Sample records for tandem device structures

  1. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  2. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    PubMed

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  3. Improved Efficiency and Enhanced Color Quality of Light-Emitting Diodes with Quantum Dot and Organic Hybrid Tandem Structure.

    PubMed

    Zhang, Heng; Feng, Yuanxiang; Chen, Shuming

    2016-10-03

    Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.

  4. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    NASA Astrophysics Data System (ADS)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  5. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.

    2015-11-01

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  6. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less

  7. Treating Refractory Cardiogenic Shock With the TandemHeart and Impella Devices: A Single Center Experience

    PubMed Central

    Schwartz, Bryan G.; Ludeman, Daniel J.; Mayeda, Guy S.; Kloner, Robert A.; Economides, Christina; Burstein, Steven

    2012-01-01

    Background Patients with cardiogenic shock (CS) are routinely treated with intra-aortic balloon pumps (IABPs). The utility of 2 new percutaneous left ventricular assist devices (PLVADs), the Impella and TandemHeart, is unknown. The objective of this study was to describe the use of PLVADs for patients with CS at our institution. Methods All cases involving PLVADs in patients with CS between between January 1, 2008 and June 30, 2010 at a private, tertiary referral hospital were reviewed retrospectively. Results All 76 cases were identified (50 IABP only, 7 Impella, 19 TandemHeart). Most Impella (5/7) and TandemHeart (10/19) patients were initially treated with an IABP before "upgrading" for increased hemodynamic support. All 76 devices (100%) were initiated successfully. Percutaneous revascularization was attempted in 63 patients with angiographic success in 57 (90%). The incidences of major complications were similar between groups, except bleeding occurred less frequently with the IABP. Mean ejection fraction on presentation was 30.4±16.5% and increased by a mean of 6.6±11.4% (P < 0.001). With the institutional approach of treating patients with CS initially with vasopressors and IABPs, then upgrading to an Impella or TandemHeart device for patients refractory to IABP therapy, the overall mortality rate was 40%. Conclusion The Impella and TandemHeart devices can be initiated successfully in patients with CS, are associated with high rates of angiographic success during high risk percutaneous interventions and may benefit the myocardium during myocardial infarction. Randomized trials are warranted investigating use of the Impella and TandemHeart devices in patients with CS and in patients refractory to conventional IABP therapy. PMID:28348673

  8. Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts

    NASA Astrophysics Data System (ADS)

    Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany

    2014-10-01

    Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.

  9. Mesoscale modeling of photoelectrochemical devices: light absorption and carrier collection in monolithic, tandem, Si|WO3 microwires.

    PubMed

    Fountaine, Katherine T; Atwater, Harry A

    2014-10-20

    We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (E(g,Si) = 1.1 eV) and tungsten oxide (E(g,WO3) = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 µm pitch, covered vertically with 50 µm of WO3 with a thickness of 1 µm. Many geometrical variants of this prototypical tandem device were explored. For conditions of illumination with the AM 1.5G spectra, the nominal design resulted in a short circuit current density, J(SC), of 1 mA/cm(2), which is limited by the WO3 absorption. Geometrical optimization of photoanode and photocathode shape and contact material selection, enabled a three-fold increase in short circuit current density relative to the initial design via enhanced WO3 light absorption. These findings validate the usefulness of a mesoscale analysis for ascertaining optimum optoelectronic performance in photoelectrochemical devices.

  10. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  11. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    PubMed

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    PubMed

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  13. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    PubMed Central

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-01-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028

  14. A tandem mirror plasma source for hybrid plume plasma studies

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Chang, F. R.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.

    1985-01-01

    A tandem mirror device to be considered as a hot plasma source for the hybrid plume rocket concept is discussed. The hot plamsa from this device is injected into an exhaust duct, which will interact with an annular hypersonic layer of neutral gas. The device can be used to study the dynamics of the hybrid plume, and to verify the numerical predictions obtained with computer codes. The basic system design is also geared towards low weight and compactness, and high power density at the exhaust. The basic structure of the device consists of four major subsystems: (1) an electric power supply; (2) a low temperature, high density plasma gun, such as a stream gun, an MPD source or gas cell; (3) a power booster in the form of a tandem mirror machine; and (4) an exhaust nozzle arrangement. The configuration of the tandem mirror section is shown.

  15. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices.

    PubMed

    Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2018-01-18

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  16. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  17. Study of series-connected polymer tandem solar cells based on a highly efficient donor material of PTB7-Th

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Gao, Xiumin; Xin, Qing; Lin, Jun; Zhao, Jufeng

    2017-06-01

    A highly efficient donor polymer, PTB7-Th, combined with acceptor fullerene PC71BM was introduced as the subcell in the series-connected tandem devices to achieve high-performance polymer tandem solar cells. Design of the device architecture was investigated using modeling and simulation methods to identify the optimal structure and to predict performance of the tandem cells. To address the challenge of current matching between the constituent subcells, the effect of active layer thickness, different device structure, and use of ultrathin Ag film were analyzed. It was found that the distribution of optical intensity in the tandem structure can be optimized through the optical spacer effect of interfacial layers and micro-cavity effect derived from the embedded ultrathin Ag film. Our results indicate that the efficient light utilization with appropriate subcells can allow achievement of power conversion efficiency of 12%, which can be 25% higher than that of a single cell of PTB7-Th.

  18. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  19. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  20. White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.

    PubMed

    Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin

    2009-11-09

    This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.

  1. Tandem Organic Light-Emitting Diodes.

    PubMed

    Fung, Man-Keung; Li, Yan-Qing; Liao, Liang-Sheng

    2016-12-01

    A tandem organic light-emitting diode (OLED) is an organic optoelectronic device that has two or more electroluminescence (EL) units connected electrically in series with unique intermediate connectors within the device. Researchers have studied this new OLED architecture with growing interest and have found that the current efficiency of a tandem OLED containing N EL units (N > 1) should be N times that of a conventional OLED containing only a single EL unit. Therefore, this new architecture is potentially useful for constructing high-efficiency, high-luminance, and long-lifetime OLED displays and organic solid-state lighting sources. In a tandem OLED, the intermediate connector plays a crucial role in determining the effectiveness of the stacked EL units. The interfaces in the connector control the inner charge generation and charge injection into the adjacent EL units. Meanwhile, the transparency and the thickness of the connector affect the light output of the device. Therefore, the intermediate connector should be made to meet both the electrical and optical requirements for achieving optimal performance. Here, recent advances in the research of the tandem OLEDs is discussed, with the main focus on material selection and interface studies in the intermediate connectors, as well as the optical design of the tandem OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2012-03-06

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  3. Single P-N junction tandem photovoltaic device

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Ager, III, Joel W.; Yu, Kin Man [Lafayette, CA

    2011-10-18

    A single P-N junction solar cell is provided having two depletion regions for charge separation while allowing the electrons and holes to recombine such that the voltages associated with both depletion regions of the solar cell will add together. The single p-n junction solar cell includes an alloy of either InGaN or InAlN formed on one side of the P-N junction with Si formed on the other side in order to produce characteristics of a two junction (2J) tandem solar cell through only a single P-N junction. A single P-N junction solar cell having tandem solar cell characteristics will achieve power conversion efficiencies exceeding 30%.

  4. High Performance Tandem Perovskite/Polymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Bag, Monojit; Page, Zachariah; Renna, Lawrence; Kim, Paul; Choi, Jaewon; Emrick, Todd; Venkataraman, D.; Russell, Thomas

    Combining perovskites with other inorganic materials, such as copper indium gallium diselenide (CIGS) or silicon, is enabling significant improvement in solar cell device performance. Here, we demonstrate a highly efficient hybrid tandem solar cell fabricated through a facile solution deposition approach to give a perovskite front sub-cell and a polymer:fullerene blend back sub-cell. This methodology eliminates the adverse effects of thermal annealing during perovskite fabrication on polymer solar cells. The record tandem solar cell efficiency of 15.96% is 40% greater than the corresponding perovskite-based single junction device and 65% greater than the polymer-based single junction device, while mitigating deleterious hysteresis effects often associated with perovskite solar cells. The hybrid tandem devices demonstrate the synergistic effects arising from the combination of perovskite and polymer-based materials for solar cells. This work was supported by the Department of Energy-supported Energy Frontier Research Center at the University of Massachusetts (DE-SC0001087). The authors acknowledge the W.M. Keck Electron Microscopy.

  5. Searching molecular structure databases with tandem mass spectra using CSI:FingerID

    PubMed Central

    Dührkop, Kai; Shen, Huibin; Meusel, Marvin; Rousu, Juho; Böcker, Sebastian

    2015-01-01

    Metabolites provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually rely on tandem MS to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. We present a method for searching molecular structure databases using tandem MS data of small molecules. Our method computes a fragmentation tree that best explains the fragmentation spectrum of an unknown molecule. We use the fragmentation tree to predict the molecular structure fingerprint of the unknown compound using machine learning. This fingerprint is then used to search a molecular structure database such as PubChem. Our method is shown to improve on the competing methods for computational metabolite identification by a considerable margin. PMID:26392543

  6. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    PubMed Central

    Wu, Kuen-Hsien; Li, Chong-Wei

    2015-01-01

    Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542

  7. The First Tandem, All-exciplex-based WOLED

    NASA Astrophysics Data System (ADS)

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-06-01

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A-1, and ηp: 15.8 ml W-1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.

  8. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  9. Improved efficiency of perovskite-silicon tandem solar cell near the matched optical absorption between the subcells

    NASA Astrophysics Data System (ADS)

    Iftiquar, S. M.; Jung, Junhee; Yi, Junsin

    2017-10-01

    Current matching in a tandem solar cell is significant, because in a mismatched device the lowest current generating subcell becomes the current limiting component, and overall device efficiency remains lower than that could be obtained in the current matched device. Recent reports on methyl ammonium lead iodide (MAPbI3) based thin film solar cell has drawn interest to a perovskite-silicon tandem solar cell. Therefore, we investigated such a tandem solar cell theoretically. We used a MAPbI3 based top and heterojunction with intrinsic thin layer silicon (HIT) bottom subcell. Optimization of the device structure was carried out by varying thickness of perovskite layer of top-cell from 50 to 1000 nm, while thickness of active layer of the HIT cell was kept constant, to 500 µm. Single-junction solar cell, formed with the bottom subcell had open circuit voltage (V oc) of 705.1 mV, short circuit current density (J sc) of 28.22 mA cm-2, fill factor (FF) of 0.82 and efficiency of 16.4% under AM1.5G insolation. A relatively low thickness (150 nm) of the perovskite absorber layer was found optimum for the top-subcell to achieve best efficiency of the tandem cell, partly because of intermediate reflection at the interface between the two cells. We obtained a maximum of 20.92% efficiency of the tandem solar cell, which is higher by a factor of 1.27 from the starting HIT cell and a factor 1.47 higher from the perovskite cell efficiency. J sc of the optimized tandem cell was 13.06 mA cm-2. This was achieved near the matching optical absorption or current-density of the component subcells. For a practical application, the device used in our investigation was without textured front surface. An ordinary HIT bottom-cell was used with lower J sc. Therefore, with an improved HIT subcell, efficiency of the tandem cell, higher than 21% will be achievable.

  10. Tandem luminescent solar concentrators based on engineered quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Kaifeng; Li, Hongbo; Klimov, Victor I.

    2018-02-01

    Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

  11. Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values.

    PubMed

    Sobuś, Jan; Ziółek, Marcin

    2014-07-21

    A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.

  12. The first tandem, all-exciplex-based WOLED.

    PubMed

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-06-04

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with η(ext) of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies η(ext): 11.6%, η(c): 27.7 cd A(-1), and η(p): 15.8 ml W(-1) with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.

  13. The First Tandem, All-exciplex-based WOLED

    PubMed Central

    Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai

    2014-01-01

    Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A−1, and ηp: 15.8 ml W−1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs. PMID:24895098

  14. Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: the Mayo Clinic experience.

    PubMed

    Alli, Oluseun O; Singh, Inder M; Holmes, David R; Pulido, Juan N; Park, Soon J; Rihal, Charanjit S

    2012-11-01

    In patients with poor left ventricular function and severe left main or multivessel coronary disease, coronary artery bypass grafting (CABG) surgery has been the preferred therapy. However, a number of these patients are either inoperable or poor surgical candidates due to comorbid conditions and previous cardiac surgical procedures. These patients are generally poor candidates for standard percutaneous coronary intervention (PCI) techniques. A hybrid PCI approach with hemodynamic support may be a viable strategy for these patients. We report our experience using the TandemHeart percutaneous left ventricular assist device during high-risk PCI. Retrospective cross-sectional analysis of prospectively collected data in 54 patients undergoing high-risk PCI using the TandemHeart device for support. Hemodynamic and clinical data were collected and analyzed. Baseline clinical characteristics were as follows: mean age 72 ± 1.7 years, males 78%, median ejection fraction 20%, mean serum creatinine 1.6 ± 0.3 2 mg/dL, recent myocardial infarction 52%, COPD 33%, previous CABG 50%, diabetes mellitus 41%, and hypertension 83%. The median SYNTAX score was 33, and the median Jeopardy score was 10. The predicted surgical revascularization mortality was 13% by the Society for Thoracic Surgery risk score and 33% by Euroscore. There was a significant decrease in right and left heart pressures (P < 0.05) with a concomitant increase in the cardiac output from 4.7 to 5.7 L/min (P = 0.03) during TandemHeart support. Left main and multivessel PCI was performed in 62% of patients, and rotablation was used in 48%. Procedural success rate was 97%, whereas 30-day and 6 month survival were 90% and 87%, respectively. Major vascular complications occurred in 13% of cases. None of our patients developed contrast induced nephropathy or needed dialysis. High-risk PCI with percutaneous left ventricular support using TandemHeart is a viable therapeutic strategy for a select subset of patients at very

  15. Tandem mobile robot system

    DOEpatents

    Buttz, James H.; Shirey, David L.; Hayward, David R.

    2003-01-01

    A robotic vehicle system for terrain navigation mobility provides a way to climb stairs, cross crevices, and navigate across difficult terrain by coupling two or more mobile robots with a coupling device and controlling the robots cooperatively in tandem.

  16. Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard

    2008-04-01

    The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.

  17. Solution structure of the tandem acyl carrier protein domains from a polyunsaturated fatty acid synthase reveals beads-on-a-string configuration.

    PubMed

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J; Vassallo, David A; Vega, Irving E; Arold, Stefan T; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  18. Solution Structure of the Tandem Acyl Carrier Protein Domains from a Polyunsaturated Fatty Acid Synthase Reveals Beads-on-a-String Configuration

    PubMed Central

    Trujillo, Uldaeliz; Vázquez-Rosa, Edwin; Oyola-Robles, Delise; Stagg, Loren J.; Vassallo, David A.; Vega, Irving E.; Arold, Stefan T.; Baerga-Ortiz, Abel

    2013-01-01

    The polyunsaturated fatty acid (PUFA) synthases from deep-sea bacteria invariably contain multiple acyl carrier protein (ACP) domains in tandem. This conserved tandem arrangement has been implicated in both amplification of fatty acid production (additive effect) and in structural stabilization of the multidomain protein (synergistic effect). While the more accepted model is one in which domains act independently, recent reports suggest that ACP domains may form higher oligomers. Elucidating the three-dimensional structure of tandem arrangements may therefore give important insights into the functional relevance of these structures, and hence guide bioengineering strategies. In an effort to elucidate the three-dimensional structure of tandem repeats from deep-sea anaerobic bacteria, we have expressed and purified a fragment consisting of five tandem ACP domains from the PUFA synthase from Photobacterium profundum. Analysis of the tandem ACP fragment by analytical gel filtration chromatography showed a retention time suggestive of a multimeric protein. However, small angle X-ray scattering (SAXS) revealed that the multi-ACP fragment is an elongated monomer which does not form a globular unit. Stokes radii calculated from atomic monomeric SAXS models were comparable to those measured by analytical gel filtration chromatography, showing that in the gel filtration experiment, the molecular weight was overestimated due to the elongated protein shape. Thermal denaturation monitored by circular dichroism showed that unfolding of the tandem construct was not cooperative, and that the tandem arrangement did not stabilize the protein. Taken together, these data are consistent with an elongated beads-on-a-string arrangement of the tandem ACP domains in PUFA synthases, and speak against synergistic biocatalytic effects promoted by quaternary structuring. Thus, it is possible to envision bioengineering strategies which simply involve the artificial linking of multiple ACP

  19. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains.

    PubMed

    Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang

    2015-04-01

    Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.

  20. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  1. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A [Champaign, IL; Nuzzo, Ralph G [Champaign, IL; Meitl, Matthew [Raleigh, NC; Ko, Heung Cho [Urbana, IL; Yoon, Jongseung [Urbana, IL; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL

    2011-04-26

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  2. Release strategies for making transferable semiconductor structures, devices and device components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  3. High Efficiency Narrow Gap and Tandem Junction Devices: Final Technical Report, 1 May 2002--31 October 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madan, A

    2005-03-01

    The work described in this report uses a modified pulsed plasma-enhanced chemical vapor deposition (PECVD) technique that has been successfully developed to fabricate state-of-the-art nc-Si materials and devices. Specifically, we have achieved the following benchmarks: nc SiH device with an efficiency of 8% achieved at a deposition rate of {approx}1 A/s; nc SiH device with an efficiency of 7% achieved at a deposition rate of {approx}5 A/s; large-area technology developed using pulsed PECVD with uniformity of +/-5% over 25 cm x 35 cm; devices have been fabricated in the large-area system (part of Phase 3); an innovative stable four-terminal (4-T)more » tandem-junction device of h> 9% fabricated. (Note that the 4-T device was fabricated with existing technology base and with further development can reach stabilized h of 12%); and with improvement in Voc {approx} 650 mV, from the current value of 480 mV can lead to stable 4-T device with h>16%. Toward this objective, modified pulsed PECVD was developed where layer- by-layer modification of nc-SiH has been achieved. (Note that due to budget cuts at NREL, this project was curtailed by about one year.)« less

  4. Structured wafer for device processing

    DOEpatents

    Okandan, Murat; Nielson, Gregory N

    2014-05-20

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  5. Structured wafer for device processing

    DOEpatents

    Okandan, Murat; Nielson, Gregory N

    2014-11-25

    A structured wafer that includes through passages is used for device processing. Each of the through passages extends from or along one surface of the structured wafer and forms a pattern on a top surface area of the structured wafer. The top surface of the structured wafer is bonded to a device layer via a release layer. Devices are processed on the device layer, and are released from the structured wafer using etchant. The through passages within the structured wafer allow the etchant to access the release layer to thereby remove the release layer.

  6. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  7. Tandem robot control system and method for controlling mobile robots in tandem

    DOEpatents

    Hayward, David R.; Buttz, James H.; Shirey, David L.

    2002-01-01

    A control system for controlling mobile robots provides a way to control mobile robots, connected in tandem with coupling devices, to navigate across difficult terrain or in closed spaces. The mobile robots can be controlled cooperatively as a coupled system in linked mode or controlled individually as separate robots.

  8. Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data

    NASA Astrophysics Data System (ADS)

    Ting, Ying S.; Shaffer, Scott A.; Jones, Jace W.; Ng, Wailap V.; Ernst, Robert K.; Goodlett, David R.

    2011-05-01

    Infusion-based electrospray ionization (ESI) coupled to multiple-stage tandem mass spectrometry (MS n ) is a standard methodology for investigating lipid A structural diversity (Shaffer et al. J. Am. Soc. Mass. Spectrom. 18(6), 1080-1092, 2007). Annotation of these MS n spectra, however, has remained a manual, expert-driven process. In order to keep up with the data acquisition rates of modern instruments, we devised a computational method to annotate lipid A MS n spectra rapidly and automatically, which we refer to as hierarchical tandem mass spectrometry (HiTMS) algorithm. As a first-pass tool, HiTMS aids expert interpretation of lipid A MS n data by providing the analyst with a set of candidate structures that may then be confirmed or rejected. HiTMS deciphers the signature ions (e.g., A-, Y-, and Z-type ions) and neutral losses of MS n spectra using a species-specific library based on general prior structural knowledge of the given lipid A species under investigation. Candidates are selected by calculating the correlation between theoretical and acquired MS n spectra. At a false discovery rate of less than 0.01, HiTMS correctly assigned 85% of the structures in a library of 133 manually annotated Francisella tularensis subspecies novicida lipid A structures. Additionally, HiTMS correctly assigned 85% of the structures in a smaller library of lipid A species from Yersinia pestis demonstrating that it may be used across species.

  9. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  10. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  11. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE PAGES

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana; ...

    2017-09-06

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  12. Low-Cost CdTe/Silicon Tandem Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamboli, Adele C.; Bobela, David C.; Kanevce, Ana

    Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. By device modeling we show that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%-30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. But, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrainedmore » applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.« less

  13. Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells.

    PubMed

    Yang, Yang Michael; Chen, Qi; Hsieh, Yao-Tsung; Song, Tze-Bin; Marco, Nicholas De; Zhou, Huanping; Yang, Yang

    2015-07-28

    Halide perovskites (PVSK) have attracted much attention in recent years due to their high potential as a next generation solar cell material. To further improve perovskites progress toward a state-of-the-art technology, it is desirable to create a tandem structure in which perovskite may be stacked with a current prevailing solar cell such as silicon (Si) or Cu(In,Ga)(Se,S)2 (CIGS). The transparent top electrode is one of the key components as well as challenges to realize such tandem structure. Herein, we develop a multilayer transparent top electrode for perovskite photovoltaic devices delivering an 11.5% efficiency in top illumination mode. The transparent electrode is based on a dielectric/metal/dielectric structure, featuring an ultrathin gold seeded silver layer. A four terminal tandem solar cell employing solution processed CIGS and perovskite cells is also demonstrated with over 15% efficiency.

  14. A Study on Organic-Metal Halide Perovskite Film Morphology, Interfacial Layers, Tandem Applications, and Encapsulation

    NASA Astrophysics Data System (ADS)

    Fisher, Dallas A.

    Organic-metal halide perovskites have brought about a new wave of research in the photovoltaic community due to their ideally suited optical and electronic parameters. In less than a decade, perovskite solar cell performance has skyrocketed to unprecedented efficiencies with numerous reported methodologies. Perovskites face many challenges with high-quality film morphology, interfacial layers, and long-term stability. In this work, these active areas are explored through a combination of studies. First, the importance of perovskite film precursor ratios is explored with an in-depth study of carrier lifetime and solvent-grain effects. It was found that excess lead iodide precursor greatly improves the film morphology by reducing pinholes in the solar absorber. Dimethyl sulfoxide (DMSO) solvent was found to mend grains, as well as improve carrier lifetime and device performance, possibly by passivation of grain boundary traps. Second, applications of perovskite with tandem cells is investigated, with an emphasis for silicon devices. Perovskites can easily be integrated with silicon, which already has strong market presence. Additionally, both materials' bandgaps are ideally suited for maximum tandem efficiency. The silicon/perovskite tandem device structure necessitated the optimization of inverted (p-i-n) structure devices. PEDOT:PSS, copper oxide, and nickel oxide p-type layers were explored through a combination of photoluminescent, chemical reactivity, and solar simulation results. Results were hindered due to resistive ITO and rough silicon substrates, but tandem devices displayed Voc indicative of proper monolithic performance. Third, replacement of titanium dioxide n-type layer with iron oxide (Fe 2O3, common rust) was studied. Iron oxide experiences less ultraviolet instability than that of titanium dioxide under solar illumination. It was found that current density slightly decreased due to parasitic absorption from the rust, but that open circuit voltage

  15. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1991-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

  16. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    NASA Astrophysics Data System (ADS)

    Arya, R. R.; Carlson, D. E.; Chen, L. F.; Ganguly, G.; He, M.; Lin, G.; Middya, R.; Wood, G.; Newton, J.; Bennett, M.; Jackson, F.; Willing, F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6 Ft2 monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing.

  17. Artificial urinary sphincter revision for urethral atrophy: Comparing single cuff downsizing and tandem cuff placement.

    PubMed

    Linder, Brian J; Viers, Boyd R; Ziegelmann, Matthew J; Rivera, Marcelino E; Elliott, Daniel S

    2017-01-01

    To compare outcomes for single urethral cuff downsizing versus tandem cuff placement during artificial urinary sphincter (AUS) revision for urethral atrophy. We identified 1778 AUS surgeries performed at our institution from 1990-2014. Of these, 406 were first AUS revisions, including 69 revisions for urethral atrophy. Multiple clinical and surgical variables were evaluated for potential association with device outcomes following revision, including surgical revision strategy (downsizing a single urethral cuff versus placing tandem urethral cuffs). Of the 69 revision surgeries for urethral atrophy at our institution, 56 (82%) were tandem cuff placements, 12 (18%) were single cuff downsizings and one was relocation of a single cuff. When comparing tandem cuff placements and single cuff downsizings, the cohorts were similar with regard to age (p=0.98), body-mass index (p=0.95), prior pelvic radiation exposure (p=0.73) and length of follow-up (p=0.12). Notably, there was no difference in 3-year overall device survival compared between single cuff and tandem cuff revisions (60% versus 76%, p=0.94). Likewise, no significant difference was identified for tandem cuff placement (ref. single cuff) when evaluating the risk of any tertiary surgery (HR 0.95, 95% CI 0.32-4.12, p=0.94) or urethral erosion/device infection following revision (HR 0.79, 95% CI 0.20-5.22, p=0.77). There was no significant difference in overall device survival in patients undergoing single cuff downsizing or tandem cuff placement during AUS revision for urethral atrophy. Copyright® by the International Brazilian Journal of Urology.

  18. Sputtered Metal Oxide Broken Gap Junctions for Tandem Solar Cells

    NASA Astrophysics Data System (ADS)

    Johnson, Forrest

    Broken gap metal oxide junctions have been created for the first time by sputtering using ZnSnO3 for the n-type material and Cu 2O or CuAlO2 for the p-type material. Films were sputtered from either ceramic or metallic targets at room temperature from 10nm to 220nm thick. The band structure of the respective materials have theoretical work functions which line up with the band structure for tandem CIAGS/CIGS solar cell applications. Multiple characterization methods demonstrated consistent ohmic I-V profiles for devices on rough surfaces such as ITO/glass and a CIAGS cell. Devices with total junction specific contact resistance of under 0.001 Ohm-cm2 have been achieved with optical transmission close to 100% using 10nm films. Devices showed excellent stability up to 600°C anneals over 1hr using ZnSnO3 and CuAlO2. These films were also amorphous -a great diffusion barrier during top cell growth at high temperatures. Rapid Thermal Anneal (RTA) demonstrated the ability to shift the band structure of the whole device, allowing for tuning it to align with adjacent solar layers. These results remove a key barrier for mass production of multi-junction thin film solar cells.

  19. HATCN-based charge recombination layers as effective interconnectors for tandem organic solar cells.

    PubMed

    Wang, Rong-Bin; Wang, Qian-Kun; Xie, Hao-Jun; Xu, Lu-Hai; Duhm, Steffen; Li, Yan-Qing; Tang, Jian-Xin

    2014-09-10

    A comprehensive understanding of the energy-level alignment at the organic heterojunction interfaces is of paramount importance to optimize the performance of organic solar cells (OSCs). Here, the detailed electronic structures of organic interconnectors, consisting of cesium fluoride-doped 4,7-diphenyl-1,10-phenanthroline and hexaazatriphenylene-hexacarbonitrile (HATCN), have been investigated via in situ photoemission spectroscopy, and their impact on the charge recombination process in tandem OSCs has been identified. The experimental determination shows that the HATCN interlayer plays a significant role in the interface energetics with a dramatic decrease in the reverse built-in potential for electrons and holes from stacked subcells, which is beneficial to the charge recombination between HATCN and the adjacent layer. In accordance with the energy-level alignments, the open-circuit voltage of tandem OSC incorporating a HATCN-based interconnector is almost 2 times that of a single-cell OSC, revealing the effectiveness of the HATCN-based interconnectors in tandem organic devices.

  20. R&D issues in scale-up and manufacturing of amorphous silicon tandem modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, R.R.; Carlson, D.E.; Chen, L.F.

    1999-03-01

    R & D on amorphous silicon based tandem junction devices has improved the throughtput, the material utilization, and the performance of devices on commercial tin oxide coated glass. The tandem junction technology has been scaled-up to produce 8.6&hthinsp;Ft{sup 2} monolithically integrated modules in manufacturing at the TF1 plant. Optimization of performance and stability of these modules is ongoing. {copyright} {ital 1999 American Institute of Physics.}

  1. Single-graded CIGS with narrow bandgap for tandem solar cells.

    PubMed

    Feurer, Thomas; Bissig, Benjamin; Weiss, Thomas P; Carron, Romain; Avancini, Enrico; Löckinger, Johannes; Buecheler, Stephan; Tiwari, Ayodhya N

    2018-01-01

    Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se 2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe 2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

  2. Single-graded CIGS with narrow bandgap for tandem solar cells

    PubMed Central

    Avancini, Enrico; Buecheler, Stephan; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells. PMID:29707066

  3. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, Sarah; Moriarty, T.; hide

    2007-01-01

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of approx.1 eV. For the last several years, research has been conducted by a number of organizations to develop approx.1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) approx.1- eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1- eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm2) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include

  4. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  5. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    NASA Astrophysics Data System (ADS)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  6. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  7. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Chang-Diaz, F. R.

    1988-01-01

    This paper discusses a novel concept in electrodeless plasma propulsion, in which the materials problems are ameliorated by an electrodeless magnetic confinement scheme borrowed from the tandem mirror approach to controlled thermonuclear fusion. The concept also features a two-stage magnetic nozzle with an annular hypersonic coaxial gas injector near the throat. The nozzle produces hybrid plume by the coaxial injection of hypersonic neutral gas, and the gas layer thus formed protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The tandem mirror plasma propulsion facility is capable of delivering a variable I(sp). The results of numerical simulation of this concept are presented together with those from an experimental tandem-mirror plasma propulsion device.

  8. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.

    PubMed

    Halder, Sukanya; Bhattacharyya, Dhananjay

    2012-10-04

    Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.

  9. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    NASA Astrophysics Data System (ADS)

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-09-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.

  10. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure

    PubMed Central

    May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas

    2015-01-01

    Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620

  11. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  12. Low temperature perovskite solar cells with an evaporated TiO 2 compact layer for perovskite silicon tandem solar cells

    DOE PAGES

    Bett, Alexander J.; Schulze, Patricia S. C.; Winkler, Kristina; ...

