especially in hyperemic dry eye disease. PubMed searches using the terms "evaporative dry eye," "conjunctival tear evaporation," "tear evaporation," and "dry eye conjunctival hyperemia" indicated 157, 49, 309, and 96 potentially relevant papers, respectively. Selections from these lists were the basis for examining the significance of the evidence relevant to pre-conjunctival tear layer temperature and evaporation. There is evidence supporting an amplifying inflammatory and para-inflammatory hyperemia dry eye cascade, which increases pre-conjunctival tear temperature and the risk of accelerated pre-conjunctival tear evaporation with exacerbated osmolarity elevation and inflammation. Dry eye cascade amplification is consistent with increases in symptoms and inflammatory as well as para-inflammatory hyperemia toward the end of the waking day. Apart from age-related conjunctivochalasis, dry eye-related conjunctival epithelial cell pathology including reduced goblet cell numbers and associated mucin deficiency, squamous metaplasia, and increased separation of cell layers could help to destabilize tears and facilitate evaporation as part of an amplifying cascade. Greater difficulty in assessing conjunctival tear break up may contribute to an underestimation of a role for faster evaporation of pre-conjunctival tears in dry eye disease and help explain any non-correspondence between symptoms and corneal signs of dry eye disease. Success with anti-inflammatory therapies for dry eye disease may be at least partly due to reductions in conjunctival hyperemia and deamplification of evaporative cascades. Conjunctival inflammatory hyperemia in other diseases may contribute to accelerated pre-conjunctival tear evaporation and the risk of tear

  7. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  8. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  9. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  10. Quadrotor trajectory tracking using PID cascade control

    NASA Astrophysics Data System (ADS)

    Idres, M.; Mustapha, O.; Okasha, M.

    2017-12-01

    Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.

  11. Demonstration of Cascaded Modulator-Chicane Microbunching of a Relativistic Electron Beam

    DOE PAGES

    Sudar, N.; Musumeci, P.; Gadjev, I.; ...

    2018-03-15

    Here, we present results of an experiment showing the first successful demonstration of a cascaded microbunching scheme. Two modulator-chicane prebunchers arranged in series and a high power mid-IR laser seed are used to modulate a 52 MeV electron beam into a train of sharp microbunches phase locked to the external drive laser. This configuration is shown to greatly improve matching of the beam into the small longitudinal phase space acceptance of short-wavelength accelerators. We demonstrate trapping of nearly all (96%) of the electrons in a strongly tapered inverse free-electron laser accelerator, with an order-of-magnitude reduction in injection losses compared tomore » the classical single-buncher scheme. These results represent a critical advance in laser-based longitudinal phase space manipulations and find application in high gradient advanced acceleration as well as in high peak and average power coherent radiation sources.« less

  12. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  13. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Yu, J. Y.; Liu, W. Y.; Weng, S. M.; Yuan, X. H.; Luo, W.; Chen, M.; Sheng, Z. M.; Zhang, J.

    2018-06-01

    Two-dimensional particle-in-cell simulations have been performed to study electron-positron pair production and cascade development in single ultra-relativistic laser interaction with solid targets. The spatiotemporal distributions of particles produced via QED processes are illustrated and their dependence on laser polarizations is investigated. The evolution of particle generation displays clear QED cascade characters. Studies show that although a circularly polarized laser delays the QED process due to the effective ion acceleration, it can reduce the target heating and confine high-energy charged particles, which leads to deeper QED cascade order and denser pair plasma production than linearly polarized lasers. These findings may benefit the understanding of the coming experimental studies of ultra-relativistic laser target interaction in the QED dominated regime.

  14. The Rhodium(II) Carbenoid Cyclization-Cycloaddition Cascade of α-Diazo Dihydroindolinones for the Synthesis of Novel Azapolycyclic Ring Systems‡

    PubMed Central

    England, Dylan B.; Eagan, James M.; Merey, Gokce; Anac, Olcay; Padwa, Albert

    2008-01-01

    Tandem carbonyl ylide formation-1,3-dipolar cycloaddition of α-diazo N-acetyl-tetrahydro-β-carbolin-1-one derivatives occur efficiently in the presence of a dirhodium catalyst to afford bimolecular cycloadducts in high yield. The Rh(II)-catalyzed reaction also takes place intramolecularly to give products derived from trapping of the carbonyl ylide dipole with a tethered alkene. The power of the intramolecular cascade sequence is that it rapidly assembles a pentacyclic ring system containing three new stereocenters and two adjacent quaternary centers stereospecifically in a single step and in high yield. PMID:18437248

  15. Cascades frog conservation assessment

    Treesearch

    Karen Pope; Catherine Brown; Marc Hayes; Gregory Green; Diane Macfarlane

    2014-01-01

    The Cascades frog (Rana cascadae) is a montane, lentic-breeding amphibian that has become rare in the southern Cascade Range and remains relatively widespread in the Klamath Mountains of northern California. In the southern Cascades, remaining populations occur primarily in meadow habitats where the fungal disease, chytridiomycosis, and habitat...

  16. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  18. Orthogonal tandem catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-05-20

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less

  19. Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades.

    PubMed

    Mutti, Francesco G; Knaus, Tanja; Scrutton, Nigel S; Breuer, Michael; Turner, Nicholas J

    2015-09-25

    α-Chiral amines are key intermediates for the synthesis of a plethora of chemical compounds at industrial scale. We present a biocatalytic hydrogen-borrowing amination of primary and secondary alcohols that allows for the efficient and environmentally benign production of enantiopure amines. The method relies on a combination of two enzymes: an alcohol dehydrogenase (from Aromatoleum sp., Lactobacillus sp., or Bacillus sp.) operating in tandem with an amine dehydrogenase (engineered from Bacillus sp.) to aminate a structurally diverse range of aromatic and aliphatic alcohols, yielding up to 96% conversion and 99% enantiomeric excess. Primary alcohols were aminated with high conversion (up to 99%). This redox self-sufficient cascade possesses high atom efficiency, sourcing nitrogen from ammonium and generating water as the sole by-product. Copyright © 2015, American Association for the Advancement of Science.

  20. A new AMS facility at Inter University Accelerator Centre, New Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  1. Cascaded second-order processes for the efficient generation of narrowband terahertz radiation

    NASA Astrophysics Data System (ADS)

    Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.

    2017-02-01

    The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.

  2. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    NASA Astrophysics Data System (ADS)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  3. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  4. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  5. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  6. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  7. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    PubMed

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Accelerator mass spectrometer with ion selection in high-voltage terminal

    NASA Astrophysics Data System (ADS)

    Rastigeev, S. A.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.; Frolov, A. R.

    2016-12-01

    The folded electrostatic tandem accelerator with ion selection in a high-voltage terminal is the basis of accelerator mass spectrometry (AMS) at the BINP. Additional features of the BINP AMS are the target based on magnesium vapors as a stripper without vacuum deterioration and a time-of-flight telescope with thin films for reliable ion identification. The acceleration complex demonstrates reliable operation in a mode of 1 MV with 50 Hz counting rate of 14C+3 radiocarbon for modern samples (14C/12C 1.2 × 10-12). The current state of the AMS has been considered and the experimental results of the radiocarbon concentration measurements in test samples have been presented.

  9. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  10. Asymmetric allylation of ketones and subsequent tandem reactions catalyzed by a novel polymer-supported titanium-BINOLate complex.

    PubMed

    Yadav, Jagjit; Stanton, Gretchen R; Fan, Xinyuan; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J; Pericas, Miquel A

    2014-06-02

    By using a novel, simple, and convenient synthetic route, enantiopure 6-ethynyl-BINOL (BINOL = 1,1-binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The polystyrene (PS)-supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert-butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson-Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N-methyl morpholine N-oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  12. Experimental performance of a 13.65-centimeter-tip-diameter tandem-bladed sweptback centrifugal compressor designed for a pressure ratio of 6

    NASA Technical Reports Server (NTRS)

    Klassen, H. A.; Wood, J. R.; Schumann, L. F.

    1977-01-01

    A 13.65 cm tip diameter backswept centrifugal impeller having a tandem inducer and a design mass flow rate of 0.907 kg/sec was experimentally investigated to establish stage and impeller characteristics. Tests were conducted with both a cascade diffuser and a vaneless diffuser. A pressure ratio of 5.9 was obtained near surge for the smallest clearance tested. Flow range at design speed was 6.3 percent for the smallest clearance test. Impeller exit to shroud axial clearance at design speed was varied to determine the effect on stage and impeller performance.

  13. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  14. Pilot instrumentation of a Superpave test section at the Kansas Accelerated Testing laboratory

    DOT National Transportation Integrated Search

    2003-04-01

    Two Superpave test sections were constructed at the Kansas Accelerated Testing Laboratory (K-ATL) with 12.5 mm (2 in) nominal maximum size Superpave mixture (SM-2A) with varying percentages (15 and 30 percent) of river sand. A 150 kN (34 kip) tandem ...

  15. SIRIUS - A new 6 MV accelerator system for IBA and AMS at ANSTO

    NASA Astrophysics Data System (ADS)

    Pastuovic, Zeljko; Button, David; Cohen, David; Fink, David; Garton, David; Hotchkis, Michael; Ionescu, Mihail; Long, Shane; Levchenko, Vladimir; Mann, Michael; Siegele, Rainer; Smith, Andrew; Wilcken, Klaus

    2016-03-01

    The Centre for Accelerator Science (CAS) facility at ANSTO has been expanded with a new 6 MV tandem accelerator system supplied by the National Electrostatic Corporation (NEC). The beamlines, end-stations and data acquisition software for the accelerator mass spectrometry (AMS) were custom built by NEC for rare isotope mass spectrometry, while the beamlines with end-stations for the ion beam analysis (IBA) are largely custom designed at ANSTO. An overview of the 6 MV system and its performance during testing and commissioning phase is given with emphasis on the IBA end-stations and their applications for materials modification and characterisation.

  16. Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Rosenberg, M. J. F.; Reschke, M. F.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; May-Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; hide

    2016-01-01

    BACKGROUND: Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel, we must prepare for unassisted landings, where crewmembers may need to perform mission critical tasks within minutes of landing. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment (FT) will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. METHODS: FT is an ongoing study of 30 long-duration ISS crewmembers. Thus far, 9 have completed the full FT (5 U.S. Orbital Segment [USOS] astronauts and 4 Russian cosmonauts) and 4 more consented and launching within the next year. This is in addition to the eighteen crewmembers that participated in the pilot FT (11 USOS and 7 Russian crewmembers). The FT is conducted three times preflight and three times during the first 24 hours after landing. All crewmembers were tested in Kazakhstan in either the medical tent at the Soyuz landing site (one hour post-landing), or at the airport (four hours post-landing). The USOS crewmembers were also tested at the refueling stop (12 hours post-landing) and at the NASA Johnson Space Center (24 hours post-landing) and a final session 7 days post-landing. Crewmembers are instrumented with 9 inertial measurement unit sensors that measure acceleration and angular displacement (APDM's Emerald Sensors) and foot pressure-sensing insoles that measure force, acceleration, and center of pressure (Moticon GmbH, Munich, Germany) along with heart rate and blood pressure recording instrumentation. The FT consists of 12 tasks, but here we will focus on the most challenging task, the Tandem Walk, which was also

  17. Cosmic-ray cascades photographed in scintillator

    NASA Technical Reports Server (NTRS)

    Barrowes, S. C.; Huggett, R. W.; Levit, L. B.; Porter, L. G.

    1974-01-01

    Light produced by nuclear-electromagnetic cascades in a plastic scintillator can be photographed, and the resulting images on film used to measure both the energy content of the cascades and also the positions at which the cascades passed through the scintillator. The energy content of a cascade can be measured to 20% and its position determined to plus or minus 0.8 cm in each scintillator. Techniques for photographing the cascades and analyzing the film are described. Sample data are presented and discussed.

  18. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  19. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  20. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 2: Translation mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic translational model flutter. This five bladed cascade had a solidity of 1.52 and a setting angle of 0.90 rad. Unique graphite epoxy airfoils were fabricated to achieve the realistic high reduced frequency level of 0.15. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time steady and time unsteady flow field surrounding the center cascade airfoil were investigated.

  1. Cascade aeroacoustics including steady loading effects

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiao-Wei D.; Fleeter, Sanford

    A mathematical model is developed to analyze the effects of airfoil and cascade geometry, steady aerodynamic loading, and the characteristics of the unsteady flow field on the discrete frequency noise generation of a blade row in an incompressible flow. The unsteady lift which generates the noise is predicted with a complex first-order cascade convected gust analysis. This model was then applied to the Gostelow airfoil cascade and variations, demonstrating that steady loading, cascade solidity, and the gust direction are significant. Also, even at zero incidence, the classical flat plate cascade predictions are unacceptable.

  2. Joint compensation scheme of polarization crosstalk, intersymbol interference, frequency offset, and phase noise based on cascaded Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Yang, Yanfu; Xiang, Qian; Zhou, Zhongqing; Yao, Yong

    2018-02-01

    A joint compensation scheme based on cascaded Kalman filter is proposed, which can implement polarization tracking, channel equalization, frequency offset, and phase noise compensation simultaneously. The experimental results show that the proposed algorithm can not only compensate multiple channel impairments simultaneously but also improve the polarization tracking capacity and accelerate the convergence speed. The scheme has up to eight times faster convergence speed compared with radius-directed equalizer (RDE) + Max-FFT (maximum fast Fourier transform) + BPS (blind phase search) and can track up polarization rotation 60 times and 15 times faster than that of RDE + Max-FFT + BPS and CMMA (cascaded multimodulus algorithm) + Max-FFT + BPS, respectively.

  3. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    NASA Astrophysics Data System (ADS)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with

  4. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  5. Accelerator mass spectrometry.

    PubMed

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  6. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  7. Cascading costs: an economic nitrogen cycle.

    PubMed

    Moomaw, William R; Birch, Melissa B L

    2005-12-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N2. We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single tonne of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a tonne of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that tonne would cascade. The analysis reveals that it is most cost effective to remove a tonne of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  8. Negative hydrogen ion sources for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moehs, D.P.; /Fermilab; Peters, J.

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systemsmore » to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.« less

  9. Experimental determination of unsteady blade element aerodynamics in cascades. Volume 1: Torsion mode cascade

    NASA Technical Reports Server (NTRS)

    Riffel, R. E.; Rothrock, M. D.

    1980-01-01

    A two dimensional cascade of harmonically oscillating airfoils was designed to model a near tip section from a rotor which was known to have experienced supersonic torsional flutter. This five bladed cascade had a solidity of 1.17 and a setting angle of 1.07 rad. Graphite epoxy airfoils were fabricated to achieve the realistically high reduced frequency level of 0.44. The cascade was tested over a range of static pressure ratios approximating the blade element operating conditions of the rotor along a constant speed line which penetrated the flutter boundary. The time-steady and time-unsteady flow field surrounding the center cascade airfoil were investigated. The effects of reduced solidity and decreased setting angle on the flow field were also evaluated.

  10. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    NASA Astrophysics Data System (ADS)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  12. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20xmore » to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.« less

  13. Subattomole sensitivity in biological accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Possnert, Göran; Bryhni, Helge

    2008-05-15

    The Uppsala University 5 MV Pelletron tandem accelerator has been used to study (14)C-labeled biological samples utilizing accelerator mass spectrometry (AMS) technology. We have adapted a sample preparation method for small biological samples down to a few tens of micrograms of carbon, involving among others, miniaturizing of the graphitization reactor. Standard AMS requires about 1 mg of carbon with a limit of quantitation of about 10 amol. Results are presented for a range of small sample sizes with concentrations down to below 1 pM of a pharmaceutical substance in human blood. It is shown that (14)C-labeled molecular markers can be routinely measured from the femtomole range down to a few hundred zeptomole (10 (-21) mol), without the use of any additional separation methods.

  14. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  15. Automated tandem mass spectrometry by orthogonal acceleration TOF data acquisition and simultaneous magnet scanning for the characterization of petroleum mixtures.

    PubMed

    Roussis, S G

    2001-08-01

    The automated acquisition of the product ion spectra of all precursor ions in a selected mass range by using a magnetic sector/orthogonal acceleration time-of-flight (oa-TOF) tandem mass spectrometer for the characterization of complex petroleum mixtures is reported. Product ion spectra are obtained by rapid oa-TOF data acquisition and simultaneous scanning of the magnet. An analog signal generator is used for the scanning of the magnet. Slow magnet scanning rates permit the accurate profiling of precursor ion peaks and the acquisition of product ion spectra for all isobaric ion species. The ability of the instrument to perform both high- and low-energy collisional activation experiments provides access to a large number of dissociation pathways useful for the characterization of precursor ions. Examples are given that illustrate the capability of the method for the characterization of representative petroleum mixtures. The structural information obtained by the automated MS/MS experiment is used in combination with high-resolution accurate mass measurement results to characterize unknown components in a polar extract of a refinery product. The exhaustive mapping of all precursor ions in representative naphtha and middle-distillate fractions is presented. Sets of isobaric ion species are separated and their structures are identified by interpretation from first principles or by comparison with standard 70-eV EI libraries of spectra. The utility of the method increases with the complexity of the samples.

  16. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  17. Quantum-electrodynamic cascades in intense laser fields

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2015-01-01

    It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.

  18. Synthesis of Cyclopentenimines from N-Allyl Ynamides via a Tandem Aza-Claisen Rearrangement–Carbocyclization Sequence

    PubMed Central

    Wang, Xiao-Na; Winston-McPherson, Gabrielle N.; Walton, Mary C.; Zhang, Yu

    2013-01-01

    We describe here details of our investigations into Pd-catalyzed and thermal aza-Claisen–carbocyclizations of N-allyl ynamides to prepare a variety of α,β-unsaturated cyclopentenimines. The nature of the ynamide electron withdrawing group and β-substituent plays critical roles in the success of this tandem cascade. With N-sulfonyl ynamides, the use of palladium catalysis is required, as facile 1,3-sulfonyl shifts dominate under thermal conditions. However, since no analogous 1,3-phosphoryl shift is operational, N-phosphoryl ynamides could be used to prepare similar cyclopentenimines under thermal conditions through zwitter ionic intermediates that undergo N-promoted H-shifts. Alternatively, by employing ynamides bearing tethered carbon nucleophiles, the zwitter ionic intermediates could be intercepted giving rise rapidly to more complex fused bi- and tricyclic scaffolds. PMID:23718841

  19. Divergent Syntheses of Isoquinolines and Indolo[1,2-a]quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles.

    PubMed

    Jiang, Huanfeng; Yang, Jidan; Tang, Xiaodong; Wu, Wanqing

    2016-03-04

    A convenient and reliable method for the direct construction of isoquinolines is described. A series of isoquinoline derivatives were synthesized, with high chemo- and regioselectivities, via the copper-catalyzed cascade reaction of 2-haloaryloxime acetates with β-diketones, β-keto esters, and β-keto nitriles. This tandem annulation process features inexpensive catalysts, no need for additional ligands, and excellent functional group tolerance, which makes it have potential synthetic applications. Furthermore, this strategy could also be used to enter functionalized indolo[1,2-a]quinazolines by using indoles as the counterpart of the 2-haloaryloxime acetates.

