Sample records for tandem duplication mutations

  1. Detecting long tandem duplications in genomic sequences.

    PubMed

    Audemard, Eric; Schiex, Thomas; Faraut, Thomas

    2012-05-08

    Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,(a) we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  <  1) and that it is also able to predict tandem duplications involving non coding elements such as pseudo-genes or RNA genes. ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  2. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    PubMed

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  3. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer.

    PubMed

    Ng, Charlotte K Y; Cooke, Susanna L; Howe, Kevin; Newman, Scott; Xian, Jian; Temple, Jillian; Batty, Elizabeth M; Pole, Jessica C M; Langdon, Simon P; Edwards, Paul A W; Brenton, James D

    2012-04-01

    High-grade serous ovarian carcinoma (HGSOC) is characterized by genomic instability, ubiquitous TP53 loss, and frequent development of platinum resistance. Loss of homologous recombination (HR) is a mutator phenotype present in 50% of HGSOCs and confers hypersensitivity to platinum treatment. We asked which other mutator phenotypes are present in HGSOC and how they drive the emergence of platinum resistance. We performed whole-genome paired-end sequencing on a model of two HGSOC cases, each consisting of a pair of cell lines established before and after clinical resistance emerged, to describe their structural variants (SVs) and to infer their ancestral genomes as the SVs present within each pair. The first case (PEO1/PEO4), with HR deficiency, acquired translocations and small deletions through its early evolution, but a revertant BRCA2 mutation restoring HR function in the resistant lineage re-stabilized its genome and reduced platinum sensitivity. The second case (PEO14/PEO23) had 216 tandem duplications and did not show evidence of HR or mismatch repair deficiency. By comparing the cell lines to the tissues from which they originated, we showed that the tandem duplicator mutator phenotype arose early in progression in vivo and persisted throughout evolution in vivo and in vitro, which may have enabled continual evolution. From the analysis of SNP array data from 454 HGSOC cases in The Cancer Genome Atlas series, we estimate that 12.8% of cases show patterns of aberrations similar to the tandem duplicator, and this phenotype is mutually exclusive with BRCA1/2 carrier mutations. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. © The Author(s) 2015. Published by Oxford University Press.

  5. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.

    PubMed

    Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang

    2012-06-15

    Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication

  6. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene.

    PubMed

    Paterson, Andrew D; Rommens, Johanna M; Bharaj, Bhupinder; Blavignac, Jessica; Wong, Isidro; Diamandis, Maria; Waye, John S; Rivard, Georges E; Hayward, Catherine P M

    2010-02-11

    Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.

  7. Whole-genome sequencing in patients with ciliopathies uncovers a novel recurrent tandem duplication in IFT140.

    PubMed

    Geoffroy, Véronique; Stoetzel, Corinne; Scheidecker, Sophie; Schaefer, Elise; Perrault, Isabelle; Bär, Séverine; Kröll, Ariane; Delbarre, Marion; Antin, Manuela; Leuvrey, Anne-Sophie; Henry, Charline; Blanché, Hélène; Decker, Eva; Kloth, Katja; Klaus, Günter; Mache, Christoph; Martin-Coignard, Dominique; McGinn, Steven; Boland, Anne; Deleuze, Jean-François; Friant, Sylvie; Saunier, Sophie; Rozet, Jean-Michel; Bergmann, Carsten; Dollfus, Hélène; Muller, Jean

    2018-04-24

    Ciliopathies represent a wide spectrum of rare diseases with overlapping phenotypes and a high genetic heterogeneity. Among those, IFT140 is implicated in a variety of phenotypes ranging from isolated retinis pigmentosa to more syndromic cases. Using whole-genome sequencing in patients with uncharacterized ciliopathies, we identified a novel recurrent tandem duplication of exon 27-30 (6.7 kb) in IFT140, c.3454-488_4182+2588dup p.(Tyr1152_Thr1394dup), missed by whole-exome sequencing. Pathogenicity of the mutation was assessed on the patients' skin fibroblasts. Several hundreds of patients with a ciliopathy phenotype were screened and biallelic mutations were identified in 11 families representing 12 pathogenic variants of which seven are novel. Among those unrelated families especially with a Mainzer-Saldino syndrome, eight carried the same tandem duplication (two at the homozygous state and six at the heterozygous state). In conclusion, we demonstrated the implication of structural variations in IFT140-related diseases expanding its mutation spectrum. We also provide evidences for a unique genomic event mediated by an Alu-Alu recombination occurring on a shared haplotype. We confirm that whole-genome sequencing can be instrumental in the ability to detect structural variants for genomic disorders. © 2018 Wiley Periodicals, Inc.

  8. Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements

    PubMed Central

    Peterson, Thomas

    2013-01-01

    Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872

  9. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  10. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE PAGES

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen; ...

    2017-01-23

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  11. Chromosomal duplications in bacteria, fruit flies, and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupski, J.R.; Weinstock, G.M.; Roth, J.R.

    1996-01-01

    Tandem duplication of chromosomal segments has been recognized as a frequent mutational mechanism in several genetic model systems. In bacteria, fruit flies, and humans, duplications form by similar molecular mechanisms and appear to be important in genome evolution. 80 refs.

  12. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.

    PubMed

    Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas

    2014-03-05

    With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available

  13. Successful treatment of post-transplant relapsed acute myeloid leukemia with FLT3 internal tandem duplication using the combination of induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Report of three cases

    PubMed Central

    Campregher, Paulo Vidal; de Mattos, Vinicius Renan Pinto; Salvino, Marco Aurélio; Santos, Fabio Pires de Souza; Hamerschlak, Nelson

    2017-01-01

    ABSTRACT Acute myeloid leukemia is a hematopoietic stem cell neoplastic disease associated with high morbidity and mortality. The presence of FLT3 internal tandem duplication mutations leads to high rates of relapse and decreased overall survival. Patients with FLT3 internal tandem duplication are normally treated with hematopoietic stem cell transplantation in first complete remission. Nevertheless, the incidence of post-transplant relapse is considerable in this group of patients, and the management of this clinical condition is challenging. The report describes the outcomes of patients with FLT3 internal tandem duplication positive acute myeloid leukemia who relapsed after allogeneic hematopoietic stem cell transplantation and were treated with the combination of re-induction chemotherapy, donor lymphocyte infusion, sorafenib and azacitidine. Three cases are described and all patients achieved prolonged complete remission with the combined therapy. The combination of induction chemotherapy followed by donor lymphocyte infusion, and the maintenance with azacitidine and sorafenib can be effective approaches in the treatment of post-hematopoietic stem cell transplant and relapsed FLT3 internal tandem duplication positive acute myeloid leukemia patients. This strategy should be further explored in the context of clinical trials. PMID:28746590

  14. Cis-acting mutation and duplication: History of molecular evolution in a P450 haplotype responsible for insecticide resistance in Culex quinquefasciatus.

    PubMed

    Itokawa, Kentaro; Komagata, Osamu; Kasai, Shinji; Masada, Masahiro; Tomita, Takashi

    2011-07-01

    A cytochrome P450 gene, Cyp9m10, is more than 200-fold overexpressed in a pyrethroid resistant strain of Culex quinquefasciatus, JPal-per. The haplotype of this strain contains two copies of Cyp9m10 resulted from recent tandem duplication. In this study, we discovered and isolated a Cyp9m10 haplotype closely related to this duplicated Cyp9m10 haplotype from JHB, a strain used for the recent genome project for this mosquito species. The isolated haplotype (JHB-NIID-B haplotype) shared the same insertion of a transposable element upstream of the coding region with JPal-per strain but not duplicated. The JHB-NIID-B haplotype was considered to have diverged from the JPal-per lineage just before the duplication event. Cyp9m10 was moderately overexpressed in larvae with the JHB-NIID-B haplotype. The overexpressions in JHB-NIID-B and JPal-per haplotypes were developmentally regulated in similar pattern indicating both haplotypes share a common cis-acting mutation responsible for the overexpressions. The isolated moderately overexpressed haplotype conferred resistance, however, its efficacy was relatively small. We hypothesized that the first cis-acting mutation modified the consequence of the subsequent duplication in JPal-per lineage to confer stronger phenotypic effect than that if it occurred before the first cis-acting mutation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    PubMed

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Tandem duplication within a Neurofibromatosis type I (NFI) gene exon in a family with features of Watson syndrome and Noonan syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassabehji, M.; Strachan, T.; Colley, A.

    Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or the phenotypes arise from mutations in very closely linked genes. Here the authors provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication ofmore » 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. 31 refs., 2 figs.« less

  17. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    PubMed Central

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1

  18. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene.

    PubMed

    Bowne, Sara J; Sullivan, Lori S; Wheaton, Dianna K; Locke, Kirsten G; Jones, Kaylie D; Koboldt, Daniel C; Fulton, Robert S; Wilson, Richard K; Blanton, Susan H; Birch, David G; Daiger, Stephen P

    2016-01-01

    To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13 . The duplication creates a partial copy of CCNC and a complete copy of PRDM13 . The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1 hypersensitive site upstream of the CCNC

  19. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication.

    PubMed

    Paschka, Peter; Schlenk, Richard F; Gaidzik, Verena I; Habdank, Marianne; Krönke, Jan; Bullinger, Lars; Späth, Daniela; Kayser, Sabine; Zucknick, Manuela; Götze, Katharina; Horst, Heinz-A; Germing, Ulrich; Döhner, Hartmut; Döhner, Konstanze

    2010-08-01

    To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.

  20. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  1. Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report

    PubMed Central

    Finsterer, Josef

    2012-01-01

    The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945

  2. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  3. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing.

    PubMed

    Steele-Stallard, Heather B; Le Quesne Stabej, Polona; Lenassi, Eva; Luxon, Linda M; Claustres, Mireille; Roux, Anne-Francoise; Webster, Andrew R; Bitner-Glindzicz, Maria

    2013-08-08

    Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. We found that 8 of

  4. A diffusion model for the fate of tandem gene duplicates in diploids.

    PubMed

    O'Hely, Martin

    2007-06-01

    Suppose one chromosome in one member of a population somehow acquires a duplicate copy of the gene, fully linked to the original gene's locus. Preservation is the event that eventually every chromosome in the population is a descendant of the one which initially carried the duplicate. For a haploid population in which the absence of all copies of the gene is lethal, the probability of preservation has recently been estimated via a diffusion approximation. That approximation is shown to carry over to the case of diploids and arbitrary strong selection against the absence of the gene. The techniques used lead to some new results. In the large population limit, it is shown that the relative probability that descendants of a small number of individuals carrying multiple copies of the gene fix in the population is proportional to the number of copies carried. The probability of preservation is approximated when chromosomes carrying two copies of the gene are subject to additional, fully non-functionalizing mutations, thereby modelling either an additional cost of replicating a longer genome, or a partial duplication of the gene. In the latter case the preservation probability depends only on the mutation rate to null for the duplicated portion of the gene.

  5. EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.

    PubMed

    Hartmann, Tom; Bernt, Matthias; Middendorf, Martin

    2018-05-30

    To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .

  6. A novel regimen for relapsed/refractory adult acute myeloid leukemia using a KMT2A partial tandem duplication targeted therapy: results of phase 1 study NCI 8485.

    PubMed

    Mims, Alice S; Mishra, Anjali; Orwick, Shelley; Blachly, James; Klisovic, Rebecca B; Garzon, Ramiro; Walker, Alison R; Devine, Steven M; Walsh, Katherine J; Vasu, Sumithira; Whitman, Susan; Marcucci, Guido; Jones, Daniel; Heerema, Nyla A; Lozanski, Gerard; Caligiuri, Michael A; Bloomfield, Clara D; Byrd, John C; Piekarz, Richard; Grever, Michael R; Blum, William

    2018-06-01

    KMT2A partial tandem duplication occurs in approximately 5-10% of patients with acute myeloid leukemia and is associated with adverse prognosis. KMT2A wild type is epigenetically silenced in KMT2A partial tandem duplication; re-expression can be induced with DNA methyltransferase and/or histone deacetylase inhibitors in vitro , sensitizing myeloid blasts to chemotherapy. We hypothesized that epigenetic silencing of KMT2A wildtype contributes to KMT2A partial tandem duplication-associated leukemogenesis and pharmacologic re-expression activates apoptotic mechanisms important for chemoresponse. We developed a regimen for this unique molecular subset, but due to relatively low frequency of KMT2A partial tandem duplication, this dose finding study was conducted in relapsed/refractory disease regardless of molecular subtype. Seventeen adults (< age 60) with relapsed/refractory acute myeloid leukemia were treated on study. Patients received decitabine 20 milligrams/meter 2 daily on days 1-10 and vorinostat 400 milligrams daily on days 5-10. Cytarabine was dose-escalated from 1.5 grams/meter 2 every 12 hours to 3 grams/meter 2 every 12 hours on days 12, 14 and 16. Two patients experienced dose limiting toxicities at dose level 1 due to prolonged myelosuppression. However, as both patients achieved complete remission after Day 42, the protocol was amended to adjust the definition of hematologic dose limiting toxicity. No further dose limiting toxicities were found. Six of 17 patients achieved complete remission including 2 of 4 patients with KMT2A partial tandem duplication. Combination therapy with decitabine, vorinostat and cytarabine was tolerated in younger relapsed/refractory acute myeloid leukemia and should be explored further focusing on the KMT2A partial tandem duplication subset. ( clinicaltrials.gov identifier 01130506 ). Copyright © 2018 Ferrata Storti Foundation.

  7. Diverse Cis-Regulatory Mechanisms Contribute to Expression Evolution of Tandem Gene Duplicates

    PubMed Central

    Baudouin-Gonzalez, Luís; Santos, Marília A; Tempesta, Camille; Sucena, Élio; Roch, Fernando; Tanaka, Kohtaro

    2017-01-01

    Abstract Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 Ma. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression. PMID:28961967

  8. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  9. Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient

    PubMed Central

    2011-01-01

    Background Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. Methods We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. Results In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. Conclusions This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus. PMID:22044463

  10. Mutation screening of patients with Alzheimer disease identifies APP locus duplication in a Swedish patient.

    PubMed

    Thonberg, Håkan; Fallström, Marie; Björkström, Jenny; Schoumans, Jacqueline; Nennesmo, Inger; Graff, Caroline

    2011-11-01

    Missense mutations in three different genes encoding amyloid-β precursor protein, presenilin 1 and presenilin 2 are recognized to cause familial early-onset Alzheimer disease. Also duplications of the amyloid precursor protein gene have been shown to cause the disease. At the Dept. of Geriatric Medicine, Karolinska University Hospital, Sweden, patients are referred for mutation screening for the identification of nucleotide variations and for determining copy-number of the APP locus. We combined the method of microsatellite marker genotyping with a quantitative real-time PCR analysis to detect duplications in patients with Alzheimer disease. In 22 DNA samples from individuals diagnosed with clinical Alzheimer disease, we identified one patient carrying a duplication on chromosome 21 which included the APP locus. Further mapping of the chromosomal region by array-comparative genome hybridization showed that the duplication spanned a maximal region of 1.09 Mb. This is the first report of an APP duplication in a Swedish Alzheimer patient and describes the use of quantitative real-time PCR as a tool for determining copy-number of the APP locus.

  11. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation.

    PubMed

    Kiely, Aoife P; Ling, Helen; Asi, Yasmine T; Kara, Eleanna; Proukakis, Christos; Schapira, Anthony H; Morris, Huw R; Roberts, Helen C; Lubbe, Steven; Limousin, Patricia; Lewis, Patrick A; Lees, Andrew J; Quinn, Niall; Hardy, John; Love, Seth; Revesz, Tamas; Houlden, Henry; Holton, Janice L

    2015-08-27

    We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson's disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The

  12. A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer.

    PubMed

    Thompson, Ella; Dragovic, Rebecca L; Stephenson, Sally-Anne; Eccles, Diana M; Campbell, Ian G; Dobrovic, Alexander

    2005-04-29

    The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. The duplication allele had a frequency of 0.34 in the normal controls. There was a non-significant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer.

  13. A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer

    PubMed Central

    Thompson, Ella; Dragovic, Rebecca L; Stephenson, Sally-Anne; Eccles, Diana M; Campbell, Ian G; Dobrovic, Alexander

    2005-01-01

    The FANCA gene is one of the genes in which mutations lead to Fanconi anaemia, a rare autosomal recessive disorder characterised by congenital abnormalities, bone marrow failure, and predisposition to malignancy. FANCA is also a potential breast and ovarian cancer susceptibility gene. A novel allele was identified which has a tandem duplication of a 13 base pair sequence in the promoter region. Methods We screened germline DNA from 352 breast cancer patients, 390 ovarian cancer patients and 256 normal controls to determine if the presence of either of these two alleles was associated with an increased risk of breast or ovarian cancer. Results The duplication allele had a frequency of 0.34 in the normal controls. There was a non-significant decrease in the frequency of the duplication allele in breast cancer patients. The frequency of the duplication allele was significantly decreased in ovarian cancer patients. However, when malignant and benign tumours were considered separately, the decrease was only significant in benign tumours. Conclusion The allele with the tandem duplication does not appear to modify breast cancer risk but may act as a low penetrance protective allele for ovarian cancer. PMID:15860134

  14. De novo tandem duplication of chromosome segement 22q11-q12: Clinical, cytogenetic, and molecular characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, E.A.; Shaffer, L.G.; Carrozzo, R.

    We report on a case of duplication of the segment 22q11-q12 due to a de novo duplication. Molecular cytogenetics studies demonstrated this to be a tandem duplication, flanked proximally by the marker D22Z4, a centromeric alpha satellite DNA repeat, and distally by D22S260, an anonymous DNA marker proximal to the Ewing sarcoma breakpoint. The segment includes the regions responsible for the {open_quotes}cat-eye{close_quotes}, Di George, and velo-cardio-facial syndromes and extends distal to the breakpoint cluster region (BCR). The clinical picture is dominated by the cardiac defects and includes findings reminiscent of {open_quotes}cat-eye{close_quotes} syndrome. These findings reinforce the hypothesis that the proximalmore » 22q region contains dosage-sensitive genes involved in development. 20 refs., 3 figs.« less

  15. Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis

    PubMed Central

    Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A.; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe

    2015-01-01

    Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations. PMID:25769696

  16. Both mechanism and age of duplications contribute to biased gene retention patterns in plants.

    PubMed

    Rody, Hugo V S; Baute, Gregory J; Rieseberg, Loren H; Oliveira, Luiz O

    2017-01-06

    All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.