    2017-09-21

    Silicon-based tandem solar cells can overcome the efficiency limit of single junction silicon solar cells. Perovskite solar cells are particularly promising as a top cell in monolithic tandem devices due to their rapid development towards high efficiencies, a tunable band gap with a sharp optical absorption edge and a simple production process. In monolithic tandem devices, the perovskite solar cell is deposited directly on the silicon cell, requiring low-temperature processes (< 200 °C) to maintain functionality of under-lying layers of the silicon cell in case of highly efficient silicon hetero-junction (SHJ) bottom solar cell. In this work, we present amore » complete low-temperature process for perovskite solar cells including a mesoporous titanium oxide (TiO 2) scaffold - a structure yielding the highest efficiencies for single-junction perovskite solar cells. We show that evaporation of the compact TiO 2 hole blocking layer and ultra-violet (UV) curing for the mesoporous TiO 2 layer allows for good performance, comparable to high-temperature (> 500 °C) processes. With both manufacturing routes, we obtain short-circuit current densities (J SC) of about 20 mA/cm 2, open-circuit voltages (V OC) over 1 V, fill factors (FF) between 0.7 and 0.8 and efficiencies (n) of more than 15%. We further show that the evaporated TiO 2 layer is suitable for the application in tandem devices. The series resistance of the layer itself and the contact resistance to an indium doped tin oxide (ITO) interconnection layer between the two sub-cells are low. Additionally, the low parasitic absorption for wavelengths above the perovskite band gap allow a higher absorption in the silicon bottom solar cell, which is essential to achieve high tandem efficiencies.« less

  13. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    DOE PAGES

    Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.; ...

    2014-12-23

    A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. Furthermore, this work paves the way for integrating perovskites into a low-costmore » and high-efficiency (>25%) tandem cell.« less

  14. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    NASA Astrophysics Data System (ADS)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  15. Outcomes of patients with cardiogenic shock treated with TandemHeart® percutaneous ventricular assist device: Importance of support indication and definitive therapies as determinants of prognosis.

    PubMed

    Smith, LaVone; Peters, Anthony; Mazimba, Sula; Ragosta, Michael; Taylor, Angela M

    2018-05-10

    The objective of this study was to review the characteristics of patients in cardiogenic shock treated with TandemHeart ® percutaneous ventricular assist device (pVAD) to determine influential predictors of survival. The TandemHeart ® pVAD is used in the management of patients with cardiogenic shock resulting from a variety of conditions. Several studies have documented the efficacy of this therapy and outlined its complications. Still, there is little data to guide the effective and appropriate use of this resource. Patients referred for TandemHeart ® pVAD implant for refractory cardiogenic shock at the University of Virginia between September 2007 and October 2015 were retrospectively analyzed. Univariate analysis was used to identify predictors of mortality. Fifty-five patients underwent successful TandemHeart ® implant. Hemodynamics significantly improved following TandemHeart ® implant. Cardiac index increased from 1.8 ± 0.6 to 3.1 ± 1.0 L/min/m 2 (P = 0.007) and pulmonary capillary wedge pressure decreased from 30. 5 ± 9.9 to 19.6 ± 7.4 mmHg (P =0.0007). Survival was significantly influenced by implant indication with 23.8% surviving in bridge to recovery vs. 51% in bridge to LVAD or surgery (P = 0.04). In patients who did not receive definitive therapy, only 4 (13.8%) were weaned from TandemHeart ® support and survived to hospital discharge. Only younger age, 51.8 vs. 62.7 years, predicted survival to hospital discharge (P = 0.004). Mortality from refractory cardiogenic shock is high even with TandemHeart ® support. Our study found that patients with an exit strategy with either cardiac surgery or durable LVAD implant significantly influenced survival to hospital discharge. © 2018 Wiley Periodicals, Inc.

  16. Structure and Function of the Two Tandem WW Domains of the Pre-mRNA Splicing Factor FBP21 (Formin-binding Protein 21)*

    PubMed Central

    Huang, Xiaojuan; Beullens, Monique; Zhang, Jiahai; Zhou, Yi; Nicolaescu, Emilia; Lesage, Bart; Hu, Qi; Wu, Jihui; Bollen, Mathieu; Shi, Yunyu

    2009-01-01

    Human FBP21 (formin-binding protein 21) contains a matrin-type zinc finger and two tandem WW domains. It is a component of the spliceosomes and interacts with several established splicing factors. Here we demonstrate for the first time that FBP21 is an activator of pre-mRNA splicing in vivo and that its splicing activation function and interaction with the splicing factor SIPP1 (splicing factor that interacts with PQBP1 and PP1) are both mediated by the two tandem WW domains of group III. We determined the solution structure of the tandem WW domains of FBP21 and found that the WW domains recognize peptide ligands containing either group II (PPLP) or group III (PPR) motifs. The binding interfaces involve both the XP and XP2 grooves of the two WW domains. Significantly, the tandem WW domains of FBP21 are connected by a highly flexible region, enabling their simultaneous interaction with two proline-rich motifs of SIPP1. The strong interaction between SIPP1 and FBP21 can be explained by the conjugation of two low affinity interactions with the tandem WW domains. Our study provides a structural basis for understanding the molecular mechanism underlying the functional implication of FBP21 and the biological specificity of tandem WW domains. PMID:19592703

  17. Instabilities excited by an energetic ion beam and electron temperature anisotropy in tandem mirrors

    NASA Technical Reports Server (NTRS)

    Da Jornada, E. H.; Gaffey, J. D., Jr.; Winske, D.

    1985-01-01

    Tandem mirrors are magnetic confinement devices, which have the objective to prevent a leaking out of ions in a central (solenoidal) cell at the end. This is accomplished by making use of an electrostatic potential, which is maintained by a denser plasma in mirror end cells. In the Tandem Mirror Experiment (TMX), Correll et al. (1982) have successfully verified the basic concepts involved in the design of the considered device. However, it was also found that the simple tandem mirror could not be easily scaled to a reactor-size device. Approaches for solving the arising problems were studied, taking into account also the utilization of a thermal barrier. In this connection, Winske et al. (1985) studied the nonlinear development of the instability in a finite beta plasma with isotropic electrons. The present investigation is concerned with an extension of the calculations conducted by Winske et al., giving attention to the parameter regime of the TMX. It is found that three instabilities can occur.

  18. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction.

    PubMed

    Crisp, Ryan W; Pach, Gregory F; Kurley, J Matthew; France, Ryan M; Reese, Matthew O; Nanayakkara, Sanjini U; MacLeod, Bradley A; Talapin, Dmitri V; Beard, Matthew C; Luther, Joseph M

    2017-02-08

    We developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ∼1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%. However, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. We examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.

  19. Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction

    DOE PAGES

    Crisp, Ryan W.; Pach, Gregory F.; Kurley, J. Matthew; ...

    2017-01-10

    Here, we developed a monolithic CdTe-PbS tandem solar cell architecture in which both the CdTe and PbS absorber layers are solution-processed from nanocrystal inks. Due to their tunable nature, PbS quantum dots (QDs), with a controllable band gap between 0.4 and ~1.6 eV, are a promising candidate for a bottom absorber layer in tandem photovoltaics. In the detailed balance limit, the ideal configuration of a CdTe (E g = 1.5 eV)-PbS tandem structure assumes infinite thickness of the absorber layers and requires the PbS band gap to be 0.75 eV to theoretically achieve a power conversion efficiency (PCE) of 45%.more » But, modeling shows that by allowing the thickness of the CdTe layer to vary, a tandem with efficiency over 40% is achievable using bottom cell band gaps ranging from 0.68 and 1.16 eV. In a first step toward developing this technology, we explore CdTe-PbS tandem devices by developing a ZnTe-ZnO tunnel junction, which appropriately combines the two subcells in series. Furthermore, we examine the basic characteristics of the solar cells as a function of layer thickness and bottom-cell band gap and demonstrate open-circuit voltages in excess of 1.1 V with matched short circuit current density of 10 mA/cm 2 in prototype devices.« less

  20. Design of two-photon molecular tandem architectures for solar cells by ab initio theory

    DOE PAGES

    Ornso, Kristian B.; Garcia-Lastra, Juan M.; De La Torre, Gema; ...

    2015-03-04

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is amore » molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.« less

  1. Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry.

    PubMed

    Chen, Shu-Ting; Her, Guor-Rong

    2014-09-16

    A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.

    PubMed

    Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-11-01

    Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A polymer tandem solar cell with 10.6% power conversion efficiency

    PubMed Central

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  4. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE PAGES

    Chen, Bo; Bai, Yang; Yu, Zhengshan; ...

    2016-07-19

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  5. Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Bai, Yang; Yu, Zhengshan

    Here, we have investigated semi-transparent perovskite solar cells and infrared enhanced silicon heterojunction cells for high-efficiency tandem devices. A semi-transparent metal electrode with good electrical conductivity and optical transparency has been fabricated by thermal evaporation of 7 nm of Au onto a 1-nm-thick Cu seed layer. For this electrode to reach its full potential, MAPbI3 thin films were formed by a modified one-step spin-coating method, resulting in a smooth layer that allowed the subsequent metal thin film to remain continuous. The fabricated semi-transparent perovskite solar cells demonstrated 16.5% efficiency under one-sun illumination, and were coupled with infrared-enhanced silicon heterojunction cellsmore » tuned specifically for perovskite/Si tandem devices. A double-layer antireflection coating at the front side and MgF2 reflector at rear side of the silicon heterojunction cells reduced parasitic absorption of near-infrared light, leading to 6.5% efficiency after filtering with a perovskite device and 23.0% summed efficiency for the perovskite/Si tandem device.« less

  6. Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell

    NASA Astrophysics Data System (ADS)

    Pandey, Rahul; Chaujar, Rishu

    2016-12-01

    In this work, a novel four-terminal perovskite/SiC-based rear contact silicon tandem solar cell device has been proposed and simulated to achieve 27.6% power conversion efficiency (PCE) under single AM1.5 illumination. 20.9% efficient semitransparent perovskite top subcell has been used for perovskite/silicon tandem architecture. The tandem structure of perovskite-silicon solar cells is a promising method to achieve efficient solar energy conversion at low cost. In the four-terminal tandem configuration, the cells are connected independently and hence avoids the need for current matching between top and bottom subcell, thus giving greater design flexibility. The simulation analysis shows, PCE of 27.6% and 22.4% with 300 μm and 10 μm thick rear contact Si bottom subcell, respectively. This is a substantial improvement comparing to transparent perovskite solar cell and c-Si solar cell operated individually. The impact of perovskite layer thickness, monomolecular, bimolecular, and trimolecular recombination have also been obtained on the performance of perovskite top subcell. Reported PCEs of 27.6% and 22.4% are 1.25 times and 1.42 times higher as compared to experimentally available efficiencies of 22.1% and 15.7% in 300 μm and 10 μm thick stand-alone silicon solar cell devices, respectively. The presence of SiC significantly suppressed the interface recombination in bottom silicon subcell. Detailed realistic technology computer aided design (TCAD) analysis has been performed to predict the behaviour of the device.

  7. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge...

  8. Structure of the tandem PX-PH domains of Bem3 from Saccharomyces cerevisiae.

    PubMed

    Ali, Imtiaz; Eu, Sungmin; Koch, Daniel; Bleimling, Nathalie; Goody, Roger S; Müller, Matthias P

    2018-05-01

    The structure of the tandem lipid-binding PX and pleckstrin-homology (PH) domains of the Cdc42 GTPase-activating protein Bem3 from Saccharomyces cerevisiae (strain S288c) has been determined to a resolution of 2.2 Å (R work = 21.1%, R free = 23.4%). It shows that the domains adopt a relative orientation that enables them to simultaneously bind to a membrane and suggests possible cooperativity in membrane binding. open access.

  9. Structure of the tandem PX-PH domains of Bem3 from Saccharomyces cerevisiae

    PubMed Central

    Ali, Imtiaz; Eu, Sungmin; Bleimling, Nathalie

    2018-01-01

    The structure of the tandem lipid-binding PX and pleckstrin-homology (PH) domains of the Cdc42 GTPase-activating protein Bem3 from Saccharomyces cerevisiae (strain S288c) has been determined to a resolution of 2.2 Å (R work = 21.1%, R free = 23.4%). It shows that the domains adopt a relative orientation that enables them to simultaneously bind to a membrane and suggests possible cooperativity in membrane binding. PMID:29718000

  10. Ladder-structured photonic variable delay device

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    1998-01-01

    An ladder-structured variable delay device for providing variable true time delay to multiple optical beams simultaneously. The device comprises multiple basic units stacked on top of each other resembling a ladder. Each basic unit comprises a polarization sensitive corner reflector formed by two polarization beamsplitters and a polarization rotator array placed parallel to the hypotenuse of the corner reflector. Controlling an array element of the polarization rotator array causes an optical beam passing through the array element to either go up to a basic unit above it or reflect back towards output. The beams going higher on the ladder experience longer optical path delay. Finally, the ladder-structured variable device can be cascaded with another multi-channel delay device to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  11. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  12. Structure and Specificity of a Binary Tandem Domain F-Lectin from Striped Bass (Morone saxatilis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchet, M.; Odom, E; Vasta, J

    2010-01-01

    The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical 81-A-long and 60-A-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysismore » of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking 'non-self' carbohydrate ligands and 'self' carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.« less

  13. Development of an advanced spacecraft tandem mass spectrometer

    NASA Astrophysics Data System (ADS)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  14. Development of an advanced spacecraft tandem mass spectrometer

    NASA Technical Reports Server (NTRS)

    Drew, Russell C.

    1992-01-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  15. A flexible pressure responsive device based on the interaction between silver nanoparticles and an aluminum reflector

    NASA Astrophysics Data System (ADS)

    Rankin, Alasdair; McGarry, Steven

    2018-01-01

    The unique and tunable optical properties of metal nanoparticles have attracted intense and sustained academic attention in recent years. In tandem with the demand for low-cost responsive materials, one particular topic of interest is the development of mechanically responsive device structures. This work describes the design, fabrication, and testing of a mechanically responsive plasmonic device structure that has been integrated onto a standard commercial plastic substrate. With a low actuation force and a visually perceivable color shift, this device would be attractive for applications requiring responsive features that can be activated by the human hand.

  16. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  17. Interface Optoelectronics Engineering for Mechanically Stacked Tandem Solar Cells Based on Perovskite and Silicon.

    PubMed

    Kanda, Hiroyuki; Uzum, Abdullah; Nishino, Hitoshi; Umeyama, Tomokazu; Imahori, Hiroshi; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2016-12-14

    Engineering of photonics for antireflection and electronics for extraction of the hole using 2.5 nm of a thin Au layer have been performed for two- and four-terminal tandem solar cells using CH 3 NH 3 PbI 3 perovskite (top cell) and p-type single crystal silicon (c-Si) (bottom cell) by mechanically stacking. Highly transparent connection multilayers of evaporated-Au and sputtered-ITO films were fabricated at the interface to be a point-contact tunneling junction between the rough perovskite and flat silicon solar cells. The mechanically stacked tandem solar cell with an optimized tunneling junction structure was ⟨perovskite for the top cell/Au (2.5 nm)/ITO (154 nm) stacked-on ITO (108 nm)/c-Si for the bottom cell⟩. It was confirmed the best efficiency of 13.7% and 14.4% as two- and four-terminal devices, respectively.

  18. Perovskite-perovskite tandem photovoltaics with optimized band gaps

    NASA Astrophysics Data System (ADS)

    Eperon, Giles E.; Leijtens, Tomas; Bush, Kevin A.; Prasanna, Rohit; Green, Thomas; Wang, Jacob Tse-Wei; McMeekin, David P.; Volonakis, George; Milot, Rebecca L.; May, Richard; Palmstrom, Axel; Slotcavage, Daniel J.; Belisle, Rebecca A.; Patel, Jay B.; Parrott, Elizabeth S.; Sutton, Rebecca J.; Ma, Wen; Moghadam, Farhad; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Bent, Stacey; Giustino, Feliciano; Herz, Laura M.; Johnston, Michael B.; McGehee, Michael D.; Snaith, Henry J.

    2016-11-01

    We demonstrate four- and two-terminal perovskite-perovskite tandem solar cells with ideally matched band gaps. We develop an infrared-absorbing 1.2-electron volt band-gap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3, that can deliver 14.8% efficiency. By combining this material with a wider-band gap FA0.83Cs0.17Pb(I0.5Br0.5)3 material, we achieve monolithic two-terminal tandem efficiencies of 17.0% with >1.65-volt open-circuit voltage. We also make mechanically stacked four-terminal tandem cells and obtain 20.3% efficiency. Notably, we find that our infrared-absorbing perovskite cells exhibit excellent thermal and atmospheric stability, not previously achieved for Sn-based perovskites. This device architecture and materials set will enable “all-perovskite” thin-film solar cells to reach the highest efficiencies in the long term at the lowest costs.

  19. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  20. 21 CFR 862.1055 - Newborn screening test system for amino acids, free carnitine, and acylcarnitines using tandem...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...

  1. Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.

    PubMed

    Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F

    2016-01-13

    Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.

  2. Hardware device to physical structure binding and authentication

    DOEpatents

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  3. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  4. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  5. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.

    PubMed

    Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J

    2012-01-01

    MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com

  6. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  7. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  8. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  9. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  10. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    PubMed Central

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2012-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385

  11. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.

    PubMed

    Deng, Zhuo; Ning, Jiqiang; Su, Zhicheng; Xu, Shijie; Xing, Zheng; Wang, Rongxin; Lu, Shulong; Dong, Jianrong; Zhang, Baoshun; Yang, Hui

    2015-01-14

    In high-efficiency GaInP/GaAs double-junction tandem solar cells, GaInP layers play a central role in determining the performance of the solar cells. Therefore, gaining a deeper understanding of the optoelectronic processes in GaInP layers is crucial for improving the energy conversion efficiency of GaInP-based photovoltaic devices. In this work, we firmly show strong dependences of localization and recombination of photogenerated carriers in the top GaInP subcells in the GaInP/GaAs double-junction tandem solar cells on the substrate misorientation angle with excitation intensity- and temperature-dependent photoluminescence (PL). The entire solar cell structures including GaInP layers were grown with metalorganic chemical vapor deposition on GaAs substrates with misorientation angles of 2° (denoted as Sample 2°) and 7° (Sample 7°) off (100) toward (111)B. The PL spectral features of the two top GaInP subcells, as well as their excitation-power and temperature dependences exhibit remarkable variation on the misorientation angle. In Sample 2°, the dominant localization mechanism and luminescence channels are due to the energy potential minima caused by highly ordered atomic domains; In Sample 7°, the main localization and radiative recombination of photogenerated carriers occur in the atomically disordered regions. Our results reveal a more precise picture on the localization and recombination mechanisms of photogenerated carriers in the top GaInP subcells, which could be the crucial factors in controlling the optoelectronic efficiency of the GaInP-based multijunction photovoltaic devices.

  12. Tandem Repeat Proteins Inspired By Squid Ring Teeth

    NASA Astrophysics Data System (ADS)

    Pena-Francesch, Abdon

    Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides

  13. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  14. Protein arginine methyltransferase 7 has a novel homodimer-like structure formed by tandem repeats.

    PubMed

    Hasegawa, Morio; Toma-Fukai, Sachiko; Kim, Jun-Dal; Fukamizu, Akiyoshi; Shimizu, Toshiyuki

    2014-05-21

    Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyze the transfer of methyl groups from S-adenosyl-l-methionine to nitrogen atoms on arginine residues. Here, we describe the crystal structure of Caenorhabditis elegans PRMT7 in complex with its reaction product S-adenosyl-L-homocysteine. The structural data indicated that PRMT7 harbors two tandem repeated PRMT core domains that form a novel homodimer-like structure. S-adenosyl-L-homocysteine bound to the N-terminal catalytic site only; the C-terminal catalytic site is occupied by a loop that inhibits cofactor binding. Mutagenesis demonstrated that only the N-terminal catalytic site of PRMT7 is responsible for cofactor binding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Displacement of particles in microfluidics by laser-generated tandem bubbles

    NASA Astrophysics Data System (ADS)

    Lautz, Jaclyn; Sankin, Georgy; Yuan, Fang; Zhong, Pei

    2010-11-01

    The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m/s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.

  16. Nanowire structures and electrical devices

    DOEpatents

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  17. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  18. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions

    PubMed Central

    2017-01-01

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081

  19. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions.

    PubMed

    Futscher, Moritz H; Ehrler, Bruno

    2017-09-08

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.

  20. Current and lattice matched tandem solar cell

    DOEpatents

    Olson, Jerry M.

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  1. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    NASA Astrophysics Data System (ADS)

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Murali, Banavoth; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre M.; Sargent, Edward H.; Amassian, Aram

    2017-05-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  2. Sensor devices comprising field-structured composites

    DOEpatents

    Martin, James E.; Hughes, Robert C.; Anderson, Robert A.

    2001-02-27

    A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.

  3. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  4. Structurally compliant microbearing devices and methods thereof

    NASA Technical Reports Server (NTRS)

    Boedo, Stephen (Inventor); Grande, William (Inventor)

    2011-01-01

    A microbearing device includes at least one inner bearing structure, at least one outer bearing structure, and one or more fasteners. Each of the one or more fasteners is connected between the inner bearing structure and the outer bearing structure and the inner bearing structure is substantially elastic.

  5. The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, Suppressor of deltex.

    PubMed

    Fedoroff, Oleg Y; Townson, Sharon A; Golovanov, Alexander P; Baron, Martin; Avis, Johanna M

    2004-08-13

    WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.

  6. The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices

    NASA Astrophysics Data System (ADS)

    Deng, Yanhong; Ou, Qingdong; Wang, Jinjiang; Zhang, Dengyu; Chen, Liezun; Li, Yanqing

    2017-08-01

    Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density-voltage characteristics, interfacial electronic structures, and capacitance-voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.

  7. Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures.

    PubMed

    Mayer, Jan A; Offermans, Ton; Chrapa, Marek; Pfannmöller, Martin; Bals, Sara; Ferrini, Rolando; Nisato, Giovanni

    2018-03-19

    Solution processable organic tandem solar cells offer a promising approach to achieve cost-effective, lightweight and flexible photovoltaics. In order to further enhance the efficiency of optimized organic tandem cells, diffractive light-management nanostructures were designed for an optimal redistribution of the light as function of both wavelength and propagation angles in both sub-cells. As the fabrication of these optical structures is compatible with roll-to-roll production techniques such as hot-embossing or UV NIL imprinting, they present an optimal cost-effective solution for printed photovoltaics. Tandem cells with power conversion efficiencies of 8-10% were fabricated in the ambient atmosphere by doctor blade coating, selected to approximate the conditions during roll-to-roll manufacturing. Application of the light management structure onto an 8.7% efficient encapsulated tandem cell boosted the conversion efficiency of the cell to 9.5%.

  8. Progress towards a 30% efficient GaInP/Si tandem solar cells

    DOE PAGES

    Essig, Stephanie; Ward, Scott; Steiner, Myles A.; ...

    2015-08-28

    The performance of dual-junction solar cells with a Si bottom cell has been investigated both theoretically and experimentally. Simulations show that adding a top junction with an energy bandgap of 1.6 -1.9 eV to a standard silicon solar cell enables efficiencies over 38%. Currently, top junctions of GaInP (1.8 eV) are the most promising as they can achieve 1-sun efficiencies of 20.8% [1]. We fabricated mechanically stacked, four terminal GaInP/Si tandem solar cells using a transparent adhesive between the subcells. These tandem devices achieved an efficiency of 27% under AM1.5 g spectral conditions. Furthermore, higher efficiencies can be achieved bymore » using an improved Si-bottom cell and by optimizing the dual-junction device for long-wavelength light and luminescent coupling between the two junctions.« less

  9. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  10. Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability.

    PubMed

    Chung, Haejun; Sun, Xingshu; Mohite, Aditya D; Singh, Rahul; Kumar, Lokendra; Alam, Muhammad A; Bermel, Peter

    2017-04-17

    A key challenge in photovoltaics today is to develop cell technologies with both higher efficiencies and lower fabrication costs than incumbent crystalline silicon (c-Si) single-junction cells. While tandem cells have higher efficiencies than c-Si alone, it is generally challenging to find a low-cost, high-performance material to pair with c-Si. However, the recent emergence of 22% efficient perovskite photovoltaics has created a tremendous opportunity for high-performance, low-cost perovskite / crystalline silicon tandem photovoltaic cells. Nonetheless, two key challenges remain. First, integrating perovskites into tandem structures has not yet been demonstrated to yield performance exceeding commercially available crystalline silicon modules. Second, the stability of perovskites is inconsistent with the needs of most end-users, who install photovoltaic modules to produce power for 25 years or more. Making these cells viable thus requires innovation in materials processing, device design, fabrication, and yield. We will address these two gaps in the photovoltaic literature by investigating new types of 2D perovskite materials with n-butylammonium spacer layers, and integrating these materials into bifacial tandem solar cells providing at least 30% normalized power production. We find that an optimized 2D perovskite ((BA)2(MA)3(Sn0.6Pb0.4)4I13)/silicon bifacial tandem cell, given a globally average albedo of 30%, yields a normalized power production of 30.31%, which should be stable for extended time periods without further change in materials or encapsulation.

  11. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications

    PubMed Central

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N.

    2015-01-01

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation–spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration. PMID:26576667

  12. Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications.

    PubMed

    Fu, Fan; Feurer, Thomas; Jäger, Timo; Avancini, Enrico; Bissig, Benjamin; Yoon, Songhak; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-11-18

    Semi-transparent perovskite solar cells are highly attractive for a wide range of applications, such as bifacial and tandem solar cells; however, the power conversion efficiency of semi-transparent devices still lags behind due to missing suitable transparent rear electrode or deposition process. Here we report a low-temperature process for efficient semi-transparent planar perovskite solar cells. A hybrid thermal evaporation-spin coating technique is developed to allow the introduction of PCBM in regular device configuration, which facilitates the growth of high-quality absorber, resulting in hysteresis-free devices. We employ high-mobility hydrogenated indium oxide as transparent rear electrode by room-temperature radio-frequency magnetron sputtering, yielding a semi-transparent solar cell with steady-state efficiency of 14.2% along with 72% average transmittance in the near-infrared region. With such semi-transparent devices, we show a substantial power enhancement when operating as bifacial solar cell, and in combination with low-bandgap copper indium gallium diselenide we further demonstrate 20.5% efficiency in four-terminal tandem configuration.

  13. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  14. Fluid control structures in microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  15. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  16. Current voltage perspective of an organic electronic device

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ayash K.; Kumari, Nikita

    2018-05-01

    Nonlinearity in current (I) - voltage (V) measurement is a well-known attribute of two-terminal organic device, irrespective of the geometrical or structural arrangement of the device. Most of the existing theories that are developed for interpretation of I-V data, either focus current-voltage relationship of charge injection mechanism across the electrode-organic material interface or charge transport mechanism through the organic active material. On the contrary, both the mechanisms work in tandem charge conduction through the device. The transport mechanism is further complicated by incoherent scattering from scattering centres/charge traps that are located at the electrode-organic material interface and in the bulk of organic material. In the present communication, a collective expression has been formulated that comprises of all the transport mechanisms that are occurring at various locations of a planar organic device. The model has been fitted to experimental I-V data of Au/P3HT/Au device with excellent degree of agreement. Certain physical parameters such as the effective area of cross-section and resistance due to charge traps have been extracted from the fit.

  17. Current- and lattice-matched tandem solar cell

    DOEpatents

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  18. Substrate structures for InP-based devices

    DOEpatents

    Wanlass, Mark W.; Sheldon, Peter

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.

  19. Structural Elucidation of Enzymatically Synthesized Galacto-oligosaccharides Using Ion-Mobility Spectrometry-Tandem Mass Spectrometry.

    PubMed

    Carević, Milica; Bezbradica, Dejan; Banjanac, Katarina; Milivojević, Ana; Fanuel, Mathieu; Rogniaux, Hélène; Ropartz, David; Veličković, Dušan

    2016-05-11

    Galacto-oligosaccharides (GOS) represent a diverse group of well-characterized prebiotic ingredients derived from lactose in a reaction catalyzed with β-galactosidases. Enzymatic transgalactosylation results in a mixture of compounds of various degrees of polymerization and types of linkages. Because structure plays an important role in terms of prebiotic activity, it is of crucial importance to provide an insight into the mechanism of transgalactosylation reaction and occurrence of different types of β-linkages during GOS synthesis. Our study proved that a novel one-step method, based on ion-mobility spectrometry-tandem mass spectrometry (IMS-MS/MS), enables complete elucidation of GOS structure. It has been shown that β-galactosidase from Aspergillus oryzae has the highest affinity toward formation of β-(1→3) or β-(1→6) linkages. Additionally, it was observed that the occurrence of different linkages varies during the reaction course, indicating that tailoring favorable GOS structures with improved prebiotic activity can be achieved by adequate control of enzymatic synthesis.

  20. Concurrent Left Ventricular Assist Device (LVAD) Implantation and Percutaneous Temporary RVAD Support via CardiacAssist Protek-Duo TandemHeart to Preempt Right Heart Failure.

    PubMed

    Schmack, Bastian; Weymann, Alexander; Popov, Aron-Frederik; Patil, Nikhil Prakash; Sabashnikov, Anton; Kremer, Jamila; Farag, Mina; Brcic, Andreas; Lichtenstern, Christoph; Karck, Matthias; Ruhparwar, Arjang

    2016-05-05

    Right ventricular failure (RVF) is an unfortunate complication that continues to limit outcomes following durable left ventricular assist device (LVAD) implantation. Despite several 'RVF risk scores' having been proposed, preoperative prediction of post-LVAD RVF remains a guesstimate at best. Current strategies for institution of temporary RVAD support are invasive, necessitate additional re-thoracotomy, restrict postoperative mobilization, and/or entail prolonged retention of prosthetic material in-situ. The authors propose a novel surgical strategy comprising simultaneous implantation of a permanent LVAD and percutaneous TandemHeart® plus ProtekDuo® to provide temporary RVAD support and preempt RVF in patients with impaired RV function.