  20. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  1. Cascaded Bragg scattering in fiber optics.

    PubMed

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. Cascade redox flow battery systems

    DOEpatents

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  3. What is a Trophic Cascade?

    PubMed

    Ripple, William J; Estes, James A; Schmitz, Oswald J; Constant, Vanessa; Kaylor, Matthew J; Lenz, Adam; Motley, Jennifer L; Self, Katharine E; Taylor, David S; Wolf, Christopher

    2016-11-01

    Few concepts in ecology have been so influential as that of the trophic cascade. Since the 1980s, the term has been a central or major theme of more than 2000 scientific articles. Despite this importance and widespread usage, basic questions remain about what constitutes a trophic cascade. Inconsistent usage of language impedes scientific progress and the utility of scientific concepts in management and conservation. Herein, we offer a definition of trophic cascade that is designed to be both widely applicable yet explicit enough to exclude extraneous interactions. We discuss our proposed definition and its implications, and define important related terms, thereby providing a common language for scientists, policy makers, conservationists, and other stakeholders with an interest in trophic cascades. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. BINP accelerator based epithermal neutron source.

    PubMed

    Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S

    2011-12-01

    Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Sensitivity-enhanced optical temperature sensor with cascaded LPFGs

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuhiro; Miyoshi, Yuji; Ohashi, Masaharu

    2011-12-01

    We propose a new structure of optical fiber temperature sensor with cascaded long-period fiber gratings (LPFGs) and investigate the temperature dependent loss of cascaded LFPGs. Each of the cascaded LPFGs has the same resonance wavelength with the same temperature change, because the cascaded LPFGs are made of a heat-shrinkable tube and a screw. The total resonance loss of proposed cascaded LPFGs shows higher temperature sensitivity than that of a single LPFG. The thermal coefficient of 4-cascaded LPFG also shows more than 4 times larger than that of a single one.

  6. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  7. Renyi Entropies in Particle Cascades

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Ostruszka, A.

    2003-01-01

    Renyi entropies for particle distributions following from the general cascade models are discussed. The p-model and the β distribution introduced in earlier studies of cascades are discussed in some detail. Some phenomenological consequences are pointed out.

  8. Present and future prospects of accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    1988-05-01

    Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  9. Tandem Organic Light-Emitting Diodes.

    PubMed

    Fung, Man-Keung; Li, Yan-Qing; Liao, Liang-Sheng

    2016-12-01

    A tandem organic light-emitting diode (OLED) is an organic optoelectronic device that has two or more electroluminescence (EL) units connected electrically in series with unique intermediate connectors within the device. Researchers have studied this new OLED architecture with growing interest and have found that the current efficiency of a tandem OLED containing N EL units (N > 1) should be N times that of a conventional OLED containing only a single EL unit. Therefore, this new architecture is potentially useful for constructing high-efficiency, high-luminance, and long-lifetime OLED displays and organic solid-state lighting sources. In a tandem OLED, the intermediate connector plays a crucial role in determining the effectiveness of the stacked EL units. The interfaces in the connector control the inner charge generation and charge injection into the adjacent EL units. Meanwhile, the transparency and the thickness of the connector affect the light output of the device. Therefore, the intermediate connector should be made to meet both the electrical and optical requirements for achieving optimal performance. Here, recent advances in the research of the tandem OLEDs is discussed, with the main focus on material selection and interface studies in the intermediate connectors, as well as the optical design of the tandem OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  11. Energy flow along the medium-induced parton cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaizot, J.-P., E-mail: jean-paul.blaizot@cea.fr; Mehtar-Tani, Y., E-mail: ymehtar@uw.edu

    2016-05-15

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs.more » The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.« less

  12. Cascading Failures as Continuous Phase-Space Transitions

    DOE PAGES

    Yang, Yang; Motter, Adilson E.

    2017-12-14

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  13. Cascading Failures as Continuous Phase-Space Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Motter, Adilson E.

    In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-scale cascading failure. We derive a continuous model to advance our understanding of cascading failures in power-grid networks. The model accounts for both the failure of transmission lines and the desynchronization of power generators and incorporates the transient dynamics between successive steps of the cascade. In this framework, we show that a cascade event is a phase-space transition from an equilibrium state with high energy to an equilibrium state with lower energy, which can be suitably described in a closed form using a global Hamiltonian-likemore » function. From this function, we show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-state cascade models, which would correspond to a reduced number of failures, and may instead undergo a larger cascade. We also show that, in the presence of two or more perturbations, the outcome depends strongly on the order and timing of the individual perturbations. These results offer new insights into the current understanding of cascading dynamics, with potential implications for control interventions.« less

  14. The comparison of extraction of energy in two-cascade and one-cascade targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgoleva, G. V., E-mail: dolgg@list.ru; Ponomarev, I. V., E-mail: wingof17@mail.ru

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy.more » The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.« less

  15. Inferring network structure from cascades.

    PubMed

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  16. Inferring network structure from cascades

    NASA Astrophysics Data System (ADS)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  17. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  18. QED cascade saturation in extreme high fields.

    PubMed

    Luo, Wen; Liu, Wei-Yuan; Yuan, Tao; Chen, Min; Yu, Ji-Ye; Li, Fei-Yu; Del Sorbo, D; Ridgers, C P; Sheng, Zheng-Ming

    2018-05-30

    Upcoming ultrahigh power lasers at 10 PW level will make it possible to experimentally explore electron-positron (e - e + ) pair cascades and subsequent relativistic e - e + jets formation, which are supposed to occur in extreme astrophysical environments, such as black holes, pulsars, quasars and gamma-ray bursts. In the latter case it is a long-standing question as to how the relativistic jets are formed and what their temperatures and compositions are. Here we report simulation results of pair cascades in two counter-propagating QED-strong laser fields. A scaling of QED cascade growth with laser intensity is found, showing clear cascade saturation above threshold intensity of ~10 24 W/cm 2 . QED cascade saturation leads to pair plasma cooling and longitudinal compression along the laser axis, resulting in the subsequent formation of relativistic dense e - e + jets along transverse directions. Such laser-driven QED cascade saturation may open up the opportunity to study energetic astrophysical phenomena in laboratory.

  19. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  20. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  1. A new technique for high performance tandem time-of- flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Katz, Daniel Louis

    2001-08-01

    The main result of this written dissertation is a mathematical solution to the problem of multiplex recording for high performance tandem time-of-flight mass spectrometry. The prescription is to use a time-lag accelerator in the second stage to match the ion optical properties of the decay fragments to the requirements of the electrostatic ion mirror. With this technique the ion mirror is able to focus the full mass range of fragment ions at a single voltage setting, permitting acquisition of the entire mass spectrum from a single ionization event. This work was performed in support of a joint project carried out by researchers at Oregon State University and The University of Uppsala, Sweden, to design, build and test a tandem instrument featuring precision selection of the precursor species in the first stage of the spectrometer, a means of fragmenting the precursor species, and multiplex recording of the resulting fragment spectrum in the second stage. A patent application has been filed on the complete instrument with the United States Patent Office, a copy of which has been included as an appendix, and a prototype of that instrument has been constructed and awaits testing at Oregon State University.

  2. Deep-cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes.

    PubMed

    Sabokrou, Mohammad; Fayyaz, Mohsen; Fathy, Mahmood; Klette, Reinhard

    2017-02-17

    This paper proposes a fast and reliable method for anomaly detection and localization in video data showing crowded scenes. Time-efficient anomaly localization is an ongoing challenge and subject of this paper. We propose a cubicpatch- based method, characterised by a cascade of classifiers, which makes use of an advanced feature-learning approach. Our cascade of classifiers has two main stages. First, a light but deep 3D auto-encoder is used for early identification of "many" normal cubic patches. This deep network operates on small cubic patches as being the first stage, before carefully resizing remaining candidates of interest, and evaluating those at the second stage using a more complex and deeper 3D convolutional neural network (CNN). We divide the deep autoencoder and the CNN into multiple sub-stages which operate as cascaded classifiers. Shallow layers of the cascaded deep networks (designed as Gaussian classifiers, acting as weak single-class classifiers) detect "simple" normal patches such as background patches, and more complex normal patches are detected at deeper layers. It is shown that the proposed novel technique (a cascade of two cascaded classifiers) performs comparable to current top-performing detection and localization methods on standard benchmarks, but outperforms those in general with respect to required computation time.

  3. First neutron generation in the BINP accelerator based neutron source.

    PubMed

    Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S

    2009-07-01

    Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.

  4. An interacting boundary layer model for cascades

    NASA Technical Reports Server (NTRS)

    Davis, R. T.; Rothmayer, A. P.

    1983-01-01

    A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.

  5. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  6. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  7. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  8. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  9. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  10. The Cascade Forestry Service Nursery

    Treesearch

    Don Westefer

    2002-01-01

    Cascade Forestry Service, Inc., is a private reforestation nursery and service company that has grown from a shoestring operation into an employee-owned company that both produces reforestation trees and assists landowners with forestry development and management. The Northeastern Forest and Conservation Nursery Association has proven instrumental in Cascade Forestry...

  11. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  12. Accelerator-based techniques for the support of senior-level undergraduate physics laboratories

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Clark, J. C.; Isaacs-Smith, T.

    2001-07-01

    Approximately three years ago, Auburn University replaced its aging Dynamitron accelerator with a new 2MV tandem machine (Pelletron) manufactured by the National Electrostatics Corporation (NEC). This new machine is maintained and operated for the University by Physics Department personnel, and the accelerator supports a wide variety of materials modification/analysis studies. Computer software is available that allows the NEC Pelletron to be operated from a remote location, and an Internet link has been established between the Accelerator Laboratory and the Upper-Level Undergraduate Teaching Laboratory in the Physics Department. Additional software supplied by Canberra Industries has also been used to create a second Internet link that allows live-time data acquisition in the Teaching Laboratory. Our senior-level undergraduates and first-year graduate students perform a number of experiments related to radiation detection and measurement as well as several standard accelerator-based experiments that have been added recently. These laboratory exercises will be described, and the procedures used to establish the Internet links between our Teaching Laboratory and the Accelerator Laboratory will be discussed.

  13. Accelerating Thermokarst Transforms Ice-Cored Terrain Triggering a Downstream Cascade to the Ocean

    NASA Astrophysics Data System (ADS)

    Rudy, A. C. A.; Lamoureux, S. F.; Kokelj, S. V.; Smith, I. R.; England, J. H.

    2017-11-01

    Recent climate warming has activated the melt-out of relict massive ice in permafrost-preserved moraines throughout the western Canadian Arctic. This ice that has persisted since the last glaciation, buried beneath as little as 1 m of overburden, is now undergoing accelerated permafrost degradation and thermokarst. Here we document recent and intensifying thermokarst activity on eastern Banks Island that has increased the fluvial transport of sediments and solutes to the ocean. Isotopic evidence demonstrates that a major contribution to discharge is melt of relict ground ice, resulting in a significant hydrological input from thermokarst augmenting summer runoff. Accelerated thermokarst is transforming the landscape and the summer hydrological regime and altering the timing of terrestrial to marine and lacustrine transfers over significant areas of the western Canadian Arctic. The intensity of the landscape changes demonstrates that regions of cold, continuous permafrost are undergoing irreversible alteration, unprecedented since deglaciation ( 13 cal kyr B.P.).

  14. Displacement Cascade Damage Production in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less

  15. Dynamically induced cascading failures in power grids.

    PubMed

    Schäfer, Benjamin; Witthaut, Dirk; Timme, Marc; Latora, Vito

    2018-05-17

    Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.

  16. Tampering with the turbulent energy cascade with polymer additives

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; da Silva, Carlos; Pinho, Fernando

    2014-11-01

    We show that the strong depletion of the viscous dissipation in homogeneous viscoelastic turbulence reported by previous authors does not necessarily imply a depletion of the turbulent energy cascade. However, for large polymer relaxation times there is an onset of a polymer-induced kinetic energy cascade which competes with the non-linear energy cascade leading to its depletion. Remarkably, the total energy cascade flux from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the non-linear energy cascade flux in Newtonian turbulence. The authors acknowledge the funding from COMPETE, FEDER and FCT (Grant PTDC/EME-MFE/113589/2009).

  17. Tandem Translation Classroom: A Case Study

    ERIC Educational Resources Information Center

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  18. Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.

    PubMed

    Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato

    2018-02-14

    This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  20. Higher-order Kerr effect and harmonic cascading in gases.

    PubMed

    Bache, Morten; Eilenberger, Falk; Minardi, Stefano

    2012-11-15

    The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.

  1. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  2. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE PAGES

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    2016-09-26

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  3. Boron stripper foils for particle accelerators

    NASA Astrophysics Data System (ADS)

    Zeisler, Stefan K.; Brigham, Michael; Kaur, Ishneet; Jaggi, Vinder

    2018-05-01

    Micromatter Technologies Inc., now located in Surrey B.C., Canada, is a worldwide supplier of pure and boron containing diamond-like carbon (DLC) stripper foils ranging from 10 nm to 10 μm. These foils are manufactured in-house using pulsed laser deposition. Continuing our research into novel production methods and alternative materials to be used as beam strippers for heavy elements and in particular for tandem particle accelerators, pure boron foils were prepared by laser plasma ablation of a disc shaped boron sputter target. Foil thickness between 10 nm to approximately 0.7 μm were achieved. The new boron foils showed considerably less stress, higher mechanical strength and better flexibility than comparable DLC films.

  4. Preslip and cascade processes initiating laboratory stick slip

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.

    2014-01-01

    Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.

  5. Output control using feedforward and cascade controllers

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.

  6. Emergence of event cascades in inhomogeneous networks

    NASA Astrophysics Data System (ADS)

    Onaga, Tomokatsu; Shinomoto, Shigeru

    2016-09-01

    There is a commonality among contagious diseases, tweets, and neuronal firings that past events facilitate the future occurrence of events. The spread of events has been extensively studied such that the systems exhibit catastrophic chain reactions if the interaction represented by the ratio of reproduction exceeds unity; however, their subthreshold states are not fully understood. Here, we report that these systems are possessed by nonstationary cascades of event-occurrences already in the subthreshold regime. Event cascades can be harmful in some contexts, when the peak-demand causes vaccine shortages, heavy traffic on communication lines, but may be beneficial in other contexts, such that spontaneous activity in neural networks may be used to generate motion or store memory. Thus it is important to comprehend the mechanism by which such cascades appear, and consider controlling a system to tame or facilitate fluctuations in the event-occurrences. The critical interaction for the emergence of cascades depends greatly on the network structure in which individuals are connected. We demonstrate that we can predict whether cascades may emerge, given information about the interactions between individuals. Furthermore, we develop a method of reallocating connections among individuals so that event cascades may be either impeded or impelled in a network.

  7. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  8. The cascade high productivity language

    NASA Technical Reports Server (NTRS)

    Callahan, David; Chamberlain, Branford L.; Zima, Hans P.

    2004-01-01

    This paper describes the design of Chapel, the Cascade High Productivity Language, which is being developed in the DARPA-funded HPCS project Cascade led by Cray Inc. Chapel pushes the state-of-the-art in languages for HEC system programming by focusing on productivity, in particular by combining the goal of highest possible object code performance with that of programmability offered by a high-level user interface.

  9. Cascading failure in the wireless sensor scale-free networks

    NASA Astrophysics Data System (ADS)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  10. Geologic Map of the North Cascade Range, Washington

    USGS Publications Warehouse

    Haugerud, Ralph A.; Tabor, Rowland W.

    2009-01-01

    The North Cascade Range, commonly referred to as the North Cascades, is the northern part of the Cascade Range that stretches from northern California into British Columbia, where it merges with the Coast Mountains of British Columbia at the Fraser River. The North Cascades are generally characterized by exposure of plutonic and metamorphic rocks in contrast to the volcanic terrain to the south. The rocks of the North Cascades are more resistant to erosion, display greater relief, and show evidence of more pronounced uplift and recent glaciation. Although the total length of the North Cascade Range, extending north from Snoqualmie Pass in Washington, is about 200 mi (320 km), this compilation map at 1:200,000 scale covers only that part (~150 mi) in the United States. The compilation map is derived mostly from eight 1:100,000-scale quadrangle maps that include all of the North Cascade Range in Washington and a bit of the mostly volcanic part of the Cascade Range to the south (fig. 1, sheet 2). Overall, the area represented by this compilation is about 12,740 mi2 (33,000 km2). The superb alpine scenery of the North Cascade Range and its proximity to major population centers has led to designation of much of the area for recreational use or wilderness preservation. A major part of the map area is in North Cascade National Park. Other restricted use areas are the Alpine Lakes, Boulder River, Clearwater, Glacier Peak, Henry M. Jackson, Lake Chelan-Sawtooth, Mount Baker, Noisy-Diobsud, Norse Peak, and Pasayten Wildernesses and the Mount Baker, Lake Chelan, and Ross Lake National Recreation Areas. The valleys traversed by Washington State Highway 20 east of Ross Lake are preserved as North Cascades Scenic Highway. The map area is traversed by three major highways: U.S. Interstate 90, crossing Snoqualmie Pass; Washington State Highway 2, crossing Stevens Pass; and Washington State Highway 20, crossing Washington Pass. Major secondary roads, as well as a network of U

  11. Infectious Agents Trigger Trophic Cascades.

    PubMed

    Buck, Julia C; Ripple, William J

    2017-09-01

    Most demonstrated trophic cascades originate with predators, but infectious agents can also cause top-down indirect effects in ecosystems. Here we synthesize the literature on trophic cascades initiated by infectious agents including parasitoids, pathogens, parasitic castrators, macroparasites, and trophically transmitted parasites. Like predators, infectious agents can cause density-mediated and trait-mediated indirect effects through their direct consumptive and nonconsumptive effects respectively. Unlike most predators, however, infectious agents are not fully and immediately lethal to their victims, so their consumptive effects can also trigger trait-mediated indirect effects. We find that the frequency of trophic cascades reported for different consumer types scales with consumer lethality. Furthermore, we emphasize the value of uniting predator-prey and parasite-host theory under a general consumer-resource framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Transonic cascade flow calculations using non-periodic C-type grids

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1991-01-01

    A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.