  17. Interpreting short tandem repeat variations in humans using mutational constraint

    PubMed Central

    Gymrek, Melissa; Willems, Thomas; Reich, David; Erlich, Yaniv

    2017-01-01

    Identifying regions of the genome that are depleted of mutations can reveal potentially deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest contributors of de novo mutations in humans. However, per-locus studies of STR mutations have been limited to highly ascertained panels of several dozen loci. Here, we harnessed bioinformatics tools and a novel analytical framework to estimate mutation parameters for each STR in the human genome by correlating STR genotypes with local sequence heterozygosity. We applied our method to obtain robust estimates of the impact of local sequence features on mutation parameters and used this to create a framework for measuring constraint at STRs by comparing observed vs. expected mutation rates. Constraint scores identified known pathogenic variants with early onset effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical genetics studies. PMID:28892063

  18. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM. © 2013 Elsevier B.V. All rights reserved.

  19. Prevalence of exon 11 internal tandem duplications in the C-KIT proto-oncogene in Australian canine mast cell tumours.

    PubMed

    Tamlin, V S; Kessell, A E; Mccoy, R J; Dobson, E C; Smith, T S; Hebart, M; Brown, L; Mitrovic, D; Peaston, A E

    2017-10-01

    To measure the prevalence of internal tandem duplications (ITDs) in exon 11 of the proto-oncogene C-KIT in a sample of Australian cutaneous canine mast cell tumours (MCTs) drawn from general practice and to evaluate relationships between tumour mutation status and prognostic factors including signalment, tumour histological grade, tumour anatomical location and tumour size. C-KIT exon 11 ITDs were detected by PCR in DNA extracted from formalin-fixed, paraffin-embedded canine MCTs sourced from three veterinary diagnostic laboratories in Adelaide and Melbourne. Tumours were graded according to two different systems (Patnaik and Kiupel systems) by board-certified anatomical pathologists blinded to the PCR results. Relationships between tumour mutation status and prognostic factors were evaluated using a generalised binary logistic regression analysis. ITDs were identified in 13 of 74 cutaneous canine MCT samples, giving an overall prevalence of 17.6% (95% confidence interval: 8.9-26.2%). ITDs were detected in 10 of 18 Patnaik grade III MCTs (55.6%) and 11 of 22 Kiupel high-grade MCTs (50%). Wald chi-square analysis revealed that detection of tumour ITDs was significantly associated with both Patnaik's and Kiupel's histologic grading systems (each: P < 0.001). The presence of the ITDs in MCTs was not associated with signalment, tumour anatomical location or tumour size. The prevalence of C-KIT exon 11 ITDs in Australian canine MCTs is similar to the prevalence in overseas canine populations (overall prevalence in Australia approximately 18%). ITDs were more frequently identified in higher grade MCTs. © 2017 Australian Veterinary Association.

  20. Rates and Genomic Consequences of Spontaneous Mutational Events in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Houle, David; Lynch, Michael; Hahn, Matthew W.

    2013-01-01

    Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious—making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise. PMID:23733788

  1. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  2. The favorable impact of CEBPA mutations in patients with acute myeloid leukemia is only observed in the absence of associated cytogenetic abnormalities and FLT3 internal duplication.

    PubMed

    Renneville, Aline; Boissel, Nicolas; Gachard, Nathalie; Naguib, Dina; Bastard, Christian; de Botton, Stéphane; Nibourel, Olivier; Pautas, Cécile; Reman, Oumedaly; Thomas, Xavier; Gardin, Claude; Terré, Christine; Castaigne, Sylvie; Preudhomme, Claude; Dombret, Hervé

    2009-05-21

    Mutations of the CCAAT/enhancer binding protein alpha (CEBPA) gene have been associated with a favorable outcome in patients with acute myeloid leukemia (AML), but mainly in those with a normal karyotype. Here, we analyzed the impact of associated cytogenetic abnormalities or bad-prognosis fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) in 53 patients with CEBPA(+) de novo AML treated in the Acute Leukemia French Association trials. We found that only those with a normal karyotype and no FLT3-ITD displayed the expected favorable outcome. In this context, relapse-free, disease-free, and overall survival were significantly longer than in corresponding patients without the CEBPA mutation (P = .035, .016, and .047, respectively). This was not observed in the context of an abnormal karyotype or associated FLT3-ITD. Furthermore, after adjustment on age, trial, and mutation type, these features were independently predictive of shorter overall survival in the subset of patients with CEBPA(+) AML (multivariate hazard ratio = 2.7; 95% confidence interval, 1.08-6.7; and 2.9; 95% confidence interval, 1.01-8.2; with P = .034 and .05, for abnormal karyotype and FLT3-ITD, respectively).

  3. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes.

    PubMed

    Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G; Donigan, Katherine A; McLenigan, Mary P; Yang, William; Saribasak, Huseyin; Huston, Donald E; Lange, Sabine S; Woodgate, Roger; Gearhart, Patricia J

    2016-08-22

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι-compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. @2016.

  4. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes

    PubMed Central

    Donigan, Katherine A.; Huston, Donald E.; Lange, Sabine S.

    2016-01-01

    DNA polymerase ι (Pol ι) is an attractive candidate for somatic hypermutation in antibody genes because of its low fidelity. To identify a role for Pol ι, we analyzed mutations in two strains of mice with deficiencies in the enzyme: 129 mice with negligible expression of truncated Pol ι, and knock-in mice that express full-length Pol ι that is catalytically inactive. Both strains had normal frequencies and spectra of mutations in the variable region, indicating that loss of Pol ι did not change overall mutagenesis. We next examined if Pol ι affected tandem mutations generated by another error-prone polymerase, Pol ζ. The frequency of contiguous mutations was analyzed using a novel computational model to determine if they occur during a single DNA transaction or during two independent events. Analyses of 2,000 mutations from both strains indicated that Pol ι–compromised mice lost the tandem signature, whereas C57BL/6 mice accumulated significant amounts of double mutations. The results support a model where Pol ι occasionally accesses the replication fork to generate a first mutation, and Pol ζ extends the mismatch with a second mutation. PMID:27455952

  5. Spontaneous mutation during the sexual cycle of Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watters, M.K.; Stadler, D.R.

    The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less

  6. Mutation mechanisms that underlie turnover of a human telomere-adjacent segmental duplication containing an unstable minisatellite.

    PubMed

    Hills, Mark; Jeyapalan, Jennie N; Foxon, Jennifer L; Royle, Nicola J

    2007-04-01

    Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.

  7. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706)

    PubMed Central

    Krsticevic, Flavia J.; Arce, Débora P.; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-01-01

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. PMID:27565886

  8. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae

    PubMed Central

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F.; de Ridder, Dick; Pronk, Jack T.; van Maris, Antonius J. A.; Daran, Jean-Marc

    2013-01-01

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments. PMID:24145419

  9. Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar).

    PubMed

    Christensen, Kris A; Davidson, William S

    2017-01-01

    Salmonids (e.g. Atlantic salmon, Pacific salmon, and trouts) have a long legacy of genome duplication. In addition to three ancient genome duplications that all teleosts are thought to share, salmonids have had one additional genome duplication. We explored a methodology for untangling these duplications from each other to better understand them in Atlantic salmon. In this methodology, homeologous regions (paralogous/duplicated genomic regions originating from a whole genome duplication) from the most recent genome duplication were assumed to have duplicated genes at greater density and have greater sequence similarity. This assumption was used to differentiate duplicated gene pairs in Atlantic salmon that are either from the most recent genome duplication or from earlier duplications. From a comparison with multiple vertebrate species, it is clear that Atlantic salmon have retained more duplicated genes from ancient genome duplications than other vertebrates--often at higher density in the genome and containing fewer synonymous mutations. It may be that polysomic inheritance is the mechanism responsible for maintaining ancient gene duplicates in salmonids. Polysomic inheritance (when multiple chromosomes pair during meiosis) is thought to be relatively common in salmonids compared to other vertebrate species. These findings illuminate how genome duplications may not only increase the number of duplicated genes, but may also be involved in the maintenance of them from previous genome duplications as well.

  10. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    PubMed

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  11. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE PAGES

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...

    2016-05-02

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  12. Landscape of somatic mutations in 560 breast cancer whole-genome sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan

    Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less

  13. Landscape of somatic mutations in 560 breast cancer whole genome sequences

    PubMed Central

    Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.

    2016-01-01

    We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926

  14. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706).

    PubMed

    Krsticevic, Flavia J; Arce, Débora P; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-10-13

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. Copyright © 2016 Krsticevic et al.

  15. Zone of Polarizing Activity Regulatory Sequence Mutations/Duplications with Preaxial Polydactyly and Longitudinal Preaxial Ray Deficiency in the Phenotype: A Review of Human Cases, Animal Models, and Insights Regarding the Pathogenesis

    PubMed Central

    2018-01-01

    Clinicians and scientists interested in developmental biology have viewed preaxial polydactyly (PPD) and longitudinal preaxial ray deficiency (LPAD) as two different entities. Point mutations and duplications in the zone of polarizing activity regulatory sequence (ZRS) are associated with anterior ectopic expression of Sonic Hedgehog (SHH) in the limb bud and usually result in a PPD phenotype. However, some of these mutations/duplications also have LPAD in the phenotype. This unusual PPD-LPAD association in ZRS mutations/duplications has not been specifically reviewed in the literature. The author reviews this unusual entity and gives insights regarding its pathogenesis. PMID:29651423

  16. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua) - Conserved synteny between fish monolobal and tetrapod bilobal transferrin loci

    PubMed Central

    2011-01-01

    Background The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. Results The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. Conclusions The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive

  17. Polymorphism, selection and tandem duplication of transferrin genes in Atlantic cod (Gadus morhua)--conserved synteny between fish monolobal and tetrapod bilobal transferrin loci.

    PubMed

    Andersen, Øivind; De Rosa, Maria Cristina; Pirolli, Davide; Tooming-Klunderud, Ave; Petersen, Petra E; André, Carl

    2011-05-25

    The two homologous iron-binding lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form, but any conserved synteny between bilobal and monolobal transferrin loci remains unexplored. The important role played by transferrin in the resistance to invading pathogens makes this polymorphic gene a highly valuable candidate for studying adaptive divergence among local populations. The Atlantic cod genome was shown to harbour two tandem duplicated serum transferrin genes (Tf1, Tf2), a melanotransferrin gene (MTf), and a monolobal transferrin gene (Omp). Whereas Tf1 and Tf2 were differentially expressed in liver and brain, the Omp transcript was restricted to the otoliths. Fish, chicken and mammals showed highly conserved syntenic regions in which monolobal and bilobal transferrins reside, but contrasting with tetrapods, the fish transferrin genes are positioned on three different linkage groups. Sequence alignment of cod Tf1 cDNAs from Northeast (NE) and Northwest (NW) Atlantic populations revealed 22 single nucleotide polymorphisms (SNP) causing the replacement of 16 amino acids, including eight surface residues revealed by the modelled 3D-structures, that might influence the binding of pathogens for removal of iron. SNP analysis of a total of 375 individuals from 14 trans-Atlantic populations showed that the Tf1-NE variant was almost fixed in the Baltic cod and predominated in the other NE Atlantic populations, whereas the NW Atlantic populations were more heterozygous and showed high frequencies of the Tf-NW SNP alleles. The highly conserved synteny between fish and tetrapod transferrin loci infers that the fusion of tandem duplicated Omp-like genes gave rise to the modern transferrins. The multiple nonsynonymous substitutions in cod Tf1 with putative structural effects, together with highly divergent allele frequencies among different cod populations, strongly suggest evidence for positive selection and local adaptation in

  18. Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study.

    PubMed

    Liu, Hsi-Che; Shih, Lee-Yung; May Chen, Mei-Ju; Wang, Chien-Chih; Yeh, Ting-Chi; Lin, Tung-Huei; Chen, Chien-Yu; Lin, Chih-Jen; Liang, Der-Cherng

    2011-05-01

    In acute myeloid leukemia (AML), the mixed lineage leukemia (MLL) gene may be rearranged to generate a partial tandem duplication (PTD), or fused to partner genes through a chromosomal translocation (tMLL). In this study, we first explored the differentially expressed genes between MLL-PTD and tMLL using gene expression profiling of our cohort (15 MLL-PTD and 10 tMLL) and one published data set. The top 250 probes were chosen from each set, resulting in 29 common probes (21 unique genes) to both sets. The selected genes include four HOXB genes, HOXB2, B3, B5, and B6. The expression values of these HOXB genes significantly differ between MLL-PTD and tMLL cases. Clustering and classification analyses were thoroughly conducted to support our gene selection results. Second, as MLL-PTD, FLT3-ITD, and NPM1 mutations are identified in AML with normal karyotypes, we briefly studied their impact on the HOXB genes. Another contribution of this study is to demonstrate that using public data from other studies enriches samples for analysis and yields more conclusive results. 2011 Elsevier Inc. All rights reserved.

  19. Intraspecific Polymorphism, Interspecific Divergence, and the Origins of Function-Altering Mutations in Deer Mouse Hemoglobin

    PubMed Central

    Natarajan, Chandrasekhar; Hoffmann, Federico G.; Lanier, Hayley C.; Wolf, Cole J.; Cheviron, Zachary A.; Spangler, Matthew L.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2015-01-01

    Major challenges for illuminating the genetic basis of phenotypic evolution are to identify causative mutations, to quantify their functional effects, to trace their origins as new or preexisting variants, and to assess the manner in which segregating variation is transduced into species differences. Here, we report an experimental analysis of genetic variation in hemoglobin (Hb) function within and among species of Peromyscus mice that are native to different elevations. A multilocus survey of sequence variation in the duplicated HBA and HBB genes in Peromyscus maniculatus revealed that function-altering amino acid variants are widely shared among geographically disparate populations from different elevations, and numerous amino acid polymorphisms are also shared with closely related species. Variation in Hb-O2 affinity within and among populations of P. maniculatus is attributable to numerous amino acid mutations that have individually small effects. One especially surprising feature of the Hb polymorphism in P. maniculatus is that an appreciable fraction of functional standing variation in the two transcriptionally active HBA paralogs is attributable to recurrent gene conversion from a tandemly linked HBA pseudogene. Moreover, transpecific polymorphism in the duplicated HBA genes is not solely attributable to incomplete lineage sorting or introgressive hybridization; instead, it is mainly attributable to recurrent interparalog gene conversion that has occurred independently in different species. Partly as a result of concerted evolution between tandemly duplicated globin genes, the same amino acid changes that contribute to variation in Hb function within P. maniculatus also contribute to divergence in Hb function among different species of Peromyscus. In the case of function-altering Hb mutations in Peromyscus, there is no qualitative or quantitative distinction between segregating variants within species and fixed differences between species. PMID:25556236

  20. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications

    PubMed Central

    Djogbénou, Luc S.; Berthomieu, Arnaud; Makoundou, Patrick; Baba-Moussa, Lamine S.; Fiston-Lavier, Anna-Sophie; Belkhir, Khalid; Labbé, Pierrick; Weill, Mylène

    2016-01-01

    Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides’ target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector

  1. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    PubMed Central

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  2. The origins and impact of primate segmental duplications.

    PubMed

    Marques-Bonet, Tomas; Girirajan, Santhosh; Eichler, Evan E

    2009-10-01

    Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.

  3. Duplication of an upstream silencer of FZP increases grain yield in rice.

    PubMed

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  4. Origin of a function by tandem gene duplication limits the evolutionary capability of its sister copy.

    PubMed

    Hasselmann, Martin; Lechner, Sarah; Schulte, Christina; Beye, Martin

    2010-07-27

    The most remarkable outcome of a gene duplication event is the evolution of a novel function. Little information exists on how the rise of a novel function affects the evolution of its paralogous sister gene copy, however. We studied the evolution of the feminizer (fem) gene from which the gene complementary sex determiner (csd) recently derived by tandem duplication within the honey bee (Apis) lineage. Previous studies showed that fem retained its sex determination function, whereas the rise of csd established a new primary signal of sex determination. We observed a specific reduction of nonsynonymous to synonymous substitution ratios in Apis to non-Apis fem. We found a contrasting pattern at two other genetically linked genes, suggesting that hitchhiking effects to csd, the locus under balancing selection, is not the cause of this evolutionary pattern. We also excluded higher synonymous substitution rates by relative rate testing. These results imply that stronger purifying selection is operating at the fem gene in the presence of csd. We propose that csd's new function interferes with the function of Fem protein, resulting in molecular constraints and limited evolvability of fem in the Apis lineage. Elevated silent nucleotide polymorphism in fem relative to the genome-wide average suggests that genetic linkage to the csd gene maintained more nucleotide variation in today's population. Our findings provide evidence that csd functionally and genetically interferes with fem, suggesting that a newly evolved gene and its functions can limit the evolutionary capability of other genes in the genome.

  5. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes.

    PubMed

    Ye, Fei; Lan, Xu-E; Zhu, Wen-Bo; You, Ping

    2016-05-09

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects.

  6. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes

    PubMed Central

    Ye, Fei; Lan, Xu-e; Zhu, Wen-bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  7. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications

    PubMed Central

    Ruppert, Amy S.; Radmacher, Michael D.; Mrózek, Krzysztof; Paschka, Peter; Langer, Christian; Baldus, Claudia D.; Wen, Jing; Racke, Frederick; Powell, Bayard L.; Kolitz, Jonathan E.; Larson, Richard A.; Caligiuri, Michael A.; Marcucci, Guido; Bloomfield, Clara D.