  1. SU-D-BRF-05: A Novel System to Provide Real-Time Image-Guidance for Intrauterine Tandem Insertion and Placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, M; Fontenot, J

    Purpose: To develop a system that provides real-time image-guidance for intrauterine tandem insertion and placement for brachytherapy. Methods: The conceptualized system consists of an intrauterine tandem with a transparent, lensed tip, a flexible miniature fiber optic scope, light source and interface for CCD coupling. The tandem tip was designed to act as a lens providing a wide field-of-view (FOV) with minimal image distortion and focus length appropriate for the application. The system is designed so that once inserted, the image-guidance component of the system can be removed and brachytherapy can be administered without interfering with source transport or disturbing tandemmore » placement. Proof-of-principle studies were conducted to assess the conceptualized system's (1) lens functionality (clarity, focus and FOV) (2) and ability to visualize the cervical os of a female placed in the lithotomy position. Results: A prototype of this device was constructed using a commercial tandem modified to incorporate a transparent tip that internally coupled with a 1.9mm diameter fiber optic cable. The 900mm-long cable terminated at an interface that provided illumination as well as facilitated visualization of patient anatomy on a computer. The system provided a 23mm FOV with a focal length of 1cm and provided clear visualization of the cervix, cervical fornix and cervical os. The optical components of the system are easily removed without perturbing the position of a tandem placed in a common fixation clamp. Conclusion: Clinicians frequently encounter difficulty inserting an intrauterine tandem through the cervical os, circumventing fibrotic tissue or masses within the uterus, and positioning the tandem without perforating the uterus. To mitigate these challenges, we have designed and conducted proof-of- principle studies to discern the utility of a prototype device that provides real-time image-guidance for intrauterine tandem placement using fiber optic components.« less

  2. Structural Studies of the Tandem Tudor Domains of Fragile X Mental Retardation Related Proteins FXR1 and FXR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams-Cioaba, Melanie A.; Guo, Yahong; Bian, ChuanBing

    Expansion of the CGG trinucleotide repeat in the 5'-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs aremore » locally translated in response to stimuli. Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 {angstrom}, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9. The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor doamins reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner.« less

  3. Tandem array of nanoelectronic readers embedded coplanar to a fluidic nanochannel for correlated single biopolymer analysis

    PubMed Central

    Lesser-Rojas, Leonardo; Sriram, K. K.; Liao, Kuo-Tang; Lai, Shui-Chin; Kuo, Pai-Chia; Chu, Ming-Lee; Chou, Chia-Fu

    2014-01-01

    We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples. PMID:24753731

  4. Chemical beam epitaxy for high efficiency photovoltaic devices

    NASA Technical Reports Server (NTRS)

    Bensaoula, A.; Freundlich, A.; Vilela, M. F.; Medelci, N.; Renaud, P.

    1994-01-01

    InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.

  5. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  6. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  7. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  8. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE PAGES

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud; ...

    2016-07-30

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  9. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  10. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  11. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  12. InP tunnel junction for InGaAs/InP tandem solar cells

    NASA Technical Reports Server (NTRS)

    Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.

    1995-01-01

    Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting

  13. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.; Boccard, Mathieu; Cheacharoen, Rongrong; Mailoa, Jonathan P.; McMeekin, David P.; Hoye, Robert L. Z.; Bailie, Colin D.; Leijtens, Tomas; Peters, Ian Marius; Minichetti, Maxmillian C.; Rolston, Nicholas; Prasanna, Rohit; Sofia, Sarah; Harwood, Duncan; Ma, Wen; Moghadam, Farhad; Snaith, Henry J.; Buonassisi, Tonio; Holman, Zachary C.; Bent, Stacey F.; McGehee, Michael D.

    2017-02-01

    As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85 ∘C and 85% relative humidity.

  14. Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells

    NASA Technical Reports Server (NTRS)

    Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.

    1994-01-01

    An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.

  15. Partners in crime: The role of tandem modules in gene transcription.

    PubMed

    Sharma, Rajal; Zhou, Ming-Ming

    2015-09-01

    Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.

  16. Resistive field structures for semiconductor devices and uses therof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less

  17. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    PubMed

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  19. Solid state lighting devices and methods with rotary cooling structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less

  20. Transonic Axial Splittered Rotor Tandem Stator Stage

    DTIC Science & Technology

    2016-12-01

    CODE 13. ABSTRACT (maximum 200 words) Development of a procedure to model the hot shape of a rotor blade and a comparison analysis of the transonic...fluid-structure interaction. Rotational forces as well as gas loading forces were observed as an influence on blade deformation. Utilizing the...Turbomachinery, splittered rotor, tandem stator, transonic compressor, blade deformation, fluid-structure interaction 15. NUMBER OF PAGES 87 16. PRICE

  1. Applications of Photonic Crystals to Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Foster, Stephen

    Photonic crystals are structures that exhibit wavelength-scale spatial periodicity in their dielectric function. They are best known for their ability to exhibit complete photonic band gaps (PBGs) - spectral regions over which no light can propagate within the crystal. PBGs are specific instances of a more general phenomenon, in which the local photonic density of states can be enhanced or suppressed over different frequency ranges by tuning the properties of the crystal. This can be used to redirect, concentrate, or even trap light incident on the crystal. In this thesis, we investigate how photonic crystals can be used to enhance the efficiency of photovoltaic devices by trapping light. Due to the many different types of photovoltaic devices in existence (varying widely in materials used, modes of operation, and internal structure), there is no single light trapping architecture that can be applied to all photovoltaics. In this work we study a number of different devices: dye-sensitized solar cells, polymer solar cells, silicon-perovskite tandem cells, and single-junction silicon cells. We propose novel photonic crystal-based light trapping designs for each type of device, and evaluate these designs numerically to demonstrate their effectiveness. Full-field optical simulations of the cell are performed for each design, using either finite element method (FEM) or finite-difference time-domain (FDTD) techniques. Where appropriate, electrical modelling of the cell is also performed, through either the use of a simple one-diode model, or by obtaining full solutions to the semiconductor drift-diffusion equations within the cell. In all cases we find that the photonic crystal-based designs significantly outperform their non-nanostructured counterparts. In the case of dye-sensitized and polymer cells, enhancements in light absorption of 33% and 40% (respectively) are seen, relative to reference cells with planar geometries. In the case of silicon-perovskite tandem cells

  2. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  3. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  4. Orthogonal tandem catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-05-20

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less

  5. Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.

    PubMed

    Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J

    1994-04-01

    We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.

  6. A review of recent progress in heterogeneous silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  7. Flexible organic tandem solar modules: a story of up-scaling

    NASA Astrophysics Data System (ADS)

    Spyropoulos, George D.; Kubis, Peter; Li, Ning; Lucera, Luca; Salvador, Michael; Baran, Derya; Machui, Florian; Ameri, Tayebeh; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    The competition in the field of solar energy between Organic Photovoltaics (OPVs) and several Inorganic Photovoltaic technologies is continuously increasing to reach the ultimate purpose of energy supply from inexpensive and easily manufactured solar cell units. Solution-processed printing techniques on flexible substrates attach a tremendous opportunity to the OPVs for the accomplishment of low-cost and large area applications. Furthermore, tandem architectures came to boost up even more OPVs by increasing the photon-harvesting properties of the device. In this work, we demonstrate the road of realizing flexible organic tandem solar modules constructed by a fully roll-to-roll compatible processing. The modules exhibit an efficiency of 5.4% with geometrical fill factors beyond 80% and minimized interconnection-resistance losses. The processing involves low temperature (<70 °C), coating methods compatible with slot die coating and high speed and precision laser patterning.

  8. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  9. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  10. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  11. Structural derivation of lipid A from Cronobacter sakazakii using tandem mass spectrometry.

    PubMed

    Li, Yanyan; Yoon, Sung Hwan; Wang, Xiaoyuan; Ernst, Robert K; Goodlett, David R

    2016-10-30

    Cronobacter sakazakii is a Gram-negative opportunistic pathogen that can cause necrotizing enterocolitis, bacteremia, and meningitis. Lipid A, the glycolipid membrane anchor of lipopolysaccharide (LPS), is a potential virulence factor for C. sakazakii. Given the potential importance of this molecule in infection and virulence, structural characterization of lipid A was carried out. The structural characterization of lipid A extracted from C. sakazakii was performed using electrospray ionization and collision-induced dissociation in a linear ion trap mass spectrometer. Specifically, for detailed structural characterization, hierarchical tandem mass spectrometry was performed on the dominant ions present in the precursor ion mass spectra. By comparing the C. sakazakii fragmentation pathways to those of the known structure of E. coli lipid A, a structure of C. sakazakii lipid A was derived. The precursor ion at m/z 1796 from C. sakazakii is produced from a lipid A molecule where the acyl chains between the 2'b (C14) and 3'b (C12) positions are reversed as compared to E. coli lipid A. Additionally, the precursor ion at m/z 1824 from C. sakazakii corresponds to an E. coli structure with the same acyl chain at the 2'b position (C14), but a longer acyl chain (C14) at the 3'b position versus m/z 1796. Two lipid A structures were derived for the C. sakazakii ions at m/z 1796 and 1824. They differed in composition at the 2'b and 3'b acyl chain substituents, which may be a result of differences in substrate specificity of the two lipid A acyl chain transferases: LpxL and LpxM. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. GaInP2/GaAs tandem cells for space applications

    NASA Technical Reports Server (NTRS)

    Olson, J. M.; Kurtz, S. R.; Kibbler, A. E.; Bertness, K. A.; Friedman, D. J.

    1991-01-01

    The monolithic, tunnel-junction-interconnected tandem combination of a GaInP2 top cell and a GaAs bottom cell has achieved a one-sun, AM1.5 efficiency of 27.3 percent. With proper design of the top cell, air mass zero (AM0) efficiencies greater than 25 percent are possible. A description and the advantages of this device for space applications are presented and discussed. The advantages include high-voltage, low-current, two-terminal operation for simple panel fabrication, and high conversion efficiency with low-temperature coefficient. Also, because the active regions of the device are Al-free, the growth of high efficiency devices is not affected by trace levels of O2 or H2O in the MOCVD growth system.

  13. Quantum-engineered interband cascade photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razeghi, Manijeh; Tournié, Eric; Brown, Gail J.

    2013-12-18

    Quantum-engineered multiple stage photovoltaic (PV) devices are explored based on InAs/GaSb/AlSb interband cascade (IC) structures. These ICPV devices employ multiple discrete absorbers that are connected in series by widebandgap unipolar barriers using type-II heterostructure interfaces for facilitating carrier transport between cascade stages similar to IC lasers. The discrete architecture is beneficial for improving the collection efficiency and for spectral splitting by utilizing absorbers with different bandgaps. As such, the photo-voltages from each individual cascade stage in an ICPV device add together, creating a high overall open-circuit voltage, similar to conventional multi-junction tandem solar cells. Furthermore, photo-generated carriers can be collectedmore » with nearly 100% efficiency in each stage. This is because the carriers travel over only a single cascade stage, designed to be shorter than a typical diffusion length. The approach is of significant importance for operation at high temperatures where the diffusion length is reduced. Here, we will present our recent progress in the study of ICPV devices, which includes the demonstration of ICPV devices at room temperature and above with narrow bandgaps (e.g. 0.23 eV) and high open-circuit voltages. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.« less

  14. A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.

    PubMed

    Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang

    2017-11-01

    DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  16. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules

    DOE PAGES

    Nanayakkara, Sanjini U.; Horowitz, Kelsey; Kanevce, Ana; ...

    2017-01-20

    In this paper, we analyze the potential cost competitiveness of two frameless, glass–glass thin-film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe 2 (CIS) and CuIn 0.3Ga 0.7Se 2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four-terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandemmore » must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal-area basis and approximately $30/m 2 higher than the single-junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top-cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area-related balance-of-system cost, such as area-constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance-of-system costs are lower, such as in commercial and utility scale systems.« less

  17. Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rahul; Chaujar, Rishu

    2017-04-01

    A 29.5% efficient perovskite/SiC passivated interdigitated back contact silicon heterojunction (IBC-SiHJ) mechanically stacked tandem solar cell device has been designed and simulated. This is a substantial improvement of 40% and 15%, respectively, compared to the transparent perovskite solar cell (21.1%) and Si solar cell (25.6%) operated individually. The perovskite solar cell has been used as a top subcell, whereas 250- and 25-μm-thick IBC-SiHJ solar cells have been used as bottom subcells. The realistic technology computer aided design analysis has been performed to understand the physical processes in the device and to make reliable predictions of the behavior. The performance of the top subcell has been obtained for different acceptor densities and hole mobility in Spiro-MeOTAD along with the impact of counter electrode work function. To incorporate the effect of material quality, the influence of carrier lifetimes has also been studied for perovskite top and IBC-SiHJ bottom subcells. The optical and electrical behavior of the devices has been obtained for both standalone as well as tandem configuration. Results reported in this study reveal that the proposed four-terminal tandem device may open a new door for cost-effective and energy-efficient applications.

  18. Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer.

    PubMed

    Mazzarella, Luana; Werth, Matteo; Jäger, Klaus; Jošt, Marko; Korte, Lars; Albrecht, Steve; Schlatmann, Rutger; Stannowski, Bernd

    2018-05-14

    We performed optical simulations using hydrogenated nanocrystalline silicon oxide (nc-SiO x :H) as n-doped interlayer in monolithic perovskite/c-Si heterojunction tandem solar cells. Depending on the adjustable value of its refractive index (2.0 - 2.7) and thickness, nc-SiO x :H allows to optically manage the infrared light absorption in the c-Si bottom cell minimizing reflection losses. We give guidelines for nc-SiO x :H optimization in tandem devices in combination with a systematic investigation of the effect of the surface morphology (flat or textured) on the photocurrent density. For full-flat and rear textured devices, we found matched photocurrents higher than 19 and 20 mA/cm 2 , respectively, using a 90 nm nc-SiO x :H interlayer with a refractive index of 2.7.

  19. Optical limiting device and method of preparation thereof

    DOEpatents

    Wang, Hsing-Lin; Xu, Su; McBranch, Duncan W.

    2003-01-01

    Optical limiting device and method of preparation thereof. The optical limiting device includes a transparent substrate and at least one homogeneous layer of an RSA material in polyvinylbutyral attached to the substrate. The device may be produced by preparing a solution of an RSA material, preferably a metallophthalocyanine complex, and a solution of polyvinylbutyral, and then mixing the two solutions together to remove air bubbles. The resulting solution is layered onto the substrate and the solvent is evaporated. The method can be used to produce a dual tandem optical limiting device.

  20. Energy Conversion Properties of ZnSiP2, a Lattice-Matched Material for Silicon-Based Tandem Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun

    ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.

  1. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    PubMed

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-07

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  2. Silicon Materials and Devices R&D | Photovoltaic Research | NREL

    Science.gov Websites

    " and "Si-based Tandem Solar Cells"), Next Generation Photovoltaics (NextGen PV III), and devices, especially for photovoltaic (PV) cell applications. PV Research Other Materials & Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic PV Advanced PV

  3. MODAL TRACKING of A Structural Device: A Subspace Identification Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J. V.; Franco, S. N.; Ruggiero, E. L.

    Mechanical devices operating in an environment contaminated by noise, uncertainties, and extraneous disturbances lead to low signal-to-noise-ratios creating an extremely challenging processing problem. To detect/classify a device subsystem from noisy data, it is necessary to identify unique signatures or particular features. An obvious feature would be resonant (modal) frequencies emitted during its normal operation. In this report, we discuss a model-based approach to incorporate these physical features into a dynamic structure that can be used for such an identification. The approach we take after pre-processing the raw vibration data and removing any extraneous disturbances is to obtain a representation ofmore » the structurally unknown device along with its subsystems that capture these salient features. One approach is to recognize that unique modal frequencies (sinusoidal lines) appear in the estimated power spectrum that are solely characteristic of the device under investigation. Therefore, the objective of this effort is based on constructing a black box model of the device that captures these physical features that can be exploited to “diagnose” whether or not the particular device subsystem (track/detect/classify) is operating normally from noisy vibrational data. Here we discuss the application of a modern system identification approach based on stochastic subspace realization techniques capable of both (1) identifying the underlying black-box structure thereby enabling the extraction of structural modes that can be used for analysis and modal tracking as well as (2) indicators of condition and possible changes from normal operation.« less

  4. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    PubMed

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  5. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  6. Research status of wave energy conversion (WEC) device of raft structure

    NASA Astrophysics Data System (ADS)

    Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng

    2017-10-01

    This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.

  7. Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell

    NASA Astrophysics Data System (ADS)

    Vincent, Premkumar; Song, Dong-Seok; Kwon, Hyeok Bin; Kim, Do-Kyung; Jung, Ji-Hoon; Kwon, Jin-Hyuk; Choe, Eunji; Kim, Young-Rae; Kim, Hyeok; Bae, Jin-Hyuk

    2018-02-01

    In this study, we executed optical simulations to compute the optimum power conversion efficiency (PCE) of a-Si:H/organic photovoltaic (OPV) hybrid tandem solar cell. The maximum ideal short circuit current density (Jsc,max) of the tandem solar cell is initially obtained by optimizing the thickness of the active layer of the OPV subcell for varying thickness of the a-Si:H bottom subcell. To investigate the effect of Haze parameter on the ideal short-circuit current density (Jsc,ideal) of the solar cells, we have varied the haze ratio for the TCO electrode of the a-Si:H subcell in the tandem structure. The haze ratio was obtained for various root mean square (RMS) roughness of the TCO of the front cell. The effect of haze ratio on the Jsc,ideal on the tandem structured solar cell was studied, and the highest Jsc,ideal was obtained at a haze of 55.5% when the thickness of the OPV subcell was 150 nm and that of the a-Si:H subcell was 500 nm.

  8. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  9. A dye-sensitized photoelectrochemical tandem cell for light driven hydrogen production from water

    DOE PAGES

    Sherman, Benjamin D.; Sheridan, Matthew V.; Wee, Kyung -Ryang; ...

    2016-12-02

    Here, tandem junction photoelectrochemical water-splitting devices, whereby two light absorbing electrodes targeting separate portions of the solar spectrum generate the voltage required to convert water to oxygen and hydrogen, enable much higher possible efficiencies than single absorber systems. We report here on the development of a tandem system consisting of a dye-sensitized photoelectrochemical cell (DSPEC) wired in series with a dye-sensitized solar cell (DSC). The DSPEC photoanode incorporates a tris(bipyridine)ruthenium(II)-type chromophore and molecular ruthenium based water oxidation catalyst. The DSPEC was tested with two more-red absorbing DSC variations, one utilizing N719 dye with an I 3 –/I – redox mediatormore » solution and the other D35 dye with a tris(bipyridine)cobalt ([Co(bpy) 3] 3+/2+) based mediator. The tandem configuration consisting of the DSPEC and D35/[Co(bpy) 3] 3+/2+ based DSC gave the best overall performance and demonstrated the production of H 2 from H 2O with the only energy input from simulated solar illumination.« less

  10. Numerical investigation & comparison of a tandem-bladed turbocharger centrifugal compressor stage with conventional design

    NASA Astrophysics Data System (ADS)

    Danish, Syed Noman; Qureshi, Shafiq Rehman; EL-Leathy, Abdelrahman; Khan, Salah Ud-Din; Umer, Usama; Ma, Chaochen

    2014-12-01

    Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor. Stage characteristics are explored for various tip clearance levels, axial spacings and circumferential clockings. Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle, meridional gas passage and camber distributions in order to have a true comparison with conventional design. Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance. Linear-equation models for correlating stage characteristics with tip clearance are proposed. Comparing two designs, it is clearly evident that the conventional design shows better performance at moderate flow rates. However; near choke flow, tandem design gives better results primarily because of the increase in throat area. Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.

  11. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    PubMed

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  13. Novel folding device for manufacturing aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Tewfic, Tarik; Sarhadi, M.

    2000-10-01

    A new manufacturing methodology, termed shape-inclusive lay-up has been applied that allows the generation of three-dimensional preforms for the resin transfer molding (RTM) process. A flexible novel folding device for forming dry fabrics including non-crimp fabric (NCF) preform is designed and integrated with a Material Delivery System (MDS) into a robotic cell for manufacturing dry fiber composite aerospace components. The paper describes detailed design, implementation and operational performance of a prototype device. The proposed folding device has been implemented and tested by manufacturing a range of reinforcement structure preforms (C,T,J and I reinforcement preforms), normally used in aerostructure applications. A key advantage of the proposed device is its flexibility. The system is capable of manufacturing a wide range of components of various sizes without the need for reconfiguration.

  14. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  15. Transition metal oxides for organic electronics: energetics, device physics and applications.

    PubMed

    Meyer, Jens; Hamwi, Sami; Kröger, Michael; Kowalsky, Wolfgang; Riedl, Thomas; Kahn, Antoine

    2012-10-23

    During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tandem Repeats in Proteins: Prediction Algorithms and Biological Role.

    PubMed

    Pellegrini, Marco

    2015-01-01

    Tandem repetitions in protein sequence and structure is a fascinating subject of research which has been a focus of study since the late 1990s. In this survey, we give an overview on the multi-faceted aspects of research on protein tandem repeats (PTR for short), including prediction algorithms, databases, early classification efforts, mechanisms of PTR formation and evolution, and synthetic PTR design. We also touch on the rather open issue of the relationship between PTR and flexibility (or disorder) in proteins. Detection of PTR either from protein sequence or structure data is challenging due to inherent high (biological) signal-to-noise ratio that is a key feature of this problem. As early in silico analytic tools have been key enablers for starting this field of study, we expect that current and future algorithmic and statistical breakthroughs will have a high impact on the investigations of the biological role of PTR.

  17. Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements

    PubMed Central

    Peterson, Thomas

    2013-01-01

    Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872

  18. Clustering of Tuberculosis Cases Based on Variable-Number Tandem-Repeat Typing in Relation to the Population Structure of Mycobacterium tuberculosis in the Netherlands

    PubMed Central

    Sloot, Rosa; Borgdorff, Martien W.; de Beer, Jessica L.; van Ingen, Jakko; Supply, Philip

    2013-01-01

    The population structure of 3,776 Mycobacterium tuberculosis isolates was determined using variable-number tandem-repeat (VNTR) typing. The degree of clonality was so high that a more relaxed definition of clustering cannot be applied. Among recent immigrants with non-Euro-American isolates, transmission is overestimated if based on identical VNTR patterns. PMID:23658260

  19. Two-terminal monolithic InP-based tandem solar cells with tunneling intercell ohmic connections

    NASA Technical Reports Server (NTRS)

    Shen, C. C.; Chang, P. T.; Emery, K. A.

    1991-01-01

    A monolithic two-terminal InP/InGaAsP tandem solar cell was successfully fabricated. This tandem solar cell consists of a p/n InP homojunction top subcell and a 0.95 eV p/n InGaAsP homojunction bottom subcell. A patterned 0.95 eV n(+)/p(+) InGaAsP tunnel diode was employed as an intercell ohmic connection. The solar cell structure was prepared by two-step liquid phase epitaxial growth. Under one sun, AM1.5 global illumination, the best tandem cell delivered a conversion efficiency of 14.8 pct.

  20. InP/Ga0.47In0.53As monolithic, two-junction, three-terminal tandem solar cells

    NASA Technical Reports Server (NTRS)

    Wanlaas, M. W.; Gessert, T. A.; Horner, G. S.; Emery, K. A.; Coutts, T. J.

    1991-01-01

    The work presented has focussed on increasing the efficiency of InP-based solar cells through the development of a high-performance InP/Ga(0.47)In(0.53)As two-junction, three-terminal monolithic tandem cell. Such a tandem is particularly suited to space applications where a radiation-hard top cell (i.e., InP) is required. Furthermore, the InP/Ga(0.47)In(0.53)As materials system is lattice matched and offers a top cell/bottom cell bandgap differential (0.60 eV at 300 K) suitable for high tandem cell efficiencies under AMO illumination. A three-terminal configuration was chosen since it allows for independent power collection from each subcell in the monolithic stack, thus minimizing the adverse impact of radiation damage on the overall tandem efficiency. Realistic computer modeling calculations predict an efficiency boost of 7 to 11 percent from the Ga(0.47)In(0.53)As bottom cell under AMO illumination (25 C) for concentration ratios in the 1 to 1000 range. Thus, practical AMO efficiencies of 25 to 32 percent appear possible with the InP/Ga(0.47)In(0.53)As tandem cell. Prototype n/p/n InP/Ga(0.47)In(0.53)As monolithic tandem cells were fabricated and tested successfully. Using an aperture to define the illuminated areas, efficiency measurements performed on a non-optimized device under standard global illumination conditions (25 C) with no antireflection coating (ARC) give 12.2 percent for the InP top cell and 3.2 percent for the Ga(0.47)In(0.53)As bottom cell, yielding an overall tandem efficiency of 15.4 percent. With an ARC, the tandem efficiency could reach approximately 22 percent global and approximately 20 percent AMO. Additional details regarding the performance of individual InP and Ga(0.47)In(0.53)As component cells, fabrication and operation of complete tandem cells and methods for improving the tandem cell performance, are also discussed.

  1. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.

    PubMed

    Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang

    2016-05-01

    Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.

  2. Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed M. A.

    Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the

  3. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

    NASA Astrophysics Data System (ADS)

    Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-01-01

    A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).

  5. Developing an Anti-Xa-Based Anticoagulation Protocol for Patients with Percutaneous Ventricular Assist Devices.

    PubMed

    Sieg, Adam; Mardis, B Andrew; Mardis, Caitlin R; Huber, Michelle R; New, James P; Meadows, Holly B; Cook, Jennifer L; Toole, J Matthew; Uber, Walter E

    2015-01-01

    Because of the complexities associated with anticoagulation in temporary percutaneous ventricular assist device (pVAD) recipients, a lack of standardization exists in their management. This retrospective analysis evaluates current anticoagulation practices at a single center with the aim of identifying an optimal anticoagulation strategy and protocol. Patients were divided into two cohorts based on pVAD implanted (CentriMag (Thoratec; Pleasanton, CA) / TandemHeart (CardiacAssist; Pittsburgh, PA) or Impella (Abiomed, Danvers, MA)), with each group individually analyzed for bleeding and thrombotic complications. Patients in the CentriMag/TandemHeart cohort were subdivided based on the anticoagulation monitoring strategy (activated partial thromboplastin time (aPTT) or antifactor Xa unfractionated heparin (anti-Xa) values). In the CentriMag/TandemHeart cohort, there were five patients with anticoagulation titrated based on anti-Xa values; one patient developed a device thrombosis and a major bleed, whereas another patient experienced major bleeding. Eight patients received an Impella pVAD. Seven total major bleeds in three patients and no thrombotic events were detected. Based on distinct differences between the devices, anti-Xa values, and outcomes, two protocols were created to guide anticoagulation adjustments. However, anticoagulation in patients who require pVAD support is complex with constantly evolving anticoagulation goals. The ideal level of anticoagulation should be individually determined using several coagulation laboratory parameters in concert with hemodynamic changes in the patient's clinical status, the device, and the device cannulation.

  6. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins

    PubMed Central

    Jung, Huihun; Pena-Francesch, Abdon; Saadat, Alham; Sebastian, Aswathy; Kim, Dong Hwan; Hamilton, Reginald F.; Albert, Istvan; Allen, Benjamin D.; Demirel, Melik C.

    2016-01-01

    Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility. PMID:27222581

  7. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.

    PubMed

    Kind, Tobias; Fiehn, Oliver

    2017-09-01

    Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.

  8. Tandem organic light-emitting diodes with KBH4 doped 9,10-bis(3-(pyridin-3-yl)phenyl) anthracene connected to the charge generation layer.

    PubMed

    Duan, Lian; Tsuboi, Taiju; Qiu, Yong; Li, Yanrui; Zhang, Guohui

    2012-06-18

    Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.

  9. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  10. Mobility platform coupling device and method for coupling mobility platforms

    DOEpatents

    Shirey, David L.; Hayward, David R.; Buttz, James H.

    2002-01-01

    A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.

  11. Lightweight carbon nanotube-based structural-energy storage devices for micro unmanned systems

    NASA Astrophysics Data System (ADS)

    Rivera, Monica; Cole, Daniel P.; Hahm, Myung Gwan; Reddy, Arava L. M.; Vajtai, Robert; Ajayan, Pulickel M.; Karna, Shashi P.; Bundy, Mark L.

    2012-06-01

    There is a strong need for small, lightweight energy storage devices that can satisfy the ever increasing power and energy demands of micro unmanned systems. Currently, most commercial and developmental micro unmanned systems utilize commercial-off-the-shelf (COTS) lithium polymer batteries for their energy storage needs. While COTS lithium polymer batteries are the industry norm, the weight of these batteries can account for up to 60% of the overall system mass and the capacity of these batteries can limit mission durations to the order of only a few minutes. One method to increase vehicle endurance without adding mass or sacrificing payload capabilities is to incorporate multiple system functions into a single material or structure. For example, the body or chassis of a micro vehicle could be replaced with a multifunctional material that would serve as both the vehicle structure and the on-board energy storage device. In this paper we present recent progress towards the development of carbon nanotube (CNT)-based structural-energy storage devices for micro unmanned systems. Randomly oriented and vertically aligned CNT-polymer composite electrodes with varying degrees of flexibility are used as the primary building blocks for lightweight structural-supercapacitors. For the purpose of this study, the mechanical properties of the CNT-based electrodes and the charge-discharge behavior of the supercapacitor devices are examined. Because incorporating multifunctionality into a single component often degrades the properties or performance of individual structures, the performance and property tradeoffs of the CNT-based structural-energy storage devices will also be discussed.

  12. Feasibility of self-structured current accessed bubble devices in spacecraft recording systems

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Lo, D. S.; Amundsen, D. L.; Stein, G. A.

    1985-01-01

    The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.

  13. Tandem SAM Domain Structure of Human Caskin1: A Presynaptic, Self-Assembling Scaffold for CASK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Hinde, Elizabeth; Knight, Mary Jane

    2012-02-07

    The synaptic scaffolding proteins CASK and Caskin1 are part of the fibrous mesh of proteins that organize the active zones of neural synapses. CASK binds to a region of Caskin1 called the CASK interaction domain (CID). Adjacent to the CID, Caskin1 contains two tandem sterile a motif (SAM) domains. Many SAM domains form polymers so they are good candidates for forming the fibrous structures seen in the active zone. We show here that the SAM domains of Caskin1 form a new type of SAM helical polymer. The Caskin1 polymer interface exhibits a remarkable segregation of charged residues, resulting in amore » high sensitivity to ionic strength in vitro. The Caskin1 polymers can be decorated with CASK proteins, illustrating how these proteins may work together to organize the cytomatrix in active zones.« less

  14. Software for peak finding and elemental composition assignment for glycosaminoglycan tandem mass spectra.

    PubMed

    Hogan, John D; Klein, Joshua A; Wu, Jiandong; Chopra, Pradeep; Boons, Geert-Jan; Carvalho, Luis; Lin, Cheng; Zaia, Joseph

    2018-04-03

    Glycosaminoglycans (GAGs) covalently linked to proteoglycans (PGs) are characterized by repeating disaccharide units and variable sulfation patterns along the chain. GAG length and sulfation patterns impact disease etiology, cellular signaling, and structural support for cells. We and others have demonstrated the usefulness of tandem mass spectrometry (MS2) for assigning the structures of GAG saccharides; however, manual interpretation of tandem mass spectra is time-consuming, so computational methods must be employed. In the proteomics domain, the identification of monoisotopic peaks and charge states relies on algorithms that use averagine, or the average building block of the compound class being analyzed. While these methods perform well for protein and peptide spectra, they perform poorly on GAG tandem mass spectra, due to the fact that a single average building block does not characterize the variable sulfation of GAG disaccharide units. In addition, it is necessary to assign product ion isotope patterns in order to interpret the tandem mass spectra of GAG saccharides. To address these problems, we developed GAGfinder, the first tandem mass spectrum peak finding algorithm developed specifically for GAGs. We define peak finding as assigning experimental isotopic peaks directly to a given product ion composition, as opposed to deconvolution or peak picking, which are terms more accurately describing the existing methods previously mentioned. GAGfinder is a targeted, brute force approach to spectrum analysis that utilizes precursor composition information to generate all theoretical fragments. GAGfinder also performs peak isotope composition annotation, which is typically a subsequent step for averagine-based methods. Data are available via ProteomeXchange with identifier PXD009101. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  15. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  16. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  17. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  18. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    NASA Astrophysics Data System (ADS)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  19. Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures.