  13. Variable two-crystal cascade for conical refraction.

    PubMed

    Peet, V

    2015-05-15

    The cascade conical refraction occurs when a collimated light beam is passed consequently along the optic axes of several biaxial crystals arranged in a series. For commonly used optical arrangements, the general structure of light emerging from such a cascade is rigorously determined by the used crystals, leaving few possibilities for the variations of the established light pattern. A simple modification of a two-crystal arrangement where one of the two crystals is placed beyond the imaging lens is reported. This modification adds an extreme versatility to the effect and allows one to tune continuously the actual cascade parameters. As a result, practically any pattern of two-crystal cascade conical refraction can be obtained for any pair of biaxial crystals.

  14. Modeling and analysis of cascade solar cells

    NASA Technical Reports Server (NTRS)

    Ho, F. D.

    1986-01-01

    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed.

  15. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  16. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  17. Cascading gravity is ghost free

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Khoury, Justin; Tolley, Andrew J.

    2010-06-15

    We perform a full perturbative stability analysis of the 6D cascading gravity model in the presence of 3-brane tension. We demonstrate that for sufficiently large tension on the (flat) 3-brane, there are no ghosts at the perturbative level, consistent with results that had previously only been obtained in a specific 5D decoupling limit. These results establish the cascading gravity framework as a consistent infrared modification of gravity.

  18. Recent biocatalytic oxidation–reduction cascades

    PubMed Central

    Schrittwieser, Joerg H; Sattler, Johann; Resch, Verena; Mutti, Francesco G; Kroutil, Wolfgang

    2011-01-01

    The combination of an oxidation and a reduction in a cascade allows performing transformations in a very economic and efficient fashion. The challenge is how to combine an oxidation with a reduction in one pot, either by running the two reactions simultaneously or in a stepwise fashion without isolation of intermediates. The broader availability of various redox enzymes nowadays has triggered the recent investigation of various oxidation–reduction cascades. PMID:21130024

  19. Threshold cascades with response heterogeneity in multiplex networks

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Brummitt, Charles D.; Goh, K.-I.

    2014-12-01

    Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.

  20. Monte Carlo simulation of the nuclear-electromagnetic cascade development and the energy response of ionization spectrometers

    NASA Technical Reports Server (NTRS)

    Jones, W. V.

    1973-01-01

    Modifications to the basic computer program for performing the simulations are reported. The major changes include: (1) extension of the calculations to include the development of cascades initiated by heavy nuclei, (2) improved treatment of the nuclear disintegrations which occur during the interactions of hadrons in heavy absorbers, (3) incorporation of accurate multi-pion final-state cross sections for various interactions at accelerator energies, (4) restructuring of the program logic so that calculations can be made for sandwich-type detectors, and (5) logic modifications related to execution of the program.

  1. Information cascade on networks

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  2. Living With Volcanic Risk in the Cascades

    USGS Publications Warehouse

    Dzurisin, Daniel; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    The Cascade Range of the Pacific Northwest has more than a dozen potentially active volcanoes. Cascade volcanoes tend to erupt explosively, and on average two eruptions occur per century?the most recent were at Mount St. Helens, Washington (1980?86 and 2004?8), and Lassen Peak, California (1914?17). To help protect the Pacific Northwest?s rapidly expanding population, USGS scientists at the Cascades Volcano Observatory in Vancouver, Washington, monitor and assess the hazards posed by the region?s volcanoes.

  3. Form-Focused Interaction in Online Tandem Learning

    ERIC Educational Resources Information Center

    O'Rourke, Breffni

    2005-01-01

    Tandem language learning--a configuration involving pairs of learners with complementary target/native languages--is an underexploited but potentially very powerful use of computer-mediated communication (CMC) in second-language pedagogy. Tandem offers the benefits of authentic, culturally grounded interaction, while also promoting a pedagogical…

  4. Spatial organization of multi-enzyme biocatalytic cascades.

    PubMed

    Quin, M B; Wallin, K K; Zhang, G; Schmidt-Dannert, C

    2017-05-23

    Industrial biocatalysis is an economically attractive option for the production of valuable chemicals. Our repertoire of cheap building blocks and commodity target molecules is vastly enhanced by multi-enzyme biocatalytic cascades. In order to achieve suitable titers in complex novel biocatalytic schemes, spatial organization may become necessary to overcome barriers caused by slow or inhibited enzymes as well as instability of biocatalysts. A number of spatial organization strategies are currently available, which could be integrated in the design of complex cascades. These include fusion proteins, immobilization on solid supports, multi-dimensional scaffolding, and encapsulation within vessels. This review article highlights recent advances in cascade biocatalysis, discusses the role of spatial organization in reaction kinetics, and presents some of the currently employed strategies for spatial organization of multi-enzyme cascades.

  5. The Installation of a P.E.T. Pharmacy at Washington University

    NASA Astrophysics Data System (ADS)

    Gaehle, G.; Schwarz, S.; Mueller, M.; Margenau, B.; Welch, M. J.

    2003-08-01

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  6. The Installation of a P.E.T. Pharmacy at Washington University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaehle, G.; Schwarz, S.; Mueller, M.

    2003-08-26

    Washington University has produced radioisotopes for medical application since the early 1960s. In order to serve seven PET scanners and to meet more stringent government regulations we have installed a new PET pharmacy based on our past years of experiences. The new pharmacy was installed at the site of the 3.7 MeV tandem cascade accelerator that was decommissioned in April of 2001. The pharmacy consists of a production lab, quality control lab, reagent preparation lab, shipping and storage area and an office. Security and safety was a main consideration in the design of this PET pharmacy.

  7. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  8. Improved transmission of electrostatic accelerator in a wide range of terminal voltages by controlling the focal strength of entrance acceleration tube

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Tunningley, Thomas; Linardakis, Peter

    2018-04-01

    Tandem electrostatic accelerators often require the flexibility to operate at a variety of terminal voltages to accommodate various user requirements. However, the ion beam transmission will only be optimal for a limited range of terminal voltages. This paper describes the operational performance of a novel focusing system that expands the range of terminal voltages for optimal transmission. This is accomplished by controlling the gradient of the entrance of the low-energy tube, providing an additional focusing element. In this specific case it is achieved by applying up to 150 kV to the fifth electrode of the first unit of the accelerator tube. Numerical simulations and beam transmission tests have been performed to confirm the effectiveness of the lens. An analytical expression has been derived describing its focal properties. These tests demonstrate that the entrance lens control eliminates the need to short out sections of the tube for operation at low terminal voltage.

  9. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    NASA Astrophysics Data System (ADS)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  10. Electronic Tandem Language Learning (eTandem): A Third Approach to Second Language Learning for the 21st Century

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    2004-01-01

    Tandem language learning occurs when two learners of different native languages work together to help each other learn the other language. First used in face-to-face contexts, Tandem is now increasingly being used by language-learning partners located in different countries who are linked via various forms of electronic communication, a context…

  11. Measurements of 59Ni in meteorites by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Paul, M.; Fifield, L. K.; Fink, D.; Albrecht, A.; Allan, G. L.; Herzog, G.; Tuniz, C.

    1993-10-01

    Isotopic abundances of the radionuclide 59Ni (T1/2 = 76000 yr) were measured by accelerator mass spectrometry with the 14UD Pelletron tandem accelerator at the Australian National University and a detection system solely based on a multianode ionization chamber. The sensitivity limit in the measurement of 59Ni isotopic abundances is 5 × 10-13, as determined by residual interferences from isobaric 59Co and isotopic 58Ni ions. Cosmogenic 59Ni abundances 59Ni/Ni = (8-20) × 10-12 were measured in four samples prepared from the metal phase of two meteorites (mesosiderites). The ratio of the 59Ni abundances to those measured for 41Ca in the silicate phase of the same samples, is in fair agreement with the ratio of the production rates via thermal-neutron capture on 58Ni and 40Ca.

  12. Gust Response Analysis of a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Gorla, R. S. R.; Reddy, T. S. R.; Reddy, D. R.; Kurkov, A. P.

    2001-01-01

    A study was made of the gust response of an annular turbine cascade using a two-dimensional Navier Stokes code. The time-marching CFD code, NPARC, was used to calculate the unsteady forces due to the fluid flow. The computational results were compared with a previously published experimental data for the annular cascade reported in the literature. Reduced frequency, Mach number and angle of incidence were varied independently and the gust velocity was sinusoidal. For the high inlet velocity case, the cascade was nearly choked.

  13. Simulation study of GaAsP/Si tandem cells including the impact of threading dislocations on the luminescent coupling between the cells

    NASA Astrophysics Data System (ADS)

    Onno, Arthur; Harder, Nils-Peter; Oberbeck, Lars; Liu, Huiyun

    2016-03-01

    A model, derived from the detailed balance model from Shockley and Queisser, has been adapted to monolithically grown GaAsP/Si tandem dual junction solar cells. In this architecture, due to the difference of lattice parameters between the silicon bottom cell - acting as the substrate - and the GaAsP top cell, threading dislocations (TDs) arise at the IIIV/ Si interface and propagate in the top cell. These TDs act as non-radiative recombination centers, degrading the performances of the tandem cell. Our model takes into account the impact of TDs by integrating the NTT model developed by Yamaguchi et. al.. Two surface geometries have been investigated: flat and ideally textured. Finally the model considers the luminescent coupling (LC) between the cells due to reemitted photons from the top cell cascading to the bottom cell. Without dislocations, LC allows a greater flexibility in the cell design by rebalancing the currents between the two cells when the top cell presents a higher short-circuit current. However we show that, as the TD density (TDD) increases, nonradiative recombinations take over radiative recombinations in the top cell and the LC is quenched. As a result, nonoptimized tandem cells with higher short-circuit current in the top cell experience a very fast degradation of efficiency for TDDs over 104cm-2. On the other hand optimized cells with matching currents only experience a small efficiency drop for TDDs up to 105cm-2. High TDD cells therefore need to be current-matched for optimal performances as the flexibility due to LC is lost.

  14. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  15. Present status of Accelerator-Based BNCT.

    PubMed

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  16. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport transmission..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based...

  17. Calculation of transonic flow in radial turbine blade cascade

    NASA Astrophysics Data System (ADS)

    Petr, Straka

    2017-09-01

    Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation

  18. Accelerator mass spectrometry of small biological samples.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2008-12-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for isotopic ratio measurements. In the biomedical field, AMS can be used to measure femtomolar concentrations of labeled drugs in body fluids, with direct applications in early drug development such as Microdosing. Likewise, the regenerative properties of cells which are of fundamental significance in stem-cell research can be determined with an accuracy of a few years by AMS analysis of human DNA. However, AMS nominally requires about 1 mg of carbon per sample which is not always available when dealing with specific body substances such as localized, organ-specific DNA samples. Consequently, it is of analytical interest to develop methods for the routine analysis of small samples in the range of a few tens of microg. We have used a 5 MV Pelletron tandem accelerator to study small biological samples using AMS. Different methods are presented and compared. A (12)C-carrier sample preparation method is described which is potentially more sensitive and less susceptible to contamination than the standard procedures.

  19. Tandem catalysis: a new approach to polymers.

    PubMed

    Robert, Carine; Thomas, Christophe M

    2013-12-21

    The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.

  20. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  1. Design of Choking Cascade Turns.

    DTIC Science & Technology

    1982-12-01

    L D-R124 792 DESIGN OF CHOK~ING CASCADE TURNSCU) AIR FORCE INST OF v TECH MRIGHT-PAT1TERSON AFB OH SCHOOL OF ENGINEERING J BAIRD DEC 82 AFIT/GRE/AA...82D- 3 DESIGN OF CHOKING *’ CASCADE TURNS THESIS Presented to the Faculty of the School of Enqineerinq of the Air Force Institute of Technoloqy Air ...Approved for public release; distribution unlimited 4* Preface Ramjet engines are being considered by both the Air Force and Navy for tactical air

  2. Volcano geodesy in the Cascade arc, USA

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  3. Volcano geodesy in the Cascade arc, USA

    USGS Publications Warehouse

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  4. Geothermal segmentation of the Cascade Range in the USA

    USGS Publications Warehouse

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  5. Rescuing Ecosystems from Extinction Cascades

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  6. A simple model of global cascades on random networks

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  7. TRedD—A database for tandem repeats over the edit distance

    PubMed Central

    Sokol, Dina; Atagun, Firat

    2010-01-01

    A ‘tandem repeat’ in DNA is a sequence of two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats are common in the genomes of both eukaryotic and prokaryotic organisms. They are significant markers for human identity testing, disease diagnosis, sequence homology and population studies. In this article, we describe a new database, TRedD, which contains the tandem repeats found in the human genome. The database is publicly available online, and the software for locating the repeats is also freely available. The definition of tandem repeats used by TRedD is a new and innovative definition based upon the concept of ‘evolutive tandem repeats’. In addition, we have developed a tool, called TandemGraph, to graphically depict the repeats occurring in a sequence. This tool can be coupled with any repeat finding software, and it should greatly facilitate analysis of results. Database URL: http://tandem.sci.brooklyn.cuny.edu/ PMID:20624712

  8. Forecasting Social Unrest Using Activity Cascades

    PubMed Central

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J.; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen “on the ground.” Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach. PMID:26091012

  9. Forecasting Social Unrest Using Activity Cascades.

    PubMed

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  10. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  11. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research

  12. Signal transduction in a covalent post-assembly modification cascade

    NASA Astrophysics Data System (ADS)

    Pilgrim, Ben S.; Roberts, Derrick A.; Lohr, Thorsten G.; Ronson, Tanya K.; Nitschke, Jonathan R.

    2017-12-01

    Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels-Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels-Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.

  13. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  14. Quantum Cascade Lasers Modulation and Applications

    NASA Astrophysics Data System (ADS)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  15. Cascades on a stochastic pulse-coupled network

    NASA Astrophysics Data System (ADS)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  16. Cascades on a stochastic pulse-coupled network

    PubMed Central

    Wray, C. M.; Bishop, S. R.

    2014-01-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided. PMID:25213626

  17. HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2013-09-30

    Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional Hemore » is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.« less

  18. Cascaded spintronic logic with low-dimensional carbon

    NASA Astrophysics Data System (ADS)

    Friedman, Joseph S.; Girdhar, Anuj; Gelfand, Ryan M.; Memik, Gokhan; Mohseni, Hooman; Taflove, Allen; Wessels, Bruce W.; Leburton, Jean-Pierre; Sahakian, Alan V.

    2017-06-01

    Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.

  19. Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1988-01-01

    Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.

  20. Framework for cascade size calculations on random networks

    NASA Astrophysics Data System (ADS)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  1. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.

    PubMed

    Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas

    2017-07-01

    The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  3. ULTRAFINE AEROSOL INFLUENCE ON THE SAMPLING BY CASCADE IMPACTOR.

    PubMed

    Vasyanovich, M; Mostafa, M Y A; Zhukovsky, M

    2017-11-01

    Cascade impactors based on inertial deposition of aerosols are widely used to determine the size distribution of radioactive aerosols. However, there are situations where radioactive aerosols are represented by particles with a diameter of 1-5 nm. In this case, ultrafine aerosols can be deposited on impactor cascades by diffusion mechanism. The influence of ultrafine aerosols (1-5 nm) on the response of three different types of cascade impactors was studied. It was shown that the diffusion deposition of ultrafine aerosols can distort the response of the cascade impactor. The influence of diffusion deposition of ultrafine aerosols can be considerably removed by the use of mesh screens or diffusion battery installed before cascade impactor during the aerosol sampling. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  5. What We Don't Understand About Ion Acceleration Flares

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    1999-01-01

    There are now strong associations between the (3)He-rich, Fe-rich ions in "impulsive" solar energetic particle (SEP) events and the similar abundances derived from gamma-ray lines from flares. Compact flares, where wave energy can predominate, are ideal sites for the study of wave-particle physics. Yet there are nagging questions about the magnetic geometry, the relation between ions that escape and those that interact, and the relative roles of cascading Alfven waves and the EMIC waves required to enhance He-3. There are also questions about the relative timing of ion and electron acceleration and of heating; these relate to the variation of ionization states before and during acceleration and during transport out of the corona. We can construct a model that addresses many of these issues, but problems do remain. Our greatest lack is realistic theoretical simulations of element abundances, spectra, and their variations. By contrast, we now have a much better idea of the acceleration at CME-driven shock waves in the rare but large "gradual" SEP events, largely because of their slow temporal evolution and great spatial extent.

  6. Mode Locking of Quantum Cascade Lasers

    DTIC Science & Technology

    2007-11-09

    E. Siegman , Lasers , University Science Books, Mill Valley, CA (1986). [2] A. Yariv, Quantum Electronics, 3rd edition, John Wiley and Sons, New...REPORT Mode Locking of Quantum Cascade Lasers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A theoretical and experimental study of multimode operation...regimes in quantum cascade lasers (QCLs) is presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes in QCLs: One is

  7. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  8. Lateral distortions of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Porter, L. G.; Levit, L. B.; Jones, W. V.; Huggett, R. W.; Barrowes, S. C.

    1975-01-01

    Electromagnetic cascades in a lead-emulsion chamber have been studied to determine the effect of air gaps on the upstream sides of the emulsions. Such air gaps cause a change in the form of the radial distribution of electron tracks, making cascades appear older and giving incorrect energy estimates. The number of tracks remaining within a radius r was found to vary as exp(-g/G), where g is the gap thickness. The characteristic gap thickness in mm is G = 3.04 + 1.30 ln (Err per GeV per sq mm) where E is the energy of the initiating gamma ray. Use of this relation provides a significant correction to cascade-energy estimates and allows one to calculate the effect of different gap thicknesses on the energy threshold for visual detection of cascades.