    2008-01-01

    The prognostic relevance of FLT3 D835/I836 mutations (FLT3-TKD) in cytogenetically normal acute myeloid leukemia (CN-AML) remains to be established. After excluding patients with FLT3 internal tandem duplications, we compared treatment outcome of 16 de novo CN-AML patients with FLT3-TKD with that of 123 patients with wild-type FLT3 (FLT3-WT), less than 60 years of age and similarly treated on Cancer and Leukemia Group B protocols. All FLT3-TKD+ patients and 85% of FLT3-WT patients achieved a complete remission (P = .13). Disease-free survival (DFS) of FLT3-TKD+ patients was worse than DFS of FLT3-WT patients (P = .01; estimated 3-year DFS rates, 31% vs 60%, respectively). In a multivariable analysis, FLT3-TKD was associated with worse DFS (P = .02) independent of NPM1 status and percentage of bone marrow blasts. To gain further biologic insights, a gene-expression signature differentiating FLT3-TKD+ from FLT3-WT patients was identified. The signature (333 probe sets) included overexpression of VNN1, C3AR1, PTPN6, and multiple other genes involved in monocarboxylate transport activity, and underexpression of genes involved in signal transduction regulation. These associations with outcome, other prognostic markers, and the elucidated expression signature enhance our understanding of FLT3-TKD–associated biology and may lead to development of novel therapies that improve clinical outcome of CN-AML patients with FLT3-TKD. PMID:17940205

  8. Startling Mosaicism of the Y-Chromosome and Tandem Duplication of the SRY and DAZ Genes in Patients with Turner Syndrome

    PubMed Central

    Premi, Sanjay; Srivastava, Jyoti; Panneer, Ganesan; Ali, Sher

    2008-01-01

    Presence of the human Y-chromosome in females with Turner Syndrome (TS) enhances the risk of development of gonadoblastoma besides causing several other phenotypic abnormalities. In the present study, we have analyzed the Y chromosome in 15 clinically diagnosed Turner Syndrome (TS) patients and detected high level of mosaicisms ranging from 45,XO:46,XY = 100:0% in 4; 45,XO:46,XY:46XX = 4:94:2 in 8; and 45,XO:46,XY:46XX = 50:30:20 cells in 3 TS patients, unlike previous reports showing 5–8% cells with Y- material. Also, no ring, marker or di-centric Y was observed in any of the cases. Of the two TS patients having intact Y chromosome in >85% cells, one was exceptionally tall. Both the patients were positive for SRY, DAZ, CDY1, DBY, UTY and AZFa, b and c specific STSs. Real Time PCR and FISH demonstrated tandem duplication/multiplication of the SRY and DAZ genes. At sequence level, the SRY was normal in 8 TS patients while the remaining 7 showed either absence of this gene or known and novel mutations within and outside of the HMG box. SNV/SFV analysis showed normal four copies of the DAZ genes in these 8 patients. All the TS patients showed aplastic uterus with no ovaries and no symptom of gonadoblastoma. Present study demonstrates new types of polymorphisms indicating that no two TS patients have identical genotype-phenotype. Thus, a comprehensive analysis of more number of samples is warranted to uncover consensus on the loci affected, to be able to use them as potential diagnostic markers. PMID:19030103

  9. Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain.

    PubMed

    Martins, Angelica N; Waheed, Abdul A; Ablan, Sherimay D; Huang, Wei; Newton, Alicia; Petropoulos, Christos J; Brindeiro, Rodrigo D M; Freed, Eric O

    2016-01-15

    HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are

  10. Wilms’ Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Paschka, Peter; Marcucci, Guido; Ruppert, Amy S.; Whitman, Susan P.; Mrózek, Krzysztof; Maharry, Kati; Langer, Christian; Baldus, Claudia D.; Zhao, Weiqiang; Powell, Bayard L.; Baer, Maria R.; Carroll, Andrew J.; Caligiuri, Michael A.; Kolitz, Jonathan E.; Larson, Richard A.; Bloomfield, Clara D.

    2008-01-01

    Purpose To analyze the prognostic impact of Wilms’ tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. Results Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITDnegative/NPM1mutated as low risk v FLT3-ITDpositive and/or NPM1wild-type as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. Conclusion We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML. PMID:18559874

  11. Molecular analyses of juvenile granulosa cell tumors bearing AKT1 mutations provide insights into tumor biology and therapeutic leads.

    PubMed

    Auguste, Aurélie; Bessière, Laurianne; Todeschini, Anne-Laure; Caburet, Sandrine; Sarnacki, Sabine; Prat, Jaime; D'angelo, Emanuela; De La Grange, Pierre; Ariste, Olivier; Lemoine, Fréderic; Legois, Bérangère; Sultan, Charles; Zider, Alain; Galmiche, Louise; Kalfa, Nicolas; Veitia, Reiner A

    2015-12-01

    Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. The detection of large deletions or duplications in genomic DNA.

    PubMed

    Armour, J A L; Barton, D E; Cockburn, D J; Taylor, G R

    2002-11-01

    While methods for the detection of point mutations and small insertions or deletions in genomic DNA are well established, the detection of larger (>100 bp) genomic duplications or deletions can be more difficult. Most mutation scanning methods use PCR as a first step, but the subsequent analyses are usually qualitative rather than quantitative. Gene dosage methods based on PCR need to be quantitative (i.e., they should report molar quantities of starting material) or semi-quantitative (i.e., they should report gene dosage relative to an internal standard). Without some sort of quantitation, heterozygous deletions and duplications may be overlooked and therefore be under-ascertained. Gene dosage methods provide the additional benefit of reporting allele drop-out in the PCR. This could impact on SNP surveys, where large-scale genotyping may miss null alleles. Here we review recent developments in techniques for the detection of this type of mutation and compare their relative strengths and weaknesses. We emphasize that comprehensive mutation analysis should include scanning for large insertions and deletions and duplications. Copyright 2002 Wiley-Liss, Inc.

  13. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes

    PubMed Central

    2013-01-01

    Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted

  14. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms.

    PubMed

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P; Feltus, F Alex; Paterson, Andrew H

    2011-01-01

    Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.

  16. Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    PubMed Central

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Paterson, Andrew H.

    2011-01-01

    Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution. PMID:22164235

  17. Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK

    PubMed Central

    Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven

    2014-01-01

    Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation

  18. Mutation rates at 42 Y chromosomal short tandem repeats in Chinese Han population in Eastern China.

    PubMed

    Wu, Weiwei; Ren, Wenyan; Hao, Honglei; Nan, Hailun; He, Xin; Liu, Qiuling; Lu, Dejian

    2018-01-31

    Mutation analysis of 42 Y chromosomal short tandem repeats (Y-STRs) loci was performed using a sample of 1160 father-son pairs from the Chinese Han population in Eastern China. The results showed that the average mutation rate across the 42 Y-STR loci was 0.0041 (95% CI 0.0036-0.0047) per locus per generation. The locus-specific mutation rates varied from 0.000 to 0.0190. No mutation was found at DYS388, DYS437, DYS448, DYS531, and GATA_H4. DYS627, DYS570, DYS576, and DYS449 could be classified as rapidly mutating Y-STRs, with mutation rates higher than 1.0 × 10 -2 . DYS458, DYS630, and DYS518 were moderately mutating Y-STRs, with mutation rates ranging from 8 × 10 -3 to 1 × 10 -2 . Although the characteristics of the Y-STR mutations were consistent with those in previous studies, mutation rate differences between our data and previous published data were found at some rapidly mutating Y-STRs. The single-copy loci located on the short arm of the Y chromosome (Yp) showed relatively higher mutation rates more frequently than the multi-copy loci. These results will not only extend the data for Y-STR mutations but also be important for kinship analysis, paternal lineage identification, and family relationship reconstruction in forensic Y-STR analysis.

  19. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Good, Robert T.; Schmidt, Joshua M.; Lumb, Christopher; Robin, Charles; Daborn, Phillip J.; Batterham, Philip

    2013-01-01

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala301 to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala301 to Ser resistance mutation and Met360 to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser301 homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser301 change into an Ala301 background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene. PMID:23959864

  20. De novo interstitial tandem duplication of chromosome 4(q21-q28)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, E.G.; Ramon, F.J.H.; Jimenez, R.D.

    1996-03-29

    We describe a girl with a previously unreported de novo duplication of chromosome 4q involving segment q21-q28. Clinical manifestations included growth and psychomotor retardation, facial asymmetry, hypotelorism, epicanthic folds, mongoloid slant of palpebral fissures, apparently low-set auricles, high nasal bridge, long philtrum, small mouth, short neck, low-set thumbs, and bilateral club foot. This phenotype is compared with that of previously reported cases of duplication 4q. 12 refs., 3 figs., 1 tab.

  1. Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping.

    PubMed

    U'Ren, Jana M; Schupp, James M; Pearson, Talima; Hornstra, Heidie; Friedman, Christine L Clark; Smith, Kimothy L; Daugherty, Rebecca R Leadem; Rhoton, Shane D; Leadem, Ben; Georgia, Shalamar; Cardon, Michelle; Huynh, Lynn Y; DeShazer, David; Harvey, Steven P; Robison, Richard; Gal, Daniel; Mayo, Mark J; Wagner, David; Currie, Bart J; Keim, Paul

    2007-03-30

    The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations. B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria. The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health

  2. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin

    PubMed Central

    2014-01-01

    Background The absence of horns, called polled phenotype, is the favored trait in modern cattle husbandry. To date, polled cattle are obtained primarily by dehorning calves. Dehorning is a practice that raises animal welfare issues, which can be addressed by selecting for genetically hornless cattle. In the past 20 years, there have been many studies worldwide to identify unique genetic markers in complete association with the polled trait in cattle and recently, two different alleles at the POLLED locus, both resulting in the absence of horns, were reported: (1) the Celtic allele, which is responsible for the polled phenotype in most breeds and for which a single candidate mutation was detected and (2) the Friesian allele, which is responsible for the polled phenotype predominantly in the Holstein-Friesian breed and in a few other breeds, but for which five candidate mutations were identified in a 260-kb haplotype. Further studies based on genome-wide sequencing and high-density SNP (single nucleotide polymorphism) genotyping confirmed the existence of the Celtic and Friesian variants and narrowed down the causal Friesian haplotype to an interval of 145 kb. Results Almost 6000 animals were genetically tested for the polled trait and we detected a recombinant animal which enabled us to reduce the Friesian POLLED haplotype to a single causal mutation, namely a 80-kb duplication. Moreover, our results clearly disagree with the recently reported perfect co-segregation of the POLLED mutation and a SNP at position 1 390 292 bp on bovine chromosome 1 in the Holstein-Friesian population. Conclusion We conclude that the 80-kb duplication, as the only remaining variant within the shortened Friesian haplotype, represents the most likely causal mutation for the polled phenotype of Friesian origin. PMID:24993890

  3. Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene.

    PubMed

    Barbaro, Michela; Oscarson, Mikael; Schoumans, Jacqueline; Staaf, Johan; Ivarsson, Sten A; Wedell, Anna

    2007-08-01

    Testis development is a tightly regulated process that requires an efficient and coordinated spatiotemporal action of many factors, and it has been shown that several genes involved in gonadal development exert a dosage effect. Chromosomal imbalances have been reported in several patients presenting with gonadal dysgenesis as part of severe dysmorphic phenotypes. We screened for submicroscopic DNA copy number variations in two sisters with an apparent normal 46,XY karyotype and female external genitalia due to gonadal dysgenesis, and in which mutations in known candidate genes had been excluded. By high-resolution tiling bacterial artificial chromosome array comparative genome hybridization, a submicroscopic duplication at Xp21.2 containing DAX1 (NR0B1) was identified. Using fluorescence in situ hybridization, multiple ligation probe amplification, and PCR, the rearrangement was further characterized. This revealed a 637-kb tandem duplication that in addition to DAX1 includes the four MAGEB genes, the hypothetical gene CXorf21, GK, and part of the MAP3K7IP3 gene. Sequencing and analysis of the breakpoint boundaries and duplication junction suggest that the duplication originated through a coupled homologous and nonhomologous recombination process. This represents the first duplication on Xp21.2 identified in patients with isolated gonadal dysgenesis because all previously described XY subjects with Xp21 duplications presented with gonadal dysgenesis as part of a more complex phenotype, including mental retardation and/or malformations. Thus, our data support DAX1 as a dosage sensitive gene responsible for gonadal dysgenesis and highlight the importance of considering DAX1 locus duplications in the evaluation of all cases of 46,XY gonadal dysgenesis.

  4. Reviewing Large LAMA2 Deletions and Duplications in Congenital Muscular Dystrophy Patients.

    PubMed

    Oliveira, Jorge; Gonçalves, Ana; Oliveira, Márcia E; Fineza, Isabel; Pavanello, Rita C M; Vainzof, Mariz; Bronze-da-Rocha, Elsa; Santos, Rosário; Sousa, Mário

    2014-01-01

    Congenital muscular dystrophy (CMD) type 1A (MDC1A) is caused by recessive mutations in laminin-α2 (LAMA2) gene. Laminin-211, a heterotrimeric glycoprotein that contains the α2 chain, is crucial for muscle stability establishing a bond between the sarcolemma and the extracellular matrix. More than 215 mutations are listed in the locus specific database (LSDB) for LAMA2 gene (May 2014). A limited number of large deletions/duplications have been reported in LAMA2. Our main objective was the identification of additional large rearrangements in LAMA2 found in CMD patients and a systematic review of cases in the literature and LSDB. In four of the fifty-two patients studied over the last 10 years, only one heterozygous mutation was identified, after sequencing and screening for a frequent LAMA2 deletion. Initial screening of large mutations was performed by multiplex ligation-dependent probe application (MLPA). Further characterization implied several techniques: long-range PCR, cDNA and Southern-blot analysis. Three novel large deletions in LAMA2 and the first pathogenic large duplication were successfully identified, allowing a definitive molecular diagnosis, carrier screening and prenatal diagnosis. A total of fifteen deletions and two duplications previously reported were also reviewed. Two possible mutational "hotspots" for deletions may exist, the first encompassing exons 3 and 4 and second in the 3' region (exons 56 to 65) of LAMA2. Our findings show that this type of mutation is fairly frequent (18.4% of mutated alleles) and is underestimated in the literature. It is important to include the screening of large deletions/duplications as part of the genetic diagnosis strategy.

  5. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy.

    PubMed

    Pratcorona, Marta; Brunet, Salut; Nomdedéu, Josep; Ribera, Josep Maria; Tormo, Mar; Duarte, Rafael; Escoda, Lourdes; Guàrdia, Ramon; Queipo de Llano, M Paz; Salamero, Olga; Bargay, Joan; Pedro, Carmen; Martí, Josep Maria; Torrebadell, Montserrat; Díaz-Beyá, Marina; Camós, Mireia; Colomer, Dolors; Hoyos, Montserrat; Sierra, Jorge; Esteve, Jordi

    2013-04-04

    Risk associated to FLT3 internal tandem duplication (FLT3-ITD) in patients with acute myeloid leukemia (AML) may depend on mutational burden and its interaction with other mutations. We analyzed the effect of FLT3-ITD/FLT3 wild-type (FLT3wt) ratio depending on NPM1 mutation (NPM1mut) in 303 patients with intermediate-risk cytogenetics AML treated with intensive chemotherapy. Among NPM1mut patients, FLT3wt and low ratio (<0.5) subgroups showed similar overall survival, relapse risk, and leukemia-free survival, whereas high ratio (≥0.5) patients had a worse outcome. In NPM1wt AML, FLT3-ITD subgroups showed a comparable outcome, with higher risk of relapse and shortened overall survival than FLT3wt patients. Allogeneic stem cell transplantation in CR1 was associated with a reduced relapse risk in all molecular subgroups with the exception of NPM1mut AML with absent or low ratio FLT3-ITD. In conclusion, effect of FLT3 burden is modulated by NPM1 mutation, especially in patients with a low ratio.

  6. Expanding the mutational spectrum in Johanson-Blizzard syndrome: identification of whole exon deletions and duplications in the UBR1 gene by multiplex ligation-dependent probe amplification analysis.

    PubMed

    Sukalo, Maja; Schäflein, Eva; Schanze, Ina; Everman, David B; Rezaei, Nima; Argente, Jesús; Lorda-Sanchez, Isabel; Deshpande, Charu; Takahashi, Tsutomu; Kleger, Alexander; Zenker, Martin

    2017-11-01

    Johanson-Blizzard syndrome (JBS, MIM #243800) is a very rare autosomal recessive disorder characterized by exocrine pancreatic insufficiency, nasal wing hypoplasia, hypodontia, and other abnormalities. JBS is caused by mutations of the UBR1 gene (MIM *605981), encoding a ubiquitin ligase of the N-end rule pathway. Molecular findings in a total of 65 unrelated patients with a clinical diagnosis of JBS who were previously screened for UBR1 mutations by Sanger sequencing were reviewed and cases lacking a disease-causing UBR1 mutation on either one or both alleles were included in this study. In order to discover mutations that are not detectable by Sanger sequencing, we designed a probe set for multiplex ligation-dependent probe amplification (MLPA) analysis of the UBR1 gene and analyzed the copy number status of all 47 UBR1 exons. Our previous studies using Sanger sequencing could detect mutations in 93.1% of 130 disease-associated UBR1 alleles. Six patients with a highly suggestive clinical diagnosis of JBS and unsolved genotype were included in this study. MLPA analysis detected six alleles harboring exon deletions/duplications, thereby raising the mutation detection rate in the entire cohort to 97.7% (127/130 alleles). We conclude that single or multi-exon deletions or duplications account for a substantial proportion of JBS-associated UBR1 mutations. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  7. A diffusion approach to approximating preservation probabilities for gene duplicates.

    PubMed

    O'Hely, Martin

    2006-08-01

    Consider a haploid population and, within its genome, a gene whose presence is vital for the survival of any individual. Each copy of this gene is subject to mutations which destroy its function. Suppose one member of the population somehow acquires a duplicate copy of the gene, where the duplicate is fully linked to the original gene's locus. Preservation is said to occur if eventually the entire population consists of individuals descended from this one which initially carried the duplicate. The system is modelled by a finite state-space Markov process which in turn is approximated by a diffusion process, whence an explicit expression for the probability of preservation is derived. The event of preservation can be compared to the fixation of a selectively neutral gene variant initially present in a single individual, the probability of which is the reciprocal of the population size. For very weak mutation, this and the probability of preservation are equal, while as mutation becomes stronger, the preservation probability tends to double this reciprocal. This is in excellent agreement with simulation studies.

  8. Metallothionein Gene Duplications and Metal Tolerance in Natural Populations of Drosophila melanogaster

    PubMed Central

    Maroni, G.; Wise, J.; Young, J. E.; Otto, E.

    1987-01-01

    A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family. PMID:2828157

  9. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A case report: Becker muscular dystrophy presenting with epilepsy and dysgnosia induced by duplication mutation of Dystrophin gene.

    PubMed

    Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan

    2016-12-12

    Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.

  11. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.

    PubMed

    Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M

    2017-04-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. The outcome of allogeneic hematopoietic cell transplantation for children with FMS-like tyrosine kinase 3 internal tandem duplication-positive acute myelogenous leukemia.