    PubMed

    Inganäs, Olle; Zhang, Fengling; Tvingstedt, Kristofer; Andersson, Lars Mattias; Hellström, Stefan; Andersson, Mats R

    2010-05-25

    The synthesis of novel conjugated polymers, designed for the purpose of photovoltaic energy conversion, and their properties in polymer/fullerene materials and photovoltaic devices are reviewed. Two families of main-chain polymer donors, based on fluorene or phenylene and donor-acceptor-donor comonomers in alternating copolymers, are used to absorb the high-energy parts of the solar spectrum and to give high photovoltages in combinations with fullerene acceptors in devices. These materials are used in alternative photovoltaic device geometries with enhanced light incoupling to collect larger photocurrents or to enable tandem devices and enhance photovoltage.

  20. Near-field nano-Raman imaging of Si device structures

    NASA Astrophysics Data System (ADS)

    Atesang, Jacob; Geer, Robert

    2005-05-01

    Apertureless-based, near-field Raman imaging holds the potential for nanoscale stress metrology in emerging Si devices. Preliminary application of near-field Raman imaging on Si device structures has demonstrated the potential for stress measurements. However, detailed investigations have not been published regarding the effect of tip radius on observed near-field enhancement. Such investigations are important to understand the fundamental limits regarding the signal-to-noise ratio of the measurement and the spatial resolution that can potentially be achieved before wide application to semiconductor metrology can be considered. Investigations are presented into near-field enhancement of Raman scattering from Si device structures using a modified near-field optical microscope (NSOM). The nano-Raman system utilizes an off-axis (45°) backscattering NSOM geometry with free-space collection optics. The spectroscopic configuration utilizes a single-bounce spectrometer incorporating a holographic notch filter assembly utilized as a secondary beam-splitter for an apertureless backscattering collection geometry. Near-field enhancement is observed for both Al- and Ag-coated probes. An inverse square power-law relationship is observed between near-field enhancement factor and tip radius.

  1. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

    PubMed

    Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg

    2005-12-01

    In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of

  2. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  3. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  4. Materials and structures for stretchable energy storage and conversion devices.

    PubMed

    Xie, Keyu; Wei, Bingqing

    2014-06-11

    Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Perovskite Solar Cells for High-Efficiency Tandems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGehee, Michael; Buonassisi, Tonio

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n ++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm 2. Werner et al. 15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher currentmore » density of 15.9 mA/cm 2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both organic cation evolution and

  6. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    NASA Astrophysics Data System (ADS)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  7. Nonlinear dissipative devices in structural vibration control: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin

    2018-06-01

    Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.

  8. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  9. A photovoltaic device structure based on internal electron emission.

    PubMed

    McFarland, Eric W; Tang, Jing

    2003-02-06

    There has been an active search for cost-effective photovoltaic devices since the development of the first solar cells in the 1950s (refs 1-3). In conventional solid-state solar cells, electron-hole pairs are created by light absorption in a semiconductor, with charge separation and collection accomplished under the influence of electric fields within the semiconductor. Here we report a multilayer photovoltaic device structure in which photon absorption instead occurs in photoreceptors deposited on the surface of an ultrathin metal-semiconductor junction Schottky diode. Photoexcited electrons are transferred to the metal and travel ballistically to--and over--the Schottky barrier, so providing the photocurrent output. Low-energy (approximately 1 eV) electrons have surprisingly long ballistic path lengths in noble metals, allowing a large fraction of the electrons to be collected. Unlike conventional cells, the semiconductor in this device serves only for majority charge transport and separation. Devices fabricated using a fluorescein photoreceptor on an Au/TiO2/Ti multilayer structure had typical open-circuit photovoltages of 600-800 mV and short-circuit photocurrents of 10-18 micro A cm(-2) under 100 mW cm(-2) visible band illumination: the internal quantum efficiency (electrons measured per photon absorbed) was 10 per cent. This alternative approach to photovoltaic energy conversion might provide the basis for durable low-cost solar cells using a variety of materials.

  10. Structural and functional engineering of one-dimensional nanostructures for device applications

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Veer

    Fabrication of 1-D nanostructures has been an area of keen interest due to their application in nanodevices. Carbon nanotubes (CNTs) and semiconducting nanorods are 1-D nanostructures of great importance. There are various challenges related to structural and functional aspects of these materials, which need to be addressed for their adaptation in devices. To this end, two approaches have been developed: (1) structural engineering of the nanorods and (2) functionalization of CNTs for device applications. In first approach, a new technique to produce single crystal semiconducting nanorods was developed. Single crystalline structure of nanorods is essential to obtain reproducible performance. The novel synthesis technique 'template assisted sonoelectrochemical deposition' was utilized to develop 'copper sulfide' and 'copper indium sulfide' nanorods. The use of sonoelectrochemical method resulted in the best deposition rate as compared to stirring-assisted and regular electrochemical deposition, respectively. Observed increase in the bulk electrolyte temperature, high acoustic pressure and shock waves generated from the collapse of bubbles could explain improved mass transport and reaction rate, which results in the formation of single crystal nanorods. Nanorods in the range of 50-200nm in diameter were synthesized and electrically characterized as p-type semiconductors. Excellent structural and repeatable electrical properties of the various nanorods developed by this technique make it suitable for developing nanorods for device applications. In addition, detailed statistical analysis of the polycarbonate templates (50-200 nm nominal pore size) used in electrodeposition provided a better understanding of template's as well as nanorods' structure. In the second approach, we functionally engineered single walled carbon nanotubes (SWNTs) with peptide nucleic acid (PNA) to form functional conjugates for molecular electronics. SWNT-PNA-SWNT conjugates were synthesized

  11. Tandem sulfur chemiluminescence and flame ionization detection with planar microfluidic devices for the characterization of sulfur compounds in hydrocarbon matrices.

    PubMed

    Luong, J; Gras, R; Shellie, R A; Cortes, H J

    2013-07-05

    The detection of sulfur compounds in different hydrocarbon matrices, from light hydrocarbon feedstocks to medium synthetic crude oil feeds provides meaningful information for optimization of refining processes as well as demonstration of compliance with petroleum product specifications. With the incorporation of planar microfluidic devices in a novel chromatographic configuration, sulfur compounds from hydrogen sulfide to alkyl dibenzothiophenes and heavier distributions of sulfur compounds over a wide range of matrices spanning across a boiling point range of more than 650°C can be characterized, using one single analytical configuration in less than 25min. In tandem with a sulfur chemiluminescence detector for sulfur analysis is a flame ionization detector. The flame ionization detector can be used to establish the boiling point range of the sulfur compounds in various hydrocarbon fractions for elemental specific simulated distillation analysis as well as profiling the hydrocarbon matrices for process optimization. Repeatability of less than 3% RSD (n=20) over a range of 0.5-1000 parts per million (v/v) was obtained with a limit of detection of 50 parts per billion and a linear range of 0.5-1000 parts per million with a correlation co-efficient of 0.998. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Indium antimonide quantum well structures for electronic device applications

    NASA Astrophysics Data System (ADS)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  13. A tandem mirror hybrid plume plasma propulsion facility

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, F. R.; Yang, T. F.; Krueger, W. A.; Peng, S.; Urbahn, J.; Yao, X.; Griffin, D.

    1988-01-01

    A concept in electrodeless plasma propulsion, which is also capable of delivering a variable Isp, is presented. The concept involves a three-stage system of plasma injection, heating, and subsequent ejection through a magnetic nozzle. The nozzle produces the hybrid plume by the coaxial injection of hypersonic neutral gas. The gas layer, thus formed, protects the material walls from the hot plasma and, through increased collisions, helps detach it from the diverging magnetic field. The physics of this concept is evaluated numerically through full spatial and temporal simulations; these explore the operating characteristics of such a device over a wide region of parameter space. An experimental facility to study the plasma dynamics in the hybrid plume was built. The device consists of a tandem mirror operating in an asymmetric mode. A later upgrade of this system will incorporate a cold plasma injector at one end of the machine. Initial experiments involve the full characterization of the operating envelope, as well as extensive measurements of plasma properties at the exhaust. The results of the numerical simulations are described.

  14. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.

    PubMed

    Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas

    2014-03-05

    With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available

  15. Maternal mobile device use during a structured parent-child interaction task

    PubMed Central

    Radesky, Jenny; Miller, Alison L.; Rosenblum, Katherine L.; Appugliese, Danielle; Kaciroti, Niko; Lumeng, Julie C.

    2014-01-01

    Objective Examine associations of maternal mobile device use with the frequency of mother-child interactions during a structured laboratory task. Methods Participants included 225 low-income mother-child pairs. When children were ~6 years old, dyads were videotaped during a standardized protocol in order to characterize how mothers and children interacted when asked to try familiar and unfamiliar foods. From videotapes, we dichotomized mothers based on whether or not they spontaneously used a mobile device, and counted maternal verbal and nonverbal prompts toward the child. We used multivariate Poisson regression to study associations of device use with eating prompt frequency for different foods. Results Mothers were an average of 31.3 (SD 7.1) years old and 28.0% were of Hispanic/non-white race/ethnicity. During the protocol, 23.1% of mothers spontaneously used a mobile device. Device use was not associated with any maternal characteristics, including age, race/ethnicity, education, depressive symptoms, or parenting style. Mothers with device use initiated fewer verbal (RR 0.80 [95% CI: 0.63, 1.03]) and nonverbal (0.61 [0.39, 0.96]) interactions with their children than mothers who did not use a device, when averaged across all foods. This association was strongest during introduction of halva, the most unfamiliar food (0.67 [0.48, 0.93] for verbal and 0.42 [0.20, 0.89] for nonverbal interactions). Conclusions Mobile device use was common and associated with fewer interactions with children during a structured interaction task, particularly nonverbal interactions and during introduction of an unfamiliar food. More research is needed to understand how device use affects parent-child engagement in naturalistic contexts. PMID:25454369

  16. Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad

    The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.

  17. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA

    PubMed Central

    2015-01-01

    Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson–Crick/Watson–Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677–9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511–1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088–2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated. PMID:24803859

  18. A tandem mirror plasma source for a hybrid plume plasma propulsion concept

    NASA Technical Reports Server (NTRS)

    Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

    1985-01-01

    This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

  19. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  20. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  1. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  2. 47 CFR 69.129 - Signalling for tandem switching.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Signalling for tandem switching. 69.129 Section... (CONTINUED) ACCESS CHARGES Computation of Charges § 69.129 Signalling for tandem switching. A charge that is... provision of signalling for tandem switching. [59 FR 32930, June 27, 1994] ...

  3. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant

    NASA Astrophysics Data System (ADS)

    Yuchi, Zhiguang; Yuen, Siobhan M. Wong King; Lau, Kelvin; Underhill, Ainsley Q.; Cornea, Razvan L.; Fessenden, James D.; van Petegem, Filip

    2015-08-01

    Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2-1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding.

  4. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  5. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flotation devices and material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  6. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  7. Maternal mobile device use during a structured parent-child interaction task.

    PubMed

    Radesky, Jenny; Miller, Alison L; Rosenblum, Katherine L; Appugliese, Danielle; Kaciroti, Niko; Lumeng, Julie C

    2015-01-01

    To examine associations of maternal mobile device use with the frequency of mother-child interactions during a structured laboratory task. Participants included 225 low-income mother-child pairs. When children were ∼6 years old, dyads were videotaped during a standardized protocol in order to characterize how mothers and children interacted when asked to try familiar and unfamiliar foods. From videotapes, we dichotomized mothers on the basis of whether or not they spontaneously used a mobile device, and we counted maternal verbal and nonverbal prompts toward the child. We used multivariate Poisson regression to study associations of device use with eating prompt frequency for different foods. Mothers were an average of 31.3 (SD 7.1) years old, and 28.0% were of Hispanic/nonwhite race/ethnicity. During the protocol, 23.1% of mothers spontaneously used a mobile device. Device use was not associated with any maternal characteristics, including age, race/ethnicity, education, depressive symptoms, or parenting style. Mothers with device use initiated fewer verbal (relative rate 0.80; 95% confidence interval 0.63, 1.03) and nonverbal (0.61; 0.39, 0.96) interactions with their children than mothers who did not use a device, when averaged across all foods. This association was strongest during introduction of halva, the most unfamiliar food (0.67; 0.48, 0.93 for verbal and 0.42; 0.20, 0.89 for nonverbal interactions). Mobile device use was common and associated with fewer interactions with children during a structured interaction task, particularly nonverbal interactions and during introduction of an unfamiliar food. More research is needed to understand how device use affects parent-child engagement in naturalistic contexts. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  8. Unexpected formation of 2,1-benzisothiazol-3-ones from oxathiolano ketenimines: a rare tandem process.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Sanchez-Andrada, Pilar; Vidal, Angel; Bautista, Delia

    2009-03-19

    A rare one-pot reaction, a tandem [1,5]-H shift/1,5 electrocyclization/[3 + 2] cycloreversion process, leading from N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines to 1-(beta-styryl)-2,1-benzisothiazol-3-ones and ethylene, is disclosed and mechanistically unraveled by means of a computational DFT study. The two latter stages of the tandem process are calculated to occur in a single mechanistic step via a transition structure of pseudopericyclic characteristics.

  9. Tandem concentrator photovoltaic array applied to Space Station Freedom evolutionary power requirements

    NASA Technical Reports Server (NTRS)

    Fisher, Edward M., Jr.

    1991-01-01

    Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.

  10. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.

    PubMed

    Webb, Claire; Upadhyay, Abhishek; Giuntini, Francesca; Eggleston, Ian; Furutani-Seiki, Makoto; Ishima, Rieko; Bagby, Stefan

    2011-04-26

    The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.

  11. Design of two-photon molecular tandem architectures for solar cells by ab initio theory† †Electronic supplementary information (ESI) available: Visualizations of molecular orbitals, one-particle mechanisms and a table with Kohn–Sham eigenvalues. See DOI: 10.1039/c4sc03835e

    PubMed Central

    Garcia-Lastra, Juan M.; De La Torre, Gema; Himpsel, F. J.; Rubio, Angel

    2015-01-01

    An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed. PMID:29142685

  12. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Ozbulut, Osman E.; Hurlebaus, Stefan

    2011-11-01

    This paper proposes a re-centering variable friction device (RVFD) for control of civil structures subjected to near-field earthquakes. The proposed hybrid device has two sub-components. The first sub-component of this hybrid device consists of shape memory alloy (SMA) wires that exhibit a unique hysteretic behavior and full recovery following post-transformation deformations. The second sub-component of the hybrid device consists of variable friction damper (VFD) that can be intelligently controlled for adaptive semi-active behavior via modulation of its voltage level. In general, installed SMA devices have the ability to re-center structures at the end of the motion and VFDs can increase the energy dissipation capacity of structures. The full realization of these devices into a singular, hybrid form which complements the performance of each device is investigated in this study. A neuro-fuzzy model is used to capture rate- and temperature-dependent nonlinear behavior of the SMA components of the hybrid device. An optimal fuzzy logic controller (FLC) is developed to modulate voltage level of VFDs for favorable performance in a RVFD hybrid application. To obtain optimal controllers for concurrent mitigation of displacement and acceleration responses, tuning of governing fuzzy rules is conducted by a multi-objective heuristic optimization. Then, numerical simulation of a multi-story building is conducted to evaluate the performance of the hybrid device. Results show that a re-centering variable friction device modulated with a fuzzy logic control strategy can effectively reduce structural deformations without increasing acceleration response during near-field earthquakes.

  13. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    PubMed

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  14. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  15. Tandem Translation Classroom: A Case Study

    ERIC Educational Resources Information Center

    Kim, Dohun; Koh, Taejin

    2018-01-01

    The transition to student-centred learning, advances in teleconferencing tools, and active international student exchange programmes have stimulated tandem learning in many parts of the world. This pedagogical model is based on a mutual language exchange between tandem partners, where each student is a native speaker in the language the…

  16. A TALE-inspired computational screen for proteins that contain approximate tandem repeats.

    PubMed

    Perycz, Malgorzata; Krwawicz, Joanna; Bochtler, Matthias

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.

  17. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency

    NASA Astrophysics Data System (ADS)

    Che, Xiaozhou; Li, Yongxi; Qu, Yue; Forrest, Stephen R.

    2018-05-01

    Multijunction solar cells are effective for increasing the power conversion efficiency beyond that of single-junction cells. Indeed, the highest solar cell efficiencies have been achieved using two or more subcells to adequately cover the solar spectrum. However, the efficiencies of organic multijunction solar cells are ultimately limited by the lack of high-performance, near-infrared absorbing organic subcells within the stack. Here, we demonstrate a tandem cell with an efficiency of 15.0 ± 0.3% (for 2 mm2 cells) that combines a solution-processed non-fullerene-acceptor-based infrared absorbing subcell on a visible-absorbing fullerene-based subcell grown by vacuum thermal evaporation. The hydrophilic-hydrophobic interface within the charge-recombination zone that connects the two subcells leads to >95% fabrication yield among more than 130 devices, and with areas up to 1 cm2. The ability to stack solution-based on vapour-deposited cells provides significant flexibility in design over the current, all-vapour-deposited multijunction structures.

  18. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  19. Selecting tandem partners for silicon solar cells [Selecting tandem partners for silicon solar cells using spectral efficiency

    DOE PAGES

    Yu, Zhengshan; Leilaeioun, Mehdi; Holman, Zachary

    2016-09-26

    Combining silicon and other materials in tandem solar cells is one approach to enhancing the overall power conversion efficiency of the cells. Here, we argue that top cell partners for silicon tandem solar cells should be selected on the basis of their spectral efficiency — their efficiency resolved by wavelength.

  20. Structurally Driven Enhancement of Resonant Tunneling and Nanomechanical Properties in Diamond-like Carbon Superlattices.

    PubMed

    Dwivedi, Neeraj; McIntosh, Ross; Dhand, Chetna; Kumar, Sushil; Malik, Hitendra K; Bhattacharyya, Somnath

    2015-09-23

    We report nitrogen-induced enhanced electron tunnel transport and improved nanomechanical properties in band gap-modulated nitrogen doped DLC (N-DLC) quantum superlattice (QSL) structures. The electrical characteristics of such superlattice devices revealed negative differential resistance (NDR) behavior. The interpretation of these measurements is supported by 1D tight binding calculations of disordered superlattice structures (chains), which include bond alternation in sp(3)-hybridized regions. Tandem theoretical and experimental analysis shows improved tunnel transport, which can be ascribed to nitrogen-driven structural modification of the N-DLC QSL structures, especially the increased sp(2) clustering that provides additional conduction paths throughout the network. The introduction of nitrogen also improved the nanomechanical properties, resulting in enhanced elastic recovery, hardness, and elastic modulus, which is unusual but is most likely due to the onset of cross-linking of the network. Moreover, the materials' stress of N-DLC QSL structures was reduced with the nitrogen doping. In general, the combination of enhanced electron tunnel transport and nanomechanical properties in N-DLC QSL structures/devices can open a platform for the development of a new class of cost-effective and mechanically robust advanced electronic devices for a wide range of applications.

  1. Assessment of Tandem Measurements of pH and Total Gut Transit Time in Healthy Volunteers.

    PubMed

    Mikolajczyk, Adam E; Watson, Sydeaka; Surma, Bonnie L; Rubin, David T

    2015-07-09

    The variation of luminal pH and transit time in an individual is unknown, yet is necessary to interpret single measurements. This study aimed to assess the intrasubject variability of gut pH and transit time in healthy volunteers using SmartPill devices (Covidien, Minneapolis, MN). Each subject (n=10) ingested two SmartPill devices separated by 24 h. Mean pH values were calculated for 30 min after gastric emptying (AGE), before the ileocecal (BIC) valve, after the ileocecal (AIC) valve, and before body exit (BBE). Intrasubject variability was determined by comparing mean values from both ingestions for an individual subject using standard deviations, 95% limits of agreement, and Bland-Altman plots. Tandem device ingestion occurred without complication. The median (full range) intrasubject standard deviations for pH were 0.02 (0.0002-0.2048) for AGE, 0.06 (0.0002-0.3445) for BIC, 0.14 (0.0018-0.3042) for AIC, and 0.08 (0.0098-0.5202) for BBE. There was a significant change in pH for AIC (mean difference: -0.45±0.31, P=0.0015) observed across all subjects. The mean coefficients of variation for transit time were 12.0±7.4% and 25.8±15.8% for small and large bowels, respectively (P=0.01). This study demonstrates the safety and feasibility of tandem gut transit and pH assessments using the SmartPill device. In healthy individuals and over 24 h, the gut pH profile does not markedly fluctuate in a given region with more variation seen in the colon compared with the small bowel, which has important implications for future physiology and drug delivery studies.

  2. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  3. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    NASA Astrophysics Data System (ADS)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  4. Non-Target Screening of Veterinary Drugs Using Tandem Mass Spectrometry on SmartMass

    NASA Astrophysics Data System (ADS)

    Xia, Bing; Liu, Xin; Gu, Yu-Cheng; Zhang, Zhao-Hui; Wang, Hai-Yan; Ding, Li-Sheng; Zhou, Yan

    2013-05-01

    Non-target screening of veterinary drugs using tandem mass spectrometric data was performed on the SmartMass platform. This newly developed software uses the characteristic fragmentation patterns (CFP) to identify chemicals, especially those containing particular substructures. A mixture of 17 sulfonamides was separated by ultra performance liquid chromatography (UPLC), and SmartMass was used to process the tandem mass spectrometry (MS/MS) data acquired on an Orbitrap mass spectrometer. The data were automatically extracted, and each sulfonamide was recognized and analyzed with a prebuilt analysis rule. By using this software, over 98 % of the false candidate structures were eliminated, and all the correct structures were found within the top 10 of the ranking lists. Furthermore, SmartMass could also be used to identify slightly modified contraband drugs and metabolites with simple prebuilt rules. [Figure not available: see fulltext.

  5. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  6. Methods and devices for fabricating three-dimensional nanoscale structures

    DOEpatents

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  7. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction.

    PubMed

    Sun, Yongfu; Gao, Shan; Xie, Yi

    2014-01-21

    Atomically-thick two-dimensional crystals can provide promising opportunities to satisfy people's requirement of next-generation flexible and transparent nanodevices. However, the characterization of these low-dimensional structures and the understanding of their clear structure-property relationship encounter many great difficulties, owing to the lack of long-range order in the third dimensionality. In this review, we survey the recent progress in fine structure characterization by X-ray absorption fine structure spectroscopy and also overview electronic structure modulation by density-functional calculations in the ultrathin two-dimensional crystals. In addition, we highlight their structure-property relationship, transparent and flexible device construction as well as wide applications in photoelectrochemical water splitting, photodetectors, thermoelectric conversion, touchless moisture sensing, supercapacitors and lithium ion batteries. Finally, we outline the major challenges and opportunities that face the atomically-thick two-dimensional crystals. It is anticipated that the present review will deepen people's understanding of this field and hence contribute to guide the future design of high-efficiency energy-related devices.

  8. Band structure engineering for solar energy applications: Zinc oxide(1-x) selenium(x) films and devices

    NASA Astrophysics Data System (ADS)

    Mayer, Marie Annette

    spectroscopy. Measurement of the optical absorption coefficient, α, shows a significant red shift as well as an increase in the low energy density of states with x. Fitting α revealed that the initial Se defect level is located 0.9 eV above the valence band edge and the coupling strength of the interaction is 1.2 eV. Optical reflection data are good agreement with the absorption onset at 2 eV. Taking the derivative of this data reveals experimental observation of the matrix-like band at higher energies. ZnO1-xSex is explicitly evaluated for photoelectrochemical applications. An introduction to semiconductor electrochemistry is followed by flat band, photocurrent, and spectrally resolved photocurrent measurements. The flat band measurements are in excellent agreement with the measurements of the ZnO electron affinity using bulk methods, but show that the conduction band edge of ZnO1-xSex is too low for spontaneous water splitting. Measurements of the incident photon to current conversion efficiency (IPCE) indicated that photons with energies greater than 2 eV excite carriers that do conduct and induce chemical reactions. Tandem ZnO1-xSe x/Si devices are made with a natural Ohmic contact between the p-Si and n-ZnO1-xSex. Electrochemical testing proves that the presence of the tandem photovoltaic provides an overpotential of ˜0.5 V to electrons enabling the reduction of H+ in solution. Finally, the carrier scattering and recombination lifetimes in ZnO 1-xSex are considered. Resistivity, Hall effect and Seebeck coefficient measurements are used to probe the scattering lifetime, while the recombination lifetime is investigated using photoluminescence spectroscopy. Electrochemical photocurrent measurements in light and dark are a function of the product of both lifetimes. Results indicate that significant scattering in the lateral direction does not prohibit the photoelectrochemical device from operating, but defects from high fluence growth are extremely detrimental to the

  9. A TALE-inspired computational screen for proteins that contain approximate tandem repeats

    PubMed Central

    Krwawicz, Joanna

    2017-01-01

    TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen. PMID:28617832

  10. Hybrid dielectric light trapping designs for thin-film CdZnTe/Si tandem cells

    DOE PAGES

    Chung, H.; Zhou, C.; Tee, X. T.; ...

    2016-05-20

    Tandem solar cells consisting of high bandgap cadmium telluride alloys atop crystalline silicon have potential for high efficiencies exceeding the Shockley-Queisser limit. However, experimental results have fallen well below this goal significantly because of non-ideal current matching and light trapping. In this work, we simulate cadmium zinc telluride (CZT) and crystalline silicon (c-Si) tandems as an exemplary system to show the role that a hybrid light trapping and bandgap engineering approach can play in improving performance and lowering materials costs for tandem solar cells incorporating crystalline silicon. This work consists of two steps. First, we optimize absorption in the crystallinemore » silicon layer with front pyramidal texturing and asymmetric dielectric back gratings, which results in 121% absorption enhancement from a planar structure. Then, using this pre-optimized light trapping scheme, we model the dispersion of the Cd xZn 1-xTe alloys, and then adjust the bandgap to realize the best current matching for a range of CZT thicknesses. Using experimental parameters, the corresponding maximum efficiency is predicted to be 16.08 % for a total tandem cell thickness of only 2.2 μm.« less

  11. Form-Focused Interaction in Online Tandem Learning

    ERIC Educational Resources Information Center

    O'Rourke, Breffni

    2005-01-01

    Tandem language learning--a configuration involving pairs of learners with complementary target/native languages--is an underexploited but potentially very powerful use of computer-mediated communication (CMC) in second-language pedagogy. Tandem offers the benefits of authentic, culturally grounded interaction, while also promoting a pedagogical…

  12. Structural data collection with mobile devices: Accuracy, redundancy, and best practices

    NASA Astrophysics Data System (ADS)

    Allmendinger, Richard W.; Siron, Christopher R.; Scott, Chelsea P.

    2017-09-01

    Smart phones are equipped with numerous sensors that enable orientation data collection for structural geology at a rate up to an order of magnitude faster than traditional analog compasses. The rapidity of measurement enables field structural geologists, for the first time, to enjoy the benefits of data redundancy and quantitative uncertainty estimates. Recent work, however, has called into question the reliability of sensors on Android devices. We present here our experience with programming a new smart phone app from scratch, and using it and commercial apps on iOS devices along with analog compasses in a series of controlled tests and typical field use cases. Additionally, we document the relationships between iPhone measurements and visible structures in satellite, drawing on a database of 3700 iPhone measurements of coseismic surface cracks we made in northern Chile following the Mw8.1 Pisagua earthquake in 2014. By comparing phone-collected attitudes to orientations determined independently of the magnetic field, we avoid having to assume that the analog compass, which is subject to its own uncertainties, is the canonical instrument. Our results suggest that iOS devices are suitable for all but the most demanding applications as long as particular care is taken with respect to metal and electronic objects that could affect the magnetic field.

  13. Quantification of 11-Nor-9-Carboxy-Δ9-Tetrahydrocannabinol in Human Oral Fluid by Gas Chromatography–Tandem Mass Spectrometry

    PubMed Central

    Barnes, Allan J.; Scheidweiler, Karl B.; Huestis, Marilyn A.

    2015-01-01

    A sensitive and specific method for the quantification of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in oral fluid collected with the Quantisal and Oral-Eze devices was developed and fully validated. Extracted analytes were derivatized with hexafluoroisopropanol and trifluoroacetic anhydride and quantified by gas chromatography–tandem mass spectrometry with negative chemical ionization. Standard curves, using linear least-squares regression with 1/x2 weighting were linear from 10 to 1000 ng/L with coefficients of determination >0.998 for both collection devices. Bias was 89.2%–112.6%, total imprecision 4.0%–5.1% coefficient of variation, and extraction efficiency >79.8% across the linear range for Quantisal-collected specimens. Bias was 84.6%–109.3%, total imprecision 3.6%–7.3% coefficient of variation, and extraction efficiency >92.6% for specimens collected with the Oral-Eze device at all 3 quality control concentrations (10, 120, and 750 ng/L). This effective high-throughput method reduces analysis time by 9 minutes per sample compared with our current 2-dimensional gas chromatography–mass spectrometry method and extends the capability of quantifying this important oral fluid analyte to gas chromatography–tandem mass spectrometry. This method was applied to the analysis of oral fluid specimens collected from individuals participating in controlled cannabis studies and will be effective for distinguishing passive environmental contamination from active cannabis smoking. PMID:24622724

  14. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  15. Electronic Tandem Language Learning (eTandem): A Third Approach to Second Language Learning for the 21st Century

    ERIC Educational Resources Information Center

    Cziko, Gary A.