  9. The execution of systematic measurements on plane cascades

    NASA Technical Reports Server (NTRS)

    Scholz, N.

    1978-01-01

    The present state of development of the experimental technique regarding the flow through cascades and several points to be specially observed in the design of cascade wind tunnels were discussed. The equations required for the evaluation of the momentum measurements in two dimensional flow through cascades were developed. Regarding the effect of the jet contraction due to the boundary layer along the side walls a simple method for correction was also given in order to obtain two dimensional flow characteristics. Also given were the equations for the evaluation of the pressure distribution measurements. Another contribution was made regarding the presentation of the test results in the form of nondimensional quantities. The results of systematic measurements of cascades with symmetrical aerofoil were reported, and the above suggested method was applied for the evaluation of the measurements.

  10. Cascade Signal Amplification Based on Copper Nanoparticle-Reported Rolling Circle Amplification for Ultrasensitive Electrochemical Detection of the Prostate Cancer Biomarker.

    PubMed

    Zhu, Ye; Wang, Huijuan; Wang, Lin; Zhu, Jing; Jiang, Wei

    2016-02-03

    An ultrasensitive and highly selective electrochemical assay was first attempted by combining the rolling circle amplification (RCA) reaction with poly(thymine)-templated copper nanoparticles (CuNPs) for cascade signal amplification. As proof of concept, prostate specific antigen (PSA) was selected as a model target. Using a gold nanoparticle (AuNP) as a carrier, we synthesized the primer-AuNP-aptamer bioconjugate for signal amplification by increasing the primer/aptamer ratio. The specific construction of primer-AuNP-aptamer/PSA/anti-PSA sandwich structure triggered the effective RCA reaction, in which thousands of tandem poly(thymine) repeats were generated and directly served as the specific templates for the subsequent CuNP formation. The signal readout was easily achieved by dissolving the RCA product-templated CuNPs and detecting the released copper ions with differential pulse stripping voltammetry. Because of the designed cascade signal amplification strategy, the newly developed method achieved a linear range of 0.05-500 fg/mL, with a remarkable detection limit of 0.020 ± 0.001 fg/mL PSA. Finally, the feasibility of the developed method for practical application was investigated by analyzing PSA in the real clinical human serum samples. The ultrasensitivity, specificity, convenience, and capability for analyzing the clinical samples demonstrate that this method has great potential for practical disease diagnosis applications.

  11. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  12. TRAP: automated classification, quantification and annotation of tandemly repeated sequences.

    PubMed

    Sobreira, Tiago José P; Durham, Alan M; Gruber, Arthur

    2006-02-01

    TRAP, the Tandem Repeats Analysis Program, is a Perl program that provides a unified set of analyses for the selection, classification, quantification and automated annotation of tandemly repeated sequences. TRAP uses the results of the Tandem Repeats Finder program to perform a global analysis of the satellite content of DNA sequences, permitting researchers to easily assess the tandem repeat content for both individual sequences and whole genomes. The results can be generated in convenient formats such as HTML and comma-separated values. TRAP can also be used to automatically generate annotation data in the format of feature table and GFF files.

  13. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  14. Sample Selection for Training Cascade Detectors.

    PubMed

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  15. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  16. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  17. Innovation cascades: artefacts, organization and attributions

    PubMed Central

    2016-01-01

    Innovation cascades inextricably link the introduction of new artefacts, transformations in social organization, and the emergence of new functionalities and new needs. This paper describes a positive feedback dynamic, exaptive bootstrapping, through which these cascades proceed, and the characteristics of the relationships in which the new attributions that drive this dynamic are generated. It concludes by arguing that the exaptive bootstrapping dynamic is the principal driver of our current Innovation Society. PMID:26926284

  18. Can 'Cascades' make guidelines global?

    PubMed

    Fried, Michael; Krabshuis, Justus

    2008-10-01

    Why are guidelines in medicine so important today? What role do they have? Why and how did the World Gastroenterology Organization (WGO) choose a global focus? What does this mean for guidelines? These are the underlying questions addressed by our article. We argue that the addition of 'Cascades' to guidelines will increase their impact in large parts of the world. By so doing, we hope to add a new dimension to the 'knowledge into action' debate. A number of illustrations shows how raised expectations and resource restrictions pose - or should pose - an enormous challenge for guideline makers. Furthermore, the emphasis on evidence also creates problems for guideline making. If resources are limited it is unlikely gold-standard technologies are available. We believe Cascades can help. A Cascade is a selection of two or more hierarchical diagnostic or therapeutic options, based on proven medical procedures, methods, tools or products for the same disease, condition or diagnosis, aiming to achieve the same outcome and ranked by available resources. The construction of such a cascade is a hazardous intellectual journey that goes, to some extent, against established practice. But lives can be saved by matching options for diagnosis and treatment to available resources. While the optimal strategy, defined through an evidence-based approach, should always be the goal, one must be aware of the resource limitations that confront our colleagues in certain parts of the world and we should endeavour to work with them in the guideline development process to develop strategies that are clinically sound yet economically feasible and dacceptable to their populace.

  19. Hydrogeology of the Cascade Springs area near Tullahoma, Tennessee

    USGS Publications Warehouse

    Johnson, S.E.

    1995-01-01

    The ground-water-flow system contributing to Cascade Springs near Tullahoma, Tennessee, was investigated from September 1991 to May 1992. Cascade Springs, consisting of Left Cascade and Right Cascade Springs, are located on the escarpment of the Highland Rim and discharge immediately above the Chattanooga Shale from the cherty Fort Payne Formation. Left Cascade Spring is the sole source of water for the Town of Wartrace and for a local whiskey distillery. Two major aquifers, the Manchester and the Fort Payne aquifers, contribute ground-water flow to Cascade Springs. The Manchester aquifer is composed of unconsolidated chert gravel with minimal clay content and the upper, well- fractured interval of the Fort Payne Formation. The Fort Payne aquifer consists of dense, bedded, cherty limestone with few fractures. Where present, the fractures of the Fort Payne aquifer are concentrated immediately above the Chattanooga Shale along horizontal bedding planes. The Manchester and the Fort Payne aquifers are hydraulically connected. However, the dense cherty limestone of the Fort Payne Formation, where unfractured, can impede the downward flow of ground water from the Manchester aquifer. Near the Highland Rime escarpment, as a result of this local confinement, the potentiometric head of wells completed in the Manchester aquifer is 36- to 80-feet higher than the head of wells completed in the Fort Payne aquifer. The primary recharge area for Cascade Springs is located southeast of the springs. The estimated recharge area for the Manchester aquifer encompaasses approximately 1 square mile. The lateral extent of the recharge area for the Fort Payne aquifer cannot be delineated because few wells completed in the Fort Payne aquifer are located southeast of Cascade Springs. The water quality of Left Cascade Spring is dominated by calcium and bicarbonate ions with low concentrations of inorganic constituents and dissolved solids. Two volatile organic compounds (1.3 micrograms per

  20. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  1. Cascading disaster models in postburn flash flood

    Treesearch

    Fred May

    2007-01-01

    A useful method of modeling threats from hazards and documenting their disaster causation sequences is called “cascading threat modeling.” This type of modeling enables emergency planners to address hazard and risk assessments systematically. This paper describes a cascading threat modeling and analysis process. Wildfire and an associated postburn flash flood disaster...

  2. A period-doubling cascade precedes chaos for planar maps.

    PubMed

    Sander, Evelyn; Yorke, James A

    2013-09-01

    A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.

  3. Signaling cascades modulate the speed of signal propagation through space.

    PubMed

    Govern, Christopher C; Chakraborty, Arup K

    2009-01-01

    Cells are not mixed bags of signaling molecules. As a consequence, signals must travel from their origin to distal locations. Much is understood about the purely diffusive propagation of signals through space. Many signals, however, propagate via signaling cascades. Here, we show that, depending on their kinetics, cascades speed up or slow down the propagation of signals through space, relative to pure diffusion. We modeled simple cascades operating under different limits of Michaelis-Menten kinetics using deterministic reaction-diffusion equations. Cascades operating far from enzyme saturation speed up signal propagation; the second mobile species moves more quickly than the first through space, on average. The enhanced speed is due to more efficient serial activation of a downstream signaling module (by the signaling molecule immediately upstream in the cascade) at points distal from the signaling origin, compared to locations closer to the source. Conversely, cascades operating under saturated kinetics, which exhibit zero-order ultrasensitivity, can slow down signals, ultimately localizing them to regions around the origin. Signal speed modulation may be a fundamental function of cascades, affecting the ability of signals to penetrate within a cell, to cross-react with other signals, and to activate distant targets. In particular, enhanced speeds provide a way to increase signal penetration into a cell without needing to flood the cell with large numbers of active signaling molecules; conversely, diminished speeds in zero-order ultrasensitive cascades facilitate strong, but localized, signaling.

  4. ERDA at the 9 MV Tandem and at the 3 MV Tandetron of IFIN-HH

    NASA Astrophysics Data System (ADS)

    Petrascu, H.; Petrascu, M.; Pantelica, D.; Negoita, F.; Ionescu, P.; Mihai, M. D.; Acsente, T.; Statescu, M.; Scafes, A. C.

    2017-09-01

    Recoil spectrometry using heavy ions proposed in 1976 by L'Ecuyer has evolved into a universal IBA technique. Few years later an experimental setup for simultaneous light and medium heavy element detection including a compact ΔE(gas)-Er(solid) telescope, was developed at the Tandem accelerator of IFIN-HH. To increase the resolution, an integrated preamplifier was mounted close to the ionization chamber. The calibration procedure for the telescope and the software for the quantitative evaluation of the data are briefly presented. Recently, a 3 MV Tandetron accelerator has been installed and commissioned at the IFIN-HH. Among several ion-beam techniques for detection and depth profiling of hydrogen isotopes, Elastic Recoil Detection Analysis (ERDA) technique using a low energy 4He beam, proposed by Doyle and Peercy, is particularly advantageous. By measuring simultaneously both the H or D recoiling at a forward angle and backscattered 4He ions, a rather complete characterization of the sample can be achieved. Selected results from our investigations, obtained using these facilities, are presented.

  5. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  6. An analytical method coupling accelerated solvent extraction and HPLC-fluorescence for the quantification of particle-bound PAHs in indoor air sampled with a 3-stages cascade impactor.

    PubMed

    Liaud, Céline; Millet, Maurice; Le Calvé, Stéphane

    2015-01-01

    Most of Polycyclic Aromatic Hydrocarbons (PAHs) are associated to airborne particles and their health impact depends on the particle size where they are bound. This work aims to develop a high sensitive analytical technique to quantify particulate PAHs sampled with a 3-stages cascade impactor in order to derive simultaneously their individual concentration in PM1, PM2.5 and PM10. Three key steps of the method were evaluated separately in order to avoid any PAHs loss during the global sample preparation procedure: (1) the accelerated solvent extraction of PAHs from the filter; (2) the primary concentration of the extract until 1 mL by means of a rotary evaporator at 45°C and 220 mbar and (3) the final concentration of the pre-concentrated extract to about 100-150 µL under a gentle nitrogen stream. Each recovery experiment was realized in triplicates. All these steps evaluated independently show that the overall PAHs loss, even for those with a low molecular weight, should not exceed more than a few percent. Extracts were then analyzed by using a HPLC coupled to fluorescence and Diode Array Detectors with the external standard method. The resulting calibration curves containing between 9 and 12 points were plotted in the concentration range of 0.05-45 µg L(-1) for most of the 16 US-EPA priority PAHs and were fully linear (R(2)>0.999). Limits Of Quantification were in the range 0.05-0.47 µg L(-1) corresponding to 0.75-7.05 pg m(-3) for 20 m(3) of pumped air. Finally, taking into account the average PAHs concentrations previously reported in typical European indoor environments, and considering the use of a 3-stages cascade impactor to collect simultaneously PM>10 µm, 2.5 µm

  7. Sign epistasis caused by hierarchy within signalling cascades.

    PubMed

    Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J

    2018-04-13

    Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.

  8. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  9. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  10. Small vulnerable sets determine large network cascades in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  11. Small vulnerable sets determine large network cascades in power grids

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-11-17

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  12. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  13. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  14. Single-task and dual-task tandem gait test performance after concussion.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Nanosecond lifetime measurements of Iπ=9/2- intrinsic excited states and low-lying B(E1) strengths in 183Re using combined HPGe-LaBr3 coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gurgi, L. A.; Regan, P. H.; Daniel, T.; Podolyák, Zs.; Bruce, A. M.; Mason, P. J. R.; Mǎrginean, N.; Mǎrginean, R.; Werner, V.; Alharbi, T.; Alkhomashi, N.; Bajoga, A. D.; Britton, R.; Cǎta-Danil, I.; Carroll, R. J.; Deleanu, D.; Bucurescu, D.; Florea, N.; Gheorghe, I.; Ghita, D. G.; Glodariu, T.; Lice, R.; Mihai, C.; Mulholland, K. F.; Negret, A.; Olacel, A.; Roberts, O. J.; Sava, T.; Söderström, P.-A.; Stroe, L.; Suvaila, R.; Toma, S.; Wilson, E.; Wood, R. T.

    2017-08-01

    This paper presents precision measurements of electromagnetic decay probabilities associated with electric dipole transitions in the prolate-deformed nucleus 183Re. The nucleus of interest was formed using the fusion evaporation reaction 180Hf(7Li,4n)183Re at a beam energy of 30 MeV at the tandem accelerator at the HH-IFIN Institute, Bucharest Romania. Coincident decay gamma rays from near-yrast cascades were detected using the combined HPGe-LaBr3 detector array ROSPHERE. The time differences between cascade gamma rays were measured using the LaBr3 detectors to determine the half-lives of the two lowest lying spin-parity 9/2- states at excitation energies of 496 and 617 keV to be 5.65(5) and 2.08(3) ns respectively. The deduced E1 transition rates from these two states are discussed in terms of the K-hindrance between the low-lying structures in this prolate-deformed nucleus.

  16. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  17. The last large pelletron accelerator of the Herb era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, S.; Narayanan, M. M.; Joshi, R.

    1999-04-26

    Prof. Ray Herb pioneered the concept and design of the tandem Pelletron accelerator in the late sixties at NEC. The 15UD Pelletron at Nuclear Science Centre (NSC), upgraded for 16MV operation using compressed geometry accelerating tubes is the last such large Pelletron. It has unique features like offset and matching quadrupoles after the stripper for charge state selection inside the high voltage terminal and consequently the option of further stripping the ion species of the selected charge states at high energy dead section, and elaborate pulsing system in the pre-acceleration region consisting of a beam chopper, a travelling wave deflector,more » a light ion buncher (1-80 amu) and a heavy ion buncher (>80 amu). NSC was established as a heavy ion accelerator based inter university centre in 1985. It became operational in July 1991 to cater to the research requirements of a large user community which at present includes about fifty universities, twenty-eight colleges and a dozen other academic institutes and research laboratories. The number of users in Materials and allied sciences is about 500. Various important modifications have been made to improve the performance of the accelerator in the last seven years. These include replacement of the corona voltage grading system by a resistor based one, a pick-up loop to monitor charging system performance, conversion from basic double unit structure to singlet, installation of a spiral cavity based phase detector system with post-accelerator stripper after the analyzing magnet, and a high efficiency multi harmonic buncher. Installation of a turbo pump based stripper gas recirculation system in the terminal is also planned. A brief description of utilization of the machine will be given.« less

  18. Negotiating Multiple Identities through eTandem Learning Experiences

    ERIC Educational Resources Information Center

    Yang, Se Jeong; Yi, Youngjoo

    2017-01-01

    Much of eTandem research has investigated either linguistic or cross-cultural aspects of second language (L2) learning, but relatively little is known about issues of identity construction in an eTandem context. Situating the study within theories and research of language learner identity, we examined ways in which two adult L2 learners (a Korean…

  19. Statistical analysis of cascading failures in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less

  20. Tunable signal processing in synthetic MAP kinase cascades.

    PubMed

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibitsmore » an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.« less

  2. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  3. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  4. Factors Associated with PMTCT Cascade Completion in Four African Countries.

    PubMed

    Dionne-Odom, Jodie; Welty, Thomas K; Westfall, Andrew O; Chi, Benjamin H; Ekouevi, Didier Koumavi; Kasaro, Margaret; Tih, Pius M; Tita, Alan T N

    2016-01-01

    Background. Many countries are working to reduce or eliminate mother-to-child transmission (MTCT) of HIV. Prevention efforts have been conceptualized as steps in a cascade but cascade completion rates during and after pregnancy are low. Methods. A cross-sectional survey was performed across 26 communities in Cameroon, Cote d'Ivoire, South Africa, and Zambia. Women who reported a pregnancy within two years were enrolled. Participant responses were used to construct the PMTCT cascade with all of the following steps required for completion: at least one antenatal visit, HIV testing performed, HIV testing result received, initiation of maternal prophylaxis, and initiation of infant prophylaxis. Factors associated with cascade completion were identified using multivariable logistic regression modeling. Results. Of 976 HIV-infected women, only 355 (36.4%) completed the PMTCT cascade. Although most women (69.2%) did not know their partner's HIV status; awareness of partner HIV status was associated with cascade completion (aOR 1.4, 95% CI 1.01-2.0). Completion was also associated with receiving an HIV diagnosis prior to pregnancy compared with HIV diagnosis during or after pregnancy (aOR 14.1, 95% CI 5.2-38.6). Conclusions. Pregnant women with HIV infection in Africa who were aware of their partner's HIV status and who were diagnosed with HIV before pregnancy were more likely to complete the PMTCT cascade.

  5. Factors Associated with PMTCT Cascade Completion in Four African Countries

    PubMed Central

    Welty, Thomas K.; Westfall, Andrew O.; Chi, Benjamin H.; Ekouevi, Didier Koumavi; Tih, Pius M.; Tita, Alan T. N.