    PubMed

    Schechter, Tal; Gassas, Adam; Chen, Heidi; Pollard, Jessica; Meshinchi, Soheil; Zaidman, Irina; Hitzler, Johann; Abdelhaleem, Mohamed; Ho, Richard; Domm, Jennifer; Woolfrey, Ann; Frangoul, Haydar

    2015-01-01

    FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) is a somatic mutation associated with poor outcome when treated with chemotherapy alone. In children, hematopoietic stem cell transplantation (HSCT) is recommended, but very limited data on outcome are reported. We determined the outcome of 29 children with FLT3/ITD-positive acute myelogenous leukemia (AML) who underwent allogeneic HSCT in 4 pediatric centers. Eleven patients (38%) received matched related donor hematopoietic stem cells and 18 (62%) received alternative donors. Eighteen patients (62%) received total body irradiation (TBI)-based regimens. No patients experienced transplantation-related mortality. Eleven patients (38%) experienced relapsed disease. The cumulative incidence of relapse at 2 years was 34.7% (95% confidence interval [CI], 20.4% to 54.9%). Two-year disease-free survival (DFS) and overall survival (OS) were 65.3% (95% CI, 45.1% to 79.6%) and 82.2% (95% CI, 58.5% to 91.3%), respectively. There was no difference in the DFS of patients who received transplants from related donors versus the DFS of those who received transplants from alternative donors (hazard ratio [HR], 2.64; 95% CI, .79 to 8.76; P = .10), using univariate analysis. Patients with higher FLT3/ITD ratio at diagnosis had significantly worse DFS (HR, 1.42; 95% CI, 1.04 to 1.93; P = .03). The use of TBI in the preparative regimen was associated with superior DFS (HR, .29; 95% CI, .08 to .99; P = .04) and OS (HR, .07; 95% CI, .01 to .62; P = .002). We conclude that allogeneic HSCT improves DFS and OS in children with FLT3/ITD-positive AML compared with what has been reported in those treated with chemotherapy alone. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Tandem duplication dup(X)(q13q22) in a male proband inherited from the mother showing mosaicism of X-inactivation.

    PubMed

    Steinbach, P; Horstmann, W; Scholz, W

    1980-01-01

    An aberrant X chromosome containing extra material in the long arm was observed in a psychomotoric retarded boy and his healthy, short-statured mother. The proband showed generalized muscular hypotony, growth retardation, and somatic anomalies including hypoplastic genitalia and cryptorchism. Chromosomal banding techniques suggested a tandem duplication of the segment Xq13 leads to Xq22. In the mother the vast majority of lymphocytes showed late replication of the aberrant X chromosome. Some of her cells, however, contained an apparently active aberrant X. Both the early- and late-replicating aberrant X exhibited late replication patterns very similar to those described for normal X chromosomes in lymphocytes. Asynchrony of DNA replication among the two segments Xq13 leads to Xq22 in the dup(X) was never observed. We consider that the clinical picture of the proband is caused by an excess of active X material.

  14. The Evolutionary Fates of a Large Segmental Duplication in Mouse

    PubMed Central

    Morgan, Andrew P.; Holt, J. Matthew; McMullan, Rachel C.; Bell, Timothy A.; Clayshulte, Amelia M.-F.; Didion, John P.; Yadgary, Liran; Thybert, David; Odom, Duncan T.; Flicek, Paul; McMillan, Leonard; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22. De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes. PMID:27371833

  15. A Synergism between Adaptive Effects and Evolvability Drives Whole Genome Duplication to Fixation

    PubMed Central

    Cuypers, Thomas D.; Hogeweg, Paulien

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change. PMID:24743268

  16. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    PubMed

    Cuypers, Thomas D; Hogeweg, Paulien

    2014-04-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  17. Dnmt3a deletion cooperates with the Flt3/ITD mutation to drive leukemogenesis in a murine model

    PubMed Central

    Poitras, Jennifer L.; Heiser, Diane; Li, Li; Nguyen, Bao; Nagai, Kozo; Duffield, Amy S.; Gamper, Christopher; Small, Donald

    2016-01-01

    Internal tandem duplications of the juxtamembrane domain of FLT3 (FLT3/ITD) are among the most common mutations in Acute Myeloid Leukemia (AML). Resulting in constitutive activation of the kinase, FLT3/ITD portends a particularly poor prognosis, with reduced overall survival and increased rates of relapse. We previously generated a knock-in mouse, harboring an internal tandem duplication at the endogenous Flt3 locus, which develops a fatal myeloproliferative neoplasm (MPN), but fails to develop acute leukemia, suggesting additional mutations are necessary for transformation. To investigate the potential cooperativity of FLT3/ITD and mutant DNMT3A, we bred a conditional Dnmt3a knockout to a substrain of our Flt3/ITD knock-in mice, and found deletion of Dnmt3a significantly reduced median survival of Flt3ITD/+ mice in a dose dependent manner. As expected, pIpC treated Flt3ITD/+ mice solely developed MPN, while Flt3ITD/+;Dnmt3af/f and Flt3ITD/+;Dnmt3af/+ developed a spectrum of neoplasms, including MPN, T-ALL, and AML. Functionally, FLT3/ITD and DNMT3A deletion cooperate to expand LT-HSCs, which exhibit enhanced self-renewal in serial re-plating assays. These results illustrate that DNMT3A loss cooperates with FLT3/ITD to generate hematopoietic neoplasms, including AML. In combination with FLT3/ITD, homozygous Dnmt3a knock-out results in reduced time to disease onset, LT-HSC expansion, and a higher incidence of T-ALL compared with loss of just one allele. The co-occurrence of FLT3 and DNMT3A mutations in AML, as well as subsets of T-ALL, suggests the Flt3ITD/+;Dnmt3af/f model may serve as a valuable resource for delineating effective therapeutic strategies in two clinically relevant contexts. PMID:27636998

  18. Global analysis of human duplicated genes reveals the relative importance of whole-genome duplicates originated in the early vertebrate evolution.

    PubMed

    Acharya, Debarun; Ghosh, Tapash C

    2016-01-22

    Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution. We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more divergent in their gene expression profile, have higher multifunctionality and are more often associated with disease, and are evolutionarily more conserved than human SSDs. Our study suggests that human WGD duplicates are more divergent and entails the adaptation of WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of evolution.

  19. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  20. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  1. Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7

    PubMed Central

    Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul

    2006-01-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932

  2. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.

    PubMed

    Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul

    2006-06-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.

  3. New genes from old: asymmetric divergence of gene duplicates and the evolution of development.

    PubMed

    Holland, Peter W H; Marlétaz, Ferdinand; Maeso, Ignacio; Dunwell, Thomas L; Paps, Jordi

    2017-02-05

    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such 'asymmetric evolution' seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  4. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    PubMed Central

    Fawcett, Jeffrey A.; Innan, Hideki

    2011-01-01

    Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples. PMID:24710144

  5. A yeast gene essential for regulation of spindle pole duplication.

    PubMed Central

    Baum, P; Yip, C; Goetsch, L; Byers, B

    1988-01-01

    In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479

  6. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  7. Tempo and Mode of Gene Duplication in Mammalian Ribosomal Protein Evolution

    PubMed Central

    Gajdosik, Matthew D.; Simon, Amanda; Nelson, Craig E.

    2014-01-01

    Gene duplication has been widely recognized as a major driver of evolutionary change and organismal complexity through the generation of multi-gene families. Therefore, understanding the forces that govern the evolution of gene families through the retention or loss of duplicated genes is fundamentally important in our efforts to study genome evolution. Previous work from our lab has shown that ribosomal protein (RP) genes constitute one of the largest classes of conserved duplicated genes in mammals. This result was surprising due to the fact that ribosomal protein genes evolve slowly and transcript levels are very tightly regulated. In our present study, we identified and characterized all RP duplicates in eight mammalian genomes in order to investigate the tempo and mode of ribosomal protein family evolution. We show that a sizable number of duplicates are transcriptionally active and are very highly conserved. Furthermore, we conclude that existing gene duplication models do not readily account for the preservation of a very large number of intact retroduplicated ribosomal protein (RT-RP) genes observed in mammalian genomes. We suggest that selection against dominant-negative mutations may underlie the unexpected retention and conservation of duplicated RP genes, and may shape the fate of newly duplicated genes, regardless of duplication mechanism. PMID:25369106

  8. Comprehensive review of the duplication 3q syndrome and report of a patient with Currarino syndrome and de novo duplication 3q26.32-q27.2.

    PubMed

    Dworschak, G C; Crétolle, C; Hilger, A; Engels, H; Korsch, E; Reutter, H; Ludwig, M

    2017-05-01

    Partial duplications of the long arm of chromosome 3, dup(3q), are a rare but well-described condition, sharing features of Cornelia de Lange syndrome. Around two thirds of cases are derived from unbalanced translocations, whereas pure dup(3q) have rarely been reported. Here, we provide an extensive review of the literature on dup(3q). This search revealed several patients with caudal malformations and anomalies, suggesting that caudal malformations or anomalies represent an inherent phenotypic feature of dup(3q). In this context, we report a patient with a pure de novo duplication 3q26.32-q27.2. The patient had the clinical diagnosis of Currarino syndrome (CS) (characterized by the triad of sacral anomalies, anorectal malformations and a presacral mass) and additional features, frequently detected in patients with a dup(3q). Mutations within the MNX1 gene were found to be causative in CS but no MNX1 mutation could be detected in our patient. Our comprehensive search for candidate genes located in the critical region of the duplication 3q syndrome, 3q26.3-q27, revealed a so far neglected phenotypic overlap of dup(3q) and the Pierpont syndrome, associated with a mutation of the TBL1XR1 gene on 3q26.32. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Models for loosely linked gene duplicates suggest lengthy persistence of both copies.

    PubMed

    O'Hely, Martin; Wockner, Leesa

    2007-06-21

    Consider the appearance of a duplicate copy of a gene at a locus linked loosely, if at all, to the locus at which the gene is usually found. If all copies of the gene are subject to non-functionalizing mutations, then two fates are possible: loss of functional copies at the duplicate locus (loss of duplicate expression), or loss of functional copies at the original locus (map change). This paper proposes a simple model to address the probability of map change, the time taken for a map change and/or loss of duplicate expression, and considers where in the spectrum between loss of duplicate expression and map change such a duplicate complex is likely to be found. The findings are: the probability of map change is always half the reciprocal of the population size N, the time for a map change to occur is order NlogN generations, and that there is a marked tendency for duplicates to remain near equi-frequency with the gene at the original locus for a large portion of that time. This is in excellent agreement with simulations.

  10. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  11. Locus-specific mutational events in a multilocus variable-number tandem repeat analysis of Escherichia coli O157:H7.

    PubMed

    Noller, Anna C; McEllistrem, M Catherine; Shutt, Kathleen A; Harrison, Lee H

    2006-02-01

    Multilocus variable-number tandem repeat analysis (MLVA) is a validated molecular subtyping method for detecting and evaluating Escherichia coli O157:H7 outbreaks. In a previous study, five outbreaks with a total of 21 isolates were examined by MLVA. Nearly 20% of the epidemiologically linked strains were single-locus variants (SLV) of their respective predominant outbreak clone. This result prompted an investigation into the mutation rates of the seven MLVA loci (TR1 to TR7). With an outbreak strain that was an SLV at the TR1 locus of the predominant clone, parallel and serial batch culture experiments were performed. In a parallel experiment, none (0/384) of the strains analyzed had mutations at the seven MLVA loci. In contrast, in the two 5-day serial experiments, 4.3% (41/960) of the strains analyzed had a significant variation in at least one of these loci (P < 0.001). The TR2 locus accounted for 85.3% (35/41) of the mutations, with an average mutation rate of 3.5 x 10(-3); the mutations rates for TR1 and TR5 were 10-fold lower. Single additions accounted for 77.1% (27/35) of the mutation events in TR2 and all (6/6) of the additions in TR1 and TR5. The remaining four loci had no slippage events detected. The mutation rates were locus specific and may impact the interpretation of MLVA data for epidemiologic investigations.

  12. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP genemore » duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.« less

  13. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: results of the ALFA-0701 trial.

    PubMed

    Renneville, Aline; Abdelali, Raouf Ben; Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine; Dombret, Hervé; Castaigne, Sylvie; Preudhomme, Claude

    2014-02-28

    We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n=146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P <0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients.

  14. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy

    PubMed Central

    Landsverk, Megan L.; Ruzzo, Elizabeth K.; Mefford, Heather C.; Buysse, Karen; Buchan, Jillian G.; Eichler, Evan E.; Petty, Elizabeth M.; Peterson, Esther A.; Knutzen, Dana M.; Barnett, Karen; Farlow, Martin R.; Caress, Judy; Parry, Gareth J.; Quan, Dianna; Gardner, Kathy L.; Hong, Ming; Simmons, Zachary; Bird, Thomas D.; Chance, Phillip F.; Hannibal, Mark C.

    2009-01-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA. PMID:19139049

  15. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy.

    PubMed

    Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C

    2009-04-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.

  16. A local duplication of the Melanocortin receptor 1 locus in Astyanax

    PubMed Central

    Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.

    2017-01-01

    In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163

  17. DNMT3A mutations in Chinese childhood acute myeloid leukemia.

    PubMed

    Li, Weijing; Cui, Lei; Gao, Chao; Liu, Shuguang; Zhao, Xiaoxi; Zhang, Ruidong; Zheng, Huyong; Wu, Minyuan; Li, Zhigang

    2017-08-01

    DNA methyltransferase 3A (DNMT3A) mutations have been found in approximately 20% of adult acute myeloid leukemia (AML) patients and in 0% to 1.4% of children with AML, and the hotspots of mutations are mainly located in the catalytic methyltransferase domain, hereinto, mutation R882 accounts for 60%. Although the negative effect of DNMT3A on treatment outcome is well known, the prognostic significance of other DNMT3A mutations in AML is still unclear. Here, we tried to determine the incidence and prognostic significance of DNMT3A mutations in a large cohort in Chinese childhood AML. We detected the mutations in DNMT3A exon 23 by polymerase chain reaction and direct sequencing in 342 children with AML (0-16 years old) from January 2005 to June 2013, treated on BCH-2003 AML protocol. The correlation of DNMT3A mutations with clinical characteristics, fusion genes, other molecular anomalies (FLT3 internal tandem duplication [FLT3-ITD], Nucleophosmin 1, C-KIT (KIT proto-oncogene receptor tyrosine kinase), and Wilms tumor 1 mutations), and treatment outcome were analyzed. DNMT3A mutations were detected in 4 out of 342 (1.2%) patients. Two patients were PML-RARA positive and 1 patient was FLT3-ITD positive. The mutations in coding sequences included S892S, V912A, R885G, and Q886R. Furthermore, there was 1 intronic mutation (c.2739+55A>C) found in 1 patient. No association of DNMT3A mutations with common clinical features was found. Two patients with DNMT3A mutations died of relapse or complications during treatment. One patient gave up treatment due to remission induction failure in day 33. Only 1 patient achieved continuous complete remission. DNMT3A mutations were rare in Chinese children with AML including PML-RARA positive APL. The mutation positions were different from the hotspots reported in adult AML. DNMT3A mutations may have adverse impact on prognosis of children with AML.

  18. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset.

    PubMed

    Yuan, Haiming; Huang, Linhuan; Hu, Xizi; Li, Qian; Sun, Xiaofang; Xie, Yingjun; Kong, Shu; Wang, Xiaoman

    2016-07-02

    Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects.

  19. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  20. Ancient and Recent Duplications Support Functional Diversity of Daphnia Opsins.

    PubMed

    Brandon, Christopher S; Greenwold, Matthew J; Dudycha, Jeffry L

    2017-01-01

    Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.

  1. Comparison of lesional skin c-KIT mutations with clinical phenotype in patients with mastocytosis.

    PubMed

    Chan, I J; Tharp, M D

    2018-06-01

    Activating c-KIT mutations cause abnormal mast cell growth and appear to play a role in mastocytosis. However, the correlation of c-KIT mutations with disease phenotypes is poorly characterized. To evaluate the correlation of c-KIT mutations with clinical presentations and laboratory findings. Total cellular RNA was isolated from the skin lesions of 43 adults and 7 children with mastocytosis, and PCR amplicons of cDNA were sequenced for c-KIT mutations. The most common activating mutation, KIT-D816V, was identified in 72% of adults and 57% of children. Additional activating mutations, namely, V560G and the internal tandem duplications (ITDs) 502-503dupAY, were detected in 12% of adults and 8% of children. V560G occurred more commonly in our patients than previously reported, and it appeared to be associated with more advanced disease. Otherwise, the presence or absence of activating mutations did not correlate with skin lesion morphology, disease extent or total serum tryptase levels. Four adults had expression only of wild-type KIT, while two others had expression of a truncated KIT lacking tyrosine kinase activity; yet these patients were clinically indistinguishable from those patients with activating c-KIT mutations. Activating c-KIT mutations exist in a significant portion of patients with mastocytosis, but not all patients showed expression of these mutations. Except for V560G, the presence or absence of activating c-KIT mutations did not predict the extent of disease. These observations suggest that although activating c-KIT mutations are associated with mast cell growth, other genes probably play a role in the cause of mastocytosis. © 2018 British Association of Dermatologists.

  2. The Effective Mutation Rate at Y Chromosome Short Tandem Repeats, with Application to Human Population-Divergence Time

    PubMed Central

    Zhivotovsky, Lev A.; Underhill, Peter A.; Cinnioğlu, Cengiz; Kayser, Manfred; Morar, Bharti; Kivisild, Toomas; Scozzari, Rosaria; Cruciani, Fulvio; Destro-Bisol, Giovanni; Spedini, Gabriella; Chambers, Geoffrey K.; Herrera, Rene J.; Yong, Kiau Kiun; Gresham, David; Tournev, Ivailo; Feldman, Marcus W.; Kalaydjieva, Luba

    2004-01-01

    We estimate an effective mutation rate at an average Y chromosome short-tandem repeat locus as 6.9×10-4 per 25 years, with a standard deviation across loci of 5.7×10-4, using data on microsatellite variation within Y chromosome haplogroups defined by unique-event polymorphisms in populations with documented short-term histories, as well as comparative data on worldwide populations at both the Y chromosome and various autosomal loci. This value is used to estimate the times of the African Bantu expansion, the divergence of Polynesian populations (the Maoris, Cook Islanders, and Samoans), and the origin of Gypsy populations from Bulgaria. PMID:14691732

  3. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

    PubMed

    Sancho, Rosa M; Law, Bernard M H; Harvey, Kirsten

    2009-10-15

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2-DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2-DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2-DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2-DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease.

  4. Intragenic SNP haplotypes associated with 84dup18 mutation in TNFRSF11A in four FEO pedigrees suggest three independent origins for this mutation.