    2004-01-01

    Tandem language learning occurs when two learners of different native languages work together to help each other learn the other language. First used in face-to-face contexts, Tandem is now increasingly being used by language-learning partners located in different countries who are linked via various forms of electronic communication, a context…

  16. Graphene-Based Linear Tandem Micro-Supercapacitors with Metal-Free Current Collectors and High-Voltage Output.

    PubMed

    Shi, Xiaoyu; Wu, Zhong-Shuai; Qin, Jieqiong; Zheng, Shuanghao; Wang, Sen; Zhou, Feng; Sun, Chenglin; Bao, Xinhe

    2017-11-01

    Printable supercapacitors are regarded as a promising class of microscale power source, but are facing challenges derived from conventional sandwich-like geometry. Herein, the printable fabrication of new-type planar graphene-based linear tandem micro-supercapacitors (LTMSs) on diverse substrates with symmetric and asymmetric configuration, high-voltage output, tailored capacitance, and outstanding flexibility is demonstrated. The resulting graphene-based LTMSs consisting of 10 micro-supercapacitors (MSs) present efficient high-voltage output of 8.0 V, suggestive of superior uniformity of the entire integrated device. Meanwhile, LTMSs possess remarkable flexibility without obvious capacitance degradation under different bending states. Moreover, areal capacitance of LTMSs can be sufficiently modulated by incorporating polyaniline-based pseudocapacitive nanosheets into graphene electrodes, showing enhanced capacitance of 7.6 mF cm -2 . To further improve the voltage output and energy density, asymmetric LTMSs are fabricated through controlled printing of linear-patterned graphene as negative electrodes and MnO 2 nanosheets as positive electrodes. Notably, the asymmetric LTMSs from three serially connected MSs are easily extended to 5.4 V, triple voltage output of the single cell (1.8 V), suggestive of the versatile applicability of this technique. Therefore, this work offers numerous opportunities of graphene and analogous nanosheets for one-step scalable fabrication of flexible tandem energy storage devices integrating with printed electronics on same substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    PubMed

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  18. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts

    PubMed Central

    Krasikova, Alla

    2016-01-01

    ABSTRACT Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription. PMID:27763817

  19. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene Alkaloids from the Stems of Dendrobium nobile Using LC-QToF.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Abe, Naohito; Wei, Feng; Wang, Mei; Ma, Shuang-Cheng; Ali, Zulfiqar; Elsohly, Mahmoud A; Khan, Ikhlas A

    2016-05-01

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine. Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chromatographic methods. Herein, tandem mass spectrometry combined with liquid chromatography separation provides a tool for the identification and characterization of the alkaloids from D. nobile. A total of nine sesquiterpene alkaloids were characterized by ultrahigh-performance liquid chromatography tandem mass spectrometry. These alkaloids can be classified into two subgroups that are represented by dendrobine and nobilonine. Tandem mass spectrometric studies revealed the fragmentation pathways of these two subgroup alkaloids that were used for the identification and characterization of other alkaloids in D. nobile. Characterization of these alkaloids using accurate mass and diagnostic fragments provided a reliable methodology for the analysis of D. nobile by ultrahigh-performance liquid chromatography tandem mass spectrometry. The limit of detection was defined as the signal-to-noise ratio equal to 3 : 1. Limits of detection of dendrobine and nobilonine were less than 30 ng/mL. The developed method was applied for the analysis of various Dendrobium species and related dietary supplements. Alkaloids were identified from D. nobile, but not detected from commercial samples including 13 other Dendrobium species and the 7 dietary supplements. Georg Thieme Verlag KG Stuttgart · New York.

  20. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based... exchange carrier experiences based on the prior year's annual use. Tandem-switched transport transmission..., geographically averaged on a study-area-wide basis, that the incumbent local exchange carrier experiences based...

  1. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.

    PubMed

    Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George

    2005-04-01

    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.

  2. Four-port coupled channel-guide device based on 2D photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.

    2004-12-01

    We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.

  3. Tandem catalysis: a new approach to polymers.

    PubMed

    Robert, Carine; Thomas, Christophe M

    2013-12-21

    The creation of polymers by tandem catalysis represents an exciting frontier in materials science. Tandem catalysis is one of the strategies used by Nature for building macromolecules. Living organisms generally synthesize macromolecules by in vivo enzyme-catalyzed chain growth polymerization reactions using activated monomers that have been formed within cells during complex metabolic processes. However, these biological processes rely on highly complex biocatalysts, thus limiting their industrial applications. In order to obtain polymers by tandem catalysis, homogeneous and enzyme catalysts have played a leading role in the last two decades. In the following feature article, we will describe selected published efforts to achieve these research goals.

  4. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  5. Meta-structure and tunable optical device including the same

    DOEpatents

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry

    2017-12-26

    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  6. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  7. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry.

    PubMed

    Maslen, Sarah; Sadowski, Pawel; Adam, Alex; Lilley, Kathryn; Stephens, Elaine

    2006-12-15

    The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.

  8. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, Mark W.

    1995-01-01

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber.

  9. Monolithic multi-color light emission/detection device

    DOEpatents

    Wanlass, M.W.

    1995-02-21

    A single-crystal, monolithic, tandem, multi-color optical transceiver device is described, including (a) an InP substrate having upper and lower surfaces, (b) a first junction on the upper surface of the InP substrate, (c) a second junction on the first junction. The first junction is preferably GaInAsP of defined composition, and the second junction is preferably InP. The two junctions are lattice matched. The second junction has a larger energy band gap than the first junction. Additional junctions having successively larger energy band gaps may be included. The device is capable of simultaneous and distinct multi-color emission and detection over a single optical fiber. 5 figs.

  10. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25.

    PubMed

    Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong

    2018-06-15

    Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.

  11. TRedD—A database for tandem repeats over the edit distance

    PubMed Central

    Sokol, Dina; Atagun, Firat

    2010-01-01

    A ‘tandem repeat’ in DNA is a sequence of two or more contiguous, approximate copies of a pattern of nucleotides. Tandem repeats are common in the genomes of both eukaryotic and prokaryotic organisms. They are significant markers for human identity testing, disease diagnosis, sequence homology and population studies. In this article, we describe a new database, TRedD, which contains the tandem repeats found in the human genome. The database is publicly available online, and the software for locating the repeats is also freely available. The definition of tandem repeats used by TRedD is a new and innovative definition based upon the concept of ‘evolutive tandem repeats’. In addition, we have developed a tool, called TandemGraph, to graphically depict the repeats occurring in a sequence. This tool can be coupled with any repeat finding software, and it should greatly facilitate analysis of results. Database URL: http://tandem.sci.brooklyn.cuny.edu/ PMID:20624712

  12. A method for determining the conversion efficiency of multiple-cell photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Glatfelter, Troy; Burdick, Joseph

    A method for accurately determining the conversion efficiency of any multiple-cell photovoltaic device under any arbitrary reference spectrum is presented. This method makes it possible to obtain not only the short-circuit current, but also the fill factor, the open-circuit voltage, and hence the conversion efficiency of a multiple-cell device under any reference spectrum. Results are presented which allow a comparison of the I-V parameters of two-terminal, two- and three-cell tandem devices measured under a multiple-source simulator with the same parameters measured under different reference spectra. It is determined that the uncertainty in the conversion efficiency of a multiple-cell photovoltaic device obtained with this method is less than +/-3 percent.

  13. Influences of device structures on microstructure-correlated photovoltaic characteristics of organic solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chiao; Yang, Cheng-Chi; Tseng, Po-Tsung; Chou, Wei-Yang; Cheng, Horng-Long

    2017-02-01

    Photovoltaic characteristics of organic solar cells (OSCs) are correlated with microstructural qualities of active layers (ALs). Numerous efforts focused on improving process conditions of ALs to attain effective microstructures to achieve high-efficiency OSCs. Aside from AL process conditions, layer properties under AL can also influence microstructural qualities of AL. In this study, we adopted poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61-butyric acid methyl ester (PCBM) mixture as AL, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as hole extraction layer, and branched polyethyleneimine (BPEI) as electron extraction layer to prepare OSCs with different device structures, that is, normal type (PEDOT:PSS/P3HT:PCBM/BPEI) and inverted type (BPEI/P3HT:PCBM/PEDOT:PSS) structures. We discovered that although devices have similar layer components, they have different photovoltaic characteristics. Inverted devices demonstrated higher power conversion efficiency than normal devices. Various methods, including absorption spectroscopy and microscopy, were used to study AL microstructures of different devices. We observed that P3HT crystallites grown on BPEI had longer vertical size and shorter horizontal size compared with those grown on PEDOT:PSS; these properties could result from larger interfacial tension of P3HT with BPEI than with PEDOT:PSS. Observed shape of P3HT crystallites in inverted devices facilitated efficient charge transport to electrodes and suppressed current leakage. As a result, inverted devices generated improved photovoltaic performance.

  14. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  15. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  16. CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Wyatt K; Swanson, Drew; Reich, Carey

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less

  17. Hybrid Tandem Solar Cells | Photovoltaic Research | NREL

    Science.gov Websites

    Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research

  18. Micromachined structures for vertical microelectrooptical devices on InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seassal, C.; Leclercq, J.L.; Letartre, X.

    1996-12-31

    The authors presented a microstructuring method in order to fabricate tunable vertical resonant cavity optical devices. PL characterizations were performed on a test structure in order to evaluate the effect of the cavity thickness on the peak characteristics. Modeling of the mechanical, electrostatic, and optical behavior of the device, PL simulation were performed, and showed a good agreement with the experiments. This is a first preliminary validation of InP-based MOEMS for further realization of tunable wavelength-selective passive filters, or photodiodes and lasers by incorporating active region within the cavity. Micro-reflectivity measurements with a spatial resolution of 20 {micro}m are underwaymore » in their group, in order to measure directly the resonance shift and spectral linewidth.« less

  19. High work function transparent middle electrode for organic tandem solar cells

    NASA Astrophysics Data System (ADS)

    Moet, D. J. D.; de Bruyn, P.; Blom, P. W. M.

    2010-04-01

    The use of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) in combination with ZnO as middle electrode in solution-processed organic tandem solar cells requires a pH modification of the PEDOT:PSS dispersion. We demonstrate that this neutralization leads to a reduced work function of PEDOT:PSS, which does not affect the performance of polythiophene:fullerene solar cells, but results in a lower open-circuit voltage of devices based on a polyfluorene derivative with a higher ionization potential. The introduction of a thin layer of a perfluorinated ionomer recovers the anode work function and gives an open-circuit voltage of 1.92 V for a double junction polyfluorene-based solar cell.

  20. All solution-processed lead halide perovskite-BiVO4 tandem assembly for photolytic solar fuels production.

    PubMed

    Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V

    2015-01-21

    The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.

  1. Inverted Three-Junction Tandem Thermophotovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven

    2012-01-01

    An InGaAs-based three-junction (3J) tandem thermophotovoltaic (TPV) cell has been investigated to utilize more of the blackbody spectrum (from a 1,100 C general purpose heat source GPHS) efficiently. The tandem consists of three vertically stacked subcells, a 0.74-eV InGaAs cell, a 0.6- eV InGaAs cell, and a 0.55-eV InGaAs cell, as well as two interconnecting tunnel junctions. A greater than 20% TPV system efficiency was achieved by another group with a 1,040 C blackbody using a single-bandgap 0.6- eV InGaAs cell MIM (monolithic interconnected module) (30 lateral junctions) that delivered about 12 V/30 or 0.4 V/junction. It is expected that a three-bandgap tandem MIM will eventually have about 3 this voltage (1.15 V) and about half the current. A 4 A/cm2 would be generated by a single-bandgap 0.6-V InGaAs MIM, as opposed to the 2 A/cm2 available from the same spectrum when split among the three series-connected junctions in the tandem stack. This would then be about a 50% increase (3xVoc, 0.5xIsc) in output power if the proposed tandem replaced the single- bandgap MIM. The advantage of the innovation, if successful, would be a 50% increase in power conversion efficiency from radioisotope heat sources using existing thermophotovoltaics. Up to 50% more power would be generated for radioisotope GPHS deep space missions. This type of InGaAs multijunction stack could be used with terrestrial concentrator solar cells to increase efficiency from 41 to 45% or more.

  2. Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks

    DOE PAGES

    Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; ...

    2014-08-25

    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH 2, this catalyst (Pd@UiO-66-NH 2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found thatmore » alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.« less

  3. Numerical modelling of electromagnetic loads on fusion device structures

    NASA Astrophysics Data System (ADS)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.

  4. Integrated device architectures for electrochromic devices

    DOEpatents

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  5. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  6. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  7. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  8. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

    PubMed

    Sivula, Kevin

    2013-01-01

    Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.

  9. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats

    PubMed Central

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832

  10. Dual-function magnetic structure for toroidal plasma devices

    DOEpatents

    Brown, Robert L.

    1978-01-01

    This invention relates to a support system wherein the iron core and yoke of the plasma current system of a tokamak plasma containment device is redesigned to support the forces of the magnet coils. The containment rings, which occupy very valuable space around the magnet coils, are utilized to serve as yokes for the core such that the conventional yoke is eliminated. The overall result is an improved aspect ratio, reduction in structure, smaller overall size, and improved access to the plasma ring.

  11. TRAP: automated classification, quantification and annotation of tandemly repeated sequences.

    PubMed

    Sobreira, Tiago José P; Durham, Alan M; Gruber, Arthur

    2006-02-01

    TRAP, the Tandem Repeats Analysis Program, is a Perl program that provides a unified set of analyses for the selection, classification, quantification and automated annotation of tandemly repeated sequences. TRAP uses the results of the Tandem Repeats Finder program to perform a global analysis of the satellite content of DNA sequences, permitting researchers to easily assess the tandem repeat content for both individual sequences and whole genomes. The results can be generated in convenient formats such as HTML and comma-separated values. TRAP can also be used to automatically generate annotation data in the format of feature table and GFF files.

  12. Wide-Bandgap CIAS Thin-film Photovoltaics with Transparent Back Contacts for Next-Generation Single and Multijunction Devices

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine

    2005-01-01

    Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.

  13. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae.

    PubMed

    Albornos, Lucía; Martín, Ignacio; Iglesias, Rebeca; Jiménez, Teresa; Labrador, Emilia; Dopico, Berta

    2012-11-07

    Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40

  14. ST proteins, a new family of plant tandem repeat proteins with a DUF2775 domain mainly found in Fabaceae and Asteraceae

    PubMed Central

    2012-01-01

    Background Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats. Results ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development. Conclusions We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the

  15. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  16. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  17. TandemHeart as a Bridge to Recovery in Legionella Myocarditis.

    PubMed

    Briceño, David F; Fernando, Rajeev R; Nathan, Sriram; Loyalka, Pranav; Kar, Biswajit; Gregoric, Igor D

    2015-08-01

    Legionnaires' disease is the designation for pneumonia caused by the Legionella species. Among the rare extrapulmonary manifestations, cardiac involvement is most prevalent, in the forms of myocarditis, pericarditis, postcardiotomy syndrome, and prosthetic valve endocarditis. Mechanical circulatory support has proved to be a safe and effective bridge to myocardial recovery in patients with acute fulminant myocarditis; however, to our knowledge, this support has not been used in infectious myocarditis specifically related to Legionellosis. We describe a case of Legionella myocarditis associated with acute left ventricular dysfunction and repolarization abnormalities in a 48-year-old man. The patient fully recovered after left ventricular unloading with use of a TandemHeart percutaneous ventricular assist device. In addition, we review the English-language medical literature on Legionella myocarditis and focus on cardiac outcomes.

  18. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    PubMed Central

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-01-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs. PMID:26566176

  19. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping.

    PubMed

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-11-13

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs.

  20. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen; Nguyen, Catherine Quynh Nhu; Shiea, Christopher; Reid, Gavin E.

    2017-07-01

    Sphingolipids serve not only as components of cellular membranes but also as bioactive mediators of numerous cellular functions. As the biological activities of these lipids are dependent on their structures, and due to the limitations of conventional ion activation methods employed during tandem mass spectrometry (MS/MS), there is a recognized need for the development of improved structure-specific methods for their comprehensive identification and characterization. Here, positive-ionization mode 193 nm ultraviolet photodissociation (UVPD)-MS/MS has been implemented for the detailed structural characterization of lipid species from a range of sphingolipid classes introduced to the mass spectrometer via electrospray ionization as their lithiated or protonated adducts. These include sphingosine d18:1(4E), dihydrosphingosine (sphinganine) d18:0, sphingadiene d18:2(4E,11Z), the isomeric sphingolipids ceramide d18:1(4E)/18:0 and dihydroceramide d18:0/18:1(9Z), ceramide-1-phosphate d18:1(4Z)/16:0, sphingomyelin d18:1(4E)/18:1(9Z) the glycosphingolipids galactosyl ceramide d18:1(4E)/24:1(15Z) and lactosyl ceramide d18:1(4E)/24:0, and several endogenous lipids present within a porcine brain total lipid extract. In addition to the product ions formed by higher energy collision dissociation (HCD), UVPD is shown to yield a series of novel structurally diagnostic product ions resulting from cleavage of both sphingosine carbon-carbon and acyl chain carbon-carbon double bonds for direct localization of site(s) of unsaturation, as well as via diagnostic cleavages of the sphingosine backbone and N-C amide bond linkages. With activation timescales and dissociation efficiencies similar to those found in conventional MS/MS strategies, this approach is therefore a promising new tool in the arsenal of ion activation techniques toward providing complete structural elucidation in automated, high-throughput lipid analysis workflows.

  1. Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices

    NASA Astrophysics Data System (ADS)

    Han, Soo; Ji, Seungmuk; Abdullah, Abdullah; Kim, Duckil; Lim, Hyuneui; Lee, Donghyun

    2018-01-01

    Bacterial biofilm formation on optical devices such as contact lenses, optical glasses, endoscopic devices, and microscopic slides and lenses are major concerns in the field of medicine and biomedical engineering. To solve these problems, here we present the first report of superhydrophilic transparent nanopillar-structured surfaces with bactericidal properties. To construct bactericidal surfaces, we imitated a topological mechanism found in nature in which nanopillar-structured surfaces cause a mechanical disruption of the outer cell membranes of bacteria, resulting in bacterial cell death. We used nanosphere lithography to fabricate nanopillars with various sharpnesses and heights on a quartz substrate. Water contact angle and light reflectance measurements revealed superhydrophilic, antifogging and antireflective properties, which are important for use in optical devices. To determine bactericidal efficiency, the fabricated surfaces were incubated and tested against two Gram-negative bacteria associated with biofilm formation and various diseases in humans, Pseudomonas aeruginosa and Escherichia coli. The highest bactericidal activity was achieved with nanopillars that measured 300 nm in height and 10 nm in apex diameter. Quartz substrates patterned with such nanopillars killed ∼38,000 P. aeruginosa and ∼27,000 E. coli cells cm-2 min-1, respectively. Thus, the newly designed nanopillar-structured bactericidal surfaces are suitable for use in the development of superhydrophilic and transparent optical devices.

  2. An Automated, High-Throughput Method for Interpreting the Tandem Mass Spectra of Glycosaminoglycans

    NASA Astrophysics Data System (ADS)

    Duan, Jiana; Jonathan Amster, I.

    2018-05-01

    The biological interactions between glycosaminoglycans (GAGs) and other biomolecules are heavily influenced by structural features of the glycan. The structure of GAGs can be assigned using tandem mass spectrometry (MS2), but analysis of these data, to date, requires manually interpretation, a slow process that presents a bottleneck to the broader deployment of this approach to solving biologically relevant problems. Automated interpretation remains a challenge, as GAG biosynthesis is not template-driven, and therefore, one cannot predict structures from genomic data, as is done with proteins. The lack of a structure database, a consequence of the non-template biosynthesis, requires a de novo approach to interpretation of the mass spectral data. We propose a model for rapid, high-throughput GAG analysis by using an approach in which candidate structures are scored for the likelihood that they would produce the features observed in the mass spectrum. To make this approach tractable, a genetic algorithm is used to greatly reduce the search-space of isomeric structures that are considered. The time required for analysis is significantly reduced compared to an approach in which every possible isomer is considered and scored. The model is coded in a software package using the MATLAB environment. This approach was tested on tandem mass spectrometry data for long-chain, moderately sulfated chondroitin sulfate oligomers that were derived from the proteoglycan bikunin. The bikunin data was previously interpreted manually. Our approach examines glycosidic fragments to localize SO3 modifications to specific residues and yields the same structures reported in literature, only much more quickly.

  3. Alpha particle confinement in tandem mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devoto, R.S.; Ohnishi, M.; Kerns, J.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  4. Hierarchical structural health monitoring system combining a fiber optic spinal cord network and distributed nerve cell devices

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo

    2009-03-01

    This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.

  5. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  6. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  7. Single-task and dual-task tandem gait test performance after concussion.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2017-07-01

    To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  9. Novel product ions of 2-aminoanilide and benzimidazole Ag(I) complexes using electrospray ionization with multi-stage tandem mass spectrometry.

    PubMed

    Johnson, Byron S; Burinsky, David J; Burova, Svetlana A; Davis, Roman; Fitzgerald, Russ N; Matsuoka, Richard T

    2012-05-15

    The 2-aminoaniline scaffold is of significant value to the pharmaceutical industry and is embedded in a number of pharmacophores including 2-aminoanilides and benzimidazoles. A novel application of coordination ion spray mass spectrometry (CIS-MS) for interrogating the silver ion (Ag(+)) complexes of a homologous series of these compounds using multi-stage tandem mass spectrometry is described. Unlike the ubiquitous alkali metal ion complexes, Ag(+) complexes of 2-aminoanilides and benzimidazoles were found to yield [M - H](+) ions in significant abundance via gas-phase elimination of the metal hydride (AgH) resulting in unique product ion cascades. Sample introduction was by liquid chromatography with mass spectrometry analysis performed on a hybrid linear ion trap/orbitrap instrument capable of high-resolution measurements. Rigorous structural characterization by multi-stage tandem mass spectrometry using [M +  H](+), [M - H](-) and [M - H](+) precursor ions derived from ESI and CIS experiments was performed for the homologous series of 2-aminoanilide and benzimidazole compounds. A full tabular comparison of structural information resulting from these product ion cascades was produced. Multi-stage tandem mass spectrometry of [M - H](+) ions resulting from Ag(+) complexes of 2-aminoanilides and benzimidazoles in CIS-MS experiments produced unique product ion cascades that exhibited complementary structural information to that obtained from tandem mass spectrometry of [M  +  H](+) and [M - H](-) ions by electrospray ionization (ESI). These observations may be broadly applicable to other compounds that are observed to form Ag(+) complexes and eliminate AgH. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  11. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    NASA Astrophysics Data System (ADS)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  12. Negotiating Multiple Identities through eTandem Learning Experiences

    ERIC Educational Resources Information Center

    Yang, Se Jeong; Yi, Youngjoo

    2017-01-01

    Much of eTandem research has investigated either linguistic or cross-cultural aspects of second language (L2) learning, but relatively little is known about issues of identity construction in an eTandem context. Situating the study within theories and research of language learner identity, we examined ways in which two adult L2 learners (a Korean…

  13. Flow analysis for efficient design of wavy structured microchannel mixing devices

    NASA Astrophysics Data System (ADS)

    Kanchan, Mithun; Maniyeri, Ranjith

    2018-04-01

    Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.

  14. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  15. Research on structural design and test technologies for a three-chamber launching device

    NASA Astrophysics Data System (ADS)

    Jun, Wu; Qiushi, Yan; Ling, Xiao; Tieshuan, Zhuang; Chengyu, Yang

    2016-07-01

    A three-chamber launching device with improved acceleration is proposed and developed. As indicated by the damage generated during the pill and engineering protection tests, the proposed device is applicable as a high-speed launching platform for pills of different shapes and quality levels. Specifically, it can be used to investigate kinetic energy weapons and their highly destructive effects due to the resulting large bomb fragments. In the horizontal direction of the barrel, two auxiliary chambers are set at a certain distance from the main chamber. When the pill reaches the mouth of the auxiliary chambers, the charges in the auxiliary chambers are ignited by the high-temperature, high-pressure combustible gas trailing the pill. The combustible gas in the auxiliary chambers can resist the rear pressure of the pill and thus maintain the high pressure of the pill base. In this way, the required secondary acceleration of the pill is met. The proposed device features the advantage of launching a pill with high initial velocity under low bore pressure. Key techniques are proposed in the design of the device to address the problems related to the angle between the main chamber axis and the ancillary chamber axis, the overall design of a three-chamber barrel, the structural design of auxiliary propellant charge, the high-pressure combustible gas sealing technology, and the sabot and belt design. Results from the launching test verify the reasonable design of this device and its reliable structural sealing. Additionally, the stiffness and the strength of the barrel meet design requirements. Compared with the single-chamber launching device with the same caliber, the proposed device increases the average launching velocity by approximately 15% and the amount of muzzle kinetic energy by approximately 35%. Therefore, this equipment is capable of carrying out small-caliber, high-speed pill firing tests.

  16. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  17. Graphene device and method of using graphene device

    DOEpatents

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  18. Influence of N-type μc-SiOx:H intermediate reflector and top cell material properties on the electrical performance of "micromorph" tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chatterjee, P.; Roca i Cabarrocas, P.

    2018-01-01

    Amorphous silicon (a-Si:H) / micro-crystalline silicon (μc-Si:H), "micromorph" tandem solar cells have been investigated using a detailed electrical - optical model. Although such a tandem has good light absorption over the entire visible spectrum, the a-Si:H top cell suffers from strong light-induced degradation (LID). To improve matters, we have replaced a-Si:H by hydrogenated polymorphous silicon (pm-Si:H), a nano-structured silicon thin film with lower LID than a-Si:H. But the latter's low current carrying capacity necessitates a thicker top cell for current-matching, again leading to LID problems. The solution is to introduce a suitable intermediate reflector (IR) at the junction between the sub-cells, to concentrate light of the shorter visible wavelengths into the top cell. Here we assess the suitability of N-type micro-crystalline silicon oxide (μc-SiOx:H) as an IR. The sensitivity of the solar cell performance to the complex refractive index, thickness and texture of such a reflector is studied. We conclude that N-μc-SiOx:H does concentrate light into the top sub-cell, thus reducing its required thickness for current-matching. However the IR also reflects light right out of the device; so that the initial efficiency suffers. The advantage of such an IR is ultimately seen in the stabilized state since the LID of a thin top cell is low. We also find that for high stabilized efficiencies, the IR should be flat (having no texture of its own). Our study indicates that we may expect to reach 15% stable tandem micromorph efficiency.

  19. Structure of a radiate pseudocolony associated with an intrauterine contraceptive device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.

    Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin.

  20. Rule-based interface generation on mobile devices for structured documentation.

    PubMed

    Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef

    2014-01-01

    In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.

  1. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    PubMed

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  2. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  3. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  4. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.

  5. Recombinant Expression of Tandem-HBc Virus-Like Particles (VLPs).

    PubMed

    Stephen, Sam L; Beales, Lucy; Peyret, Hadrien; Roe, Amy; Stonehouse, Nicola J; Rowlands, David J

    2018-01-01

    The hepatitis B virus (HBV) core protein (HBc) has formed the building block for virus-like particle (VLP) production for more than 30 years. The ease of production of the protein, the robust ability of the core monomers to dimerize and assemble into intact core particles, and the strong immune responses they elicit when presenting antigenic epitopes all demonstrate its promise for vaccine development (reviewed in Pumpens and Grens (Intervirology 44: 98-114, 2001)). HBc has been modified in a number of ways in attempts to expand its potential as a novel vaccine platform. The HBc protein is predominantly α-helical in structure and folds to form an L-shaped molecule. The structural subunit of the HBc particle is a dimer of monomeric HBc proteins which together form an inverted T-shaped structure. In the assembled HBc particle the four-helix bundle formed at each dimer interface appears at the surface as a prominent "spike." The tips of the "spikes" are the preferred sites for the insertion of foreign sequences for vaccine purposes as they are the most highly exposed regions of the assembled particles. In the tandem-core modification two copies of the HBc protein are covalently linked by a flexible amino acid sequence which allows the fused dimer to fold correctly and assemble into HBc particles. The advantage of the modified structure is that the assembly of the dimeric subunits is defined and not formed by random association. This facilitates the introduction of single, larger sequences at the tip of each surface "spike," thus overcoming the conformational clashes contingent on insertion of large structures into monomeric HBc proteins.Differences in inserted sequences influence the assembly characteristics of the modified proteins, and it is important to optimize the design of each novel construct to maximize efficiency of assembly into regular VLPs. In addition to optimization of the construct, the expression system used can also influence the ability of

  6. Theoretical studies on a TeO2/ZnO/diamond-layered structure for zero TCD SAW devices

    NASA Astrophysics Data System (ADS)

    Dewan, Namrata; Sreenivas, K.; Gupta, Vinay

    2008-08-01

    High-frequency surface acoustic wave (SAW) devices based on diamond substrate are useful because of their very high SAW velocity. In the present work, SAW propagation characteristics, such as phase velocity, coupling coefficient and temperature coefficient of delay (TCD) of a TeO2/ZnO/diamond-layered structure, are examined using theoretical calculations. The ZnO/diamond bi-layer structure is found to exhibit a high positive TCD value. A zero TCD device structure is obtained after integration with a TeO2 over layer having a negative TCD value. Introduction of a non-piezoelectric TeO2 over layer on the bi-layer structure (ZnO/diamond) increases the coupling coefficient. A relatively low thickness of TeO2 thin film (~(1.6-3.1) × 10-3λ) is required to achieve temperature-stable SAW devices based on diamond.

  7. Monitoring Bilingualism: Pedagogical Implications of the Bilingual Tandem Analyser

    ERIC Educational Resources Information Center

    Schwienhorst, Klaus; Borgia, Alexandre

    2006-01-01

    Tandem learning is the collaborative learning partnership of two language learners with complementary language combinations, for example an Irish student learning German and a German student learning English. One of the major principles in tandem learning, apart from reciprocity and learner autonomy, is balanced bilingualism. While learners may…

  8. The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    PubMed Central

    Fridh, Veronica; Rittinger, Katrin

    2012-01-01

    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564

  9. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    PubMed

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  11. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  12. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  13. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  14. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  15. Gas Chromatography-Tandem Mass Spectrometry of Lignin Pyrolyzates with Dopant-Assisted Atmospheric Pressure Chemical Ionization and Molecular Structure Search with CSI:FingerID

    NASA Astrophysics Data System (ADS)

    Larson, Evan A.; Hutchinson, Carolyn P.; Lee, Young Jin

    2018-06-01

    Dopant-assisted atmospheric pressure chemical ionization (dAPCI) is a soft ionization method rarely used for gas chromatography-mass spectrometry (GC-MS). The current study combines GC-dAPCI with tandem mass spectrometry (MS/MS) for analysis of a complex mixture such as lignin pyrolysis analysis. To identify the structures of volatile lignin pyrolysis products, collision-induced dissociation (CID) MS/MS using a quadrupole time-of-flight mass spectrometer (QTOFMS) and pseudo MS/MS through in-source collision-induced dissociation (ISCID) using a single stage TOFMS are utilized. To overcome the lack of MS/MS database, Compound Structure Identification (CSI):FingerID is used to interpret CID spectra and predict best matched structures from PubChem library. With this approach, a total of 59 compounds were positively identified in comparison to only 22 in NIST database search of GC-EI-MS dataset. This study demonstrates the effectiveness of GC-dAPCI-MS/MS to overcome the limitations of traditional GC-EI-MS analysis when EI-MS database is not sufficient. [Figure not available: see fulltext.

  16. rTANDEM, an R/Bioconductor package for MS/MS protein identification.

    PubMed

    Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud

    2014-08-01

    rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Multi-junction Thin-film Solar Cells on Flexible Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Smith, Mark; Scofield, John H.; Dickman, John E.; Lush, Gregory B.; Morel, Donald L.; Ferekides, Christos; Dhere, Neelkanth G.