    2016-01-01

    Background. Many countries are working to reduce or eliminate mother-to-child transmission (MTCT) of HIV. Prevention efforts have been conceptualized as steps in a cascade but cascade completion rates during and after pregnancy are low. Methods. A cross-sectional survey was performed across 26 communities in Cameroon, Cote d'Ivoire, South Africa, and Zambia. Women who reported a pregnancy within two years were enrolled. Participant responses were used to construct the PMTCT cascade with all of the following steps required for completion: at least one antenatal visit, HIV testing performed, HIV testing result received, initiation of maternal prophylaxis, and initiation of infant prophylaxis. Factors associated with cascade completion were identified using multivariable logistic regression modeling. Results. Of 976 HIV-infected women, only 355 (36.4%) completed the PMTCT cascade. Although most women (69.2%) did not know their partner's HIV status; awareness of partner HIV status was associated with cascade completion (aOR 1.4, 95% CI 1.01–2.0). Completion was also associated with receiving an HIV diagnosis prior to pregnancy compared with HIV diagnosis during or after pregnancy (aOR 14.1, 95% CI 5.2–38.6). Conclusions. Pregnant women with HIV infection in Africa who were aware of their partner's HIV status and who were diagnosed with HIV before pregnancy were more likely to complete the PMTCT cascade. PMID:27872760

  6. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  7. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  8. Vulnerability and cosusceptibility determine the size of network cascades

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-01-27

    In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Furthermore, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies,more » these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.« less

  9. A cascading failure model for analyzing railway accident causation

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Tao; Li, Ke-Ping

    2018-01-01

    In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.

  10. Increase of transient lower esophageal sphincter relaxation associated with cascade stomach

    PubMed Central

    Kawada, Akiyo; Kusano, Motoyasu; Hosaka, Hiroko; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Kawamura, Osamu; Akiyama, Junichi; Yamada, Masanobu; Akuzawa, Masako

    2017-01-01

    We previously reported that cascade stomach was associated with reflux symptoms and esophagitis. Delayed gastric emptying has been believed to initiate transient lower esophageal sphincter relaxation (TLESR). We hypothesized that cascade stomach may be associated with frequent TLESR with delayed gastric emptying. Eleven subjects with cascade stomach and 11 subjects without cascade stomach were enrolled. Postprandial gastroesophageal manometry and gastric emptying using a continuous 13C breath system were measured simultaneously after a liquid test meal. TLESR events were counted in early period (0–60 min), late period (60–120 min), and total monitoring period. Three parameters of gastric emptying were calculated: the half emptying time, lag time, and gastric emptying coefficient. The median frequency of TLESR events in the cascade stomach and non-cascade stomach groups was 6.0 (median), 4.6 (interquartile range) vs 5.0, 3.0 in the early period, 5.0, 3.2 vs 3.0, 1.8 in the late period, and 10.0, 6.2 vs 8.0, 5.0 in the total monitoring period. TLESR events were significantly more frequent in the cascade stomach group during the late and total monitoring periods. In contrast, gastric emptying parameters showed no significant differences between the two groups. We concluded that TLESR events were significantly more frequent in persons with cascade stomach without delayed gastric emptying. PMID:28584403

  11. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  12. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  13. Self-organization, the cascade model, and natural hazards.

    PubMed

    Turcotte, Donald L; Malamud, Bruce D; Guzzetti, Fausto; Reichenbach, Paola

    2002-02-19

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions.

  14. Self-organization, the cascade model, and natural hazards

    PubMed Central

    Turcotte, Donald L.; Malamud, Bruce D.; Guzzetti, Fausto; Reichenbach, Paola

    2002-01-01

    We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions. PMID:11875206

  15. Cascades on a class of clustered random networks

    NASA Astrophysics Data System (ADS)

    Hackett, Adam; Melnik, Sergey; Gleeson, James P.

    2011-05-01

    We present an analytical approach to determining the expected cascade size in a broad range of dynamical models on the class of random networks with arbitrary degree distribution and nonzero clustering introduced previously in [M. E. J. Newman, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.103.058701103, 058701 (2009)]. A condition for the existence of global cascades is derived as well as a general criterion that determines whether increasing the level of clustering will increase, or decrease, the expected cascade size. Applications, examples of which are provided, include site percolation, bond percolation, and Watts’ threshold model; in all cases analytical results give excellent agreement with numerical simulations.

  16. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  17. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  18. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  19. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  20. 36 CFR 7.66 - North Cascades National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false North Cascades National Park. 7.66 Section 7.66 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.66 North Cascades National Park. (a...

  1. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  2. Gradients in Catostomid assemblages along a reservoir cascade

    USGS Publications Warehouse

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  3. INCAS: an analytical model to describe displacement cascades

    NASA Astrophysics Data System (ADS)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  4. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  5. First application of calorimetric low-temperature detectors in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Andrianov, V.; Bleile, A.; Egelhof, P.; Golser, R.; Kiseleva, A.; Kiselev, O.; Kutschera, W.; Meier, J. P.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.

    2004-03-01

    For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4-9×10-3, depending on the experimental conditions. This performance enabled to substantially reduce background from neighbouring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.5×10-12 could be obtained, representing the smallest 236U/238U ratio measured until now.

  6. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  7. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  8. Optimizing topological cascade resilience based on the structure of terrorist networks.

    PubMed

    Gutfraind, Alexander

    2010-11-10

    Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades--to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.

  9. Monitoring Bilingualism: Pedagogical Implications of the Bilingual Tandem Analyser

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus; Borgia, Alexandre

    2006-01-01

    Tandem learning is the collaborative learning partnership of two language learners with complementary language combinations, for example an Irish student learning German and a German student learning English. One of the major principles in tandem learning, apart from reciprocity and learner autonomy, is balanced bilingualism. While learners may…

  10. Coagulation cascade and complement system in systemic lupus erythematosus

    PubMed Central

    Liang, Yan; Xie, Shang-Bo; Wu, Chang-Hao; Hu, Yuan; Zhang, Qin; Li, Si; Fan, Yin-Guang; Leng, Rui-Xue; Pan, Hai-Feng; Xiong, Hua-Bao; Ye, Dong-Qing

    2018-01-01

    This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become ‘partners in crime’, contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity. PMID:29599912

  11. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence.

    PubMed

    Korkali, Mert; Veneman, Jason G; Tivnan, Brian F; Bagrow, James P; Hines, Paul D H

    2017-03-20

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a "smart" power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  12. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    NASA Astrophysics Data System (ADS)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-03-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained.

  13. Cascaded Microinverter PV System for Reduced Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with anmore » embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.« less

  14. Wind tunnel wall effects in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1991-01-01

    Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.

  15. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  16. Comprehensive Experiments on Subcritical Assemblies of Cascade Reactor Systems

    NASA Astrophysics Data System (ADS)

    Zavyalov, N. V.; Il'kaev, R. I.; Kolesov, V. F.; Ivanin, I. A.; Zhitnik, A. K.; Kuvshinov, M. I.; Nefedov, Yu. Ya.; Punin, V. T.; Tel'nov, A. V.; Khoruzhi, V. Kh.

    2017-12-01

    Cascade reactors attract particular attention because of their capability of improving the parameters of pulsed reactors and achieving the feasibility of electronuclear facilities. The paper presents the results of three series of experiments on uranium-neptunium cascade assemblies at the Institute of Nuclear and Radiation Physics of the All-Russian Research Institute of Experimental Physics conducted in 2003-2004. The experiments confirmed theoretical conclusions on positive properties of cascade blankets and effectiveness of using neptunium-237 as a means of creating a one-sided connection between the sections.

  17. Unsteady flows in rotor-stator cascades

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.

    1991-03-01

    A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.

  18. On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Eckert, D.; Gaspari, M.; Vazza, F.; Gastaldello, F.; Tramacere, A.; Zimmer, S.; Ettori, S.; Paltani, S.

    2017-07-01

    Giant radio halos are megaparsec-scale diffuse radio sources associated with the central regions of galaxy clusters. The most promising scenario to explain the origin of these sources is that of turbulent re-acceleration, in which MeV electrons injected throughout the formation history of galaxy clusters are accelerated to higher energies by turbulent motions mostly induced by cluster mergers. In this Letter, we use the amplitude of density fluctuations in the intracluster medium as a proxy for the turbulent velocity and apply this technique to a sample of 51 clusters with available radio data. Our results indicate a segregation in the turbulent velocity of radio halo and radio quiet clusters, with the turbulent velocity of the former being on average higher by about a factor of two. The velocity dispersion recovered with this technique correlates with the measured radio power through the relation {P}{radio}\\propto {σ }v3.3+/- 0.7, which implies that the radio power is nearly proportional to the turbulent energy rate. In case turbulence cascades without being dissipated down to the particle acceleration scales, our results provide an observational confirmation of a key prediction of the turbulent re-acceleration model and possibly shed light on the origin of radio halos.

  19. Cascaded VLSI Chips Help Neural Network To Learn

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Daud, Taher; Thakoor, Anilkumar P.

    1993-01-01

    Cascading provides 12-bit resolution needed for learning. Using conventional silicon chip fabrication technology of VLSI, fully connected architecture consisting of 32 wide-range, variable gain, sigmoidal neurons along one diagonal and 7-bit resolution, electrically programmable, synaptic 32 x 31 weight matrix implemented on neuron-synapse chip. To increase weight nominally from 7 to 13 bits, synapses on chip individually cascaded with respective synapses on another 32 x 32 matrix chip with 7-bit resolution synapses only (without neurons). Cascade correlation algorithm varies number of layers effectively connected into network; adds hidden layers one at a time during learning process in such way as to optimize overall number of neurons and complexity and configuration of network.

  20. rTANDEM, an R/Bioconductor package for MS/MS protein identification.

    PubMed

    Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud

    2014-08-01

    rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  2. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  3. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  4. Turbulent cascade in a two-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xin; Faculty of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000; Liu, San-Qiu, E-mail: sqlgroup@ncu.edu.cn

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  5. Terahertz Sideband-tuned Quantum Cascade Laser Radiation

    DTIC Science & Technology

    2008-03-31

    resolution of 2 MHz in CW regime was observed. ©2008 Optical Society of America OCIS codes: (140.5965) Semiconductor lasers , quantum cascade...diode,” Opt. Lett. 29, 1632 (2004). 6. A. Baryshev, et.al., “ Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser ,” Appl... optically pumped gas laser . With further improvements in power and spatial mode quality, it should be possible to lock a TQCL to the harmonic of an ultra

  6. Economic viability of thin-film tandem solar modules in the United States

    NASA Astrophysics Data System (ADS)

    Sofia, Sarah E.; Mailoa, Jonathan P.; Weiss, Dirk N.; Stanbery, Billy J.; Buonassisi, Tonio; Peters, I. Marius

    2018-05-01

    Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II-VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US per watt (US W-1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US W-1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

  7. Climate Change and Baleen Whale Trophic Cascades in Greenland

    DTIC Science & Technology

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. Ruthenium-Catalyzed Cascade Annulation of Indole with Propargyl Alcohols.

    PubMed

    Kaufmann, Julia; Jäckel, Elisabeth; Haak, Edgar

    2018-05-14

    Cascade transformations forming multiple bonds and one-pot procedures provide rapid access to natural-product-like scaffolds from simple precursors. These atom-economic processes are valuable tools in organic synthesis and drug discovery. Herein, we report on ruthenium-catalyzed cascade annulations of indole with readily available propargyl alcohols. These provide rapid access to diverse carbazoles, cyclohepta[b]indoles, and further fused polycycles with high selectivity. A bifunctional ruthenium complex featuring a redox-coupled cyclopentadienone ligand acts as a common catalyst for the different cascade processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  10. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    PubMed Central

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; Bagrow, James P.; Hines, Paul D. H.

    2017-01-01

    Increased interconnection between critical infrastructure networks, such as electric power and communications systems, has important implications for infrastructure reliability and security. Others have shown that increased coupling between networks that are vulnerable to internetwork cascading failures can increase vulnerability. However, the mechanisms of cascading in these models differ from those in real systems and such models disregard new functions enabled by coupling, such as intelligent control during a cascade. This paper compares the robustness of simple topological network models to models that more accurately reflect the dynamics of cascading in a particular case of coupled infrastructures. First, we compare a topological contagion model to a power grid model. Second, we compare a percolation model of internetwork cascading to three models of interdependent power-communication systems. In both comparisons, the more detailed models suggest substantially different conclusions, relative to the simpler topological models. In all but the most extreme case, our model of a “smart” power network coupled to a communication system suggests that increased power-communication coupling decreases vulnerability, in contrast to the percolation model. Together, these results suggest that robustness can be enhanced by interconnecting networks with complementary capabilities if modes of internetwork failure propagation are constrained. PMID:28317835

  11. Substrate-driven chemotactic assembly in an enzyme cascade.

    PubMed

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M; Gilson, Michael K; Butler, Peter J; Hess, Henry; Benkovic, Stephen J; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  12. Substrate-driven chemotactic assembly in an enzyme cascade

    NASA Astrophysics Data System (ADS)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  13. Measurement of Gust Response on a Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.; Lucci, B. L.

    1995-01-01

    The paper presents benchmark experimental data on a gust response of an annular turbine cascade. The experiment was particularly designed to provide data for comparison with the results of a typical linearized gust-response analysis. Reduced frequency, Mach number, and incidence were varied independently. Except for the lowest reduced frequency, the gust velocity distribution was nearly sinusoidal. For the high inlet-velocity series of tests, the cascade was near choking. The mean flow was documented by measuring blade surface pressures and the cascade exit flow. High-response pressure transducers were used to measure the unsteady pressure distribution. Inlet-velocity components and turbulence parameters were measured using hot wire. In addition to the synchronous time-average pressure spectra, typical power spectra are included for several representative conditions.

  14. Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum.

    PubMed

    Jones, David T; Graff-Radford, Jonathan; Lowe, Val J; Wiste, Heather J; Gunter, Jeffrey L; Senjem, Matthew L; Botha, Hugo; Kantarci, Kejal; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Jack, Clifford R

    2017-12-01

    Functionally related brain regions are selectively vulnerable to Alzheimer's disease pathophysiology. However, molecular markers of this pathophysiology (i.e., beta-amyloid and tau aggregates) have discrepant spatial and temporal patterns of progression within these selectively vulnerable brain regions. Existing reductionist pathophysiologic models cannot account for these large-scale spatiotemporal inconsistencies. Within the framework of the recently proposed cascading network failure model of Alzheimer's disease, however, these large-scale patterns are to be expected. This model postulates the following: 1) a tau-associated, circumscribed network disruption occurs in brain regions specific to a given phenotype in clinically normal individuals; 2) this disruption can trigger phenotype independent, stereotypic, and amyloid-associated compensatory brain network changes indexed by changes in the default mode network; 3) amyloid deposition marks a saturation of functional compensation and portends an acceleration of the inciting phenotype specific, and tau-associated, network failure. With the advent of in vivo molecular imaging of tau pathology, combined with amyloid and functional network imaging, it is now possible to investigate the relationship between functional brain networks, tau, and amyloid across the disease spectrum within these selectively vulnerable brain regions. In a large cohort (n = 218) spanning the Alzheimer's disease spectrum from young, amyloid negative, cognitively normal subjects to Alzheimer's disease dementia, we found several distinct spatial patterns of tau deposition, including 'Braak-like' and 'non-Braak-like', across functionally related brain regions. Rather than arising focally and spreading sequentially, elevated tau signal seems to occur system-wide based on inferences made from multiple cross-sectional analyses we conducted looking at regional patterns of tau signal. Younger age-of-disease-onset was associated with 'non

  15. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  16. Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.

    1975-01-01

    The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.

  17. Tandem Repeated Irritation Test (TRIT) Studies and Clinical Relevance: Post 2006.

    PubMed

    Reddy, Rasika; Maibach, Howard

    2018-06-11

    Single or multiple applications of irritants can lead to occupational contact dermatitis, and most commonly irritant contact dermatitis (ICD). Tandem irritation, the sequential application of two irritants to a target skin area, has been studied using the Tandem Repeated Irritation Test (TRIT) to provide a more accurate representation of skin irritation. Here we present an update to Kartono's review on tandem irritation studies since 2006 [1]. We surveyed the literature available on PubMed, Embase, Google Scholar, and the UCSF Dermatology library databases since 2006. The studies included discuss the tandem effects of common chemical irritants, organic solvents, occlusion as well as clinical relevance - and enlarge our ability to discern whether multiple chemical exposures are more or less likely to enhance irritation.

  18. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  19. Application of a Channel Design Method to High-Solidity Cascades and Tests of an Impulse Cascade with 90 Degrees of Turning

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Sheldrake, Leonard J

    1953-01-01

    A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.

  20. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  1. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  2. Evolution of Vertebrate Phototransduction: Cascade Activation

    PubMed Central

    Lamb, Trevor D.; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C.; Davies, Wayne I. L.; Hart, Nathan S.; Collin, Shaun P.; Hunt, David M.

    2016-01-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. PMID:27189541

  3. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  4. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  5. Mode stabilization in quantum cascade lasers via an intra-cavity cascaded nonlinearity.

    PubMed

    St-Jean, M Renaudat; Amanti, M I; Bismuto, A; Beck, M; Faist, J; Sirtori, C

    2017-02-06

    We present self-stabilization of the inter-mode separation of a quantum cascade laser (QCL) emitting at 9 μm via cascaded second order nonlinearity. This effect has been observed in lasers that have the optical cavity embedded into a microwave strip-line. The intermodal beat note spectra narrow with increasing laser output power, up to less than 100 kHz. A flat frequency response to direct modulation up to 14 GHz is reported for these microstrip QCLs. The laser inter-mode spacing can be locked to an external RF signal and tuned by more than 1 MHz from the free-running spacing. A parallel study on the same laser material in a non-microstrip line waveguide shows superior performances of the microstrip QCL in terms of the intermodal spectral locking and stability. Finally by analyzing our results with the theory of the injection locking of coupled oscillators, we deduce that the microwave power injected in the microstrip QCL is 2 orders of magnitude higher than in the reference laser.

  6. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  7. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  8. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  9. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  10. Direct and inverse energy cascades in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe

    2014-11-01

    Turbulence in a rotating frame provides a remarkable system where 2D and 3D properties may coexist, with a possible tuning between direct and inverse cascades. We present here experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic PIV in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical 3D turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in 2D turbulence. At the largest rotation rate, the flow is nearly 2D and a pure inverse energy cascade is found for the horizontal energy.

  11. Cascades of energy and helicity in axisymmetric turbulence

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Naso, Aurore; Bos, Wouter J. T.