    PubMed

    Elahi, Elahe; Shafaghati, Yousef; Asadi, Sareh; Absalan, Farnaz; Goodarzi, Hani; Gharaii, Nava; Karimi-Nejad, Mohammad Hassan; Shahram, Farhad; Hughes, Anne E

    2007-01-01

    Familial expansile osteolysis (FEO) is a rare disorder causing bone dysplasia. The clinical features of FEO include early-onset hearing loss, tooth destruction, and progressive lytic expansion within limb bones causing pain, fracture, and deformity. An 18-bp duplication in the first exon of the TNFRSF11A gene encoding RANK has been previously identified in four FEO pedigrees. Despite having the identical mutation, phenotypic variations among affected individuals of the same and different pedigrees were noted. Another 18-bp duplication, one base proximal to the duplication previously reported, was subsequently found in two unrelated FEO patients. Finally, mutations overlapping with the mutations found in the FEO pedigrees have been found in ESH and early-onset PDB pedigrees. An Iranian FEO pedigree that contains six affected individuals dispersed in three generations has previously been introduced; here, the clinical features of the proband are reported in greater detail, and the genetic defect of the pedigree is presented. Direct sequencing of the entire coding region and upstream and downstream noncoding regions of TNFRSF11A in her DNA revealed the same 18-bp duplication mutation as previously found in the four FEO pedigrees. Additionally, eight sequence variations as compared to the TNFRSF11A reference sequence were identified, and a haplotype linked to the mutation based on these variations was defined. Although the mutation in the Iranian and four of the previously described FEO pedigrees was the same, haplotypes based on the intragenic SNPs suggest that the mutations do not share a common descent.

  5. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  6. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study

    PubMed Central

    Ruppert, Amy S.; Marcucci, Guido; Mrózek, Krzysztof; Paschka, Peter; Langer, Christian; Baldus, Claudia D.; Wen, Jing; Vukosavljevic, Tamara; Powell, Bayard L.; Carroll, Andrew J.; Kolitz, Jonathan E.; Larson, Richard A.; Caligiuri, Michael A.; Bloomfield, Clara D.

    2007-01-01

    The clinical impact of MLL partial tandem duplication (MLL-PTD) was evaluated in 238 adults aged 18 to 59 years with cytogenetically normal (CN) de novo acute myeloid leukemia (AML) who were treated intensively on similar Cancer and Leukemia Group B protocols 9621 and 19808. Twenty-four (10.1%) patients harbored an MLL-PTD. Of those, 92% achieved complete remission (CR) compared with 83% of patients without MLL-PTD (P = .39). Neither overall survival nor disease-free survival significantly differed between the 2 groups (P = .67 and P = .55, respectively). Thirteen MLL-PTD+ patients relapsed within 1.4 years of achieving CR. MLL-PTD+ patients who relapsed more often had other adverse CN-AML–associated molecular markers. In contrast with previously reported studies, 9 (41%) MLL-PTD+ patients continue in long-term first remission (CR1; range, 2.5-7.7 years). Intensive consolidation therapy that included autologous peripheral stem-cell transplantation during CR1 may have contributed to the better outcome of this historically poor-prognosis group of CN-AML patients with MLL-PTD. PMID:17341662

  7. A limited role for gene duplications in the evolution of platypus venom.

    PubMed

    Wong, Emily S W; Papenfuss, Anthony T; Whittington, Camilla M; Warren, Wesley C; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the "venome" of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation.

  8. A Limited Role for Gene Duplications in the Evolution of Platypus Venom

    PubMed Central

    Wong, Emily S. W.; Papenfuss, Anthony T.; Whittington, Camilla M.; Warren, Wesley C.; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation. PMID:21816864

  9. First evidence of a large CHEK2 duplication involved in cancer predisposition in an Italian family with hereditary breast cancer

    PubMed Central

    2014-01-01

    Background CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. Case presentation Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. Conclusions This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations. PMID:24986639

  10. First evidence of a large CHEK2 duplication involved in cancer predisposition in an Italian family with hereditary breast cancer.

    PubMed

    Tedaldi, Gianluca; Danesi, Rita; Zampiga, Valentina; Tebaldi, Michela; Bedei, Lucia; Zoli, Wainer; Amadori, Dino; Falcini, Fabio; Calistri, Daniele

    2014-07-01

    CHEK2 is a multi-cancer susceptibility gene whose common germline mutations are known to contribute to the risk of developing breast and prostate cancer. Here, we describe an Italian family with a high number of cases of breast cancer and other types of tumour subjected to the MLPA test to verify the presence of BRCA1, BRCA2 and CHEK2 deletions and duplications. We identified a new 23-kb duplication in the CHEK2 gene extending from intron 5 to 13 that was associated with breast cancer in the family. The presence and localisation of the alteration was confirmed by a second analysis by Next-Generation Sequencing. This finding suggests that CHEK2 mutations are heterogeneous and that techniques other than sequencing, such as MLPA, are needed to identify CHEK2 mutations. It also indicates that CHEK2 rare variants, such as duplications, can confer a high susceptibility to cancer development and should thus be studied in depth as most of our knowledge of CHEK2 concerns common mutations.

  11. Clinical impact of gene mutations and lesions detected by SNP-array karyotyping in acute myeloid leukemia patients in the context of gemtuzumab ozogamicin treatment: Results of the ALFA-0701 trial

    PubMed Central

    Chevret, Sylvie; Nibourel, Olivier; Cheok, Meyling; Pautas, Cécile; Duléry, Rémy; Boyer, Thomas; Cayuela, Jean-Michel; Hayette, Sandrine; Raffoux, Emmanuel; Farhat, Hassan; Boissel, Nicolas; Terre, Christine

    2014-01-01

    We recently showed that the addition of fractionated doses of gemtuzumab ozogamicin (GO) to standard chemotherapy improves clinical outcome of acute myeloid leukemia (AML) patients. In the present study, we performed mutational analysis of 11 genes (FLT3, NPM1, CEBPA, MLL, WT1, IDH1/2, RUNX1, ASXL1, TET2, DNMT3A), EVI1 overexpression screening, and 6.0 single-nucleotide polymorphism array (SNP-A) analysis in diagnostic samples of the 278 AML patients enrolled in the ALFA-0701 trial. In cytogenetically normal (CN) AML (n = 146), 38% of the patients had at least 1 SNP-A lesion and 89% of the patients had at least 1 molecular alteration. In multivariate analysis, the independent predictors of higher cumulative incidence of relapse were unfavorable karyotype (P = 0.013) and randomization in the control arm (P = 0.007) in the whole cohort, and MLL partial tandem duplications (P = 0.014) and DNMT3A mutations (P = 0.010) in CN-AML. The independent predictors of shorter overall survival (OS) were unfavorable karyotype (P < 0.001) and SNP-A lesion(s) (P = 0.001) in the whole cohort, and SNP-A lesion(s) (P = 0.006), DNMT3A mutations (P = 0.042) and randomization in the control arm (P = 0.043) in CN-AML. Interestingly, CN-AML patients benefited preferentially more from GO treatment as compared to AML patients with abnormal cytogenetics (hazard ratio for death, 0.52 versus 1.14; test for interaction, P = 0.04). Although the interaction test was not statistically significant, the OS benefit associated with GO treatment appeared also more pronounced in FLT3 internal tandem duplication positive than in negative patients. PMID:24659740

  12. MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy.

    PubMed

    Zimowski, Janusz G; Massalska, Diana; Holding, Mariola; Jadczak, Sylwia; Fidziańska, Elżbieta; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Kamińska, Anna; Zaremba, Jacek

    2014-01-01

    Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X-linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately 60-65% of mutations, duplications for 5-10%. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 2009-2012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers. Copyright © 2014 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Genome Duplication and Gene Loss Affect the Evolution of Heat Shock Transcription Factor Genes in Legumes

    PubMed Central

    Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

  14. The Origin of Mutants Under Selection: How Natural Selection Mimics Mutagenesis (Adaptive Mutation)

    PubMed Central

    Maisnier-Patin, Sophie; Roth, John R.

    2015-01-01

    Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac+) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F′lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F′lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac+ triggers exponential cell growth leading to a stable Lac+ revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac+ colony. Cells with multiple copies of the F′lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac+ revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns–Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions. PMID:26134316

  15. Prevalence and origin of De Novo duplications in Charcot-Marie-Tooth disease type 1A: First report of a De Novo duplication with a maternal origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, I.P.; Nash, J.; Gordon, M.J.

    1996-03-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. Sporadic cases of CMT have been described since the earliest reports of the disease. The most frequent form of the disorder, CMT1A, is associated with a 1.5-Mb DNA duplication on chromosome 17p11.2, which segregates with the disease. In order to investigate the prevalence of de novo CMT1A duplications, this study examined 118 duplication-positive CMT1A families. In 10 of these families it was demonstrated that the disease had arisen as the result of a de novo mutation. By taking into account the ascertainment of families, it can be estimated that {>=}10%more » of autosomal dominant CMT1 families are due to de novo duplications. The CMT1A duplication is thought to be the product of unequal crossing over between parental chromosome 17 homologues during meiosis. Polymorphic markers from within the duplicated region were used to determine the parental origin of these de novo duplications in eight informative families. Seven were of paternal and one of maternal origin. This study represents the first report of a de novo duplication with a maternal origin and indicates that it is not a phenomenon associated solely with male meioses. Recombination fractions for the region duplicated in CMT1A are larger in females than in males. That suggests that oogenesis may be afforded greater protection from misalignment during synapsis, and/or that there may be lower activity of those factors or mechanisms that lead to unequal crossing over at the CMT1A locus. 41 refs., 2 figs.« less

  16. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors.

    PubMed

    Antonescu, Cristina R; Sommer, Gunhild; Sarran, Lisa; Tschernyavsky, Sylvia J; Riedel, Elyn; Woodruff, James M; Robson, Mark; Maki, Robert; Brennan, Murray F; Ladanyi, Marc; DeMatteo, Ronald P; Besmer, Peter

    2003-08-15

    Activating mutations of the KIT juxtamembrane region are the most common genetic events in gastrointestinal stromal tumors (GISTs) and have been noted as independent prognostic factors. The impact of KIT mutation in other regions, such as the extracellular or kinase domains, is not well-defined and fewer than 30 cases have been published to date. One hundred twenty GISTs, confirmed by KIT immunoreactivity, were evaluated for the presence of KIT exon 9, 11, 13, and 17 mutations. The relation between the presence/type of KIT mutation and clinicopathological factors was analyzed using Fisher's exact test and log-rank test. Forty-four % of the tumors were located in the stomach, 47% in the small bowel, 6% in the rectum, and 3% in the retroperitoneum. Overall, KIT mutations were detected in 78% of patients as follows: 67% in exon 11, 11% in exon 9, and none in exon 13 or 17. The types of KIT exon 11 mutations were heterogeneous and clustered in the classic "hot spot" at the 5' end of exon 11. Seven % of cases showed internal tandem duplications (ITD) at the 3' end of exon 11, in a region that we designate as a second hot spot for KIT mutations. Interestingly, these cases were associated with: female predominance, stomach location, occurrence in older patients, and favorable outcome. There were significant associations between exon 9 mutations and large tumor size (P < 0.001) and extragastric location (P = 0.02). Ten of these 13 patients with more than 1-year follow-up have developed recurrent disease. Most KIT-expressing GISTs show KIT mutations that are preferentially located within the classic hot spot of exon 11. In addition, we found an association between a second hot spot at the 3'end of exon 11, characterized by ITDs, and a subgroup of clinically indolent gastric GISTs in older females. KIT exon 9 mutations seem to define a distinct subset of GISTs, located predominantly in the small bowel and associated with an unfavorable clinical course.

  17. A rare complex DNA rearrangement in the murine Steel gene results in exon duplication and a lethal phenotype.

    PubMed

    Chandra, Saurabh; Kapur, Reuben; Chuzhanova, Nadia; Summey, Victoria; Prentice, David; Barker, Jane; Cooper, David N; Williams, David A

    2003-11-15

    Kit ligand (Kitl), encoded by the Steel (Sl) locus, plays an essential role in hematopoiesis, gametogenesis, and melanogenesis during both embryonic and adult life. We have characterized a new spontaneous mutant of the Sl locus in mice designated KitlSl-20J that arose in the breeding colony at Jackson Laboratories. Heterozygous KitlSl-20J mice display a white belly spot and intercrossing results in an embryonic lethal phenotype in the homozygous state. Analysis of homozygous embryos demonstrated a significant reduction in fetal liver cellularity, colony forming unit-erythroid (CFU-E) progenitors, and a total absence of germ cells. Although expressed in vivo, recombinant mutant protein demonstrated loss of bioactivity that was correlated with lack of receptor binding. Analysis of the Sl gene transcripts in heterozygous KitlSl-20J mice revealed an in-frame tandem duplication of exon 3. A long-range polymerase chain reaction (PCR) strategy using overlapping primers in exon 3 amplified an approximately 7-kilobase (kb) product from DNA isolated from heterozygous KitlSl-20J mice but not from wild-type DNA that contained sequences from both introns 2 and 3 and an inverted intron 2 sequence, suggesting a complex rearrangement as the mechanism of the mutation. "Complexity analysis" of the sequence of the amplified product strongly suggests that local DNA motifs may have contributed to the generation of this spontaneous KitlSl-20J allele, likely mediated by a 2-step process. The KitlSl-20J mutation is a unique KitlSl allele and represents an unusual mechanism of mutation.

  18. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study.

    PubMed

    Iacovazzo, Donato; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Yuan, Bo; Hernández-Ramírez, Laura C; Kapur, Sonal; Caimari, Francisca; Evanson, Jane; Ferraù, Francesco; Dang, Mary N; Gabrovska, Plamena; Larkin, Sarah J; Ansorge, Olaf; Rodd, Celia; Vance, Mary L; Ramírez-Renteria, Claudia; Mercado, Moisés; Goldstone, Anthony P; Buchfelder, Michael; Burren, Christine P; Gurlek, Alper; Dutta, Pinaki; Choong, Catherine S; Cheetham, Timothy; Trivellin, Giampaolo; Stratakis, Constantine A; Lopes, Maria-Beatriz; Grossman, Ashley B; Trouillas, Jacqueline; Lupski, James R; Ellard, Sian; Sampson, Julian R; Roncaroli, Federico; Korbonits, Márta

    2016-06-01

    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly.We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants.We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases.In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101

  19. Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

    PubMed Central

    Sancho, Rosa M.; Law, Bernard M.H.; Harvey, Kirsten

    2009-01-01

    Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synapse formation and neuronal maintenance. Interestingly, DVLs can interact with and mediate the activation of small GTPases with structural similarity to the LRRK2 Roc domain. The LRRK2 Roc-COR domain and the DVL1 DEP domain were necessary and sufficient for LRRK2–DVL1 interaction. Co-expression of DVL1 increased LRRK2 steady-state protein levels, an effect that was dependent on the DEP domain. Strikingly, LRRK2–DVL1-3 interactions were disrupted by the familial PARK8 mutation Y1699C, whereas pathogenic mutations at residues R1441 and R1728 strengthened LRRK2–DVL1 interactions. Co-expression of DVL1 with LRRK2 in mammalian cells resulted in the redistribution of LRRK2 to typical cytoplasmic DVL1 aggregates in HEK293 and SH-SY5Y cells and co-localization in neurites and growth cones of differentiated dopaminergic SH-SY5Y cells. This is the first report of the modulation of a key LRRK2-accessory protein interaction by PARK8 Roc-COR domain mutations segregating with Parkinson's disease. Since the DVL1 DEP domain is known to be involved in the regulation of small GTPases, we propose that: (i) DVLs may influence LRRK2 GTPase activity, and (ii) Roc-COR domain mutations modulating LRRK2–DVL interactions indirectly influence kinase activity. Our findings also link LRRK2 to Wnt signalling pathways, suggesting novel pathogenic mechanisms and new targets for genetic analysis in Parkinson's disease. PMID:19625296

  20. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications.

    PubMed

    Szafranski, Przemyslaw; Golla, Sailaja; Jin, Weihong; Fang, Ping; Hixson, Patricia; Matalon, Reuben; Kinney, Daniel; Bock, Hans-Georg; Craigen, William; Smith, Janice L; Bi, Weimin; Patel, Ankita; Wai Cheung, Sau; Bacino, Carlos A; Stankiewicz, Paweł

    2015-07-01

    Point mutations and genomic deletions of the CDKL5 (STK9) gene on chromosome Xp22 have been reported in patients with severe neurodevelopmental abnormalities, including Rett-like disorders. To date, only larger-sized (8-21 Mb) duplications harboring CDKL5 have been described. We report seven females and four males from seven unrelated families with CDKL5 duplications 540-935 kb in size. Three families of different ethnicities had identical 667kb duplications containing only the shorter CDKL5 isoform. Four affected boys, 8-14 years of age, and three affected girls, 6-8 years of age, manifested autistic behavior, developmental delay, language impairment, and hyperactivity. Of note, two boys and one girl had macrocephaly. Two carrier mothers of the affected boys reported a history of problems with learning and mathematics while at school. None of the patients had epilepsy. Similarly to CDKL5 mutations and deletions, the X-inactivation pattern in all six studied females was random. We hypothesize that the increased dosage of CDKL5 might have affected interactions of this kinase with its substrates, leading to perturbation of synaptic plasticity and learning, and resulting in autistic behavior, developmental and speech delay, hyperactivity, and macrocephaly.

  1. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications

    PubMed Central

    Szafranski, Przemyslaw; Golla, Sailaja; Jin, Weihong; Fang, Ping; Hixson, Patricia; Matalon, Reuben; Kinney, Daniel; Bock, Hans-georg; Craigen, William; Smith, Janice L; Bi, Weimin; Patel, Ankita; Wai Cheung, Sau; Bacino, Carlos A; Stankiewicz, Paweł

    2015-01-01

    Point mutations and genomic deletions of the CDKL5 (STK9) gene on chromosome Xp22 have been reported in patients with severe neurodevelopmental abnormalities, including Rett-like disorders. To date, only larger-sized (8–21 Mb) duplications harboring CDKL5 have been described. We report seven females and four males from seven unrelated families with CDKL5 duplications 540–935 kb in size. Three families of different ethnicities had identical 667kb duplications containing only the shorter CDKL5 isoform. Four affected boys, 8–14 years of age, and three affected girls, 6–8 years of age, manifested autistic behavior, developmental delay, language impairment, and hyperactivity. Of note, two boys and one girl had macrocephaly. Two carrier mothers of the affected boys reported a history of problems with learning and mathematics while at school. None of the patients had epilepsy. Similarly to CDKL5 mutations and deletions, the X-inactivation pattern in all six studied females was random. We hypothesize that the increased dosage of CDKL5 might have affected interactions of this kinase with its substrates, leading to perturbation of synaptic plasticity and learning, and resulting in autistic behavior, developmental and speech delay, hyperactivity, and macrocephaly. PMID:25315662

  2. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.