    2002-01-01

    The ultimate objective of the thin-film program at NASA GRC is development of a 20 percent AM0 thin-film device technology with high power/weight ratio. Several approaches are outlined to improve overall device efficiency and power/weight ratio. One approach involves the use of very lightweight flexible substrates such as polyimides (i.e., Kapton(Trademark)) or metal foil. Also, a compound semiconductor tandem device structure that can meet this objective is proposed and simulated using Analysis of Microelectronic and Photonic Structures (AMPS). AMPS modeling of current devices in tandem format indicate that AM0 efficiencies near 20 percent can be achieved. And with improvements in materials, efficiencies approaching 25 percent are achievable. Several important technical issues need to be resolved to realize these complex devices: development of a wide bandgap material with good electronic properties, development of transparent contacts, and targeting a 2-terminal device structure (with more complicated processing and tunnel junction) or 4-terminal device. Recent progress in the NASA GRC program is outlined.

  18. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  19. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE PAGES

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...

    2017-10-24

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  20. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  1. Full color organic light-emitting devices with microcavity structure and color filter.

    PubMed

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  2. Economic viability of thin-film tandem solar modules in the United States

    NASA Astrophysics Data System (ADS)

    Sofia, Sarah E.; Mailoa, Jonathan P.; Weiss, Dirk N.; Stanbery, Billy J.; Buonassisi, Tonio; Peters, I. Marius

    2018-05-01

    Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II-VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US per watt (US W-1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US W-1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

  3. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    PubMed

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  4. Theoretical discovery of stable structures of group III-V monolayers: The materials for semiconductor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tatsuo, E-mail: dr.tatsuosuzuki@gmail.com

    Group III-V compounds are very important as the materials of semiconductor devices. Stable structures of the monolayers of group III-V binary compounds have been discovered by using first-principles calculations. The primitive unit cell of the discovered structures is a rectangle, which includes four group-III atoms and four group-V atoms. A group-III atom and its three nearest-neighbor group-V atoms are placed on the same plane; however, these connections are not the sp{sup 2} hybridization. The bond angles around the group-V atoms are less than the bond angle of sp{sup 3} hybridization. The discovered structure of GaP is an indirect transition semiconductor,more » while the discovered structures of GaAs, InP, and InAs are direct transition semiconductors. Therefore, the discovered structures of these compounds have the potential of the materials for semiconductor devices, for example, water splitting photocatalysts. The discovered structures may become the most stable structures of monolayers which consist of other materials.« less

  5. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain.

    PubMed

    Wu, R; Wilton, R; Cuff, M E; Endres, M; Babnigg, G; Edirisinghe, J N; Henry, C S; Joachimiak, A; Schiffer, M; Pokkuluri, P R

    2017-04-01

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from Lake Retba, in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously, and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes but have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport. © 2017 The Protein Society.

  6. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  7. Tandem Repeated Irritation Test (TRIT) Studies and Clinical Relevance: Post 2006.

    PubMed

    Reddy, Rasika; Maibach, Howard

    2018-06-11

    Single or multiple applications of irritants can lead to occupational contact dermatitis, and most commonly irritant contact dermatitis (ICD). Tandem irritation, the sequential application of two irritants to a target skin area, has been studied using the Tandem Repeated Irritation Test (TRIT) to provide a more accurate representation of skin irritation. Here we present an update to Kartono's review on tandem irritation studies since 2006 [1]. We surveyed the literature available on PubMed, Embase, Google Scholar, and the UCSF Dermatology library databases since 2006. The studies included discuss the tandem effects of common chemical irritants, organic solvents, occlusion as well as clinical relevance - and enlarge our ability to discern whether multiple chemical exposures are more or less likely to enhance irritation.

  8. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides.

    PubMed

    Santra, Pralay K; Kamat, Prashant V

    2013-01-16

    Photon management in solar cells is an important criterion as it enables the capture of incident visible and infrared photons in an efficient way. Highly luminescent CdSeS quantum dots (QDs) with a diameter of 4.5 nm were prepared with a gradient structure that allows tuning of absorption and emission bands over the entire visible region without varying the particle size. These crystalline ternary cadmium chalcogenides were deposited within a mesoscopic TiO(2) film by electrophoretic deposition with a sequentially-layered architecture. This approach enabled us to design tandem layers of CdSeS QDs of varying band gap within the photoactive anode of a QD solar cell (QDSC). An increase in power conversion efficiency of 1.97-2.81% with decreasing band gap was observed for single-layer CdSeS, thus indicating varying degrees of photon harvesting. In two- and three-layered tandem QDSCs, we observed maximum power conversion efficiencies of 3.2 and 3.0%, respectively. These efficiencies are greater than the values obtained for the three individually layered photoanodes. The synergy of using tandem layers of the ternary semiconductor CdSeS in QDSCs was systematically evaluated using transient spectroscopy and photoelectrochemistry.

  9. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  10. Binding symmetry of extracellular divalent cations to conduction pore studied using tandem dimers of a CNG channel.

    PubMed

    Kwon, Ryuk-Jun; Ha, Tal Soo; Kim, Wonjae; Park, Chul-Seung

    2002-11-08

    Cyclic nucleotide-gated (CNG) channels are composed of the tetramer of alpha-subunit alone or alpha- and beta-subunits. The alpha-subunits of these channels have a conserved glutamate (Glu) residue within the pore-forming region and the residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high-affinity mutant (E363D) of bovine retinal CNG channel in which the Glu at position 363 was replaced to Asp, we constructed tandem dimers and investigated the binding characteristics of divalent cations to the site. The gating and permeation characteristics of individual homomeric tandem dimers are indistinguishable to those of homo-tetramers formed by parental monomers. The heteromeric tandem dimers showed the binding affinity for Sr(2+) identical to the geometric mean of the affinities for two parent channels, indicating the energy additive and thus the simultaneous interaction. On the other hand, the binding affinity for Mg(2+) followed the harmonic mean of those parent channels indicating that Mg(2+) interacts more strongly with the subunit bearing Asp residue at the position. Thus the results strongly suggest that the Glu363 residues in the CNG channel pore be flexible enough to adapt different binding symmetries for different divalent cations. Moreover, the simultaneous interaction between the four Glu residues and Sr(2+) provides an important structural constraint to the CNG channel outer vestibule of unknown structure.

  11. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  12. Device and nondestructive method to determine subsurface micro-structure in dense materials

    DOEpatents

    Sun, Jiangang [Westmont, IL

    2006-05-09

    A method and a device to detect subsurface three-dimensional micro-structure in a sample by illuminating the sample with light of a given polarization and detecting light emanating from the sample that has a different direction of polarization by means of a confocal optical system.

  13. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.

    PubMed

    Wang, Dong Hwan; Kyaw, Aung Ko Ko; Park, Jong Hyeok

    2015-01-01

    We demonstrate that reproducible results can be obtained from tandem solar cells based on the wide-bandgap poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and the diketopyrrolopyrrole (DPP)-based narrow bandgap polymer (DT-PDPP2T-TT) with a decyltetradecyl (DT) and an electron-rich 2,5-di-2-thienylthieno[3,2-b]thiophene (2T-TT) group fabricated using an optimized interlayer (ZnO NPs/ph-n-PEDOT:PSS) [NPs: nanoparticles; ph-n: pH-neutral PEDOT: poly(3,4-ethylenedioxythiophene); PSS: polystyrene sulfonate]. The tandem cells are fabricated by applying a simple process without thermal annealing. The ZnO NP interlayer operates well when the ZnO NPs are dispersed in 2-methoxyethanol, as no precipitation and chemical reactions occur. In addition to the ZnO NP film, we used neutral PEDOT:PSS as a second interlayer which is not affect to the sequential deposited bulk heterojunction (BHJ) active layer of acidification. The power conversion efficiency (PCE) of a tandem device reaches 7.4 % (open-circuit voltage VOC =1.53 V, short-circuit current density JSC =7.3 mA cm(-2) , and fill factor FF=67 %). Furthermore, FF is increased to up to 71 % when another promising large bandgap (bandgap ∼1.94 eV) polymer (PBnDT-FTAZ) is used. The surface of each layer with nanoscale morphology (BHJ1/ZnO NPs film/ph-n-PEDOT:PSS/BHJ2) was examined by means of AFM analysis during sequential processing. The combination of these factors, efficient DPP-based narrow bandgap material and optimized interlayer, leads to the high FF (average approaches 70 %) and reproducibly operating tandem BHJ solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Polymorphic loci and polymorphism analysis of short tandem repeats within XNP gene].

    PubMed

    Liu, Qi-Ji; Gong, Yao-Qin; Guo, Chen-Hong; Chen, Bing-Xi; Li, Jiang-Xia; Guo, Yi-Shou

    2002-01-01

    To select polymorphic short tandem repeat markers within X-linked nuclear protein (XNP) gene, genomic clones which contain XNP gene were recognized by homologous analysis with XNP cDNA. By comparing the cDNA with genomic DNA, non-exonic sequences were identified, and short tandem repeats were selected from non-exonic sequences by using BCM search Launcher. Polymorphisms of the short tandem repeats in Chinese population were evaluated by PCR amplification and PAGE. Five short tandem repeats were identified from XNP gene, two of which were polymorphic. Four and 11 alleles were observed in Chinese population for XNPSTR1 and XNPSTR4, respectively. Heterozygosities were 47% for XNPSTR1 and 70% for XNPSTR4. XNPSTR1 and XNPSTR4 localized within 3' end and intron 10, respectively. Two polymorphic short tandem repeats have been identified within XNP gene and will be useful for linkage analysis and gene diagnosis of XNP gene.

  15. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  16. Correction to: Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate

    NASA Astrophysics Data System (ADS)

    Oyler, Benjamin L.; Khan, Mohd M.; Smith, Donald F.; Harberts, Erin M.; Kilgour, David P. A.; Ernst, Robert K.; Cross, Alan S.; Goodlett, David R.

    2018-04-01

    In the preceding article "Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate" by Oyler et al., an error in the J5 E. coli LPS chemical structure (Figs. 2 and 4) was introduced and propagated into the final revision.

  17. From screen to structure with a harvestable microfluidic device.

    PubMed

    Stojanoff, Vivian; Jakoncic, Jean; Oren, Deena A; Nagarajan, V; Poulsen, Jens-Christian Navarro; Adams-Cioaba, Melanie A; Bergfors, Terese; Sommer, Morten O A

    2011-08-01

    Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines.

  18. Investigation of superlattice device structures

    NASA Technical Reports Server (NTRS)

    Gergis, I. S.; Manasevit, H. M.; Lin, A. L.; Jones, A. B.

    1985-01-01

    This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film

  19. Characterization of solution-phase and gas-phase reactions in on-line electrochemistry-thermospray tandem mass spectrometry.

    PubMed

    Volk, K J; Yost, R A; Brajter-Toth, A

    1989-07-14

    Electrochemistry was used on-line with high-performance liquid chromatography-thermospray tandem mass spectrometry to provide insight into the solution-phase decomposition reactions of electrochemically generated oxidation products. Products formed during electrooxidation were monitored as the electrode potential was varied. The solution reactions which follow the initial electron transfer at the electrode are affected by the vaporizer tip temperature of the thermospray probe and the composition of the thermospray buffer. Either hydrolysis or ammonolysis reactions of the initial electrochemical oxidation products can occur with pH 7 ammonium acetate buffer. Both the electrochemically generated and the synthesized disulfide of 6-thiopurine decompose under thermospray conditions to produce 6-thiopurine and purine-6-sulfinate. Solution-phase studies indicate that nucleophilic and electrophilic substitution reactions with purine-6-sulfinate result in the formation of purine, adenine, and hypoxanthine. Products were identified and characterized by tandem mass spectrometry. This work shows the first example of high-performance liquid chromatography used on-line with electrochemistry to separate stable oxidation products prior to analysis by thermospray tandem mass spectrometry. In addition, solution-phase and gas-phase studies with methylamine show that the site of the nucleophilic and electrophilic reactions is probably inside the thermospray probe. Most importantly, these results also show that the on-line combination of electrochemistry with thermospray tandem mass spectrometry provides valuable information about redox and associated chemical reactions of biological molecules such as the structures of intermediates or products as well as providing insight into reaction pathways.

  20. Transcription of tandemly repetitive DNA: functional roles.

    PubMed

    Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco

    2015-09-01

    A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.

  1. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    PubMed

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  2. Electrical and optical analyses of tandem organic light-emitting diodes with organic charge-generation layer

    NASA Astrophysics Data System (ADS)

    Kim, Bong Sung; Chae, Heeyeop; Chung, Ho Kyoon; Cho, Sung Min

    2018-06-01

    The electrical and optical properties of tandem organic light-emitting diodes (OLEDs), in which a fluorescent and phosphorescent emitting units are connected by an organic charge-generation layer (CGL), were experimentally analyzed. To investigate the internal properties of the tandem OLEDs, we fabricated and compared two single, two homo-tandem, and two hetero-tandem OLEDs using the fluorescent and phosphorescent units. From the experimental results of the OLEDs obtained at the same current density, the voltage across the CGL as well as the individual emission spectra and luminance of each unit of tandem OLEDs were obtained and compared with the theoretical simulation results. The analysis method proposed in this study can be utilized as a method to verify the accuracy of optical or electrical computer simulation of tandem OLED and it will be useful to understand the overall electrical and optical characteristics of tandem OLEDs.

  3. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  4. A versatile digitally-graded buffer structure for metamorphic device applications

    NASA Astrophysics Data System (ADS)

    Ma, Yingjie; Zhang, Yonggang; Chen, Xingyou; Gu, Yi; Shi, Yanhui; Ji, Wanyan; Du, Ben

    2018-04-01

    Exploring more effective buffer schemes for mitigating dislocation deficiencies is the key technology towards higher performance metamorphic devices. Here we demonstrate a versatile metamorphic grading structure consisting of 38-period alternated multilayers of In0.52Al0.48As and In0.82Al0.18As on InP substrate, thicknesses of which in each period were gradually varied in opposite directions from 48.7 and 1.3 nm to 1.3 and 48.7 nm, respectively, akin to a digital alloy. Both preferentially dislocation nucleation and blocking of threading dislocation transmission are observed near the In0.82Al0.18As/In0.52Al0.48As interfaces, which help relax the strain and lower the residual defect density. A 2.6 μm In0.83Ga0.17As pin photodetector is fabricated on this pseudo-substrate, attaining a low dark current density of 2.9  ×  10‑6 A cm‑2 and a high detectivity of 1.8  ×  1010 cmHz1/2W‑1 at room temperature, comparable with the states of the art that on linearly-graded buffer layers. These results indicate such digitally-graded buffer structures are promising for enhancing performances of metamorphic devices, and can be easily generalized to other lattice-mismatched material systems.

  5. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, Christophe; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, Ji; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, Catherine D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  6. TandEM: Titan and Enceladus mission

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Atreya, S. K.; Balint, T.; Brown, R. H.; Dougherty, M. K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R. A.; Griffith, C. A.; Gurvits, L. I.; Jaumann, R.; Langevin, Y.; Leese, M. R.; Lunine, J. I.; McKay, C. P.; Moussas, X.; Müller-Wodarg, I.; Neubauer, F.; Owen, T. C.; Raulin, F.; Sittler, E. C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E. P.; Wahlund, J.-E.; Waite, J. H.; Baines, K. H.; Blamont, J.; Coates, A. J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R. D.; Morse, A.; Porco, C. C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J. C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D. H.; Bénilan, Y.; Bertucci, C.; Bézard, B.; Bjoraker, G. L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M. T.; Chassefière, E.; Coll, P.; Combes, M.; Cooper, J. F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I. A.; de Angelis, E.; de Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F. M.; Fortes, A. D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Küppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le Mouélic, S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T. A.; Lopes, R. M.; Lopez-Moreno, J.-J.; Luz, D.; Mahaffy, P. R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Menor Salvan, C.; Milillo, A.; Mitchell, D. G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C. D.; Nixon, C. A.; Nna Mvondo, D.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F. T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Ruiz Bermejo, M.; Sarris, E. T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L. J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D. F.; Szego, K.; Szopa, C.; Thissen, R.; Tomasko, M. G.; Toublanc, D.; Vali, H.; Vardavas, I.; Vuitton, V.; West, R. A.; Yelle, R.; Young, E. F.

    2009-03-01

    TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfière) and possibly several landing probes to be delivered through the atmosphere.

  7. Electron-irradiated two-terminal, monolithic InP/Ga0.47In0.53As tandem solar cells and annealing of radiation damage

    NASA Technical Reports Server (NTRS)

    Cotal, H. L.; Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.

    1994-01-01

    Radiation damage results from two-terminal monolithic InP/Ga(0.47)In(0.53)As tandem solar cells subject to 1 MeV electron irradiation are presented. Efficiencies greater than 22 percent have been measured by the National Renewable Energy Laboratory from 2x2 sq cm cells at 1 sun, AMO (25 C). The short circuit current density, open circuit voltage and fill factor are found to tolerate the same amount of radiation at low fluences. At high fluence levels, slight differences are observed. Decreasing the base amount of radiation at the Ga(0.47)In(0.53)As bottomcell improved the radiation resistance of J(sub sc) dramatically. This is turn, extended the series current flow through the subcell substantially up to a fluence of 3x10(exp 15) cm(exp -2) compared to 3x10(exp 14) cm(exp -2), as observed previously. The degradation of the maximum power output form tandem device is comparable to that from shallow homojunction (SHJ) InP solar cells, and the mechanism responsible for such degradation is explained in terms of the radiation response of the component cells. Annealing studies revealed that the recovery of the tandem cell response is dictated by the annealing characteristics exhibited by SHJ InP solar cells.

  8. Tandem microwave waste remediation and decontamination system

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  9. Optimizing a tandem disk model

    NASA Astrophysics Data System (ADS)

    Healey, J. V.

    1983-08-01

    The optimum values of the solidity ratio, tip speed ratio (TSR), and the preset angle of attack, the corresponding distribution, and the breakdown mechanism for a tandem disk model for a crosswind machine such as a Darrieus are examined analytically. Equations are formulated for thin blades with zero drag in consideration of two plane rectangular disks, both perpendicular to the wind flow. Power coefficients are obtained for both disks and comparisons are made between a single-disk system and a two-disk system. The power coefficient for the tandem disk model is shown to be a sum of the coefficients of the individual disks, with a maximum value of twice the Betz limit at an angle of attack of -1 deg and the TSR between 4-7. The model, applied to the NACA 0012 profile, gives a maximum power coefficient of 0.967 with a solidity ratio of 0.275 and highly limited ranges for the angle of attack and TSR.

  10. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  11. Dynamics of tandem bubble interaction in a microfluidic channel

    PubMed Central

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-01-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay. PMID:22088007

  12. Dynamics of tandem bubble interaction in a microfluidic channel.

    PubMed

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-11-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800  ×  21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.

  13. Collision-induced dissociative chemical cross-linking reagents and methodology: Applications to protein structural characterization using tandem mass spectrometry analysis.

    PubMed

    Soderblom, Erik J; Goshe, Michael B

    2006-12-01

    Chemical cross-linking combined with mass spectrometry is a viable approach to study the low-resolution structure of protein and protein complexes. However, unambiguous identification of the residues involved in a cross-link remains analytically challenging. To enable a more effective analysis across various MS platforms, we have developed a novel set of collision-induced dissociative cross-linking reagents and methodology for chemical cross-linking experiments using tandem mass spectrometry (CID-CXL-MS/MS). These reagents incorporate a single gas-phase cleavable bond within their linker region that can be selectively fragmented within the in-source region of the mass spectrometer, enabling independent MS/MS analysis for each peptide. Initial design concepts were characterized using a synthesized cross-linked peptide complex. Following verification and subsequent optimization of cross-linked peptide complex dissociation, our reagents were applied to homodimeric glutathione S-transferase and monomeric bovine serum albumin. Cross-linked residues identified by our CID-CXL-MS/MS method were in agreement with published crystal structures and previous cross-linking studies using conventional approaches. Common LC/MS/MS acquisition approaches such as data-dependent acquisition experiments using ion trap mass spectrometers and product ion spectral analysis using SEQUEST were shown to be compatible with our CID-CXL-MS/MS reagents, obviating the requirement for high resolution and high mass accuracy measurements to identify both intra- and interpeptide cross-links.

  14. Screenable contact structure and method for semiconductor devices

    DOEpatents

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  15. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  16. Simulation of two dimensional electrophoresis and tandem mass spectrometry for teaching proteomics.

    PubMed

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations-2D electrophoresis and tandem mass spectrometry. The two simulations are integrated together and are designed to teach the concept of proteome analysis of prokaryotic and eukaryotic organisms. 2DE-Tandem MS can be used as a freestanding simulation, or in conjunction with a wet lab, to introduce proteomics in the undergraduate classroom. 2DE Tandem MS is a free program available on Sourceforge at https://sourceforge.net/projects/jbf/. It was developed using Java Swing and functions in Mac OSX, Windows, and Linux, ensuring that every student sees a consistent and informative graphical user interface no matter the computer platform they choose. Java must be installed on the host computer to run 2DE Tandem MS. Example classroom exercises are provided in the Supporting Information. Copyright © 2012 Wiley Periodicals, Inc.

  17. Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia: a study of the structural properties of three soft tissue fixation devices.

    PubMed

    Bailey, Shana B; Grover, Dustin M; Howell, Stephen M; Hull, Maury L

    2004-01-01

    Because there is an insufficient supply of young human knees, an alternative is needed for evaluating anterior cruciate ligament reconstructions. The authors determined whether an elderly human tibia reinforced with foam is a better substitute for a young human tibia than a porcine tibia in this study of the tibialfixation of a soft tissue anterior cruciate ligament graft using 3 devices. A foam-reinforced elderly human tibia more closely approximates the performance of a young human tibia than porcine tibia. Biomechanical study. Failure mode, stiffness, yield, and slippage were determined for a double-looped tendon graft fixed with either an interference screw, WasherLoc, or tandem washers in young human tibiae, foam-reinforced tibiae from elderly humans, and porcine tibiae. The stiffness and yield of interference screw and WasherLoc fixation in foam-reinforced tibiae more closely approximate those in young human tibiae than in porcine tibiae. Slippage of all combinations of tibiae and fixation devices was similar A foam-reinforced human tibia more closely approximates the performance of a young human tibia than that of porcine tibia in this study. Fixation devices should be tested in foam-reinforced tibiae from elderly humans rather than tibiae from large farm animals when the supply of young human knees is insufficient.

  18. Mobility Device Quality Affects Participation Outcomes for People With Disabilities: A Structural Equation Modeling Analysis.

    PubMed

    Magasi, Susan; Wong, Alex; Miskovic, Ana; Tulsky, David; Heinemann, Allen W

    2018-01-01

    To test the effect that indicators of mobility device quality have on participation outcomes in community-dwelling adults with spinal cord injury, traumatic brain injury, and stroke by using structural equation modeling. Survey, cross-sectional study, and model testing. Clinical research space at 2 academic medical centers and 1 free-standing rehabilitation hospital. Community-dwelling adults (N=250; mean age, 48±14.3y) with spinal cord injury, traumatic brain injury, and stroke. Not applicable. The Mobility Device Impact Scale, Patient-Reported Outcomes Measurement Information System Social Function (version 2.0) scale, including Ability to Participate in Social Roles and Activities and Satisfaction with Social Roles and Activities, and the 2 Community Participation Indicators' enfranchisement scales. Details about device quality (reparability, reliability, ease of maintenance) and device type were also collected. Respondents used ambulation aids (30%), manual (34%), and power wheelchairs (30%). Indicators of device quality had a moderating effect on participation outcomes, with 3 device quality variables (repairability, ease of maintenance, device reliability) accounting for 20% of the variance in participation. Wheelchair users reported lower participation enfranchisement than did ambulation aid users. Mobility device quality plays an important role in participation outcomes. It is critical that people have access to mobility devices and that these devices be reliable. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Fast atom bombardment tandem mass spectrometry of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Breeman, R.B.; Schmitz, H.H.; Schwartz, S.J.

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenesmore » formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.« less

  20. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  1. Photovoltaic device

    DOEpatents

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  2. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  3. Design and long-term monitoring of DSC/CIGS tandem solar module

    NASA Astrophysics Data System (ADS)

    Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.

    2015-11-01

    This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.

  4. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.

    PubMed

    Park, Jin-Sung; Kim, Kyoung-Ho; Hwang, Min-Soo; Zhang, Xing; Lee, Jung Min; Kim, Jungkil; Song, Kyung-Deok; No, You-Shin; Jeong, Kwang-Yong; Cahoon, James F; Kim, Sun-Kyung; Park, Hong-Gyu

    2017-12-13

    We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si 3 N 4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si 3 N 4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.

  5. De novo protein sequencing by combining top-down and bottom-up tandem mass spectra.

    PubMed

    Liu, Xiaowen; Dekker, Lennard J M; Wu, Si; Vanduijn, Martijn M; Luider, Theo M; Tolić, Nikola; Kou, Qiang; Dvorkin, Mikhail; Alexandrova, Sonya; Vyatkina, Kira; Paša-Tolić, Ljiljana; Pevzner, Pavel A

    2014-07-03

    There are two approaches for de novo protein sequencing: Edman degradation and mass spectrometry (MS). Existing MS-based methods characterize a novel protein by assembling tandem mass spectra of overlapping peptides generated from multiple proteolytic digestions of the protein. Because each tandem mass spectrum covers only a short peptide of the target protein, the key to high coverage protein sequencing is to find spectral pairs from overlapping peptides in order to assemble tandem mass spectra to long ones. However, overlapping regions of peptides may be too short to be confidently identified. High-resolution mass spectrometers have become accessible to many laboratories. These mass spectrometers are capable of analyzing molecules of large mass values, boosting the development of top-down MS. Top-down tandem mass spectra cover whole proteins. However, top-down tandem mass spectra, even combined, rarely provide full ion fragmentation coverage of a protein. We propose an algorithm, TBNovo, for de novo protein sequencing by combining top-down and bottom-up MS. In TBNovo, a top-down tandem mass spectrum is utilized as a scaffold, and bottom-up tandem mass spectra are aligned to the scaffold to increase sequence coverage. Experiments on data sets of two proteins showed that TBNovo achieved high sequence coverage and high sequence accuracy.

  6. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  7. Physics of Quantum Structures in Photovoltaic Devices

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  8. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry.

    PubMed

    Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui

    2016-06-24

    In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Structural design of graphene for use in electrochemical energy storage devices.

    PubMed

    Chen, Kunfeng; Song, Shuyan; Liu, Fei; Xue, Dongfeng

    2015-10-07

    There are many practical challenges in the use of graphene materials as active components in electrochemical energy storage devices. Graphene has a much lower capacitance than the theoretical capacitance of 550 F g(-1) for supercapacitors and 744 mA h g(-1) for lithium ion batteries. The macroporous nature of graphene limits its volumetric energy density and the low packing density of graphene-based electrodes prevents its use in commercial applications. Increases in the capacity, energy density and power density of electroactive graphene materials are strongly dependent on their microstructural properties, such as the number of defects, stacking, the use of composite materials, conductivity, the specific surface area and the packing density. The structural design of graphene electrode materials is achieved via six main strategies: the design of non-stacking and three-dimensional graphene; the synthesis of highly packed graphene; the production of graphene with a high specific surface area and high conductivity; the control of defects; functionalization with O, N, B or P heteroatoms; and the formation of graphene composites. These methodologies of structural design are needed for fast electrical charge storage/transfer and the transport of electrolyte ions (Li(+), H(+), K(+), Na(+)) in graphene electrodes. We critically review state-of-the-art progress in the optimization of the electrochemical performance of graphene-based electrode materials. The structure of graphene needs to be designed to develop novel electrochemical energy storage devices that approach the theoretical charge limit of graphene and to deliver electrical energy rapidly and efficiently.

  10. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry.

    PubMed

    Przybylski, Cédric; Benito, Juan M; Bonnet, Véronique; Mellet, Carmen Ortiz; García Fernández, José M

    2016-12-15

    Polycationic carbohydrates represent an attractive class of biomolecules for several applications and particularly as non viral gene delivery vectors. In this case, the establishment of structure-biological activity relationship requires sensitive and accurate characterization tools to both control and achieve fine structural deciphering. Electrospray-tandem mass spectrometry (ESI-MS/MS) appears as a suitable approach to address these questions. In the study herein, we have investigated the usefulness of electron transfer dissociation (ETD) to get structural data about five polycationic carbohydrates demonstrated as promising gene delivery agents. A particular attention was paid to determine the influence of charge states as well as both fluoranthene reaction time and supplementary activation (SA) on production of charge reduced species, fragmentation yield, varying from 2 to 62%, as well as to obtain the most higher both diversity and intensity of fragments, according to charge states and targeted compounds. ETD fragmentation appeared to be mainly directed toward pending group rather than carbohydrate cyclic scaffold leading to a partial sequencing for building blocks when amino groups are close to carbohydrate core, but allowing to complete structural deciphering of some of them, such as those including dithioureidocysteaminyl group which was not possible with CID only. Such findings clearly highlight the potential to help the rational choice of the suitable analytical conditions, according to the nature of the gene delivery molecules exhibiting polycationic features. Moreover, our ETD-MS/MS approach open the way to a fine sequencing/identification of grafted groups carried on various sets of oligo-/polysaccharides in various fields such as glycobiology or nanomaterials, even with unknown or questionable extraction, synthesis or modification steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems

    NASA Astrophysics Data System (ADS)

    Babaei, Saman

    This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.

  12. Application of I-structure though-glass interconnect filled with submicron gold particles to a hermetic sealing device

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okada, Akiko; Shoji, Shuichi; Ogashiwa, Toshinori; Mizuno, Jun

    2016-10-01

    We propose hermetic sealing of a glass-to-glass structure with an I-structure through-glass interconnect via (TGV) filled with submicron Au particles. The top and bottom bumps and the TGV were formed by a simple filling process with a bump-patterned dry film resist. The sealing devices consisting of two glass substrates were bonded via Au interlayers. Vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment was used for low-temperature Au-Au bonding at 200 °C. The bonded samples showed He leakage rates of less than 1.3  ×  10-9 Pa m3 s-1. The cross-sectional scanning electron microscope images of the fabricated I-structure TGV showed perfect adhesion between the I-structure TGV and glass substrate. These results indicate that the proposed I-structure TGV is suitable for hermetic sealing devices.

  13. Design, development, mechanistic elucidation, and rational optimization of a tandem Ireland Claisen/Cope rearrangement reaction for rapid access to the (iso)cyclocitrinol core.