    2018-01-01

    A spectral analysis of strictly axisymmetric turbulence is performed. Both freely decaying and statistically steady flows are considered. In helical flows we identify a dual cascade, where energy is transferred towards the large scales and helicity to the smallest ones. It is shown that even in the absence of net helicity, a dual cascade persists, transferring energy backward and positively and negatively polarized helicity fluctuations forward.

  12. SUMCOR: Cascade summing correction for volumetric sources applying MCNP6.

    PubMed

    Dias, M S; Semmler, R; Moreira, D S; de Menezes, M O; Barros, L F; Ribeiro, R V; Koskinas, M F

    2018-04-01

    The main features of code SUMCOR developed for cascade summing correction for volumetric sources are described. MCNP6 is used to track histories starting from individual points inside the volumetric source, for each set of cascade transitions from the radionuclide. Total and FEP efficiencies are calculated for all gamma-rays and X-rays involved in the cascade. Cascade summing correction is based on the matrix formalism developed by Semkow et al. (1990). Results are presented applying the experimental data sent to the participants of two intercomparisons organized by the ICRM-GSWG and coordinated by Dr. Marie-Cristine Lépy from the Laboratoire National Henri Becquerel (LNE-LNHB), CEA, in 2008 and 2010, respectively and compared to the other participants in the intercomparisons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.

  14. Cascade Mountain Range in Oregon

    USGS Publications Warehouse

    Sherrod, David R.

    2016-01-01

    Along its Oregon segment, the Cascade Range is almost entirely volcanic in origin. The volcanoes and their eroded remnants are the visible magmatic expression of the Cascadia subduction zone, where the offshore Juan de Fuca tectonic plate is subducted beneath North America. Subduction occurs as two lithospheric plates collide, and an underthrusted oceanic plate is commonly dragged into the mantle by the pull of gravity, carrying ocean-bottom rock and sediment down to where heat and pressure expel water. As this water rises, it lowers the melting temperature in the overlying hot mantle rocks, thereby promoting melting. The molten rock supplies the volcanic arcs with heat and magma. Cascade Range volcanoes are part of the Ring of Fire, a popular term for the numerous volcanic arcs that encircle the Pacific Ocean.

  15. Tropospheric energy cascades in a global circulation model

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Becker, Erich

    2010-05-01

    The global horizontal kinetic energy (KE) spectrum and its budget are analyzed using results from a mechanistic GCM. The model has a standard spectral dynamical core with very high vertikal resolution up to the middle stratosphere (T330/L100). As a turbulence model we combine the Smagorinsky scheme with an energy conserving hyperdiffusion that is applied for the very smallest resolved scales. The simulation confirms a slope of the KE spectrum close to -3 in the synoptic regime where the KE is dominated by vortical modes. Towards the mesoscales the spectrum flattens and assumes a slope close to -5/3. Here divergent modes become increasingly important and even dominate the KE. Our complete analysis of the sinks and sources in the spectral KE budget reveals the overall energy fluxes through the spectrum. For the upper troposphere, the change of KE due to horizontal advection is negative for large synoptic scales. It is positive for the planetary scale, as expected, and for the mesoscales as well. This implies that the mesoscales, which include the dynamical sources of tropospheric gravity waves, are in fact sustained by the energy injection at the baroclinic scale (forward energy cascade). We find an enstrophy cascade in accordance with 2D turbulence, but zero downscaling of energy due to the vortical modes alone. In other words, the forward energy cascade in the synoptic and mesoscale regime is solely due to the divergent modes and their nonlinear interaction with the vortical modes. This picture, derived form a mechanistic model, not only lends further evidence for a generally forward energy cascade in the upper tropospheric away from the baroclinic scale. It also extends the picture proposed earlier by Tung and Orlando: The transition from a -3 to a -5/3 slope in the tropospheric macroturbulence spectrum reflects the fact, that the energy cascade due to the horizontally divergent (3D) modes is hidden behind the (2D) enstrophy cascade in the synoptic regime but

  16. Computing Shapes Of Cascade Diffuser Blades

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Prueger, George H.

    1993-01-01

    Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.

  17. Interferometric modulation of quantum cascade interactions

    NASA Astrophysics Data System (ADS)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  18. Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel

    DTIC Science & Technology

    2015-01-01

    mean square of free stream velocity μ = flow viscosity I. Introduction and Background Turbine Cascade Wind Tunnels ( CWT ) are...closed-loop CWT . Turbine cascade facilities are used to simulate turbine operating conditions for the study of flow phenomena such as 2 boundary layer...A CWT test section inlet must have uniform flowfield properties. The inlet conditions of interest upstream of the cascade include velocity and

  19. Cascade generalized predictive control strategy for boiler drum level.

    PubMed

    Xu, Min; Li, Shaoyuan; Cai, Wenjian

    2005-07-01

    This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.

  20. [Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].

    PubMed

    Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou

    2002-01-01

    To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.

  1. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE PAGES

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...

    2017-09-06

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  2. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  3. The HIV care cascade: a systematic review of data sources, methodology and comparability.

    PubMed

    Medland, Nicholas A; McMahon, James H; Chow, Eric P F; Elliott, Julian H; Hoy, Jennifer F; Fairley, Christopher K

    2015-01-01

    The cascade of HIV diagnosis, care and treatment (HIV care cascade) is increasingly used to direct and evaluate interventions to increase population antiretroviral therapy (ART) coverage, a key component of treatment as prevention. The ability to compare cascades over time, sub-population, jurisdiction or country is important. However, differences in data sources and methodology used to construct the HIV care cascade might limit its comparability and ultimately its utility. Our aim was to review systematically the different methods used to estimate and report the HIV care cascade and their comparability. A search of published and unpublished literature through March 2015 was conducted. Cascades that reported the continuum of care from diagnosis to virological suppression in a demographically definable population were included. Data sources and methods of measurement or estimation were extracted. We defined the most comparable cascade elements as those that directly measured diagnosis or care from a population-based data set. Thirteen reports were included after screening 1631 records. The undiagnosed HIV-infected population was reported in seven cascades, each of which used different data sets and methods and could not be considered to be comparable. All 13 used mandatory HIV diagnosis notification systems to measure the diagnosed population. Population-based data sets, derived from clinical data or mandatory reporting of CD4 cell counts and viral load tests from all individuals, were used in 6 of 12 cascades reporting linkage, 6 of 13 reporting retention, 3 of 11 reporting ART and 6 of 13 cascades reporting virological suppression. Cascades with access to population-based data sets were able to directly measure cascade elements and are therefore comparable over time, place and sub-population. Other data sources and methods are less comparable. To ensure comparability, countries wishing to accurately measure the cascade should utilize complete population-based data

  4. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    PubMed

    Yukilevich, Roman; Aoki, Fumio

    2016-04-01

    When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept "cascade reinforcement." Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature.

  5. Partners in crime: The role of tandem modules in gene transcription.

    PubMed

    Sharma, Rajal; Zhou, Ming-Ming

    2015-09-01

    Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.

  6. Scale-invariant cascades in turbulence and evolution

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas Ryan

    In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a

  7. Efficient collective influence maximization in cascading processes with first-order transitions

    PubMed Central

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  8. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    PubMed Central

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  9. Efficient collective influence maximization in cascading processes with first-order transitions

    NASA Astrophysics Data System (ADS)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-03-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.

  10. Critical assessment and ramifications of a purported marine trophic cascade

    NASA Astrophysics Data System (ADS)

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-02-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  11. Critical assessment and ramifications of a purported marine trophic cascade

    USGS Publications Warehouse

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  12. Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.

    2002-01-01

    In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.

  13. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    PubMed

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  14. Cascade Mtns. Oregon

    NASA Image and Video Library

    2002-04-19

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset. This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03492

  15. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  16. Model and Study on Cascade Control System Based on IGBT Chopping Control

    NASA Astrophysics Data System (ADS)

    Niu, Yuxin; Chen, Liangqiao; Wang, Shuwen

    2018-01-01

    Thyristor cascade control system has a wide range of applications in the industrial field, but the traditional cascade control system has some shortcomings, such as a low power factor, serious harmonic pollution. In this paper, not only analyzing its system structure and working principle, but also discussing the two main factors affecting the power factor. Chopping-control cascade control system, adopted a new power switching device IGBT, which could overcome traditional cascade control system’s two main drawbacks efficiently. The basic principle of this cascade control system is discussed in this paper and the model of speed control system is built by using MATLAB/Simulink software. Finally, the simulation results of the system shows that the system works efficiently. This system is worthy to be spread widely in engineering application.

  17. Knee Injuries Are Associated with Accelerated Knee Osteoarthritis Progression: Data from the Osteoarthritis Initiative

    PubMed Central

    Driban, Jeffrey B.; Eaton, Charles B.; Lo, Grace H.; Ward, Robert J.; Lu, Bing; McAlindon, Timothy E.

    2014-01-01

    Objective We aimed to evaluate if a recent knee injury was associated with accelerated knee osteoarthritis (KOA) progression. Methods In the Osteoarthritis Initiative (OAI) we studied participants free of KOA on their baseline radiographs (Kellgren-Lawrence [KL]<2). We compared three groups: 1) individuals with accelerated progression of KOA: defined as having at least one knee that progressed to end-stage KOA (KL Grade 3 or 4) within 48 months, 2) common KOA progression: at least one knee increased in radiographic scoring within 48 months (excluding those defined as accelerated KOA), and 3) no KOA: no change in KL grade in either knee. At baseline, participants were asked if their knees had ever been injured and at each annual visit they were asked about injuries during the prior 12 months. We used multinomial logistic regressions to determine if a new knee injury was associated with the outcome of accelerated KOA or common KOA progression after adjusting for age, sex, body mass index, static knee malalignment, and systolic blood pressure. Results A knee injury during the total observation period was associated with accelerated KOA progression (n=54, odds ratio [OR]=3.14) but not common KOA progression (n=187, OR=1.08). Furthermore, a more recent knee injury (within a year of the outcome) was associated with accelerated (OR=8.46) and common KOA progression (OR=3.12). Conclusion Recent knee injuries are associated with accelerated KOA. Most concerning is that certain injuries may be associated with a rapid cascade towards joint failure in less than one year. PMID:24782446

  18. Placement of Synchronized Measurements for Power System Observability during Cascaded Outages

    NASA Astrophysics Data System (ADS)

    Thirugnanasambandam, Venkatesh; Jain, Trapti

    2017-11-01

    Cascaded outages often result in power system islanding followed by a blackout and therefore considered as a severe disturbance. Maintaining the observability of each island may help in taking proper control actions to preserve the stability of individual islands thus, averting system collapse. With this intent, a strategy for placement of synchronized measurements, which can be obtained from phasor measurement units (PMU), has been proposed in this paper to keep the system observable during cascaded outages also. Since, all the cascaded failures may not lead to islanding situations, therefore, failures leading to islanding as well as non-islanding situations have been considered. A topology based algorithm has been developed to identify the islanding/non-islanding condition created by a particular cascaded event. Additional contingencies such as single line loss and single PMU failure have also been considered after the occurrence of cascaded events. The proposed method is further extended to incorporate the measurement redundancy, which is desirable for a reliable state estimation. The proposed scheme is tested on IEEE 14-bus, IEEE 30-bus and a practical Indian 246-bus networks. The numerical results ensure the observability of the power system under system intact as well as during cascaded islanding and non-islanding disturbances.

  19. Evolution of Vertebrate Phototransduction: Cascade Activation.

    PubMed

    Lamb, Trevor D; Patel, Hardip; Chuah, Aaron; Natoli, Riccardo C; Davies, Wayne I L; Hart, Nathan S; Collin, Shaun P; Hunt, David M

    2016-08-01

    We applied high-throughput sequencing to eye tissue from several species of basal vertebrates (a hagfish, two species of lamprey, and five species of gnathostome fish), and we analyzed the mRNA sequences for the proteins underlying activation of the phototransduction cascade. The molecular phylogenies that we constructed from these sequences are consistent with the 2R WGD model of two rounds of whole genome duplication. Our analysis suggests that agnathans retain an additional representative (that has been lost in gnathostomes) in each of the gene families we studied; the evidence is strong for the G-protein α subunit (GNAT) and the cGMP phosphodiesterase (PDE6), and indicative for the cyclic nucleotide-gated channels (CNGA and CNGB). Two of the species (the hagfish Eptatretus cirrhatus and the lamprey Mordacia mordax) possess only a single class of photoreceptor, simplifying deductions about the composition of cascade protein isoforms utilized in their photoreceptors. For the other lamprey, Geotria australis, analysis of the ratios of transcript levels in downstream and upstream migrant animals permits tentative conclusions to be drawn about the isoforms used in four of the five spectral classes of photoreceptor. Overall, our results suggest that agnathan rod-like photoreceptors utilize the same GNAT1 as gnathostomes, together with a homodimeric PDE6 that may be agnathan-specific, whereas agnathan cone-like photoreceptors utilize a GNAT that may be agnathan-specific, together with the same PDE6C as gnathostomes. These findings help elucidate the evolution of the vertebrate phototransduction cascade from an ancestral chordate phototransduction cascade that existed prior to the vertebrate radiation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2013-09-30

    Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keVmore » exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.« less

  1. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages.

    PubMed

    Colman, N J; Gordon, C E; Crowther, M S; Letnic, M

    2014-05-07

    Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators' suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators' indirect effects.

  2. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages

    PubMed Central

    Colman, N. J.; Gordon, C. E.; Crowther, M. S.; Letnic, M.

    2014-01-01

    Disruption to species-interaction networks caused by irruptions of herbivores and mesopredators following extirpation of apex predators is a global driver of ecosystem reorganization and biodiversity loss. Most studies of apex predators' ecological roles focus on effects arising from their interactions with herbivores or mesopredators in isolation, but rarely consider how the effects of herbivores and mesopredators interact. Here, we provide evidence that multiple cascade pathways induced by lethal control of an apex predator, the dingo, drive unintended shifts in forest ecosystem structure. We compared mammal assemblages and understorey structure at seven sites in southern Australia. Each site comprised an area where dingoes were poisoned and an area without control. The effects of dingo control on mammals scaled with body size. Activity of herbivorous macropods, arboreal mammals and a mesopredator, the red fox, were greater, but understorey vegetation sparser and abundances of small mammals lower, where dingoes were controlled. Structural equation modelling suggested that both predation by foxes and depletion of understorey vegetation by macropods were related to small mammal decline at poisoned sites. Our study suggests that apex predators’ suppressive effects on herbivores and mesopredators occur simultaneously and should be considered in tandem in order to appreciate the extent of apex predators’ indirect effects. PMID:24619441

  3. On Cascade Energy Transfer in Convective Turbulence

    NASA Astrophysics Data System (ADS)

    Shestakov, A. V.; Stepanov, R. A.; Frick, P. G.

    2017-12-01

    The paper is devoted to specificities of the cascade processes in developed turbulence existing on a background of the density (temperature) gradient either parallel (turbulence in a stably stratified (SS) medium) or antiparallel (convective turbulence (CT)) to the gravitational force. Our main attention is paid to the Obukhov-Bolgiano (OB) regime, which presumes a balance between the buoyancy and nonlinear forces in a sufficiently extensive part of the inertial interval. Up to now, there has been no reliable evidence of the existence of the OB regime, although fragments of spectra with slopes close to-11/5 and-7/5 were detected in some works on the numerical simulations of convective turbulence. The paper presents a critical comparison of these data with the results obtained in this work using the cascade model of convective turbulence, which makes it possible to consider a wide range of control parameters. The cascade model is new and was obtained by the generalization of the class of helical cascade models to the case of turbulent convection. It is shown that, in developed turbulence, which is characterized by an interval with a constant spectral flux of kinetic energy, the buoyancy force cannot compete with nonlinear interactions and has no essential effect on the dynamics of the inertial interval. It is the buoyancy force that supplies the cascade process with energy in convective turbulence but only in the maximum scales. Under the SS conditions, the buoyancy forces reduce the energy of turbulent pulsations. In the case of stable stratification, the buoyancy force reduces the turbulence pulsation energy. The OB regime arises in none of these cases, but, in the scales beyond the inertial interval, Kolmogorov's turbulence with the "-5/3" law, in which temperature behaves like a passive admixture, is established. The observed deviations from the "-5/3" spectrum, erroneously interpreted as the OB regime, are manifested in the case of insufficient separation of

  4. Bankruptcy cascades in interbank markets.

    PubMed

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  5. Bankruptcy Cascades in Interbank Markets

    PubMed Central

    Tedeschi, Gabriele; Mazloumian, Amin; Gallegati, Mauro; Helbing, Dirk

    2012-01-01

    We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank’s liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable. PMID:23300760

  6. Cascading events in linked ecological and socioeconomic systems

    USGS Publications Warehouse

    Peters, Debra P.C.; Sala, O.E.; Allen, Craig D.; Covich, A.; Brunson, M.

    2007-01-01

    Cascading events that start at small spatial scales and propagate non-linearly through time to influence larger areas often have major impacts on ecosystem goods and services. Events such as wildfires and hurricanes are increasing in frequency and magnitude as systems become more connected through globalization processes. We need to improve our understanding of these events in order to predict their occurrence, minimize potential impacts, and allow for strategic recovery. Here, we synthesize information about cascading events in systems located throughout the Americas. We discuss a variety of examples of cascading events that share a common feature: they are often driven by linked ecological and human processes across scales. In this era of globalization, we recommend studies that explicitly examine connections across scales and examine the role of connectivity among non-contiguous as well as contiguous areas.

  7. Compressor cascade performance deterioration caused by sand ingestion

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Balan, C.

    1982-01-01

    Airfoil cascade erosion and performance deterioration was investigated in a gas particle cascade tunnel. The cascade blades were made of 2024 aluminum alloy and the solid particles used were quartz sand. The results of the experimental measurements are presented to show the change in the blade surface erosion, pressure distribution and the total loss coefficient with erosion. The surface quality of the blades exposed to particulate flows are changing the material surfaces. With time, the surface roughness increases and leads to a decrease in engine performance. It was found that the surface roughness values increase asymptotically to a maximum value with increased erosion. The experimental results indicate that the roughness parameters correlate well against the mass of particles impacting unit area of the surface. Such a correlation is useful in aerodynamics and performance computations in turbomachinery.

  8. Fast parallel tandem mass spectral library searching using GPU hardware acceleration

    PubMed Central

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.