    PubMed

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-11-29

    Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  3. Clinical and molecular evaluation of SHOX/PAR1 duplications in Leri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS).

    PubMed

    Benito-Sanz, S; Barroso, E; Heine-Suñer, D; Hisado-Oliva, A; Romanelli, V; Rosell, J; Aragones, A; Caimari, M; Argente, J; Ross, J L; Zinn, A R; Gracia, R; Lapunzina, P; Campos-Barros, A; Heath, K E

    2011-02-01

    Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and the Madelung deformity of the forearm. SHOX mutations and pseudoautosomal region 1 deletions encompassing SHOX or its enhancers have been identified in approximately 60% of LWD and approximately 15% of idiopathic short stature (ISS) individuals. Recently SHOX duplications have been described in LWD/ISS but also in individuals with other clinical manifestations, thus questioning their pathogenicity. The objective of the study was to investigate the pathogenicity of SHOX duplications in LWD and ISS. Multiplex ligation-dependent probe amplification is routinely used in our unit to analyze for SHOX/pseudoautosomal region 1 copy number changes in LWD/ISS referrals. Quantitative PCR, microsatellite marker, and fluorescence in situ hybridization analysis were undertaken to confirm all identified duplications. During the routine analysis of 122 LWD and 613 ISS referrals, a total of four complete and 10 partial SHOX duplications or multiple copy number (n > 3) as well as one duplication of the SHOX 5' flanking region were identified in nine LWD and six ISS cases. Partial SHOX duplications appeared to have a more deleterious effect on skeletal dysplasia and height gain than complete SHOX duplications. Importantly, no increase in SHOX copy number was identified in 340 individuals with normal stature or 104 overgrowth referrals. MLPA analysis of SHOX/PAR1 led to the identification of partial and complete SHOX duplications or multiple copies associated with LWD or ISS, suggesting that they may represent an additional class of mutations implicated in the molecular etiology of these clinical entities.

  4. Quantitative fluorescence-polymerase chain reaction assay for the detection of the duplication of the Charcot Marie Tooth disease type 1A critical region.

    PubMed

    De Toffol, Simona; Bellone, Emilia; Dulcetti, Francesca; Ruggeri, Anna Maria; Maggio, Pietro Paolo; Pulimeno, Maria Rosaria; Mandich, Paola; Maggi, Federico; Simoni, Giuseppe; Grati, Francesca Romana

    2010-04-01

    Charcot Marie Tooth (CMT) syndrome is the most common hereditary peripheral neuropathy, with an incidence of about 1 in 2500. The subtype 1A (CMT1A) is caused by a tandem duplication of a 1.5-Mb region encompassing the PMP22 gene. Conventional short tandem repeat (STR) analysis can reveal this imbalance if a triallelic pattern, defining with certainty the presence of duplication, is present. In case of duplication with a biallelic pattern, it can only indicate a semiquantitative dosage of the fluorescence intensity ratio of the two fragments. In this study we developed a quantitative fluorescence-PCR using seven highly informative STRs within the CMT1A critical region that successfully disclosed or excluded the presence of the pathogenic imbalance in a cohort of 60 samples including 40 DNAs from samples with the CMT1A duplication previously characterized with two different molecular approaches, and 20 diagnostic samples from 10 members of a five-generation pedigree segregating CMT1A, 8 unrelated cases and 2 prenatal samples. The application of the quantitative fluorescence-PCR using STRs located in the critical region could be a reliable method to evaluate the presence of the PMP22 duplication for the diagnosis and classification of hereditary neuropathies in asymptomatic subjects with a family history of inherited neuropathy, in prenatal samples in cases with one affected parent, and in unrelated patients with a sporadic demyelinating neuropathy with clinical features resembling CMT (i.e., pes cavus with hammer toes) or with conduction velocities in the range of CMT1A.

  5. The Evolution of Pepsinogen C Genes in Vertebrates: Duplication, Loss and Functional Diversification

    PubMed Central

    Gonçalves, Odete; Wilson, Jonathan Mark

    2012-01-01

    Background Aspartic proteases comprise a large group of enzymes involved in peptide proteolysis. This collection includes prominent enzymes globally categorized as pepsins, which are derived from pepsinogen precursors. Pepsins are involved in gastric digestion, a hallmark of vertebrate physiology. An important member among the pepsinogens is pepsinogen C (Pgc). A particular aspect of Pgc is its apparent single copy status, which contrasts with the numerous gene copies found for example in pepsinogen A (Pga). Although gene sequences with similarity to Pgc have been described in some vertebrate groups, no exhaustive evolutionary framework has been considered so far. Methodology/Principal Findings By combining phylogenetics and genomic analysis, we find an unexpected Pgc diversity in the vertebrate sub-phylum. We were able to reconstruct gene duplication timings relative to the divergence of major vertebrate clades. Before tetrapod divergence, a single Pgc gene tandemly expanded to produce two gene lineages (Pgbc and Pgc2). These have been differentially retained in various classes. Accordingly, we find Pgc2 in sauropsids, amphibians and marsupials, but not in eutherian mammals. Pgbc was retained in amphibians, but duplicated in the ancestor of amniotes giving rise to Pgb and Pgc1. The latter was retained in mammals and probably in reptiles and marsupials but not in birds. Pgb was kept in all of the amniote clade with independent episodes of loss in some mammalian species. Lineage specific expansions of Pgc2 and Pgbc have also occurred in marsupials and amphibians respectively. We find that teleost and tetrapod Pgc genes reside in distinct genomic regions hinting at a possible translocation. Conclusions We conclude that the repertoire of Pgc genes is larger than previously reported, and that tandem duplications have modelled the history of Pgc genes. We hypothesize that gene expansion lead to functional divergence in tetrapods, coincident with the invasion of

  6. Natural non-homologous recombination led to the emergence of a duplicated V3-NS5A region in HCV-1b strains associated with hepatocellular carcinoma.

    PubMed

    Le Guillou-Guillemette, Hélène; Pivert, Adeline; Bouthry, Elise; Henquell, Cécile; Petsaris, Odile; Ducancelle, Alexandra; Veillon, Pascal; Vallet, Sophie; Alain, Sophie; Thibault, Vincent; Abravanel, Florence; Rosenberg, Arielle A; André-Garnier, Elisabeth; Bour, Jean-Baptiste; Baazia, Yazid; Trimoulet, Pascale; André, Patrice; Gaudy-Graffin, Catherine; Bettinger, Dominique; Larrat, Sylvie; Signori-Schmuck, Anne; Saoudin, Hénia; Pozzetto, Bruno; Lagathu, Gisèle; Minjolle-Cha, Sophie; Stoll-Keller, Françoise; Pawlotsky, Jean-Michel; Izopet, Jacques; Payan, Christopher; Lunel-Fabiani, Françoise; Lemaire, Christophe

    2017-01-01

    The emergence of new strains in RNA viruses is mainly due to mutations or intra and inter-genotype homologous recombination. Non-homologous recombinations may be deleterious and are rarely detected. In previous studies, we identified HCV-1b strains bearing two tandemly repeated V3 regions in the NS5A gene without ORF disruption. This polymorphism may be associated with an unfavorable course of liver disease and possibly involved in liver carcinogenesis. Here we aimed at characterizing the origin of these mutant strains and identifying the evolutionary mechanism on which the V3 duplication relies. Direct sequencing of the entire NS5A and E1 genes was performed on 27 mutant strains. Quasispecies analyses in consecutive samples were also performed by cloning and sequencing the NS5A gene for all mutant and wild strains. We analyzed the mutant and wild-type sequence polymorphisms using Bayesian methods to infer the evolutionary history of and the molecular mechanism leading to the duplication-like event. Quasispecies were entirely composed of exclusively mutant or wild-type strains respectively. Mutant quasispecies were found to have been present since contamination and had persisted for at least 10 years. This V3 duplication-like event appears to have resulted from non-homologous recombination between HCV-1b wild-type strains around 100 years ago. The association between increased liver disease severity and these HCV-1b mutants may explain their persistence in chronically infected patients. These results emphasize the possible consequences of non-homologous recombination in the emergence and severity of new viral diseases.

  7. Autosomal Genes of Autosomal/X-Linked Duplicated Gene Pairs and Germ-Line Proliferation in Caenorhabditis elegans

    PubMed Central

    Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert

    2005-01-01

    We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263

  8. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    PubMed Central

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-01-01

    Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649

  9. Duplicated Enhancer Region Increases Expression of CTSB and Segregates with Keratolytic Winter Erythema in South African and Norwegian Families.

    PubMed

    Ngcungcu, Thandiswa; Oti, Martin; Sitek, Jan C; Haukanes, Bjørn I; Linghu, Bolan; Bruccoleri, Robert; Stokowy, Tomasz; Oakeley, Edward J; Yang, Fan; Zhu, Jiang; Sultan, Marc; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne M J J; von der Lippe, Charlotte; Brunner, Han G; Ersland, Kari M; Grayson, Wayne; Buechmann-Moller, Stine; Sundnes, Olav; Nirmala, Nanguneri; Morgan, Thomas M; van Bokhoven, Hans; Steen, Vidar M; Hull, Peter R; Szustakowski, Joseph; Staedtler, Frank; Zhou, Huiqing; Fiskerstrand, Torunn; Ramsay, Michele

    2017-05-04

    Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bikker, H.; Hartog, M.T. den; Gons, M.H.

    1994-07-01

    In this study, the authors present the molecular basis of a total iodide organification defect causing severe congenital hypothyroidism. In the thyroid gland of the patient, thyroid peroxidase (TPO) activity and the iodination degree of thyroglobulin were below detection limits, and no TPO messenger ribonucleic acid was detectable by Northern blot analysis. Denaturing gradient gel electrophoretic analysis of the TPO gene of the patient revealed a homozygous mutation in exon 2. Sequence analysis showed the presence of a 20-basepair duplication, 47 basepairs down-stream of the ATG start codon. This duplication generates a frame shift, resulting in a termination signal inmore » exon 3, compatible with the complete absence of TPO. Both parents of the patient are heterozygous for the same duplication, confirming the recessive mode of inheritance of the mutation. 32 refs., 4 figs.« less

  11. In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism

    PubMed Central

    Salvatori, Roberto; Radian, Serban; Diekmann, Yoan; Iacovazzo, Donato; David, Alessia; Gabrovska, Plamena; Grassi, Giorgia; Bussell, Anna-Marie; Stals, Karen; Weber, Astrid; Quinton, Richard; Crowne, Elizabeth C; Corazzini, Valentina; Metherell, Lou; Kearney, Tara; Du Plessis, Daniel; Sinha, Ajay Kumar; Baborie, Atik; Lecoq, Anne-Lise; Chanson, Philippe; Ansorge, Olaf; Ellard, Sian; Trainer, Peter J; Balding, David; Thomas, Mark G

    2017-01-01

    Objective Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are associated with pituitary adenoma, acromegaly and gigantism. Identical alleles in unrelated pedigrees could be inherited from a common ancestor or result from recurrent mutation events. Design and methods Observational, inferential and experimental study, including: AIP mutation testing; reconstruction of 14 AIP-region (8.3 Mbp) haplotypes; coalescent-based approximate Bayesian estimation of the time to most recent common ancestor (tMRCA) of the derived allele; forward population simulations to estimate current number of allele carriers; proposal of mutation mechanism; protein structure predictions; co-immunoprecipitation and cycloheximide chase experiments. Results Nine European-origin, unrelated c.805_825dup-positive pedigrees (four familial, five sporadic from the UK, USA and France) included 16 affected (nine gigantism/four acromegaly/two non-functioning pituitary adenoma patients and one prospectively diagnosed acromegaly patient) and nine unaffected carriers. All pedigrees shared a 2.79 Mbp haploblock around AIP with additional haploblocks privately shared between subsets of the pedigrees, indicating the existence of an evolutionarily recent common ancestor, the ‘English founder’, with an estimated median tMRCA of 47 generations (corresponding to 1175 years) with a confidence interval (9–113 generations, equivalent to 225–2825 years). The mutation occurred in a small tandem repeat region predisposed to slipped strand mispairing. The resulting seven amino-acid duplication disrupts interaction with HSP90 and leads to a marked reduction in protein stability. Conclusions The c.805_825dup allele, originating from a common ancestor, associates with a severe clinical phenotype and a high frequency of gigantism. The mutation is likely to be the result of slipped strand mispairing and affects protein–protein interactions and AIP protein stability. PMID:28634279

  12. In-frame seven amino-acid duplication in AIP arose over the last 3000 years, disrupts protein interaction and stability and is associated with gigantism.

    PubMed

    Salvatori, Roberto; Radian, Serban; Diekmann, Yoan; Iacovazzo, Donato; David, Alessia; Gabrovska, Plamena; Grassi, Giorgia; Bussell, Anna-Marie; Stals, Karen; Weber, Astrid; Quinton, Richard; Crowne, Elizabeth C; Corazzini, Valentina; Metherell, Lou; Kearney, Tara; Du Plessis, Daniel; Sinha, Ajay Kumar; Baborie, Atik; Lecoq, Anne-Lise; Chanson, Philippe; Ansorge, Olaf; Ellard, Sian; Trainer, Peter J; Balding, David; Thomas, Mark G; Korbonits, Márta

    2017-09-01

    Mutations in the aryl hydrocarbon receptor-interacting protein ( AIP ) gene are associated with pituitary adenoma, acromegaly and gigantism. Identical alleles in unrelated pedigrees could be inherited from a common ancestor or result from recurrent mutation events. Observational, inferential and experimental study, including: AIP mutation testing; reconstruction of 14 AIP -region (8.3 Mbp) haplotypes; coalescent-based approximate Bayesian estimation of the time to most recent common ancestor (tMRCA) of the derived allele; forward population simulations to estimate current number of allele carriers; proposal of mutation mechanism; protein structure predictions; co-immunoprecipitation and cycloheximide chase experiments. Nine European-origin, unrelated c.805_825dup-positive pedigrees (four familial, five sporadic from the UK, USA and France) included 16 affected (nine gigantism/four acromegaly/two non-functioning pituitary adenoma patients and one prospectively diagnosed acromegaly patient) and nine unaffected carriers. All pedigrees shared a 2.79 Mbp haploblock around AIP with additional haploblocks privately shared between subsets of the pedigrees, indicating the existence of an evolutionarily recent common ancestor, the 'English founder', with an estimated median tMRCA of 47 generations (corresponding to 1175 years) with a confidence interval (9-113 generations, equivalent to 225-2825 years). The mutation occurred in a small tandem repeat region predisposed to slipped strand mispairing. The resulting seven amino-acid duplication disrupts interaction with HSP90 and leads to a marked reduction in protein stability. The c.805_825dup allele, originating from a common ancestor, associates with a severe clinical phenotype and a high frequency of gigantism. The mutation is likely to be the result of slipped strand mispairing and affects protein-protein interactions and AIP protein stability. © 2017 The authors.

  13. Characterisation of ATM mutations in Slavic Ataxia telangiectasia patients.

    PubMed

    Soukupova, Jana; Pohlreich, Petr; Seemanova, Eva

    2011-09-01

    Ataxia telangiectasia (AT) is a genomic instability syndrome characterised, among others, by progressive cerebellar degeneration, oculocutaneous telangiectases, immunodeficiency, elevated serum alpha-phetoprotein level, chromosomal breakage, hypersensitivity to ionising radiation and increased cancer risk. This autosomal recessive disorder is caused by mutations in the ataxia telangiectasia mutated (ATM) gene coding for serine/threonine protein kinase with a crucial role in response to DNA double-strand breaks. We characterised genotype and phenotype of 12 Slavic AT patients from 11 families. Mutation analysis included sequencing of the entire coding sequence, adjacent intron regions, 3'UTR and 5'UTR of the ATM gene and multiplex ligation-dependent probe amplification (MLPA) for the detection of large deletions/duplications at the ATM locus. The high incidence of new and individual mutations demonstrates a marked mutational heterogeneity of AT in the Czech Republic. Our data indicate that sequence analysis of the entire coding region of ATM is sufficient for a high detection rate of mutations in ATM and that MLPA analysis for the detection of deletions/duplications seems to be redundant in the Slavic population.

  14. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature.

    PubMed

    Sandoval, Gloria Tatiana Vinasco; Jaimes, Giovanna Carola; Barrios, Mauricio Coll; Cespedes, Camila; Velasco, Harvy Mauricio

    2014-03-01

    SHOX gene mutations or haploinsufficiency cause a wide range of phenotypes such as Leri Weill dyschondrosteosis (LWD), Turner syndrome, and disproportionate short stature (DSS). However, this gene has also been found to be mutated in cases of idiopathic short stature (ISS) with a 3-15% frequency. In this study, the multiplex ligation-dependent probe amplification (MLPA) technique was employed to determine the frequency of SHOX gene mutations and their conserved noncoding elements (CNE) in Colombian patients with ISS. Patients were referred from different centers around the county. From a sample of 62 patients, 8.1% deletions and insertions in the intragenic regions and in the CNE were found. This result is similar to others published in other countries. Moreover, an isolated case of CNE 9 duplication and a new intron 6b deletion in another patient, associated with ISS, are described. This is one of the first studies of a Latin American population in which deletions/duplications of the SHOX gene and its CNE are examined in patients with ISS.

  15. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature

    PubMed Central

    Sandoval, Gloria Tatiana Vinasco; Jaimes, Giovanna Carola; Barrios, Mauricio Coll; Cespedes, Camila; Velasco, Harvy Mauricio

    2014-01-01

    SHOX gene mutations or haploinsufficiency cause a wide range of phenotypes such as Leri Weill dyschondrosteosis (LWD), Turner syndrome, and disproportionate short stature (DSS). However, this gene has also been found to be mutated in cases of idiopathic short stature (ISS) with a 3–15% frequency. In this study, the multiplex ligation-dependent probe amplification (MLPA) technique was employed to determine the frequency of SHOX gene mutations and their conserved noncoding elements (CNE) in Colombian patients with ISS. Patients were referred from different centers around the county. From a sample of 62 patients, 8.1% deletions and insertions in the intragenic regions and in the CNE were found. This result is similar to others published in other countries. Moreover, an isolated case of CNE 9 duplication and a new intron 6b deletion in another patient, associated with ISS, are described. This is one of the first studies of a Latin American population in which deletions/duplications of the SHOX gene and its CNE are examined in patients with ISS. PMID:24689071

  16. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    PubMed

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.