    PubMed

    Plummer, Christopher W; Wei, Carolyn S; Yozwiak, Carrie E; Soheili, Arash; Smithback, Sara O; Leighton, James L

    2014-07-16

    An approach to the synthesis of the (iso)cyclocitrinol core structure is described. The key step is a tandem Ireland Claisen/Cope rearrangement sequence, wherein the Ireland Claisen rearrangement effects ring contraction to a strained 10-membered ring, and that strain in turn drives the Cope rearrangement under unusually mild thermal conditions. A major side product was identified as resulting from an unexpected and remarkably facile [1,3]-sigmatropic rearrangement, and a tactic to disfavor the [1,3] pathway and increase the efficiency of the tandem reaction was rationally devised.

  14. Structural characterization of trace stilbene glycosides in Lysidice brevicalyx Wei using liquid chromatography/diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Hu, Youcai; Qu, Jing; Liu, Yuanyan; Yu, Shishan; Li, Jianbei; Zhang, Jinlan; Du, Dan

    2010-01-01

    The mass fragmentation patterns of stilbene glycosides isolated from the genus Lysidice were investigated by negative ion electrospray ionization tandem mass spectrometry, and the influence of collision energy on their fragmentation behavior is discussed. It is found that the presence of the Y(0)(-) and B(0)(-) ions in the MS(2) spectra is characteristic for 1-->6 linked diglycosyl stilbenes, while the Y(0)(-), Y(1)(-), and Z(1)(-) ions are representative ions of 1-->2 linked diglycosyl stilbenes. These results indicate that ESI-MS(n) in the negative ion mode can be used to differentiate 1-->6 and 1-->2 linked diglycosyl stilbenes. Based on the fragmentation rules, 9 new trace constituents were identified or tentatively characterized in a fraction of Lysidice brevicalyx by using HPLC/HRMS and HPLC-DAD/ESI-MS(n). The results of the present study can assist in on-line structural identification of analogous constituents and targeted isolation of novel compounds from crude plant extracts.

  15. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  16. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  17. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria.

    PubMed

    Ilag, Leopold L; Videler, Hortense; McKay, Adam R; Sobott, Frank; Fucini, Paola; Nierhaus, Knud H; Robinson, Carol V

    2005-06-07

    Ribosomes are universal translators of the genetic code into protein and represent macromolecular structures that are asymmetric, often heterogeneous, and contain dynamic regions. These properties pose considerable challenges for modern-day structural biology. Despite these obstacles, high-resolution x-ray structures of the 30S and 50S subunits have revealed the RNA architecture and its interactions with proteins for ribosomes from Thermus thermophilus, Deinococcus radiodurans, and Haloarcula marismortui. Some regions, however, remain inaccessible to these high-resolution approaches because of their high conformational dynamics and potential heterogeneity, specifically the so-called L7/L12 stalk complex. This region plays a vital role in protein synthesis by interacting with GTPase factors in translation. Here, we apply tandem MS, an approach widely applied to peptide sequencing for proteomic applications but not previously applied to MDa complexes. Isolation and activation of ions assigned to intact 30S and 50S subunits releases proteins S6 and L12, respectively. Importantly, this process reveals, exclusively while attached to ribosomes, a phosphorylation of L12, the protein located in multiple copies at the tip of the stalk complex. Moreover, through tandem MS we discovered a stoichiometry for the stalk protuberance on Thermus thermophilus and other thermophiles and contrast this assembly with the analogous one on ribosomes from mesophiles. Together with evidence for a potential interaction with the degradosome, these results show that important findings on ribosome structure, interactions, and modifications can be discovered by tandem MS, even on well studied ribosomes from Thermus thermophilus.

  18. Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria

    PubMed Central

    Ilag, Leopold L.; Videler, Hortense; McKay, Adam R.; Sobott, Frank; Fucini, Paola; Nierhaus, Knud H.; Robinson, Carol V.

    2005-01-01

    Ribosomes are universal translators of the genetic code into protein and represent macromolecular structures that are asymmetric, often heterogeneous, and contain dynamic regions. These properties pose considerable challenges for modern-day structural biology. Despite these obstacles, high-resolution x-ray structures of the 30S and 50S subunits have revealed the RNA architecture and its interactions with proteins for ribosomes from Thermus thermophilus, Deinococcus radiodurans, and Haloarcula marismortui. Some regions, however, remain inaccessible to these high-resolution approaches because of their high conformational dynamics and potential heterogeneity, specifically the so-called L7/L12 stalk complex. This region plays a vital role in protein synthesis by interacting with GTPase factors in translation. Here, we apply tandem MS, an approach widely applied to peptide sequencing for proteomic applications but not previously applied to MDa complexes. Isolation and activation of ions assigned to intact 30S and 50S subunits releases proteins S6 and L12, respectively. Importantly, this process reveals, exclusively while attached to ribosomes, a phosphorylation of L12, the protein located in multiple copies at the tip of the stalk complex. Moreover, through tandem MS we discovered a stoichiometry for the stalk protuberance on Thermus thermophilus and other thermophiles and contrast this assembly with the analogous one on ribosomes from mesophiles. Together with evidence for a potential interaction with the degradosome, these results show that important findings on ribosome structure, interactions, and modifications can be discovered by tandem MS, even on well studied ribosomes from Thermus thermophilus. PMID:15923259

  19. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins

    PubMed Central

    Peyret, Hadrien; Gehin, Annick; Thuenemann, Eva C.; Blond, Donatienne; El Turabi, Aadil; Beales, Lucy; Clarke, Dean; Gilbert, Robert J. C.; Fry, Elizabeth E.; Stuart, David I.; Holmes, Kris; Stonehouse, Nicola J.; Whelan, Mike; Rosenberg, William; Lomonossoff, George P.; Rowlands, David J.

    2015-01-01

    The core protein of the hepatitis B virus, HBcAg, assembles into highly immunogenic virus-like particles (HBc VLPs) when expressed in a variety of heterologous systems. Specifically, the major insertion region (MIR) on the HBcAg protein allows the insertion of foreign sequences, which are then exposed on the tips of surface spike structures on the outside of the assembled particle. Here, we present a novel strategy which aids the display of whole proteins on the surface of HBc particles. This strategy, named tandem core, is based on the production of the HBcAg dimer as a single polypeptide chain by tandem fusion of two HBcAg open reading frames. This allows the insertion of large heterologous sequences in only one of the two MIRs in each spike, without compromising VLP formation. We present the use of tandem core technology in both plant and bacterial expression systems. The results show that tandem core particles can be produced with unmodified MIRs, or with one MIR in each tandem dimer modified to contain the entire sequence of GFP or of a camelid nanobody. Both inserted proteins are correctly folded and the nanobody fused to the surface of the tandem core particle (which we name tandibody) retains the ability to bind to its cognate antigen. This technology paves the way for the display of natively folded proteins on the surface of HBc particles either through direct fusion or through non-covalent attachment via a nanobody. PMID:25830365

  20. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  1. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  2. Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices

    NASA Astrophysics Data System (ADS)

    Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.

    2016-12-01

    Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC

  3. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  4. Determination of phospholipid regiochemistry by Ag(I) adduction and tandem mass spectrometry.

    PubMed

    Yoo, Hyun Ju; Håkansson, Kristina

    2011-02-15

    Collision-activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of Ag-adducted phospholipids were investigated as structural tools. Previously, determination of the acyl chains at the two phospholipid esterification sites has been performed based on the R(1)COO(-)/R(2)COO(-) ratio in negative ion mode CAD tandem mass spectrometry. However, the observed product ion ratio is dependent on the extent of unsaturation of the fatty acyl group at sn-2 as well as on the total chain length. Similarly, in positive ion mode CAD with/without alkaline or alkaline earth metal adduction, the ratio of product ions resulting from either R(1)COOH or R(2)COOH neutral losses is dependent on the nature of the phospholipid polar headgroup. Ag(+) ion chromatography, in which silver ions are part of the stationary phase, can provide information on double bond number/distribution as well as double bond configuration (cis/trans) because of interaction between Ag(+) ions and olefinic π electrons of fatty acids and lipids. We hypothesized that interactions between double bonds and Ag(+) may be utilized to also reveal phospholipid esterification site information in tandem mass spectrometry. CAD and IRMPD of Ag-adducted phospholipids with unsaturated fatty acids (R(x)COOH, x = 1 or 2) provided characteristic product ions, [R(x)COOH + Ag](+), and their neutral losses. The characteristic product ions and their abundances do not depend on the type of polar headgroup or the number of double bonds of unsaturated acyl chains. Tandem mass spectrometry of Cu-adducted phospholipids was also performed for comparison based on the Lewis acid and base properties of Cu(+) and phospholipid double bonds, respectively.

  5. Applying Tandem Mass Spectral Libraries for Solving the Critical Assessment of Small Molecule Identification (CASMI) LC/MS Challenge 2012

    PubMed Central

    Oberacher, Herbert

    2013-01-01

    The “Critical Assessment of Small Molecule Identification” (CASMI) contest was aimed in testing strategies for small molecule identification that are currently available in the experimental and computational mass spectrometry community. We have applied tandem mass spectral library search to solve Category 2 of the CASMI Challenge 2012 (best identification for high resolution LC/MS data). More than 230,000 tandem mass spectra part of four well established libraries (MassBank, the collection of tandem mass spectra of the “NIST/NIH/EPA Mass Spectral Library 2012”, METLIN, and the ‘Wiley Registry of Tandem Mass Spectral Data, MSforID’) were searched. The sample spectra acquired in positive ion mode were processed. Seven out of 12 challenges did not produce putative positive matches, simply because reference spectra were not available for the compounds searched. This suggests that to some extent the limited coverage of chemical space with high-quality reference spectra is still a problem encountered in tandem mass spectral library search. Solutions were submitted for five challenges. Three compounds were correctly identified (kanamycin A, benzyldiphenylphosphine oxide, and 1-isopropyl-5-methyl-1H-indole-2,3-dione). In the absence of any reference spectrum, a false positive identification was obtained for 1-aminoanthraquinone by matching the corresponding sample spectrum to the structurally related compounds N-phenylphthalimide and 2-aminoanthraquinone. Another false positive result was submitted for 1H-benz[g]indole; for the 1H-benz[g]indole-specific sample spectra provided, carbazole was listed as the best matching compound. In this case, the quality of the available 1H-benz[g]indole-specific reference spectra was found to hamper unequivocal identification. PMID:24957994

  6. Enhancement of the Device Performance and the Stability with a Homojunction-structured Tungsten Indium Zinc Oxide Thin Film Transistor.

    PubMed

    Park, Hyun-Woo; Song, Aeran; Choi, Dukhyun; Kim, Hyung-Jun; Kwon, Jang-Yeon; Chung, Kwun-Bum

    2017-09-14

    Tungsten-indium-zinc-oxide thin-film transistors (WIZO-TFTs) were fabricated using a radio frequency (RF) co-sputtering system with two types of source/drain (S/D)-electrode material of conducting WIZO (homojunction structure) and the indium-tin oxide (ITO) (heterojunction structure) on the same WIZO active-channel layer. The electrical properties of the WIZO layers used in the S/D electrode and the active-channel layer were adjusted through oxygen partial pressure during the deposition process. To explain enhancements of the device performance and stability of the homojunction-structured WIZO-TFT, a systematic investigation of correlation between device performance and physical properties at the interface between the active layer and the S/D electrodes such as the contact resistance, surface/interfacial roughness, interfacial-trap density, and interfacial energy-level alignments was conducted. The homojunction-structured WIZO-TFT exhibited a lower contact resistance, smaller interfacial-trap density, and flatter interfacial roughness than the WIZO-TFT with the heterojunction structure. The 0.09 eV electron barrier of the homojunction-structured WIZO-TFT is lower than the 0.21 eV value that was obtained for the heterojunction-structured WIZO-TFT. This reduced electron barrier may be attributed to enhancements of device performance and stability, that are related to the carrier transport.

  7. Interplay between Interfacial Structures and Device Performance in Organic Solar Cells: A Case Study with the Low Work Function Metal, Calcium.

    PubMed

    Ju, Huanxin; Knesting, Kristina M; Zhang, Wei; Pan, Xiao; Wang, Chia-Hsin; Yang, Yaw-Wen; Ginger, David S; Zhu, Junfa

    2016-01-27

    A better understanding of how interfacial structure affects charge carrier recombination would benefit the development of highly efficient organic photovoltaic (OPV) devices. In this paper, transient photovoltage (TPV) and charge extraction (CE) measurements are used in combination with synchrotron radiation photoemission spectroscopy (SRPES) to gain insight into the correlation between interfacial properties and device performance. OPV devices based on PCDTBT/PC71BM with a Ca interlayer were studied as a reference system to investigate the interfacial effects on device performance. Devices with a Ca interlayer exhibit a lower recombination than devices with only an Al cathode at a given charge carrier density (n). In addition, the interfacial band structures indicate that the strong dipole moment produced by the Ca interlayer can facilitate the extraction of electrons and drive holes away from the cathode/polymer interface, resulting in beneficial reduction in interfacial recombination losses. These results help explain the higher efficiencies of devices made with Ca interlayers compared to that without the Ca interlayer.

  8. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli.

    PubMed

    Li, Mingji; Wang, Junshu; Geng, Yanping; Li, Yikui; Wang, Qian; Liang, Quanfeng; Qi, Qingsheng

    2012-02-06

    For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs) in tandem. Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.

  9. Single-Use Poly(etheretherketone) Solid-Phase Microextraction-Transmission Mode Devices for Rapid Screening and Quantitation of Drugs of Abuse in Oral Fluid and Urine via Direct Analysis in Real-Time Tandem Mass Spectrometry.

    PubMed

    Vasiljevic, Tijana; Gómez-Ríos, Germán Augusto; Pawliszyn, Janusz

    2018-01-02

    The analysis of oral fluid (OF) and urine samples to detect drug consumption has garnered considerable attention as alternative biomatrices. Efficient implementation of microextraction and ambient ionization technologies for rapid detection of target compounds in such biomatrices creates a need for biocompatible devices which can be implemented for in vivo sampling and easily interfaced with mass spectrometry (MS) analyzers. This study introduces a novel solid-phase microextraction-transmission mode (SPME-TM) device made of poly(etheretherketone) (PEEK) mesh that can rapidly detect prohibited substances in biofluids via direct analysis in real-time tandem MS (DART-MS/MS). PEEK mesh was selected due to its biocompatibility, excellent resistance to various organic solvents, and its ability to withstand relatively high temperatures (≤350 °C). The meshes were coated with hydrophilic-lipophilic-balance particle-poly(acrylonitrile) (HLB-PAN) slurry. The robustness of the coated meshes was tested by performing rapid vortex agitation (≥3200 rpm) in LC/MS-grade solvents and by exposing them to the DART source jet stream at typical operational temperatures (∼250-350 °C). PEEK SPME-TM devices proved to be robust and were therefore used to perform ex vivo analysis of drugs of abuse spiked in urine and OF samples. Excellent results were obtained for all analytes under study; furthermore, the tests yielded satisfactory limits of quantitation (median, ∼0.5 ng mL -1 ), linearity (≥0.99), and accuracy (80-120%) over the evaluated range (0.5-200 ng mL -1 ). This research highlights plastic SPME-TM's potential usefulness as a method for rapidly screening for prohibited substances in on-site/in vivo scenarios, such as roadside or workplace drug testing, antidoping controls, and pain management programs.

  10. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution.

    PubMed

    Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L

    2013-01-30

    Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.

  11. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution

    PubMed Central

    2013-01-01

    Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705

  12. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  14. C70/C70:pentacene/pentacene organic heterojunction as the connecting layer for high performance tandem organic light-emitting diodes: Mechanism investigation of electron injection and transport

    NASA Astrophysics Data System (ADS)

    Guo, Qingxun; Yang, Dezhi; Chen, Jiangshan; Qiao, Xianfeng; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge

    2017-03-01

    A high performance tandem organic light-emitting diode (OLED) is realized by employing a C70/C70:pentacene/pentacene organic heterojunction as the efficient charge generation layer (CGL). Not only more than two time enhancement of external quantum efficiency but also significant improvement in both power efficiency and lifetime are well achieved. The mechanism investigations find that the electron injection from the CGL to the adjacent electron transport layer (ETL) in tandem devices is injection rate-limited due to the high interface energy barrier between the CGL and the ETL. By the capacitance-frequency (C-F) and low temperature current density-voltage (J-V) characteristic analysis, we confirm that the electron transport is a space-charge-limited current process with exponential trap distribution. These traps are localized states below the lowest unoccupied molecular orbital edge inside the gap and would be filled with the upward shift of the Fermi level during the n-doping process. Furthermore, both the trap density (Ht) and the activation energy (Ea) could be carefully worked out through low temperature J-V measurements, which is very important for developing high performance tandem OLEDs.

  15. Peptide Identification by Database Search of Mixture Tandem Mass Spectra*

    PubMed Central

    Wang, Jian; Bourne, Philip E.; Bandeira, Nuno

    2011-01-01

    In high-throughput proteomics the development of computational methods and novel experimental strategies often rely on each other. In certain areas, mass spectrometry methods for data acquisition are ahead of computational methods to interpret the resulting tandem mass spectra. Particularly, although there are numerous situations in which a mixture tandem mass spectrum can contain fragment ions from two or more peptides, nearly all database search tools still make the assumption that each tandem mass spectrum comes from one peptide. Common examples include mixture spectra from co-eluting peptides in complex samples, spectra generated from data-independent acquisition methods, and spectra from peptides with complex post-translational modifications. We propose a new database search tool (MixDB) that is able to identify mixture tandem mass spectra from more than one peptide. We show that peptides can be reliably identified with up to 95% accuracy from mixture spectra while considering only a 0.01% of all possible peptide pairs (four orders of magnitude speedup). Comparison with current database search methods indicates that our approach has better or comparable sensitivity and precision at identifying single-peptide spectra while simultaneously being able to identify 38% more peptides from mixture spectra at significantly higher precision. PMID:21862760

  16. Tandem betatron

    DOEpatents

    Keinigs, Rhonald K.

    1992-01-01

    Two betatrons are provided in tandem for alternately accelerating an electron beam to avoid the single flux swing limitation of conventional betatrons and to accelerate the electron beam to high energies. The electron beam is accelerated in a first betatron during a period of increasing magnetic flux. The eletron beam is extracted from the first betatron as a peak magnetic flux is reached and then injected into a second betatron at a time of minimum magnetic flux in the second betatron. The cycle may be repeated until the desired electron beam energy is obtained. In one embodiment, the second betatron is axially offset from the first betatron to provide for electron beam injection directly at the axial location of the beam orbit in the second betatron.

  17. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.

    PubMed

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D

    2013-09-03

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.

  18. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  19. Fabrication of micro- and nanometre-scale polymer structures in liquid crystal devices for next generation photonics applications

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-09-01

    Direct Laser Writing (DLW) by two-photon photopolymerization (TPP) enables the fabrication of micron-scale polymeric structures in soft matter systems. The technique has implications in a broad range of optics and photonics; in particular fast-switching liquid crystal (LC) modes for the development of next generation display technologies. In this paper, we report two different methodologies using our TPP-based fabrication technique. Two explicit examples are provided of voltage-dependent LC director profiles that are inherently unstable, but which appear to be promising candidates for fast-switching photonics applications. In the first instance, 1 μm-thick periodic walls of polymer network are written into a planar aligned (parallel rubbed) nematic pi-cell device containing a nematic LC-monomer mixture. The structures are fabricated when the device is electrically driven into a fast-switching nematic LC state and aberrations induced by the device substrates are corrected for by virtue of the adaptive optics elements included within the DLW setup. Optical polarizing microscopy images taken post-fabrication reveal that polymer walls oriented perpendicular to the rubbing direction promote the stability of the so-called optically compensated bend mode upon removal of the externally applied field. In the second case, polymer walls are written in a nematic LC-optically adhesive glue mixture. A polymer- LCs-polymer-slices or `POLICRYPS' template is formed by immersing the device in acetone post-fabrication to remove any remaining non-crosslinked material. Injecting the resultant series of polymer microchannels ( 1 μm-thick) with a short-pitch, chiral nematic LC mixture leads to the spontaneous alignment of a fast-switching chiral nematic mode, where the helical axis lies parallel to the glass substrates. Optimal contrast between the bright and dark states of the uniform lying helix alignment is achieved when the structures are spaced at the order of the device thickness

  20. MS2Analyzer: A Software for Small Molecule Substructure Annotations from Accurate Tandem Mass Spectra

    PubMed Central

    2015-01-01

    Systematic analysis and interpretation of the large number of tandem mass spectra (MS/MS) obtained in metabolomics experiments is a bottleneck in discovery-driven research. MS/MS mass spectral libraries are small compared to all known small molecule structures and are often not freely available. MS2Analyzer was therefore developed to enable user-defined searches of thousands of spectra for mass spectral features such as neutral losses, m/z differences, and product and precursor ions from MS/MS spectra in MSP/MGF files. The software is freely available at http://fiehnlab.ucdavis.edu/projects/MS2Analyzer/. As the reference query set, 147 literature-reported neutral losses and their corresponding substructures were collected. This set was tested for accuracy of linking neutral loss analysis to substructure annotations using 19 329 accurate mass tandem mass spectra of structurally known compounds from the NIST11 MS/MS library. Validation studies showed that 92.1 ± 6.4% of 13 typical neutral losses such as acetylations, cysteine conjugates, or glycosylations are correct annotating the associated substructures, while the absence of mass spectra features does not necessarily imply the absence of such substructures. Use of this tool has been successfully demonstrated for complex lipids in microalgae. PMID:25263576

  1. Solution structure and function of the "tandem inactivation domain" of the neuronal A-type potassium channel Kv1.4.

    PubMed

    Wissmann, Ralph; Bildl, Wolfgang; Oliver, Dominik; Beyermann, Michael; Kalbitzer, Hans-Robert; Bentrop, Detlef; Fakler, Bernd

    2003-05-02

    Cumulative inactivation of voltage-gated (Kv) K(+) channels shapes the presynaptic action potential and determines timing and strength of synaptic transmission. Kv1.4 channels exhibit rapid "ball-and-chain"-type inactivation gating. Different from all other Kvalpha subunits, Kv1.4 harbors two inactivation domains at its N terminus. Here we report the solution structure and function of this "tandem inactivation domain" using NMR spectroscopy and patch clamp recordings. Inactivation domain 1 (ID1, residues 1-38) consists of a flexible N terminus anchored at a 5-turn helix, whereas ID2 (residues 40-50) is a 2.5-turn helix made up of small hydrophobic amino acids. Functional analysis suggests that only ID1 may work as a pore-occluding ball domain, whereas ID2 most likely acts as a "docking domain" that attaches ID1 to the cytoplasmic face of the channel. Deletion of ID2 slows inactivation considerably and largely impairs cumulative inactivation. Together, the concerted action of ID1 and ID2 may promote rapid inactivation of Kv1.4 that is crucial for the channel function in short term plasticity.

  2. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOEpatents

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  3. N-Glycan Structure Annotation of Glycopeptides Using a Linearized Glycan Structure Database (GlyDB)

    PubMed Central

    Ren, Jian Min; Rejtar, Tomas; Li, Lingyun; Karger, Barry L.

    2008-01-01

    While glycoproteins are abundant in nature, and changes in glycosylation occur in cancer and other diseases, glycoprotein characterization remains a challenge due to the structural complexity of the biopolymers. This paper presents a general strategy, termed GlyDB, for glycan structure annotation of N-linked glycopeptides from tandem mass spectra in the LC-MS analysis of proteolytic digests of glycoproteins. The GlyDB approach takes advantage of low-energy collision induced dissociation of N-linked glycopeptides that preferentially cleaves the glycosidic bonds while the peptide backbone remains intact. A theoretical glycan structure database derived from biosynthetic rules for N-linked glycans was constructed employing a novel representation of branched glycan structures consisting of multiple linear sequences. The commonly used peptide identification program, Sequest, could then be utilized to assign experimental tandem mass spectra to individual glycoforms. Analysis of synthetic glycopeptides and well-characterized glycoproteins demonstrate that the GlyDB approach can be a useful tool for annotation of glycan structures and for selection of a limited number of potential glycan structure candidates for targeted validation. PMID:17625816

  4. Photoelectrochemical devices for solar water splitting - materials and challenges.

    PubMed

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  5. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L.

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less

  6. Better load-weight distribution is needed for tandem-axle logging trucks

    Treesearch

    John E. Baumgras

    1976-01-01

    To determine the GVW and axle weights of tandem-axle logging trucks hauling into two West Virginia sawmills, 543 truckloads of hardwood sawlogs were weighed. The results showed that less than 2 percent of the truckloads exceeded the 48,000 pound GVW limit. While 58 percent of the truckloads exceeded the 32,000 pound tandem-axle weight limit, the front-axle weights...

  7. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  8. A Silicon–Singlet Fission Tandem Solar Cell Exceeding 100% External Quantum Efficiency with High Spectral Stability

    PubMed Central

    2017-01-01

    After 60 years of research, silicon solar cell efficiency saturated close to the theoretical limit, and radically new approaches are needed to further improve the efficiency. The use of tandem systems raises this theoretical power conversion efficiency limit from 34% to 45%. We present the advantageous spectral stability of using voltage-matched tandem solar cells with respect to their traditional series-connected counterparts and experimentally demonstrate how singlet fission can be used to produce simple voltage-matched tandems. Our singlet fission silicon–pentacene tandem solar cell shows efficient photocurrent addition. This allows the tandem system to benefit from carrier multiplication and to produce an external quantum efficiency exceeding 100% at the main absorption peak of pentacene. PMID:28261671

  9. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  10. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry

    PubMed Central

    Sanz, Miriam; Andreote, Ana Paula Dini; Fiore, Marli Fatima; Dörr, Felipe Augusto; Pinto, Ernani

    2015-01-01

    Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.). PMID:26096276

  11. Impeller tandem blade study with grid embedding for local grid refinement

    NASA Technical Reports Server (NTRS)

    Bache, George

    1992-01-01

    Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.

  12. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  13. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE PAGES

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang; ...

    2017-03-06

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  14. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.

    PubMed

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-08

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.

  15. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wei, Juan; Costello, Catherine E.; Lin, Cheng

    2018-04-01

    The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. [Figure not available: see fulltext.

  16. Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics

    ERIC Educational Resources Information Center

    Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul

    2012-01-01

    In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…

  17. An approach for configuring space photovoltaic tandem arrays based on cell layer performance

    NASA Technical Reports Server (NTRS)

    Flora, C. S.; Dillard, P. A.

    1991-01-01

    Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.

  18. Monolithic tandem solar cell

    DOEpatents

    Wanlass, M.W.

    1994-06-21

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

  19. Monolithic tandem solar cell

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

  20. Electric field control of ferromagnetism at room temperature in GaCrN (p-i-n) device structures

    NASA Astrophysics Data System (ADS)

    El-Masry, N. A.; Zavada, J. M.; Reynolds, J. G.; Reynolds, C. L.; Liu, Z.; Bedair, S. M.

    2017-08-01

    We have demonstrated a room temperature dilute magnetic semiconductor based on GaCrN epitaxial layers grown by metalorganic chemical vapor deposition. Saturation magnetization Ms increased when the GaCrN film is incorporated into a (p-GaN/i-GaCrN/n-GaN) device structure, due to the proximity of mediated holes present in the p-GaN layer. Zero field cooling and field cooling were measured to ascertain the absence of superparamagnetic behavior in the films. A (p-GaN/i-GaCrN/n-GaN) device structure with room temperature ferromagnetic (FM) properties that can be controlled by an external applied voltage has been fabricated. In this work, we show that the applied voltage controls the ferromagnetic properties, by biasing the (p-i-n) structure. With forward bias, ferromagnetism in the GaCrN layer was increased nearly 4 fold of the original value. Such an enhancement is due to carrier injection of holes into the Cr deep level present in the i-GaCrN layer. A "memory effect" for the FM behavior of the (p-i-n) GaCrN device structure persisted for 42 h after the voltage bias was turned off. These measurements also support that the observed ferromagnetism in the GaCrN film is not due to superparamagnetic clusters but instead is a hole-mediated phenomenon.

  1. 47 CFR 69.713 - Common line, traffic-sensitive, and tandem-switched transport services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-switched transport services. 69.713 Section 69.713 Telecommunication FEDERAL COMMUNICATIONS COMMISSION..., traffic-sensitive, and tandem-switched transport services. (a) Scope. This paragraph governs requests for...)(2) of this chapter. (3) The traffic-sensitive components of tandem-switched transport services, as...

  2. 47 CFR 69.713 - Common line, traffic-sensitive, and tandem-switched transport services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-switched transport services. 69.713 Section 69.713 Telecommunication FEDERAL COMMUNICATIONS COMMISSION..., traffic-sensitive, and tandem-switched transport services. (a) Scope. This paragraph governs requests for...)(2) of this chapter. (3) The traffic-sensitive components of tandem-switched transport services, as...

  3. Studies of the Lateral-Directional Flying Qualities of a Tandem Helicopter in Forward Flight

    NASA Technical Reports Server (NTRS)

    Amer, Kenneth B; Tapscott, Robert J

    1954-01-01

    An investigation of the lateral-directional flying qualities of a tandem-rotor helicopter in forward flight was undertaken to determine desirable goals for helicopter lateral-directional flying qualities and possible methods of achieving these goals in the tandem-rotor helicopter. Comparison between directional stability as measured in flight and rotor-off model tests in a wind tunnel shows qualitative agreement and, hence, indicates such wind-tunnel test, despite the absence of the rotors, to be one effective method of studying means of improving the directional stability of the tandem helicopter. Flight-test measurements of turns and oscillations, in conjunction with analytical studies, suggest possible practical methods of achieving the goals of satisfactory turn and oscillatory characteristics in the tandem helicopter.

  4. Two-state dynamics of the SH3–SH2 tandem of Abl kinase and the allosteric role of the N-cap

    PubMed Central

    Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D.

    2013-01-01

    The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3–SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3–SH2 connector, which involve a phosphorylation site. We also show that the SH3–SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3–SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization. PMID:23959873

  5. Stable-Isotope Dilution HPLC-Electrospray Ionization Tandem Mass Spectrometry Method for Quantifying Hydroxyurea in Dried Blood Samples.