    2011-01-01

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112

  9. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    PubMed

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  10. Crossover from localized to cascade relaxations in metallic glasses

    DOE PAGES

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-21

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less

  11. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  12. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    PubMed Central

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-01-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028

  13. Electrical and optical analyses of tandem organic light-emitting diodes with organic charge-generation layer

    NASA Astrophysics Data System (ADS)

    Kim, Bong Sung; Chae, Heeyeop; Chung, Ho Kyoon; Cho, Sung Min

    2018-06-01

    The electrical and optical properties of tandem organic light-emitting diodes (OLEDs), in which a fluorescent and phosphorescent emitting units are connected by an organic charge-generation layer (CGL), were experimentally analyzed. To investigate the internal properties of the tandem OLEDs, we fabricated and compared two single, two homo-tandem, and two hetero-tandem OLEDs using the fluorescent and phosphorescent units. From the experimental results of the OLEDs obtained at the same current density, the voltage across the CGL as well as the individual emission spectra and luminance of each unit of tandem OLEDs were obtained and compared with the theoretical simulation results. The analysis method proposed in this study can be utilized as a method to verify the accuracy of optical or electrical computer simulation of tandem OLED and it will be useful to understand the overall electrical and optical characteristics of tandem OLEDs.

  14. Cascade Apartments: Deep Energy Multifamily Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Mattheis, L.; Kunkle, R.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofitmore » package after considering utility window incentives and KCHA capitol improvement funding.« less

  15. Cascade Apartments: Deep Energy Multifamily Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, A.; Mattheis, L.; Kunkle, R.

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions: 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit packagemore » after considering utility window incentives and KCHA capitol improvement funding.« less

  16. Single mode terahertz quantum cascade amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Y., E-mail: yr235@cam.ac.uk; Wallis, R.; Shah, Y. D.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-modemore » radiation output is demonstrated.« less

  17. Cascade morphology transition in bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent,more » $b$, in the defect production curve as a function of cascade energy ($$N_F$$$ \\sim$$$E_{MD}^b$$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $$\\mu$$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $$\\mu$$ as a function of displacement threshold energy, $$E_d$$, is presented for bcc metals.« less

  18. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-05-18

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  19. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    PubMed Central

    Yukilevich, Roman; Aoki, Fumio

    2016-01-01

    Abstract When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept “cascade reinforcement.” Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature. PMID:29491903

  20. Electrically driven nanopillars for THz quantum cascade lasers.

    PubMed

    Amanti, M I; Bismuto, A; Beck, M; Isa, L; Kumar, K; Reimhult, E; Faist, J

    2013-05-06

    In this work we present a rapid and parallel process for the fabrication of large scale arrays of electrically driven nanopillars for THz quantum cascade active media. We demonstrate electrical injection of pillars of 200 nm diameter and 2 µm height, over a surface of 1 mm(2). THz electroluminescence from the nanopillars is reported. This result is a promising step toward the realization of zero-dimensional structure for terahertz quantum cascade lasers.

  1. Integration of Quantum Cascade Lasers and Passive Waveguides

    DTIC Science & Technology

    2015-06-01

    Optics, 2005. (CLEO). Conference on , Vol. 2 (2005) pp. 863–865. 2J. Montoya , A. Sanchez-Rubio, R. Hatch, and H . Payson, Appl. Opt. 53, 7551 (2014...Integration of Quantum Cascade Lasers and Passive Waveguidesa) Juan Montoya ,1, b) Christine Wang,1 Anish Goyal,1 Kevin Creedon,1 Michael Connors,1...active sec- tion quantum cascade laser material is biased to achieve gain. Proton ( H +) implantation reduces the free-carrier con- centration and

  2. Quantum cascade lasers with an integrated polarization mode converter.

    PubMed

    Dhirhe, D; Slight, T J; Holmes, B M; Hutchings, D C; Ironside, C N

    2012-11-05

    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet.

  3. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  4. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  5. TandEM: Titan and Enceladus mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S. K.; Balint, T.; Brown, R. H.; Dougherty, M. K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R. A.; Griffith, C. A.; Gurvits, L. I.; Jaumann, R.; Langevin, Y.; Leese, M. R.; Lunine, J. I.; McKay, C. P.; Moussas, X.; Müller-Wodarg, I.; Neubauer, F.; Owen, T. C.; Raulin, F.; Sittler, E. C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E. P.; Wahlund, J.-E.; Waite, J. H.; Baines, K. H.; Blamont, J.; Coates, A. J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R. D.; Morse, A.; Porco, C. C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J. C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D. H.; Bénilan, Y.; Bertucci, C.; Bézard, B.; Bjoraker, G. L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M. T.; Chassefière, E.; Coll, P.; Combes, M.; Cooper, J. F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I. A.; de Angelis, E.; de Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F. M.; Fortes, A. D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Küppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le Mouélic, S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T. A.; Lopes, R. M.; Lopez-Moreno, J.-J.; Luz, D.; Mahaffy, P. R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Menor Salvan, C.; Milillo, A.; Mitchell, D. G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C. D.; Nixon, C. A.; Nna Mvondo, D.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F. T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Ruiz Bermejo, M.; Sarris, E. T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L. J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D. F.; Szego, K.; Szopa, C.; Thissen, R.; Tomasko, M. G.; Toublanc, D.; Vali, H.; Vardavas, I.; Vuitton, V.; West, R. A.; Yelle, R.; Young, E. F.

    2009-03-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  6. Cascade flutter analysis with transient response aerodynamics

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.

    1991-01-01

    Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.

  7. A cascade feedback control approach for hypnosis.

    PubMed

    Puebla, Hector; Alvarez-Ramírez, José

    2005-10-01

    This article studies the problem of controlling the drug administration during an anesthesia process, where muscle relaxation, analgesia, and hypnosis are regulated by means of monitored administration of specific drugs. On the basis of a seventh-order nonlinear pharmacokinetic-pharmacodynamic representation of the hypnosis process dynamics, a cascade (master/slave) feedback control structure for controlling the bispectral index (BIS) is proposed. The master controller compares the measured BIS with its reference value to provide the expired isoflurane concentration reference to the slave controller. In turn, the slave controller manipulates the anesthetic isoflurane concentration entering the anesthetic system to achieve the reference from the master controller. The advantage of the proposed cascade control structure with respect to its noncascade counterpart is that the former provides operation protection against BIS measurement failures. In fact, under a BIS measurement fault, the master control feedback is broken and the slave controller operates under a safe reference value. Extensive numerical simulations are used to illustrate the functioning of the proposed cascade control structure.

  8. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  9. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.

    2018-05-01

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  10. Optimizing a tandem disk model

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1983-08-01

    The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.

  11. Modulation response characteristics of optical injection-locked cascaded microring laser

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Pei, Li; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2014-09-01

    Modulation bandwidth and frequency chirping of the optical injection-locked (OIL) microring laser (MRL) in the cascaded configuration are investigated. The unidirectional operation of the MRL under strong injection allows simple and cost-saving monolithic integration of the OIL system on one chip as it does not need the use of isolators between the master and slave lasers. Two cascading schemes are discussed in detail by focusing on the tailorable modulation response. The chip-to-power ratio of the cascaded optical injection-locked configuration has decreased by up to two orders of magnitude, compared with the single optical injection-locked configuration.

  12. Critical assessment and ramifications of a purported marine trophic cascade

    PubMed Central

    Grubbs, R. Dean; Carlson, John K.; Romine, Jason G.; Curtis, Tobey H.; McElroy, W. David; McCandless, Camilla T.; Cotton, Charles F.; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions. PMID:26876514

  13. Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Rathmann, Nicholas M.; Ditlevsen, Peter D.

    2017-05-01

    Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.

  14. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  15. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  16. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  17. Gain competition in dual wavelength quantum cascade lasers.

    PubMed

    Geiser, Markus; Pflügl, Christian; Belyanin, Alexey; Wang, Qi Jie; Yu, Nanfang; Edamura, Tadanaka; Yamanishi, Masamichi; Kan, Hirofumi; Fischer, Milan; Wittmann, Andreas; Faist, Jérôme; Capasso, Federico

    2010-05-10

    We investigated dual wavelength mid-infrared quantum cascade lasers based on heterogeneous cascades. We found that due to gain competition laser action tends to start in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion. (c) 2010 Optical Society of America.

  18. Dynamics of tandem bubble interaction in a microfluidic channel

    PubMed Central

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-01-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay. PMID:22088007

  19. Dynamics of tandem bubble interaction in a microfluidic channel.

    PubMed

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-11-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800  ×  21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.

  20. Cascading failure in scale-free networks with tunable clustering

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li

    2016-02-01

    Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.

  1. Design of supercritical cascades with high solidity

    NASA Technical Reports Server (NTRS)

    Sanz, J. M.

    1982-01-01

    The method of complex characteristics of Garabedian and Korn was successfully used to design shockless cascades with solidities of up to one. A code was developed using this method and a new hodograph transformation of the flow onto an ellipse. This code allows the design of cascades with solidities of up to two and larger turning angles. The equations of potential flow are solved in a complex hodograph like domain by setting a characteristic initial value problem and integrating along suitable paths. The topology that the new mapping introduces permits a simpler construction of these paths of integration.

  2. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  3. Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.

    PubMed

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information. Copyright © 2012 Wiley Periodicals, Inc.

  4. Linear models of activation cascades: analytical solutions and coarse-graining of delayed signal transduction

    PubMed Central

    Desikan, Radhika

    2016-01-01

    Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482

  5. On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents

    NASA Astrophysics Data System (ADS)

    Carpanez, Arthur G.; Coelho, Fernando; Amarante, Giovanni W.

    2018-02-01

    Despite the remarkable rate acceleration under protic solvents such as alcohols and water, the use of acrylates as activated alkenes places a problem due to the possibility of ester hydrolysis or transesterification. Therefore, the tandem transesterification/Morita-Baylis-Hillman (MBH) reactions were investigated by ESI(+)-MS/(MS) and 1H NMR techniques. For the first time, the MBH back-reaction was fully examined by ESI(+)-MS/(MS) using labelling reagents revealed the complex equilibrium involving the Michael-type addition step of DABCO to acrylate. C- and O-protonation were observed at this stage, showing the transesterification process occurs previous to the aldol step, which is the rate-determining step of the mechanism. At this stage, a short-lived tetrahedral intermediate might be involved and should be considered in these processes.

  6. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE PAGES

    Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...

    2014-12-12

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  7. Fragmentation of displacement cascades into subcascades: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoshchenkova, E.; Luneville, L.; Simeone, D.

    The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less

  8. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  9. Reliable Broadcast under Cascading Failures in Interdependent Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Sisi; Lee, Sangkeun; Chinthavali, Supriya

    Reliable broadcast is an essential tool to disseminate information among a set of nodes in the presence of failures. We present a novel study of reliable broadcast in interdependent networks, in which the failures in one network may cascade to another network. In particular, we focus on the interdependency between the communication network and power grid network, where the power grid depends on the signals from the communication network for control and the communication network depends on the grid for power. In this paper, we build a resilient solution to handle crash failures in the communication network that may causemore » cascading failures and may even partition the network. In order to guarantee that all the correct nodes deliver the messages, we use soft links, which are inactive backup links to non-neighboring nodes that are only active when failures occur. At the core of our work is a fully distributed algorithm for the nodes to predict and collect the information of cascading failures so that soft links can be maintained to correct nodes prior to the failures. In the presence of failures, soft links are activated to guarantee message delivery and new soft links are built accordingly for long term robustness. Our evaluation results show that the algorithm achieves low packet drop rate and handles cascading failures with little overhead.« less

  10. Exciton management in organic photovoltaic multidonor energy cascades.

    PubMed

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  11. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  12. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    NASA Astrophysics Data System (ADS)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  13. Development of an advanced spacecraft tandem mass spectrometer

    NASA Astrophysics Data System (ADS)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  14. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  15. An experimental investigation of endwall profiling in a turbine vane cascade

    NASA Technical Reports Server (NTRS)

    Kopper, F. C.; Milano, R.; Vanco, M.

    1980-01-01

    Measurements of surface static pressures, flow total pressure loss, and exit air angle were obtained for two linear cascades to establish the effects of endwall profiling. Testing was conducted at an isentropic exit Mach number of 0.85. One cascade was fabricated with planar endwalls while the other had one planar and one profiled endwall. Both cascades utilized the same high pressure turbine inlet guide vane section. It was found that in terms of full passage loss the profiled endwall cascade has the superior performance. The secondary loss results obtained are reasonably well predicted by correlations developed from incompressible flow testing of similar configurations. Inviscid flow and boundary layer calculations are compared with the test data, and overall, the agreement is found to be good. Use of the results for design purposes is briefly discussed.

  16. Mitogen-activated protein kinase cascades in signaling plant growth and development.

    PubMed

    Xu, Juan; Zhang, Shuqun

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  18. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si.

    PubMed

    Wallace, J B; Aji, L B Bayu; Shao, L; Kucheyev, S O

    2018-05-25

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ∼-30 °C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ∼0.1  eV, independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ∼0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  19. Cascading off the West Greenland Shelf: A numerical perspective

    NASA Astrophysics Data System (ADS)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.

    2017-07-01

    Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.

  20. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  1. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    PubMed

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  2. Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew T.; Billam, Thomas P.; Yu, Xiaoquan; Bradley, Ashton S.

    2017-11-01

    We report evidence for an enstrophy cascade in large-scale point-vortex simulations of decaying two-dimensional quantum turbulence. Devising a method to generate quantum vortex configurations with kinetic energy narrowly localized near a single length scale, the dynamics are found to be well characterized by a superfluid Reynolds number Res that depends only on the number of vortices and the initial kinetic energy scale. Under free evolution the vortices exhibit features of a classical enstrophy cascade, including a k-3 power-law kinetic energy spectrum, and constant enstrophy flux associated with inertial transport to small scales. Clear signatures of the cascade emerge for N ≳500 vortices. Simulating up to very large Reynolds numbers (N =32 768 vortices), additional features of the classical theory are observed: the Kraichnan-Batchelor constant is found to converge to C'≈1.6 , and the width of the k-3 range scales as Res1 /2 .

  3. A Visualization Study of Secondary Flows in Cascades

    NASA Technical Reports Server (NTRS)

    Herzig, Howard Z; Hansen, Arthur G; Costello, George R

    1954-01-01

    Flow-visualization techniques are employed to ascertain the streamline patterns of the nonpotential secondary flows in the boundary layers of cascades, and thereby to provide a basis for more extended analyses in turbomachines. The three-dimensional deflection of the end-wall boundary layer results in the formation of a vortex within each cascade passage. The size and tightness of the vortex generated depend upon the main-flow turning in the cascade passage. Once formed, a vortex resists turning in subsequent blade rows, with consequent unfavorable angles of attack and possible flow disturbances on the pressure surfaces of subsequent blade rows when the vortices impinge on these surfaces. Two major tip-clearance effects are observed, the formation of a tip-clearance vortex and the scraping effect of a blade with relative motion past the wall boundary layer. The flow patterns indicate methods for improving the blade tip-loading characteristics of compressors and of low- and high-speed turbulence.

  4. Photoproduction of the Cascade Baryons at GlueX

    NASA Astrophysics Data System (ADS)

    Ernst, Ashley; GlueX Collaboration

    2017-09-01

    Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.

  5. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  6. Computation of flow in radial- and mixed-flow cascades by an inviscid-viscous interaction method

    NASA Technical Reports Server (NTRS)

    Serovy, G. K.; Hansen, E. C.

    1980-01-01

    The use of inviscid-viscous interaction methods for the case of radial or mixed-flow cascade diffusers is discussed. A literature review of investigations considering cascade flow-field prediction by inviscid-viscous iterative computation is given. Cascade aerodynamics in the third blade row of a multiple-row radial cascade diffuser are specifically investigated.

  7. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinisch, H.L.

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less

  8. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  9. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  10. Delivery Of Cascade Screening For Hereditary Conditions: A Scoping Review Of The Literature.

    PubMed

    Roberts, Megan C; Dotson, W David; DeVore, Christopher S; Bednar, Erica M; Bowen, Deborah J; Ganiats, Theodore G; Green, Ridgely Fisk; Hurst, Georgia M; Philp, Alisdair R; Ricker, Charité N; Sturm, Amy C; Trepanier, Angela M; Williams, Janet L; Zierhut, Heather A; Wilemon, Katherine A; Hampel, Heather

    2018-05-01

    Cascade screening is the process of contacting relatives of people who have been diagnosed with certain hereditary conditions. Its purpose is to identify, inform, and manage those who are also at risk. We conducted a scoping review to obtain a broad overview of cascade screening interventions, facilitators and barriers to their use, relevant policy considerations, and future research needs. We searched for relevant peer-reviewed literature in the period 1990-2017 and reviewed 122 studies. Finally, we described 45 statutes and regulations related to the use and release of genetic information across the fifty states. We sought standardized best practices for optimizing cascade screening across various geographic and policy contexts, but we found none. Studies in which trained providers contacted relatives directly, rather than through probands (index patients), showed greater cascade screening uptake; however, policies in some states might limit this approach. Major barriers to cascade screening delivery include suboptimal communication between the proband and family and geographic barriers to obtaining genetic services. Few US studies examined interventions for cascade screening or used rigorous study designs such as randomized controlled trials. Moving forward, there remains an urgent need to conduct rigorous intervention studies on cascade screening in diverse US populations, while accounting for state policy considerations.

  11. Cascading failures in ac electricity grids.

    PubMed

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  12. Correlation Scales of the Turbulent Cascade at 1 au

    NASA Astrophysics Data System (ADS)

    Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.

    2018-05-01

    We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.

  13. Cascaded Photoenhancement: Implications for Photonic Chemical and Biological Sensors

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.

    2006-01-01

    Our analysis shows that coupling of gold nanoparticles to microspheres will evoke a cascading effect from the respective photoenhancement mechanisms. We refer to this amplification process as cascaded photoenhancement, and the resulting cavity amplification of surface-enhanced Raman scattering (SERS) and fluorescence as CASERS and CAF, respectively. Calculations, based on modal analysis of scattering and absorption by compound spheres, presented herein indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors associated with CSP of 10(exp 3) - 10(exp 4) are predicted for realistic experimental conditions using homogenous microspheres. Cascaded surface photoenhancement thus has the potential of dramatically increasing the sensitivities of fluorescence and vibrational spectroscopies.