  17. Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats

    PubMed Central

    Ballantyne, Kaye N; Ralf, Arwin; Aboukhalid, Rachid; Achakzai, Niaz M; Anjos, Maria J; Ayub, Qasim; Balažic, Jože; Ballantyne, Jack; Ballard, David J; Berger, Burkhard; Bobillo, Cecilia; Bouabdellah, Mehdi; Burri, Helen; Capal, Tomas; Caratti, Stefano; Cárdenas, Jorge; Cartault, François; Carvalho, Elizeu F; Carvalho, Monica; Cheng, Baowen; Coble, Michael D; Comas, David; Corach, Daniel; D'Amato, Maria E; Davison, Sean; de Knijff, Peter; De Ungria, Maria Corazon A; Decorte, Ronny; Dobosz, Tadeusz; Dupuy, Berit M; Elmrghni, Samir; Gliwiński, Mateusz; Gomes, Sara C; Grol, Laurens; Haas, Cordula; Hanson, Erin; Henke, Jürgen; Henke, Lotte; Herrera-Rodríguez, Fabiola; Hill, Carolyn R; Holmlund, Gunilla; Honda, Katsuya; Immel, Uta-Dorothee; Inokuchi, Shota; Jobling, Mark A; Kaddura, Mahmoud; Kim, Jong S; Kim, Soon H; Kim, Wook; King, Turi E; Klausriegler, Eva; Kling, Daniel; Kovačević, Lejla; Kovatsi, Leda; Krajewski, Paweł; Kravchenko, Sergey; Larmuseau, Maarten H D; Lee, Eun Young; Lessig, Ruediger; Livshits, Ludmila A; Marjanović, Damir; Minarik, Marek; Mizuno, Natsuko; Moreira, Helena; Morling, Niels; Mukherjee, Meeta; Munier, Patrick; Nagaraju, Javaregowda; Neuhuber, Franz; Nie, Shengjie; Nilasitsataporn, Premlaphat; Nishi, Takeki; Oh, Hye H; Olofsson, Jill; Onofri, Valerio; Palo, Jukka U; Pamjav, Horolma; Parson, Walther; Petlach, Michal; Phillips, Christopher; Ploski, Rafal; Prasad, Samayamantri P R; Primorac, Dragan; Purnomo, Gludhug A; Purps, Josephine; Rangel-Villalobos, Hector; Rębała, Krzysztof; Rerkamnuaychoke, Budsaba; Gonzalez, Danel Rey; Robino, Carlo; Roewer, Lutz; Rosa, Alexandra; Sajantila, Antti; Sala, Andrea; Salvador, Jazelyn M; Sanz, Paula; Schmitt, Cornelia; Sharma, Anil K; Silva, Dayse A; Shin, Kyoung-Jin; Sijen, Titia; Sirker, Miriam; Siváková, Daniela; Škaro, Vedrana; Solano-Matamoros, Carlos; Souto, Luis; Stenzl, Vlastimil; Sudoyo, Herawati; Syndercombe-Court, Denise; Tagliabracci, Adriano; Taylor, Duncan; Tillmar, Andreas; Tsybovsky, Iosif S; Tyler-Smith, Chris; van der Gaag, Kristiaan J; Vanek, Daniel; Völgyi, Antónia; Ward, Denise; Willemse, Patricia; Yap, Eric PH; Yong, Rita YY; Pajnič, Irena Zupanič; Kayser, Manfred

    2014-01-01

    Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, >99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836–0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father–son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RM Y-STRs in identifying and separating unrelated and related males and provides a reference database. PMID:24917567

  18. Imperfect duplicate insertions type of mutations in plasmepsin V modulates binding properties of PEXEL motifs of export proteins in Indian Plasmodium vivax.

    PubMed

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200-300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246-249 AA and SLSE from 266-269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility

  19. Imperfect Duplicate Insertions Type of Mutations in Plasmepsin V Modulates Binding Properties of PEXEL Motifs of Export Proteins in Indian Plasmodium vivax

    PubMed Central

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL

  20. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    PubMed

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient

    PubMed Central

    Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir

    2018-01-01

    Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643

  2. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication.

    PubMed

    Yabe, Taijiro; Ge, Xiaoyan; Pelegri, Francisco

    2007-12-01

    A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.

  3. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D.

    PubMed

    Okamoto, Yuji; Goksungur, Meryem Tuba; Pehlivan, Davut; Beck, Christine R; Gonzaga-Jauregui, Claudia; Muzny, Donna M; Atik, Mehmed M; Carvalho, Claudia M B; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M; Akyuz, Kaya; Gibbs, Richard A; Battaloglu, Esra; Parman, Yesim; Lupski, James R

    2014-05-01

    Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. We performed Agilent 8 × 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.

  4. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template.

    PubMed

    Gouran, Hossein; Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

  5. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template

    PubMed Central

    Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  6. Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR Yfiler PCR amplification kit.

    PubMed

    Goedbloed, Miriam; Vermeulen, Mark; Fang, Rixun N; Lembring, Maria; Wollstein, Andreas; Ballantyne, Kaye; Lao, Oscar; Brauer, Silke; Krüger, Carmen; Roewer, Lutz; Lessig, Rüdiger; Ploski, Rafal; Dobosz, Tadeusz; Henke, Lotte; Henke, Jürgen; Furtado, Manohar R; Kayser, Manfred

    2009-11-01

    The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR Yfiler polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730-1,764 DNA-confirmed father-son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son's birth) of fathers with mutations was with 34.40 (+/-11.63) years higher than that of fathers without ones at 30.32 (+/-10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father's age on a statistically significant level (alpha = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father-son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses.

  7. Intraspecific rearrangement of duplicated mitochondrial control regions in the Luzon Tarictic Hornbill Penelopides manillae (Aves: Bucerotidae).

    PubMed

    Sammler, Svenja; Ketmaier, Valerio; Havenstein, Katja; Tiedemann, Ralph

    2013-12-01

    Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography.

  8. Lower frequency of NPM1 and FLT3-ITD mutations in a South African adult de novo AML cohort

    PubMed Central

    Marshall, R. C.; Tlagadi, A.; Bronze, M.; Kana, V.; Naidoo, S.; Wiggill, T. M.; Carmona, S. C.

    2014-01-01

    Introduction Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of haemopoietic progenitor cells diagnosed in individuals of any age, but with a median age of 67 years at presentation in adults. Assessment of the mutation status of Nucleophosmin protein-1 (NPM1) and FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) are essential for the diagnosis, prognosis and treatment of AML. Methods A total of 160 de novo AML cases, both cytogenetically normal and abnormal, were analyzed for the presence of NPM1 and FLT3-ITD mutations and the results assessed in conjunction with epidemiological, clinical and laboratory findings. Results NPM1 mutations were found in 7.5%, while FLT3-ITD was present in 12% of these cases. Both of these were lower than expected. The median age at diagnosis of AML was 41 years and for the FLT3-ITD only cases, median age was 33 years; these ages were younger than expected. Conclusion The lower reported frequencies and younger median age at diagnosis of AML and these specific mutations may be contributed to by a number of factors including; effects of race on age of presentation, inclusion of patients diagnosed with de novo AML only and a generally younger median age of the South African population. PMID:24666762

  9. An epigenetic state associated with areas of gene duplication

    PubMed Central

    Gimelbrant, Alexander A.; Chess, Andrew

    2006-01-01

    Asynchronous DNA replication is an epigenetically determined feature found in all cases of monoallelic expression, including genomic imprinting, X-inactivation, and random monoallelic expression of autosomal genes such as immunoglobulins and olfactory receptor genes. Most genes of the latter class were identified in experiments focused on genes functioning in the chemosensory and immune systems. We performed an unbiased survey of asynchronous replication in the mouse genome, excluding known asynchronously replicated genes. Fully 10% (eight of 80) of the genes tested exhibited asynchronous replication. A common feature of the newly identified asynchronously replicated areas is their proximity to areas of tandem gene duplication. Testing of other clustered areas supported the idea that such regions are enriched with asynchronously replicated genes. PMID:16687731

  10. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea?

    PubMed Central

    Yu, Ziniu; Wei, Zhengpeng; Kong, Xiaoyu; Shi, Wei

    2008-01-01

    pairs. There exists significant codon bias, favoring codons ending in A or T and against those ending with C. Pair analysis of genome rearrangements showed that the rearrangement distance is great between C. gigas-C. hongkongensis and C. virginica, indicating a high degree of rearrangements within Crassostrea. The determination of complete mt-genome of C. hongkongensis has yielded useful insight into features of gene order, variation, and evolution of Crassostrea and bivalve mt-genomes. Conclusion The mt-genome of C. hongkongensis shares some similarity with, and interesting differences to, other Crassostrea species and bivalves. The absence of trnC and trnN genes and duplicated or split rRNA genes from the C. hongkongensis genome is a completely novel feature not previously reported in Crassostrea species. The phenomenon is likely due to the loss of a segment that is present in other Crassostrea species and was present in ancestor of C. hongkongensis, thus a case of "tandem duplication-random loss (TDRL)". The mt-genome and new feature presented here reveal and underline the high level variation of gene order and gene content in Crassostrea and bivalves, inspiring more research to gain understanding to mechanisms underlying gene and genome evolution in bivalves and mollusks. PMID:18847502

  11. The Influence of Primary and Secondary DNA Structure in Deletion and Duplication between Direct Repeats in Escherichia Coli

    PubMed Central

    Trinh, T. Q.; Sinden, R. R.

    1993-01-01

    We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478

  12. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins.

    PubMed

    Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y

    2018-01-15

    Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.

    PubMed

    Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas

    2014-07-01

    Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  14. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion.

    PubMed

    Liu, Juan; Sharma, Anupma; Niewiara, Marie Jamille; Singh, Ratnesh; Ming, Ray; Yu, Qingyi

    2018-01-06

    Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might

  15. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25

    PubMed Central

    Kawaguchi, Kohei; Uo, Kazune; Tanaka, Toshiaki; Komada, Masayuki

    2017-01-01

    Ubiquitin-specific protease (USP) 25, belonging to the USP family of deubiquitinases, harbors two tandem ubiquitin-interacting motifs (UIMs), a ~20-amino-acid α-helical stretch that binds to ubiquitin. However, the role of the UIMs in USP25 remains unclear. Here we show that the tandem UIM region binds to Lys48-, but not Lys63-, linked ubiquitin chains, where the two UIMs played a critical and cooperative role. Purified USP25 exhibited higher ubiquitin isopeptidase activity to Lys48-, than to Lys63-, linked ubiquitin chains. Mutations that disrupted the ubiquitin-binding ability of the tandem UIMs resulted in a reduced ubiquitin isopeptidase activity of USP25, suggesting a role for the UIMs in exerting the full catalytic activity of USP25. Moreover, when mutations that convert the binding preference from Lys48- to Lys63-linked ubiquitin chains were introduced into the tandem UIM region, the USP25 mutants acquired elevated and reduced isopeptidase activity toward Lys63- and Lys48-linked ubiquitin chains, respectively. These results suggested that the binding preference of the tandem UIMs toward Lys48-linked ubiquitin chains contributes not only to the full catalytic activity but also to the ubiquitin chain substrate preference of USP25, possibly by selectively holding the Lys48-linked ubiquitin chain substrates in the proximity of the catalytic core. PMID:28327663

  16. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype.

    PubMed

    Demeer, Bénédicte; Andrieux, Joris; Receveur, Aline; Morin, Gilles; Petit, Florence; Julia, Sophie; Plessis, Ghislaine; Martin-Coignard, Dominique; Delobel, Bruno; Firth, Helen V; Thuresson, Ann C; Lanco Dosen, Sandrine; Sjörs, Kerstin; Le Caignec, Cedric; Devriendt, Koenraad; Mathieu-Dramard, Michèle

    2013-01-01

    The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Reconstitution of the R compound allele in maize.

    PubMed

    Dooner, H K; Kermicle, J L

    1974-10-01

    The R(r):standard allele in maize, which conditions anthocyanin pigmentation in plant and seed tissues in the presence of appropriate complementary factors, is associated with a tandem duplication. The proximal member of the duplication carries P, the plant pigmenting determiner and the distal member member carries S, the seed pigmenting determiner. Derivatives from R(r) that have lost S function are designated r(r). They represent either losses of the distal member of the duplication (P derivatives) or mutations of S to s (P s). Derivatives that have lost P function are designated R(g), and represent either losses of the proximal member of the duplication (S derivatives) or mutations of P to p (p S).-All four possible types of r(r)/R(g) heterozygotes were tested for their capacity to yield R(r) reconstitution by crossing over. No R(r) derivatives were obtained from P/S heterozygotes, a result consistent with the view that P and S occupy corresponding positions in homologous chromosome segments. R(r) reconstitution was detected in both tandem duplication heterozygotes P s/S and P/p S, and was found to be about ten times more frequent in the latter. The ratio of R(r) reconstitution in the two heterozygotes is a function of position of the anthocyanin marker within the duplicated segment. The data from these heterozygotes allow one to measure the distance between P and S, that is to say, the genetic length of the duplicated segment. This distance was found to be 0.16 map units. The highest frequency of R(r) reconstitution was obtained from P s/p S heterozygotes, since direct pairing (see PDF) as well as the p//s type of displaced pairing have the potential to produce R(r) derivatives. One of the R(g) derivatives used in this study, R(g) (6), was found to back-mutate in some sublines to R(r). The basis for this instability remains unknown.

  18. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    PubMed

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Expansion of signal transduction pathways in fungi by extensive genome duplication

    PubMed Central

    Corrochano, Luis M.; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M.; Grimwood, Jane; Álvarez, M. Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P.; Benoit, Isabelle; Burger, Gertraud; Camino, Lola P.; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P.; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A.; Lang, B. Franz; Lavín, José L.; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M.; Marcos, Ana T.; Martin, Joel; McCluskey, Kevin; Medina, Humberto R.; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A.; Ohm, Robin A.; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G.; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G.; Talbot, Nicholas J.; Thon, Michael R.; Tice, Hope; de Vries, Ronald P.; Wiebenga, Ad; Yadav, Jagjit S.; Braun, Edward L.; Baker, Scott E.; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A.; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V.

    2016-01-01

    Summary Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides, and show that they have been shaped by an extensive genome duplication or, most likely, a whole genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes. PMID:27238284

  20. Duplication in CHIT1 gene and the risk for Aspergillus lung disease in CF patients.

    PubMed

    Livnat, Galit; Bar-Yoseph, Ronen; Mory, Adi; Dagan, Efrat; Elias, Nael; Gershoni, Ruth; Bentur, Lea

    2014-01-01

    Aspergillus often persists in the respiratory tract of patients with Cystic Fibrosis (CF) and may cause allergic broncho-pulmonary aspergillosis (ABPA). Chitinases are enzymes that digest the chitin polymer. Plants use chitinase as a defense mechanism against fungi. Chitotriosidase (CHIT1) is the major chitinase in human airways. Variation in the coding region with 24-bp duplication allele results in reduced CHIT1 activity. Recently, CHIT1 duplication heterozygocity was found in 6/6 patients with severe asthma and fungal sensitization (SAFS). Our aim was to evaluate the link between CHIT1 duplication in CF patients and the predisposition to Allergic broncho-pulmonary mycosis (ABPM) or persistent Aspergillus positive sputum (APS). CHIT1 duplication was assessed in three CF groups. Group 1: patients who had neither ABPM nor APS in the past (control group). Group 2: patients with persistent APS (≥2/year), without ABPA. Group 3: patients with current or past ABPM. Forty patients with CF were included in the analysis, CHIT1 duplication heterozygocity was found in 3/6 (50%) of the patients in the ABPM group, 3/12 (25%) in the APS group, and 7/22 (31.8%) in the control group (P > 0.05). Eleven patients carried W1282X mutation, 90.9% were negative for CHIT1 duplication, five of them were homozygous for W1282X; none of them had CHIT1 duplication or ABPM. CHIT1 duplication is not found in all CF patients with ABPM in contrast to patients with SAFS. These results suggest that CHIT1 duplication cannot be the sole explanation for Aspergillus positive sputum in CF patients. © 2013 Wiley Periodicals, Inc.

  1. Duplicate editorial on duplicate publication.

    PubMed

    Corson, Stephen L; Decherney, Alan H

    2005-04-01

    The authors define and discuss the various forms taken by duplicate publications, and provide suggested remedies to help authors, editors, reviewers, and readers avoid this form of internal plagiarism.

  2. An increased duplication of ZRS region that caused more than one supernumerary digits preaxial polydactyly in a large Chinese family.

    PubMed

    Wang, Bin; Diao, Yutao; Liu, Qiji; An, Hongqiang; Ma, Ruiping; Jiang, Guosheng; Lai, Nannan; Li, Ziwei; Zhu, Xiaoxiao; Zhao, Lin; Guo, Qiang; Zhang, Zhen; Sun, Rong; Li, Xia

    2016-12-06

    Preaxial polydactyly (PPD) is inherited in an autosomal dominant fashion and characterized by the presence of one or more supernumerary digits on the thumb side. It had been identified that point mutation or genomic duplications of the long-range limb-specific cis-regulator - zone of polarizing activity regulatory sequence (ZRS) cause PPD or other limb deformities such as syndactyly type IV (SD4) and Triphalangeal thumb-polysyndactyly syndrome (TPTPS). Most previously reported cases involved with no more than one extra finger; however, the role of the point mutation or genomic duplications of ZRS in the case of more than one redundant finger polydactyly remains unclear. In this article, we reported a family case of more than one redundant finger polydactyly on the thumb side for bilateral hands with a pedigree chart of the family. Results of quantitative PCR (qPCR) and sequence analysis suggested that the relative copy number (RCN) of ZRS but not point mutation (including insertion and deletion) was involved in all affected individuals.

  3. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

    PubMed Central

    2008-01-01

    Background Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes. Results In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen receptor (AR, NR3C4), a nuclear receptor known to play a key role in sex-determination in vertebrates. The pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including the model species zebrafish), Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in basal teleost fish (Osteoglossiformes and Anguilliformes), the two copies remain very similar, whereas, specifically in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD) and the DNA binding domain (DBD). Conclusion The comparison of the mutations present in these divergent AR-B with those known in human to be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two distinct AR duplicates may be correlated to specific functional differences that may be connected to the well

  4. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells.

    PubMed

    Schimmel, Joost; Kool, Hanneke; van Schendel, Robin; Tijsterman, Marcel

    2017-12-15

    Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Spectrum of Phenylalanine Hydroxylase Gene Mutations in Hamadan and Lorestan Provinces of Iran and Their Associations with Variable Number of Tandem Repeat Alleles.