    PubMed

    Marahatta, Anu; Megaraj, Vandana; McGann, Patrick T; Ware, Russell E; Setchell, Kenneth D R

    2016-12-01

    Sickle cell anemia (SCA) is a life-threatening blood disorder characterized by the presence of sickle-shaped erythrocytes. Hydroxyurea is currently the only US Food and Drug Administration-approved treatment and there is a need for a convenient method to monitor compliance and hydroxyurea concentrations, especially in pediatric SCA patients. We describe a novel approach to the determination of hydroxyurea concentrations in dried whole blood collected on DMPK-C cards or volumetric absorptive microsampling (VAMS) devices. Hydroxyurea was quantified by electrospray ionization LC-MS/MS using [ 13 C 15 N 2 ]hydroxyurea as the internal standard. Calibrators were prepared in whole blood applied to DMPK-C cards or VAMS devices. Calibration curves for blood hydroxyurea measured from DMPK-C cards and VAMS devices were linear over the range 0.5-60 μg/mL. Interassay and intraassay CVs were <15% for blood collected by both methods, and the limit of detection was 5 ng/mL. Whole blood hydroxyurea was stable for up to 60 days on DMPK-C cards and VAMS devices when frozen at -20 °C or -80 °C. Whole blood hydroxyurea concentrations in samples collected on DMPK-C cards or VAMS devices from SCA patients were in close agreement. This tandem mass spectrometry method permits measurement of hydroxyurea concentrations in small volumes of dried blood applied to either DMPK-C cards or VAMS devices with comparable performance. This method for measuring hydroxyurea from dried blood permits the evaluation of therapeutic drug monitoring, individual pharmacokinetics, and medication adherence using heel/finger-prick samples from pediatric patients with SCA treated with hydroxyurea. © 2016 American Association for Clinical Chemistry.

  6. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Butler; J Wang; Y Xiong

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  7. Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dye‐sensitized Solar Cells

    PubMed Central

    Cong, Jiayan; Hao, Yan; Boschloo, Gerrit

    2014-01-01

    Abstract A new TEMPO–Co tandem redox system with TEMPO and Co(bpy)3 2+/3+ has been investigated for the use in dye‐sensitized solar cells (DSSCs). A large open‐circuit voltage (V OC) increase, from 862 mV to 965 mV, was observed in the tandem redox system, while the short‐circuit current density (J SC) was maintained. The conversion efficiency was observed to increase from 7.1 % for cells containing the single Co(bpy)3 2+/3+ redox couple, to 8.4 % for cells containing the TEMPO–Co tandem redox system. The reason for the increase in V OC and overall efficiency is ascribed to the involvement of partial regeneration of the sensitizing dye molecules by TEMPO. This assumption can be verified through the observed much faster regeneration dynamics exhibited in the presence of the tandem system. Using the tandem redox system, the faster recombination problem of the single TEMPO redox couple is resolved and the mass‐transport of the metal‐complex‐based electrolyte is also improved. This TEMPO–Co tandem system is so far the most effienct tandem redox electrolyte reported not involving iodine. The current results show a promising future for tandem system as replacements for single redox systems in electrolytes for DSSCs. PMID:25504818

  8. Controlled human malaria infection trials: How tandems of trust and control construct scientific knowledge.

    PubMed

    Bijker, Else M; Sauerwein, Robert W; Bijker, Wiebe E

    2016-02-01

    Controlled human malaria infections are clinical trials in which healthy volunteers are deliberately infected with malaria under controlled conditions. Controlled human malaria infections are complex clinical trials: many different groups and institutions are involved, and several complex technologies are required to function together. This functioning together of technologies, people, and institutions is under special pressure because of potential risks to the volunteers. In this article, the authors use controlled human malaria infections as a strategic research site to study the use of control, the role of trust, and the interactions between trust and control in the construction of scientific knowledge. The authors argue that tandems of trust and control play a central role in the successful execution of clinical trials and the construction of scientific knowledge. More specifically, two aspects of tandems of trust and control will be highlighted: tandems are sites where trust and control coproduce each other, and tandems link the personal, the technical, and the institutional domains. Understanding tandems of trust and control results in setting some agendas for both clinical trial research and science and technology studies.

  9. Tandem mass spectrometric analysis of cyclophosphamide, ifosfamide and their metabolites.

    PubMed

    Liu, Zhongfa; Chan, Kenneth K; Wang, Jeffrey J

    2005-01-01

    A detailed multi-stage (MSn) fragmentation study of cyclophosphamide (CP), ifosfamide (IF) and their major metabolites, using an ion-trap mass spectrometer and a Q-TOF mass spectrometer, was performed with the aid of specifically deuterium-labeled analogs. The analytes showed good responses in positive-ion electrospray mass spectrometry as [MH]+ ions. Tandem mass spectra revealed a wealth of structurally specific ions, allowing characterization of the fragmentation pathways of these analytes. The major fragmentation pathways of the protonated CP and IF are elimination of ethylene from C5 and C6 of 1,3,2-oxazaphosphorine-2-oxide via a McLafferty rearrangement, and cleavage of the P-N bond. However, their activated 4-OOH and 4-OH metabolites primarily underwent hydrogen peroxide elimination and dehydration, respectively, followed by fragmentation pathways similar to those of CP and IF. These results should prove useful in structural elucidation of future analogs of CP and IF, and/or of their metabolites. Copyright (c) 2005 John Wiley & Sons, Ltd.

  10. Highly loaded multi-stage fan drive turbine-tandem blade configuration design

    NASA Technical Reports Server (NTRS)

    Evans, D. C.; Wolfmeyer, G. W.

    1972-01-01

    The results of the tandem blade configuration design study are reported. The three stage constant-inside-diameter turbine utilizes tandem blading in the stage two and stage three vanes and in the stage three blades. All other bladerows use plain blades. Blading detailed design is discussed, and design data are summarized. Steady-state stresses and vibratory behavior are discussed, and the results of the mechanical design analysis are presented.

  11. Electrical device fabrication from nanotube formations

    DOEpatents

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  12. Whole-genome sequencing in patients with ciliopathies uncovers a novel recurrent tandem duplication in IFT140.

    PubMed

    Geoffroy, Véronique; Stoetzel, Corinne; Scheidecker, Sophie; Schaefer, Elise; Perrault, Isabelle; Bär, Séverine; Kröll, Ariane; Delbarre, Marion; Antin, Manuela; Leuvrey, Anne-Sophie; Henry, Charline; Blanché, Hélène; Decker, Eva; Kloth, Katja; Klaus, Günter; Mache, Christoph; Martin-Coignard, Dominique; McGinn, Steven; Boland, Anne; Deleuze, Jean-François; Friant, Sylvie; Saunier, Sophie; Rozet, Jean-Michel; Bergmann, Carsten; Dollfus, Hélène; Muller, Jean

    2018-04-24

    Ciliopathies represent a wide spectrum of rare diseases with overlapping phenotypes and a high genetic heterogeneity. Among those, IFT140 is implicated in a variety of phenotypes ranging from isolated retinis pigmentosa to more syndromic cases. Using whole-genome sequencing in patients with uncharacterized ciliopathies, we identified a novel recurrent tandem duplication of exon 27-30 (6.7 kb) in IFT140, c.3454-488_4182+2588dup p.(Tyr1152_Thr1394dup), missed by whole-exome sequencing. Pathogenicity of the mutation was assessed on the patients' skin fibroblasts. Several hundreds of patients with a ciliopathy phenotype were screened and biallelic mutations were identified in 11 families representing 12 pathogenic variants of which seven are novel. Among those unrelated families especially with a Mainzer-Saldino syndrome, eight carried the same tandem duplication (two at the homozygous state and six at the heterozygous state). In conclusion, we demonstrated the implication of structural variations in IFT140-related diseases expanding its mutation spectrum. We also provide evidences for a unique genomic event mediated by an Alu-Alu recombination occurring on a shared haplotype. We confirm that whole-genome sequencing can be instrumental in the ability to detect structural variants for genomic disorders. © 2018 Wiley Periodicals, Inc.

  13. RepeatsDB-lite: a web server for unit annotation of tandem repeat proteins.

    PubMed

    Hirsh, Layla; Paladin, Lisanna; Piovesan, Damiano; Tosatto, Silvio C E

    2018-05-09

    RepeatsDB-lite (http://protein.bio.unipd.it/repeatsdb-lite) is a web server for the prediction of repetitive structural elements and units in tandem repeat (TR) proteins. TRs are a widespread but poorly annotated class of non-globular proteins carrying heterogeneous functions. RepeatsDB-lite extends the prediction to all TR types and strongly improves the performance both in terms of computational time and accuracy over previous methods, with precision above 95% for solenoid structures. The algorithm exploits an improved TR unit library derived from the RepeatsDB database to perform an iterative structural search and assignment. The web interface provides tools for analyzing the evolutionary relationships between units and manually refine the prediction by changing unit positions and protein classification. An all-against-all structure-based sequence similarity matrix is calculated and visualized in real-time for every user edit. Reviewed predictions can be submitted to RepeatsDB for review and inclusion.

  14. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  15. Versatile communication strategies among tandem WW domain repeats

    PubMed Central

    Dodson, Emma Joy; Fishbain-Yoskovitz, Vered; Rotem-Bamberger, Shahar

    2015-01-01

    Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands. PMID:25710931

  16. Field-Based Experiential Learning Using Mobile Devices

    NASA Astrophysics Data System (ADS)

    Hilley, G. E.

    2015-12-01

    Technologies such as GPS and cellular triangulation allow location-specific content to be delivered by mobile devices, but no mechanism currently exists to associate content shared between locations in a way that guarantees the delivery of coherent and non-redundant information at every location. Thus, experiential learning via mobile devices must currently take place along a predefined path, as in the case of a self-guided tour. I developed a mobile-device-based system that allows a person to move through a space along a path of their choosing, while receiving information in a way that guarantees delivery of appropriate background and location-specific information without producing redundancy of content between locations. This is accomplished by coupling content to knowledge-concept tags that are noted as fulfilled when users take prescribed actions. Similarly, the presentation of the content is related to the fulfillment of these knowledge-concept tags through logic statements that control the presentation. Content delivery is triggered by mobile-device geolocation including GPS/cellular navigation, and sensing of low-power Bluetooth proximity beacons. Together, these features implement a process that guarantees a coherent, non-redundant educational experience throughout a space, regardless of a learner's chosen path. The app that runs on the mobile device works in tandem with a server-side database and file-serving system that can be configured through a web-based GUI, and so content creators can easily populate and configure content with the system. Once the database has been updated, the new content is immediately available to the mobile devices when they arrive at the location at which content is required. Such a system serves as a platform for the development of field-based geoscience educational experiences, in which students can organically learn about core concepts at particular locations while individually exploring a space.

  17. Structural Statics Analysis and Optimization Design of Regulating Device for Air Conveyer Outlet in Coal Mine

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoyan; Li, Ying; Zhang, Yongqiang

    2018-06-01

    In view of the enlargement of fully mechanized face excavation and long distance driving, gas emission and dust production increase greatly. However, the current ventilation device direction angle, caliber and front-back distance cannot change dynamically at any time, resulting in the serious accumulation in the dead zone. In this paper, a new device were proposed that can solve above problems. Finite element ANSYS software were used to simulate and optimize the structural safety of the control device' key components. The optimization results showed that the equivalent stress decreases by 49%; after the optimization of deformation and mass are 0.829mm and 0.548kg, which were 21% and 10% lower than before.The quality, safety, reliability and cost of the control device reach the expected standards perfectly, which can meet the requirements of safe ventilation and down-dusting of fully mechanized face.

  18. Trimethylamine alane for low-pressure MOVPE growth of AlGaAs-based materials and device structures

    NASA Astrophysics Data System (ADS)

    Schneider, R. P.; Bryan, R. P.; Jones, E. D.; Biefield, R. M.; Olbright, G. R.

    The use of trimethylamine alane (TMAA1) as an alternative to trimethylaluminum (TMA1) for low-pressure metalorganic vapor-phase epitaxy (MOVPE) of AlGaAs thin films as well as complex optoelectronic device structures has been studied in detail. AlGaAs layers were grown in a horizontal reaction chamber at 20 - 110 mbar with growth temperatures in the range 650 C less than or equal to T(sub G) less than or equal to 750 C. Wafer thickness uniformity is strongly dependent on growth pressure, and is acceptable only for the highest linear flow velocities. The 12 K photoluminescence (PL) spectra of AlGaAs layers grown using TMAA1 and TEGa exhibit uniformly intense and narrow bound-exciton emission throughout the growth temperature range investigated. To assess the viability of this new source for the low-pressure OMVPE growth of advanced optoelectronic devices, several optically-pumped vertical-cavity surface-emitting laser (VCSEL) structures were grown using TMAA1 extensively. Room temperature lasing at 850 nm was reproducibly obtained from the VCSEL structures, with a threshold pumping power comparable to similar structures grown by molecular beam epitaxy in our laboratories.

  19. Interpreting the Need for Initial Support to Perform Tandem Stance Tests of Balance

    PubMed Central

    Brach, Jennifer S.; Perera, Subashan; Wert, David M.; VanSwearingen, Jessie M.; Studenski, Stephanie A.

    2012-01-01

    Background Geriatric rehabilitation reimbursement increasingly requires documented deficits on standardized measures. Tandem stance performance can characterize balance, but protocols are not standardized. Objective The purpose of this study was to explore the impact of: (1) initial support to stabilize in position and (2) maximum hold time on tandem stance tests of balance in older adults. Design A cross-sectional secondary analysis of observational cohort data was conducted. Methods One hundred seventeen community-dwelling older adults (71% female, 12% black) were assigned to 1 of 3 groups based on the need for initial support to perform tandem stance: (1) unable even with support, (2) able only with support, and (3) able without support. The able without support group was further stratified on hold time in seconds: (1) <10 (low), (2) 10 to 29, (medium), and (3) 30 (high). Groups were compared on primary outcomes (gait speed, Timed “Up & Go” Test performance, and balance confidence) using analysis of variance. Results Twelve participants were unable to perform tandem stance, 14 performed tandem stance only with support, and 91 performed tandem stance without support. Compared with the able without support group, the able with support group had statistically or clinically worse performance and balance confidence. No significant differences were found between the able with support group and the unable even with support group on these same measures. Extending the hold time to 30 seconds in a protocol without initial support eliminated ceiling effects for 16% of the study sample. Limitations Small comparison groups, use of a secondary analysis, and lack of generalizability of results were limitations of the study. Conclusions Requiring initial support to stabilize in tandem stance appears to reflect meaningful deficits in balance-related mobility measures, so failing to consider support may inflate balance estimates and confound hold time comparisons

  20. A novel signal transduction protein: Combination of solute binding and tandem PAS-like sensor domains in one polypeptide chain: Periplasmic Ligand Binding Protein Dret_0059

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Wilton, R.; Cuff, M. E.

    We report the structural and biochemical characterization of a novel periplasmic ligand-binding protein, Dret_0059, from Desulfohalobium retbaense DSM 5692, an organism isolated from the Salt Lake Retba in Senegal. The structure of the protein consists of a unique combination of a periplasmic solute binding protein (SBP) domain at the N-terminal and a tandem PAS-like sensor domain at the C-terminal region. SBP domains are found ubiquitously and their best known function is in solute transport across membranes. PAS-like sensor domains are commonly found in signal transduction proteins. These domains are widely observed as parts of many protein architectures and complexes butmore » have not been observed previously within the same polypeptide chain. In the structure of Dret_0059, a ketoleucine moiety is bound to the SBP, whereas a cytosine molecule is bound in the distal PAS-like domain of the tandem PAS-like domain. Differential scanning flourimetry support the binding of ligands observed in the crystal structure. There is significant interaction between the SBP and tandem PAS-like domains, and it is possible that the binding of one ligand could have an effect on the binding of the other. We uncovered three other proteins with this structural architecture in the non-redundant sequence data base, and predict that they too bind the same substrates. The genomic context of this protein did not offer any clues for its function. We did not find any biological process in which the two observed ligands are coupled. The protein Dret_0059 could be involved in either signal transduction or solute transport.« less

  1. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors, part 8

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D. R.

    1974-01-01

    An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.

  2. Approach for ochratoxin A fast screening in spices using clean-up tandem immunoassay columns with confirmation by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    PubMed

    Goryacheva, I Yu; De Saeger, S; Lobeau, M; Eremin, S A; Barna-Vetró, I; Van Peteghem, C

    2006-09-01

    An approach for ochratoxin A (OTA) fast cost-effective screening based on clean-up tandem immunoassay columns was developed and optimized for OTA detection with a cut-off level of 10 microg kg(-1) in spices. Two procedures were tested and applied for OTA detection. Column with bottom detection immunolayer was optimized for OTA determination in Capsicum ssp. spices. A modified clean-up tandem immunoassay procedure with top detection immunolayer was successfully applied for all tested spices. Its main advantages were decreasing of the number of analysis steps and quantity of antibody and also minimizing of matrix effects. The total duration of the extraction and analysis was about 40 min for six samples. Chilli, red pepper, pili-pili, cayenne, paprika, nutmeg, ginger, white pepper and black pepper samples were analyzed for OTA contamination by the proposed clean-up tandem immunoassay procedures. Clean-up tandem immunoassay results were confirmed by HPLC-MS/MS with immunoaffinity column clean-up. Among 17 tested Capsicum ssp. spices, 6 samples (35%) contained OTA in a concentration exceeding the 10 microg kg(-1) limit discussed by the European Commission. All tested nutmeg (n=8), ginger (n=5), white pepper (n=7) and black pepper (n=6) samples did not contain OTA above this action level.

  3. 76 FR 40935 - Vertical Tandem Lifts in Marine Terminals; Extension of the Office of Management and Budget's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ...] Vertical Tandem Lifts in Marine Terminals; Extension of the Office of Management and Budget's (OMB... Standard on Vertical Tandem Lifts (VTLs) in Marine Terminals (29 CFR part 1917). The collection of... on Vertical Tandem Lifts for Marine Terminals (29 CFR part 1917). OSHA is proposing to increase the...

  4. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25

    PubMed Central

    Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki

    2017-01-01

    Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663

  5. Structure of [M + H - H(2)O](+) from protonated tetraglycine revealed by tandem mass spectrometry and IRMPD spectroscopy.

    PubMed

    Bythell, Benjamin J; Dain, Ryan P; Curtice, Stephanie S; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Paizs, Béla; Van Stipdonk, Michael J

    2010-04-22

    Multiple-stage tandem mass spectrometry and collision-induced dissociation were used to investigate loss of H(2)O or CH(3)OH from protonated versions of GGGX (where X = G, A, and V), GGGGG, and the methyl esters of these peptides. In addition, wavelength-selective infrared multiple photon dissociation was used to characterize the [M + H - H(2)O](+) product derived from protonated GGGG and the major MS(3) fragment, [M + H - H(2)O - 29](+) of this peak. Consistent with the earlier work [ Ballard , K. D. ; Gaskell , S. J. J. Am. Soc. Mass Spectrom. 1993 , 4 , 477 - 481 ; Reid , G. E. ; Simpson , R. J. ; O'Hair , R. A. J. Int. J. Mass Spectrom. 1999 , 190/191 , 209 -230 ], CID experiments show that [M + H - H(2)O](+) is the dominant peak generated from both protonated GGGG and protonated GGGG-OMe. This strongly suggests that the loss of the H(2)O molecule occurs from a position other than the C-terminal free acid and that the product does not correspond to formation of the b(4) ion. Subsequent CID of [M + H - H(2)O](+) supports this proposal by resulting in a major product that is 29 mass units less than the precursor ion. This is consistent with loss of HN horizontal lineCH(2) rather than loss of carbon monoxide (28 mass units), which is characteristic of oxazolone-type b(n) ions. Comparison between experimental and theoretical infrared spectra for a group of possible structures confirms that the [M + H - H(2)O](+) peak is not a substituted oxazolone but instead suggests formation of an ion that features a five-membered ring along the peptide backbone, close to the amino terminus. Additionally, transition structure calculations and comparison of theoretical and experimental spectra of the [M + H - H(2)O - 29](+) peak also support this proposal.

  6. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  7. Optical design of multi-multiple expander structure of laser gas analysis and measurement device

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Wei, Biao

    2018-03-01

    The installation and debugging of optical circuit structure in the application of carbon monoxide distributed laser gas analysis and measurement, there are difficult key technical problems. Based on the three-component expansion theory, multi-multiple expander structure with expansion ratio of 4, 5, 6 and 7 is adopted in the absorption chamber to enhance the adaptability of the installation environment of the gas analysis and measurement device. According to the basic theory of aberration, the optimal design of multi-multiple beam expander structure is carried out. By using image quality evaluation method, the difference of image quality under different magnifications is analyzed. The results show that the optical quality of the optical system with the expanded beam structure is the best when the expansion ratio is 5-7.

  8. N719 dye-sensitized organophotocatalysis: enantioselective tandem Michael addition/oxyamination of aldehydes.

    PubMed

    Yoon, Hyo-Sang; Ho, Xuan-Huong; Jang, Jiyeon; Lee, Hwa-Jung; Kim, Seung-Joo; Jang, Hye-Young

    2012-07-06

    A remarkably efficient photosensitizer, N719 dye, was used in asymmetric tandem Michael addition/oxyamination of aldehydes, rendering α,β-substituted aldehydes in good yields with excellent levels of enantioselectivity and diastereoselectivity. This is the first report of a multiorganocatalytic reaction involving iminium catalysis and photoinduced singly occupied molecular orbital (SOMO) catalysis. This reaction is expected to expand the scope of tandem organocatalytic reactions.

  9. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; LaBel, Kenneth A.

    2014-01-01

    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  10. Advancing medical device innovation through collaboration and coordination of structured data capture pilots: Report from the Medical Device Epidemiology Network (MDEpiNet) Specific, Measurable, Achievable, Results-Oriented, Time Bound (SMART) Think Tank.

    PubMed

    Reed, Terrie L; Drozda, Joseph P; Baskin, Kevin M; Tcheng, James; Conway, Karen; Wilson, Natalia; Marinac-Dabic, Danica; Heise, Theodore; Krucoff, Mitchell W

    2017-12-01

    The Medical Device Epidemiology Network (MDEpiNet) is a public private partnership (PPP) that provides a platform for collaboration on medical device evaluation and depth of expertise for supporting pilots to capture, exchange and use device information for improving device safety and protecting public health. The MDEpiNet SMART Think Tank, held in February, 2013, sought to engage expert stakeholders who were committed to improving the capture of device data, including Unique Device Identification (UDI), in key electronic health information. Prior to the Think Tank there was limited collaboration among stakeholders beyond a few single health care organizations engaged in electronic capture and exchange of device data. The Think Tank resulted in what has become two sustainable multi-stakeholder device data capture initiatives, BUILD and VANGUARD. These initiatives continue to mature within the MDEpiNet PPP structure and are well aligned with the goals outlined in recent FDA-initiated National Medical Device Planning Board and Medical Device Registry Task Force white papers as well as the vision for the National Evaluation System for health Technology.%. Published by Elsevier Inc.

  11. The Composition and Structure of Biofilms Developed by Propionibacterium acnes Isolated from Cardiac Pacemaker Devices.

    PubMed

    Okuda, Ken-Ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu

    2018-01-01

    The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P . acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes .

  12. GlycoDeNovo - an Efficient Algorithm for Accurate de novo Glycan Topology Reconstruction from Tandem Mass Spectra

    NASA Astrophysics Data System (ADS)

    Hong, Pengyu; Sun, Hui; Sha, Long; Pu, Yi; Khatri, Kshitij; Yu, Xiang; Tang, Yang; Lin, Cheng

    2017-08-01

    A major challenge in glycomics is the characterization of complex glycan structures that are essential for understanding their diverse roles in many biological processes. We present a novel efficient computational approach, named GlycoDeNovo, for accurate elucidation of the glycan topologies from their tandem mass spectra. Given a spectrum, GlycoDeNovo first builds an interpretation-graph specifying how to interpret each peak using preceding interpreted peaks. It then reconstructs the topologies of peaks that contribute to interpreting the precursor ion. We theoretically prove that GlycoDeNovo is highly efficient. A major innovative feature added to GlycoDeNovo is a data-driven IonClassifier which can be used to effectively rank candidate topologies. IonClassifier is automatically learned from experimental spectra of known glycans to distinguish B- and C-type ions from all other ion types. Our results showed that GlycoDeNovo is robust and accurate for topology reconstruction of glycans from their tandem mass spectra. [Figure not available: see fulltext.

  13. Tandem Core–Shell Si–Ta 3N 5 Photoanodes for Photoelectrochemical Water Splitting

    DOE PAGES

    Narkeviciute, Ieva; Chakthranont, Pongkarn; Mackus, Adriaan J. M.; ...

    2016-11-22

    Here, nanostructured core–shell Si–Ta 3N 5 photoanodes were designed and synthesized to overcome charge transport limitations of Ta 3N 5 for photoelectrochemical water splitting. The core–shell devices were fabricated by atomic layer deposition of amorphous Ta 2O 5 onto nanostructured Si and subsequent nitridation to crystalline Ta 3N 5. Nanostructuring with a thin shell of Ta 3N 5 results in a 10-fold improvement in photocurrent compared to a planar device of the same thickness. In examining thickness dependence of the Ta 3N 5 shell from 10 to 70 nm, superior photocurrent and absorbed-photon-to-current efficiencies are obtained from the thinner Tamore » 3N 5 shells, indicating minority carrier diffusion lengths on the order of tens of nanometers. The fabrication of a heterostructure based on a semiconducting, n-type Si core produced a tandem photoanode with a photocurrent onset shifted to lower potentials by 200 mV. CoTiO x and NiO x water oxidation cocatalysts were deposited onto the Si–Ta 3N 5 to yield active photoanodes that with NiO x retained 50–60% of their maximum photocurrent after 24 h chronoamperometry experiments and are thus among the most stable Ta 3N 5 photoanodes reported to date.« less

  14. High energy collisions on tandem time-of-flight mass spectrometers†

    PubMed Central

    Cotter, Robert J.

    2013-01-01

    Long before the introduction of matrix-assisted laser desorption (MALDI), electrospray ionization (ESI), Orbitraps and any of the other tools that are now used ubiquitously for proteomics and metabolomics, the highest performance mass spectrometers were sector instruments, providing high resolution mass measurements by combining an electrostatic energy analyzer (E) with a high field magnet (B). In its heyday, the four sector mass spectrometer (or EBEB) was the crown jewel, providing the highest performance tandem mass spectrometry using single, high energy collisions to induce fragmentation. During a time in which quadrupole and tandem triple quadrupole instruments were also enjoying increased usage and popularity, there were nonetheless some clear advantages for sectors over their low collision energy counterparts. Time-of-flight mass spectrometers are high voltage, high vacuum instruments that have much in common with sectors and have inspired the development of tandem instruments exploiting single high energy collisions. In this retrospective we recount our own journey to produce high performance time-of-flights and tandems, describing the basic theory, problems and the advantages for such instruments. An experiment testing impulse collision theory (ICT) underscores the similarities with sector mass spectrometers where this concept was first developed. Applications provide examples of more extensive fragmentation, side chain cleavages and charge-remote fragmentation, also characteristic of high energy sector mass spectrometers. Moreover, the so-called curved-field reflectron has enabled the design of instruments that are simpler, collect and focus all of the ions, and may provide the future technology for the clinic, for tissue imaging and the characterization of microorganisms. PMID:23519928

  15. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  16. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells.

    PubMed

    You, Jingbi; Chen, Chun-Chao; Hong, Ziruo; Yoshimura, Ken; Ohya, Kenichiro; Xu, Run; Ye, Shenglin; Gao, Jing; Li, Gang; Yang, Yang

    2013-08-07

    Polymer tandem solar cells with 10.2% power conversion efficiency are demonstrated via stacking two PDTP-DFBT:PC₇₁ BM bulk heterojunctions, connected by MoO₃/PEDOT:PSS/ZnO as an interconnecting layer. The tandem solar cells increase the power conversion efficiency of the PDTP-DFBT:PC₇₁ BM system from 8.1% to 10.2%, successfully demonstrating polymer tandem solar cells with identical sub-cells of double-digit efficiency. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.

    PubMed

    Ge, Huibin; Zhang, Bin; Gu, Xiaomin; Liang, Haojie; Yang, Huimin; Gao, Zhe; Wang, Jianguo; Qin, Yong

    2016-06-13

    Ideal heterogeneous tandem catalysts necessitate the rational design and integration of collaborative active sites. Herein, we report on the synthesis of a new tandem catalyst with multiple metal-oxide interfaces based on a tube-in-tube nanostructure using template-assisted atomic layer deposition, in which Ni nanoparticles are supported on the outer surface of the inner Al2 O3 nanotube (Ni/Al2 O3 interface) and Pt nanoparticles are attached to the inner surface of the outer TiO2 nanotube (Pt/TiO2 interface). The tandem catalyst shows remarkably high catalytic efficiency in nitrobenzene hydrogenation over Pt/TiO2 interface with hydrogen formed in situ by the decomposition of hydrazine hydrate over Ni/Al2 O3 interface. This can be ascribed to the synergy effect of the two interfaces and the confined nanospace favoring the instant transfer of intermediates. The tube-in-tube tandem catalyst with multiple metal-oxide interfaces represents a new concept for the design of highly efficient and multifunctional nanocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type <1 0 0> Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  19. Structural characterization and identification of biflavones in Selaginella tamariscina by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Zhang, Yi-Xuan; Li, Qiu-Yue; Yan, Li-Li; Shi, Yue

    2011-08-15

    Biflavonoids, a special class of flavonoids, are widely distributed in gymnosperm plants and have various biological activities. They are also major bioactive ingredients in Selaginella tamariscina. In this work, we report the use of high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)) to study the fragmentation behavior of three main types of biflavonoids using seven biflavonoid reference compounds and analyze the biflavonoids in Selaginella tamariscina. The most useful fragmentations in terms of structural identification are those involving the C-ring cleavage of biflavonoids. For amentoflavone-type biflavonoids (containing flavonoid parts I and II), fragmentation on the flavonoid part II at positions 1/3 and 0/4 are the primary pathways, whereas the chances are greater for C-ring cleavage fragmentation occurring on flavonoid part I at positions 1/3 and 1/4 for robustaflavone-type biflavonoids. However, the predominant diagnostic ions of the specific C-O-C-connected hinokiflavone-type biflavonoids are a series of ions resulting from the rupture of the connective C-O bond. Based on the fragmentation patterns of these reference compounds, 17 biflavonoids were identified in an extract of Selaginella tamariscina, three of which have not been previously reported as constituents of this plant. This study provides a powerful approach for the online structural elucidation and identification of different types of biflavonoids and positional isomers from Selaginella tamariscina and other biflavonoids distributed in related plants and prescriptions. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Old and New Techniques as a Safe Hybrid Approach for Carotid Tandem Lesions.

    PubMed

    Barillà, David; Massara, Mafalda; Alberti, Antonino; Volpe, Alberto; Cutrupi, Andrea; Versace, Paolo; Volpe, Pietro

    2016-04-01

    Carotid revascularization is performed to prevent stroke. Carotid tandem lesions represent a challenge for treatment, and a hybrid approach may result effective. A high-risk 65-year-old woman presented with a "tandem lesion" of left common and internal carotid artery. She was deemed unfit for "simple" standard carotid endarterectomy (CEA). A "single-step" safe hybrid procedure was scheduled for the patient. A "Cormier" carotid vein graft bypass with a retrograde stenting was performed under local anesthesia. The "safe hybrid procedure" for tandem lesions of the common and internal carotid artery is effective and suitable in high-risk patients in a high-volume centers. Copyright © 2016 Elsevier Inc. All rights reserved.