  14. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  15. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  16. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  17. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  18. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  19. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    DOE PAGES

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-23

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent,more » sub-ion-Larmor-scale fluctuations. Also, the observed velocity-space cascade is anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.« less

  20. Dual Phase-space Cascades in 3D Hybrid-Vlasov–Maxwell Turbulence

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Kunz, M. W.; Califano, F.

    2018-03-01

    To explain energy dissipation via turbulence in collisionless, magnetized plasmas, the existence of a dual real- and velocity-space cascade of ion-entropy fluctuations below the ion gyroradius has been proposed. Such a dual cascade, predicted by the gyrokinetic theory, has previously been observed in gyrokinetic simulations of two-dimensional, electrostatic turbulence. For the first time, we show evidence for a dual phase-space cascade of ion-entropy fluctuations in a three-dimensional simulation of hybrid-kinetic, electromagnetic turbulence. Some of the scalings observed in the energy spectra are consistent with a generalized theory for the cascade that accounts for the spectral anisotropy of critically balanced, intermittent, sub-ion-Larmor-scale fluctuations. The observed velocity-space cascade is also anisotropic with respect to the magnetic-field direction, with linear phase mixing along magnetic-field lines proceeding mainly at spatial scales above the ion gyroradius and nonlinear phase mixing across magnetic-field lines proceeding at perpendicular scales below the ion gyroradius. Such phase-space anisotropy could be sought in heliospheric and magnetospheric data of solar-wind turbulence and has far-reaching implications for the dissipation of turbulence in weakly collisional astrophysical plasmas.

  1. A cascaded silicon Raman laser

    NASA Astrophysics Data System (ADS)

    Rong, Haisheng; Xu, Shengbo; Cohen, Oded; Raday, Omri; Lee, Mindy; Sih, Vanessa; Paniccia, Mario

    2008-03-01

    One of the major advantages of Raman lasers is their ability to generate coherent light in wavelength regions that are not easily accessible with other conventional types of lasers. Recently, efficient Raman lasing in silicon in the near-infrared region has been demonstrated, showing great potential for realizing low-cost, compact, room-temperature lasers in the mid-infrared region. Such lasers are highly desirable for many applications, ranging from trace-gas sensing, environmental monitoring and biomedical analysis, to industrial process control, and free-space communications. Here we report the first experimental demonstration of cascaded Raman lasing in silicon, opening the path to extending the lasing wavelength from the near- to mid-infrared region. Using a 1,550-nm pump source, we achieve stable, continuous-wave, second-order cascaded lasing at 1,848 nm with an output power exceeding 5 mW. The laser operates in single mode, and the laser linewidth is measured to be <2.5 MHz.

  2. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  3. Optimization of a ΔE - E detector for 41Ca AMS

    NASA Astrophysics Data System (ADS)

    Hosoya, Seiji; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Matsumura, Masumi; Matsumura, Hiroshi; Sundquist, Mark; Stodola, Mark; Sueki, Keisuke

    2017-09-01

    A series of nuclides (14C, 26Al, and 36Cl) was measured using the 12UD Pelletron tandem accelerator before replacement by the horizontal 6 MV tandem accelerator at the University of Tsukuba Tandem Accelerator Complex (UTTAC). This paper considers the modification of the accelerator mass spectrometry (AMS) measurement parameters to suit the current 6 MV tandem accelerator setup (e.g., terminal voltage, detected ion charge state, gas pressure, and entrance window material in detector). The Particle and Heavy Ion Transport code System (PHITS) was also used to simulate AMS measurement to determine the best conditions to suppress isobaric interference. The spectra of 41Ca and 41K were then successfully separated and their nuclear spectra were identified; the system achieved a background level of 41Ca/40Ca ∼ 6 ×10-14 .

  4. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Universal resilience patterns in cascading load model: More capacity is not always better

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  6. Global stabilisation of a class of generalised cascaded systems by homogeneous method

    NASA Astrophysics Data System (ADS)

    Ding, Shihong; Zheng, Wei Xing

    2016-04-01

    This paper considers the problem of global stabilisation of a class of generalised cascaded systems. By using the extended adding a power integrator technique, a global controller is first constructed for the driving subsystem. Then based on the homogeneous properties and polynomial assumption, it is shown that the stabilisation of the driving subsystem implies the stabilisation of the overall cascaded system. Meanwhile, by properly choosing some control parameters, the global finite-time stability of the closed-loop cascaded system is also established. The proposed control method has several new features. First, the nonlinear cascaded systems considered in the paper are more general than the conventional ones, since the powers in the nominal part of the driving subsystem are not required to be restricted to ratios of positive odd numbers. Second, the proposed method has some flexible parameters which provide the possibility for designing continuously differentiable controllers for cascaded systems, while the existing designed controllers for such kind of cascaded systems are only continuous. Third, the homogenous and polynomial conditions adopted for the driven subsystem are easier to verify when compared with the matching conditions that are widely used previously. Furthermore, the efficiency of the proposed control method is validated by its application to finite-time tracking control of non-holonomic wheeled mobile robot.

  7. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction

    PubMed Central

    Gack, Michaela U.; Kirchhofer, Axel; Shin, Young C.; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U.

    2008-01-01

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5′-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K63-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T55I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K172R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36–80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-β production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway. PMID:18948594

  8. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.

    PubMed

    Gack, Michaela U; Kirchhofer, Axel; Shin, Young C; Inn, Kyung-Soo; Liang, Chengyu; Cui, Sheng; Myong, Sua; Ha, Taekjip; Hopfner, Karl-Peter; Jung, Jae U

    2008-10-28

    The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.

  9. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    NASA Astrophysics Data System (ADS)

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Murali, Banavoth; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre M.; Sargent, Edward H.; Amassian, Aram

    2017-05-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  10. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  11. Very high volume hemofiltration with the Cascade system in septic shock patients.

    PubMed

    Quenot, Jean-Pierre; Binquet, Christine; Vinsonneau, Christophe; Barbar, Saber-David; Vinault, Sandrine; Deckert, Valerie; Lemaire, Stéphanie; Hassain, Ali Ait; Bruyère, Rémi; Souweine, Bertrand; Lagrost, Laurent; Adrie, Christophe

    2015-12-01

    We compared hemodynamic and biological effects of the Cascade system, which uses very high volume hemofiltration (HVHF) (120 mL kg(-1) h(-1)), with those of usual care in patients with septic shock. Multicenter, prospective, randomized, open-label trial in three intensive care units (ICU). Adults with septic shock with administration of epinephrine/norepinephrine were eligible. Patients were randomized to usual care plus HVHF (Cascade group), or usual care alone (control group). Primary end point was the number of catecholamine-free days up to 28 days after randomization. Secondary end points were number of days free of mechanical ventilation, renal replacement therapy (RRT) or ICU up to 90 days, and 7-, 28-, and 90-day mortality. We included 60 patients (29 Cascade, 31 usual care). Baseline characteristics were comparable. Median number of catecholamine-free days was 22 [IQR 11-23] vs 20 [0-25] for Cascade vs control; there was no significant difference even after adjustment. There was no significant difference in number of mechanical ventilation-free days or ICU requirement. Median number of RRT-free days was 85 [46-90] vs 74 [0-90] for Cascade vs control groups, p = 0.42. By multivariate analysis, the number of RRT-free days was significantly higher in the Cascade group (up to 25 days higher after adjustment). There was no difference in mortality at 7, 28, or 90 days. Very HVHF using the Cascade system can safely be used in patients presenting with septic shock, but it was not associated with a reduction in the need for catecholamines during the first 28 days.

  12. Evolution of the vertebrate phototransduction cascade activation steps.

    PubMed

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  14. Analysis of the Exhumation Pathways Experienced in the Cascades Range

    NASA Astrophysics Data System (ADS)

    Giles, S. M.; Pesek, M.; Perez, N. D.

    2017-12-01

    The Cascades volcanic arc is the result of subduction of the Juan de Fuca plate beneath North America. The Cascades trend north to south and create a modern orographic precipitation gradient that focuses precipitation along the western flank of the range. However, the deformation style changes from shortening in the north to extension in the south. This experimental design is an ideal location to test how surface and tectonic processes contribute to rock uplift in orogens. In the Oregon Cascades, zircon U-Pb geochronology, and multiple thermochronologic techniques (apatite U-Pb, zircon U-Th/He) will be applied to an intrusive rock exposed along a west-flowing river to investigate the exhumation pathway. These intrusive rocks are capped by late Miocene basalt flows, constraining the timing of surface exposure. The results of this study will define a time-temperature pathway and be compared with existing exhumation constraints from the Washington Cascades to determine whether the exhumation pathways may correspond to the changing structural regimes or consistent climate patterns along strike.

  15. Optimization of cascading failure on complex network based on NNIA

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Zhu, Zhiliang; Qi, Yi; Yu, Hai; Xu, Yanjie

    2018-07-01

    Recently, the robustness of networks under cascading failure has attracted extensive attention. Different from previous studies, we concentrate on how to improve the robustness of the networks from the perspective of intelligent optimization. We establish two multi-objective optimization models that comprehensively consider the operational cost of the edges in the networks and the robustness of the networks. The NNIA (Non-dominated Neighbor Immune Algorithm) is applied to solve the optimization models. We finished simulations of the Barabási-Albert (BA) network and Erdös-Rényi (ER) network. In the solutions, we find the edges that can facilitate the propagation of cascading failure and the edges that can suppress the propagation of cascading failure. From the conclusions, we take optimal protection measures to weaken the damage caused by cascading failures. We also consider actual situations of operational cost feasibility of the edges. People can make a more practical choice based on the operational cost. Our work will be helpful in the design of highly robust networks or improvement of the robustness of networks in the future.

  16. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    NASA Astrophysics Data System (ADS)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  17. Thermionic/AMTEC cascade converter concept for high-efficiency space power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.

    1996-12-31

    This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less

  18. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    PubMed

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  19. Local re-acceleration and a modified thick target model of solar flare electrons

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  20. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand

    NASA Astrophysics Data System (ADS)

    Zondervan, A.; Hauser, T. M.; Kaiser, J.; Kitchen, R. L.; Turnbull, J. C.; West, J. G.

    2015-10-01

    A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for 10Be, 14C, 26Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact 14C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for 10Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, 14C Poisson and non-Poisson errors, and 10Be detection limit and sensitivity. Operational details and hardware improvements, such as 10Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised 14C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of 14C measurement. For 10Be, the limit of detection in terms of the isotopic abundance ratio 10Be/9Be is 6 × 10-15 at at-1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  1. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  2. Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence

    DOE PAGES

    Korkali, Mert; Veneman, Jason G.; Tivnan, Brian F.; ...

    2017-03-20

    Increased coupling between critical infrastructure networks, such as power and communication systems, has important implications for the reliability and security of these systems. To understand the effects of power-communication coupling, several researchers have studied models of interdependent networks and reported that increased coupling can increase vulnerability. However, these conclusions come largely from models that have substantially different mechanisms of cascading failure, relative to those found in actual power and communication networks, and that do not capture the benefits of connecting systems with complementary capabilities. In order to understand the importance of these details, this paper compares network vulnerability in simplemore » topological models and in models that more accurately capture the dynamics of cascading in power systems. First, we compare a simple model of topological contagion to a model of cascading in power systems and find that the power grid model shows a higher level of vulnerability, relative to the contagion model. Second, we compare a percolation model of topological cascading in coupled networks to three different models of power networks coupled to communication systems. Again, the more accurate models suggest very different conclusions than the percolation model. In all but the most extreme case, the physics-based power grid models indicate that increased power-communication coupling decreases vulnerability. This is opposite from what one would conclude from the percolation model, in which zero coupling is optimal. Only in an extreme case, in which communication failures immediately cause grid failures, did we find that increased coupling can be harmful. Together, these results suggest design strategies for reducing the risk of cascades in interdependent infrastructure systems.« less

  3. First search for extraterrestrial neutrino-induced cascades with IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IceCube Collaboration; Kiryluk, Joanna

    2009-05-22

    We report on the first search for extraterrestrial neutrino-induced cascades in IceCube.The analyzed data were collected in the year 2007 when 22 detector strings were installed and operated. We will discuss the analysis methods used to reconstruct cascades and to suppress backgrounds. Simulated neutrino signal events with a E-2 energy spectrum, which pass the background rejection criteria, are reconstructed with a resolution Delta(log E) ~;; 0.27 in the energy range from ~;; 20 TeV to a few PeV. We present the range of the diffuse flux of extra-terrestrial neutrinos in the cascade channel in IceCube within which we expect tomore » be able to put a limit.« less

  4. Modeling cascading failures with the crisis of trust in social networks

    NASA Astrophysics Data System (ADS)

    Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo

    2015-10-01

    In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network

  5. MOLECULAR DYNAMICS OF CASCADES OVERLAP IN TUNGSTEN WITH 20-KEV PRIMARY KNOCK-ON ATOMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.

    2015-04-16

    Molecular dynamics simulations are performed to investigate the mutual influence of two subsequent cascades in tungsten. The influence is studied using 20-keV primary knock-on atoms, to induce one cascade after another separated by 15 ps, in a lattice temperature of 1025 K (i.e. 0.25 of the melting temperature of the interatomic potential). The center of mass of the vacancies at the peak damage during the cascade is taken as the location of the cascade. The distance between this location to that of the next cascade is taken as the overlap parameter. Empirical fits describing the number of surviving vacancies andmore » interstitial atoms as a function of overlap are presented.« less

  6. A novel information cascade model in online social networks

    NASA Astrophysics Data System (ADS)

    Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu

    2016-02-01

    The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.

  7. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    NASA Astrophysics Data System (ADS)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  8. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  9. Accurate accelerator energy calibration using selected resonances in proton elastic scattering and in (p,γ) and (p,p‧γ) reactions

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Kokkoris, M.; Lagoyannis, A.; Preketes-Sigalas, K.

    2017-09-01

    The present work aims at contributing to the field of Ion Beam Analysis by providing a set of standard, high-accuracy nuclear resonance reaction data points to be used for accelerator energy calibration up to 4.6 MeV, more specifically with the use of the 27Al(p,γ), 13C(p,γ), 12C(p,p0) and 32S(p,p‧γ) resonant reactions, as a result of a comprehensive investigation in two different laboratories. The use of resonances at higher energies, namely up to 6 MeV, is also discussed. The measurements have been performed at two different electrostatic accelerators, namely at the 5.5 MV HV TN-11 of NCSR "Demokritos", Greece, and at the 5 MV 15SDH-2 Pelletron Tandem accelerator at Uppsala University in Uppsala, Sweden. Common points were used to normalize and validate the data. The possible use of the 16O(p,p0) resonance at 3.47 MeV is also discussed and analyzed.

  10. Cyclization Cascades Initiated by 1,6-Conjugate Addition

    PubMed Central

    Brooks, Joshua L.; Frontier, Alison J.

    2012-01-01

    Dienyl diketones containing tethered acetates selectively undergo two different 1,6-conjugate addition-initiated cyclization cascades. One is a 1,6-conjugate addition/cyclization sequence with incorporation of the nucleophile, and the other is catalyzed by DABCO and is thought to proceed via a cyclic acetoxonium intermediate. The reaction behavior of substrates lacking the tethered acetate was also studied. The scope of both types of cyclization cascades, the role of the amine additive, and the factors controlling reactivity and selectivity in the two different reaction pathways is discussed. PMID:23004564

  11. Ultrasensitivity in signaling cascades revisited: Linking local and global ultrasensitivity estimations.

    PubMed

    Altszyler, Edgar; Ventura, Alejandra C; Colman-Lerner, Alejandro; Chernomoretz, Ariel

    2017-01-01

    Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.

  12. Radiation-induced segregation and precipitation behaviours around cascade clusters under electron irradiation.

    PubMed

    Sueishi, Yuichiro; Sakaguchi, Norihito; Shibayama, Tamaki; Kinoshita, Hiroshi; Takahashi, Heishichiro

    2003-01-01

    We have investigated the formation of cascade clusters and structural changes in them by means of electron irradiation following ion irradiation in an austenitic stainless steel. Almost all of the cascade clusters, which were introduced by the ion irradiation, grew to form interstitial-type dislocation loops or vacancy-type stacking fault tetrahedra after electron irradiation at 623 K, whereas a few of the dot-type clusters remained in the matrix. It was possible to recognize the concentration of Ni and Si by radiation-induced segregation around the dot-type clusters. After electron irradiation at 773 K, we found that some cascade clusters became precipitates (delta-Ni2Si) due to radiation-induced precipitation. This suggests that the cascade clusters could directly become precipitation sites during irradiation.

  13. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  14. Influence of Additional Leading-Edge Surface Roughness on Performances in Highly Loaded Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Chen, Shaowen; Xu, Hao; Sun, Shijun; Zhang, Longxin; Wang, Songtao

    2015-05-01

    Experimental research has been carried out at low speed to investigate the effect of additional leading-edge surface roughness on a highly-loaded axial compressor cascade. A 5-hole aerodynamic probe has been traversed across one pitch to obtain the distribution of total pressure loss coefficient, secondary flow vector, flow angles and other aerodynamic parameters at the exit section. Meanwhile, ink-trace flow visualization has been used to measure the flow fields on the walls of cascades and a detailed topology structure of the flow on the walls has been obtained. Aerodynamic parameters and flow characteristics are compared by arranging different levels of roughness on various parts of the leading edge. The results show that adding surface roughness at the leading edge and on the suction side obviously influences cascade performance. Aggravated 3-D flow separation significantly increases the loss in cascades, and the loss increases till 60% when the level of emery paper is 80 mm. Even there is the potential to improve cascade performance in local area of cascade passage. The influence of the length of surface roughness on cascade performance is not always adverse, and which depends on the position of surface roughness.

  15. Activation Cascading in Sign Production

    ERIC Educational Resources Information Center

    Navarrete, Eduardo; Peressotti, Francesca; Lerose, Luigi; Miozzo, Michele

    2017-01-01

    In this study, we investigated how activation unfolds in sign production by examining whether signs that are not produced have their representations activated by semantics (cascading of activation). Deaf signers were tested with a picture-picture interference task. Participants were presented with pairs of overlapping pictures and named the green…

  16. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    PubMed

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  17. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  18. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  19. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  20. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853