    PubMed

    Alibakhshi, Reza; Moradi, Keivan; Biglari, Mostafa; Shafieenia, Samaneh

    2018-05-01

    Phenylketonuria (PKU) is one of the most common known inherited metabolic diseases. The present study aimed to investigate the status of molecular defects in phenylalanine hydroxylase ( PAH ) gene in western Iranian PKU patients (predominantly from Kermanshah, Hamadan, and Lorestan provinces) during 2014-2016. Additionally, the results were compared with similar studies in Iran. Nucleotide sequence analysis of all 13 exons and their flanking intronic regions of the PAH gene was performed in 18 western Iranian PKU patients. Moreover, a variable number of tandem repeat (VNTR) located in the PAH gene was studied. The results revealed a mutational spectrum encompassing 11 distinct mutations distributed along the PAH gene sequence on 34 of the 36 mutant alleles (diagnostic efficiency of 94.4%). Also, four PAH VNTR alleles (with repeats of 3, 7, 8 and 9) were detected. The three most frequent mutations were IVS9+5G>A, IVS7-5T>C, and p.P281L with the frequency of 27.8%, 11%, and 11%, respectively. The results showed that there is not only a consanguineous relation, but also a difference in PAH characters of mutations between Kermanshah and the other two parts of western Iran (Hamadan and Lorestan). Also, it seems that the spectrum of mutations in western Iran is relatively distinct from other parts of the country, suggesting that this region might be a special PAH gene distribution region. Moreover, our findings can be useful in the identification of genotype to phenotype relationship in patients, and provide future abilities for confirmatory diagnostic testing, prognosis, and predict the severity of PKU patients.

  6. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes.

    PubMed

    Hayward, Catherine P M; Liang, Minggao; Tasneem, Subia; Soomro, Asim; Waye, John S; Paterson, Andrew D; Rivard, Georges E; Wilson, Michael D

    2017-01-01

    Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD

  7. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes

    PubMed Central

    Soomro, Asim; Waye, John S.; Paterson, Andrew D.; Rivard, Georges E.; Wilson, Michael D.

    2017-01-01

    Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD

  8. Evolution of Gene Duplication in Plants.

    PubMed

    Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han

    2016-08-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Duplication in DNA Sequences

    NASA Astrophysics Data System (ADS)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  10. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication.

    PubMed

    Chapman, Brad A; Bowers, John E; Feltus, Frank A; Paterson, Andrew H

    2006-02-21

    Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a "paleologous" locus than in "singleton" genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during "genomic turmoil" immediately after genome duplication but continues to act approximately 60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages.

  11. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication

    PubMed Central

    Chapman, Brad A.; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.

    2006-01-01

    Genome duplication followed by massive gene loss has permanently shaped the genomes of many higher eukaryotes, particularly angiosperms. It has long been believed that a primary advantage of genome duplication is the opportunity for the evolution of genes with new functions by modification of duplicated genes. If so, then patterns of genetic diversity among strains within taxa might reveal footprints of selection that are consistent with this advantage. Contrary to classical predictions that duplicated genes may be relatively free to acquire unique functionality, we find among both Arabidopsis ecotypes and Oryza subspecies that SNPs encode less radical amino acid changes in genes for which there exists a duplicated copy at a “paleologous” locus than in “singleton” genes. Preferential retention of duplicated genes encoding long complex proteins and their unexpectedly slow divergence (perhaps because of homogenization) suggest that a primary advantage of retaining duplicated paleologs may be the buffering of crucial functions. Functional buffering and functional divergence may represent extremes in the spectrum of duplicated gene fates. Functional buffering may be especially important during “genomic turmoil” immediately after genome duplication but continues to act ≈60 million years later, and its gradual deterioration may contribute cyclicality to genome duplication in some lineages. PMID:16467140

  12. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation

    PubMed Central

    Li, Tao; Zhang, Zhao-jing; Ma, Xin; Lv, Xue; Xiao, Hai; Guo, Qian-nan; Liu, Hong-yan; Wang, Hong-dan; Wu, Dong; Lou, Gui-yu; Wang, Xin; Zhang, Chao-yang; Liao, Shi-xiu

    2017-01-01

    Abstract Background: Patients with Duchenne muscular dystrophy (DMD) usually have severe and fatal symptoms. At present, there is no effective treatment for DMD, thus it is very important to avoid the birth of children with DMD by effective prenatal diagnosis. We identified a de novo DMD gene mutation in a Chinese family, and make a prenatal diagnosis. Methods: First, multiplex ligation-dependent probe amplification (MLPA) was applied to analyze DMD gene exon deletion/duplication in all family members. The coding sequences of 79 exons in DMD gene were analyzed by Sanger sequencing in the patient; and then according to DMD gene exon mutation in the patient, DMD gene sequencing was performed in the family members. On the basis of results above, the pathogenic mutation in DMD gene was identified. Results: MLPA showed no DMD gene exon deletion/duplication in all family members. Sanger sequencing revealed c.2767_2767delT [p.Ser923LeufsX26] mutation in DMD gene of the patient. Heterozygous deletion mutation (T/-) at this locus was observed in the pregnant woman and her mother and younger sister. The analyses of amniotic fluid samples indicated negative Y chromosome sex-determining gene, no DMD gene exon deletion/duplication, no mutations at c.2767 locus, and the inherited maternal X chromosome different from that of the patient. Conclusion: The pathogenic mutation in DMD gene, c.2767_2767delT [p.Ser923LeufsX26], identified in this family is a de novo mutation. On the basis of specific conditions, it is necessary to select suitable methods to make prenatal diagnosis more effective, accurate, and economic. PMID:29390271

  13. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication

    PubMed Central

    Kodani, Andrew; Yu, Timothy W; Johnson, Jeffrey R; Jayaraman, Divya; Johnson, Tasha L; Al-Gazali, Lihadh; Sztriha, Lāszló; Partlow, Jennifer N; Kim, Hanjun; Krup, Alexis L; Dammermann, Alexander; Krogan, Nevan J; Walsh, Christopher A; Reiter, Jeremy F

    2015-01-01

    Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication. DOI: http://dx.doi.org/10.7554/eLife.07519.001 PMID:26297806

  14. Novel partial duplication of EYA1 causes branchiootic syndrome in a large Brazilian family.

    PubMed

    Dantas, Vitor G L; Freitas, Erika L; Della-Rosa, Valter A; Lezirovitz, Karina; de Moraes, Ana Maria S M; Ramos, Silvia B; Oiticica, Jeanne; Alves, Leandro U; Pearson, Peter L; Rosenberg, Carla; Mingroni-Netto, Regina C

    2015-01-01

    To identify novel genetic causes of syndromic hearing loss in Brazil. To map a candidate chromosomal region through linkage studies in an extensive Brazilian family and identify novel pathogenic variants using sequencing and array-CGH. Brazilian pedigree with individuals affected by BO syndrome characterized by deafness and malformations of outer, middle and inner ear, auricular and cervical fistulae, but no renal abnormalities. Whole genome microarray-SNP scanning on samples of 11 affected individuals detected a multipoint Lod score of 2.6 in the EYA1 gene region (chromosome 8). Sequencing of EYA1 in affected patients did not reveal pathogenic mutations. However, oligonucleotide-array-CGH detected a duplication of 71.8Kb involving exons 4 to 10 of EYA1 (heterozygous state). Real-time-PCR confirmed the duplication in fourteen of fifteen affected individuals and absence in 13 unaffected individuals. The exception involved a consanguineous parentage and was assumed to involve a different genetic mechanism. Our findings implicate this EYA1 partial duplication segregating with BO phenotype in a Brazilian pedigree and is the first description of a large duplication leading to the BOR/BO syndrome.

  15. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum.

    PubMed

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.

  16. Recombination and Evolution of Duplicate Control Regions in the Mitochondrial Genome of the Asian Big-Headed Turtle, Platysternon megacephalum

    PubMed Central

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID

  17. Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells

    PubMed Central

    Abe, Mariko; Pelus, Louis M.; Singh, Pratibha; Hirade, Tomohiro; Onishi, Chie; Purevsuren, Jamiyan; Taketani, Takeshi; Yamaguchi, Seiji; Fukuda, Seiji

    2016-01-01

    Internal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression. PMID:27387666

  18. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    PubMed

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  19. Large-scale identification of chemically induced mutations in Drosophila melanogaster

    PubMed Central

    Haelterman, Nele A.; Jiang, Lichun; Li, Yumei; Bayat, Vafa; Sandoval, Hector; Ugur, Berrak; Tan, Kai Li; Zhang, Ke; Bei, Danqing; Xiong, Bo; Charng, Wu-Lin; Busby, Theodore; Jawaid, Adeel; David, Gabriela; Jaiswal, Manish; Venken, Koen J.T.; Yamamoto, Shinya

    2014-01-01

    Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ∼3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (∼70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes. PMID:25258387

  20. In vivo levels of S-adenosylmethionine modulate C:G to T:A mutations associated with repeat-induced point mutation in Neurospora crassa.

    PubMed

    Rosa, Alberto Luis; Folco, Hernán Diego; Mautino, Mario Ricardo

    2004-04-14

    In Neurospora crassa, the mutagenic process termed repeat-induced point mutation (RIP) inactivates duplicated DNA sequences during the sexual cycle by the introduction of C:G to T:A transition mutations. In this work, we have used a collection of N. crassa strains exhibiting a wide range of cellular levels of S-adenosylmethionine (AdoMet), the universal donor of methyl groups, to explore whether frequencies of RIP are dependent on the cellular levels of this metabolite. Mutant strains met-7 and eth-1 carry mutations in genes of the AdoMet pathway and have low levels of AdoMet. Wild type strains with high levels of AdoMet were constructed by introducing a chimeric transgene of the AdoMet synthetase (AdoMet-S) gene fused to the constitutive promoter trpC from Aspergillus nidulans. Crosses of these strains against tester duplications of the pan-2 and am genes showed that frequencies of RIP, as well as the total number of C:G to T:A transition mutations found in randomly selected am(RIP) alleles, are inversely correlated to the cellular level of AdoMet. These results indicate that AdoMet modulates the biochemical pathway leading to RIP.

  1. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  2. Facial duplication: case, review, and embryogenesis.

    PubMed

    Barr, M

    1982-04-01

    The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.

  3. Pyloric duplications: review and case study.

    PubMed

    Cooper, S; Abrams, R S; Carbaugh, R A

    1995-12-01

    Gastric duplications are unusual congenital anomalies that often require surgical treatment. Pyloric duplications are particularly rare; few are reported in the English literature. This article reviews the literature on pyloric duplications and describes a pyloric duplication associated with hypertrophic pyloric stenosis in a 5-week-old child and a duplication that recurred 7 years later.

  4. Chromosome I duplications in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKim, K.S.; Rose, A.M.

    1990-01-01

    We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left halfmore » of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.« less

  5. Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection.

    PubMed

    Kjærner-Semb, Erik; Ayllon, Fernando; Furmanek, Tomasz; Wennevik, Vidar; Dahle, Geir; Niemelä, Eero; Ozerov, Mikhail; Vähä, Juha-Pekka; Glover, Kevin A; Rubin, Carl J; Wargelius, Anna; Edvardsen, Rolf B

    2016-08-11

    Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13-15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation.

  6. A novel founder MYO15A frameshift duplication is the major cause of genetic hearing loss in Oman.

    PubMed

    Palombo, Flavia; Al-Wardy, Nadia; Ruscone, Guido Alberto Gnecchi; Oppo, Manuela; Kindi, Mohammed Nasser Al; Angius, Andrea; Al Lamki, Khalsa; Girotto, Giorgia; Giangregorio, Tania; Benelli, Matteo; Magi, Alberto; Seri, Marco; Gasparini, Paolo; Cucca, Francesco; Sazzini, Marco; Al Khabori, Mazin; Pippucci, Tommaso; Romeo, Giovanni

    2017-02-01

    The increased risk for autosomal recessive disorders is one of the most well-known medical implications of consanguinity. In the Sultanate of Oman, a country characterized by one of the highest rates of consanguineous marriages worldwide, prevalence of genetic hearing loss (GHL) is estimated to be 6/10 000. Families of GHL patients have higher consanguinity rates than the general Omani population, indicating a major role for recessive forms. Mutations in GJB2, the most commonly mutated GHL gene, have been sporadically described. We collected 97 DNA samples of GHL probands, affected/unaffected siblings and parents from 26 Omani consanguineous families. Analyzing a first family by whole-exome sequencing, we identified a novel homozygous frameshift duplication (c.1171_1177dupGCCATCT) in MYO15A, the gene linked to the deafness locus DFNB3. This duplication was then found in a total of 8/26 (28%) families, within a 849 kb founder haplotype. Reconstruction of haplotype structure at MYO15A surrounding genomic regions indicated that the founder haplotype branched out in the past two to three centuries from a haplotype present worldwide. The MYO15A duplication emerges as the major cause of GHL in Oman. These findings have major implications for the design of GHL diagnosis and prevention policies in Oman.

  7. Segmental Duplication, Microinversion, and Gene Loss Associated with a Complex Inversion Breakpoint Region in Drosophila

    PubMed Central

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-01-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ∼13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ∼9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics. PMID:22328714

  8. Craniofacial duplication: a case report.

    PubMed

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-09-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature.

  9. Craniofacial Duplication: A Case Report

    PubMed Central

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-01-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature. PMID:24179933

  10. Do Children Think that Duplicating the Body also Duplicates the Mind?

    ERIC Educational Resources Information Center

    Hood, Bruce; Gjersoe, Nathalia L.; Bloom, Paul

    2012-01-01

    Philosophers use hypothetical duplication scenarios to explore intuitions about personal identity. Here we examined 5- to 6-year-olds' intuitions about the physical properties and memories of a live hamster that is apparently duplicated by a machine. In Study 1, children thought that more of the original's physical properties than episodic…

  11. Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.

    PubMed

    Zeira, Ron; Shamir, Ron

    2018-05-03

    Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.

  12. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito.

    PubMed

    Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-10-05

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.

  13. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito

    PubMed Central

    Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-01-01

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951

  14. TANDEM: a two-stage approach to maximize interpretability of drug response models based on multiple molecular data types.

    PubMed

    Aben, Nanne; Vis, Daniel J; Michaut, Magali; Wessels, Lodewyk F A

    2016-09-01

    Clinical response to anti-cancer drugs varies between patients. A large portion of this variation can be explained by differences in molecular features, such as mutation status, copy number alterations, methylation and gene expression profiles. We show that the classic approach for combining these molecular features (Elastic Net regression on all molecular features simultaneously) results in models that are almost exclusively based on gene expression. The gene expression features selected by the classic approach are difficult to interpret as they often represent poorly studied combinations of genes, activated by aberrations in upstream signaling pathways. To utilize all data types in a more balanced way, we developed TANDEM, a two-stage approach in which the first stage explains response using upstream features (mutations, copy number, methylation and cancer type) and the second stage explains the remainder using downstream features (gene expression). Applying TANDEM to 934 cell lines profiled across 265 drugs (GDSC1000), we show that the resulting models are more interpretable, while retaining the same predictive performance as the classic approach. Using the more balanced contributions per data type as determined with TANDEM, we find that response to MAPK pathway inhibitors is largely predicted by mutation data, while predicting response to DNA damaging agents requires gene expression data, in particular SLFN11 expression. TANDEM is available as an R package on CRAN (for more information, see http://ccb.nki.nl/software/tandem). m.michaut@nki.nl or l.wessels@nki.nl Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Regulatory divergence of homeologous Atlantic salmon elovl5 genes following the salmonid-specific whole-genome duplication.

    PubMed

    Carmona-Antoñanzas, Greta; Zheng, Xiaozhong; Tocher, Douglas R; Leaver, Michael J

    2016-10-10

    Fatty acyl elongase 5 (elovl5) is a critical enzyme in the vertebrate biosynthetic pathway which produces the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA), docosahexenoic acid (DHA), and eicosapentenoic acid (EPA) from 18 carbon fatty acids precursors. In contrast to most other vertebrates, Atlantic salmon possess two copies of elovl5 (elovl5a and elovl5b) as a result of a whole-genome duplication (WGD) which occurred at the base of the salmonid lineage. WGDs have had a major influence on vertebrate evolution, providing extra genetic material, enabling neofunctionalization to accelerate adaptation and speciation. However, little is known about the mechanisms by which such duplicated homeologous genes diverge. Here we show that homeologous Atlantic salmon elovl5a and elovl5b genes have been asymmetrically colonised by transposon-like elements. Identical locations and identities of insertions are also present in the rainbow trout duplicate elovl5 genes, but not in the nearest extant representative preduplicated teleost, the northern pike. Both elovl5 salmon duplicates possessed conserved regulatory elements that promoted Srebp1- and Srebp2-dependent transcription, and differences in the magnitude of Srebp response between promoters could be attributed to a tandem duplication of SRE and NF-Y cofactor binding sites in elovl5b. Furthermore, an insertion in the promoter region of elovl5a confers responsiveness to Lxr/Rxr transcriptional activation. Our results indicate that most, but not all, transposon mobilisation into elovl5 genes occurred after the split from the common ancestor of pike and salmon, but before more recent salmonid speciations, and that divergence of elovl5 regulatory regions have enabled neofuntionalization by promoting differential expression of these homeologous genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  17. Identification of proteins that interact with TANK binding kinase 1 and testing for mutations associated with glaucoma.

    PubMed

    Seo, Seongjin; Solivan-Timpe, Frances; Roos, Ben R; Robin, Alan L; Stone, Edwin M; Kwon, Young H; Alward, Wallace L M; Fingert, John H

    2013-02-01

    Copy number variations (duplications) of TANK binding kinase 1 (TBK1) have been associated with normal tension glaucoma (NTG), a common cause of blindness worldwide. Mutations in other genes involved in autophagy (TLR4 and OPTN) have been associated with NTG. Here we report searching for additional proteins involved in autophagy that may also have roles in NTG. HEK-293T cells were transfected to produce synthetic TBK1 protein with FLAG and S tags. Proteins that associate with TBK1 were isolated from HEK-293T lysates using tandem affinity purification (TAP) and polyacrylamide gel electrophoresis (PAGE). Isolated proteins were identified with mass spectrometry. A cohort of 148 NTG patients and 77 controls from Iowa were tested for glaucoma-causing mutations in genes that encode identified proteins that interact with TBK1 using high resolution melt (HRM) analysis and DNA sequencing. TAP studies show that three proteins expressed in HEK-293T cells (NAP1, TANK and TBKBP1) interact with TBK1. Testing cohorts of NTG and normal controls for disease-causing mutations in TANK, identified a total of nine unique variants including three non-synonymous changes, one synonymous changes and five intronic changes. When analyzed alone or as a group, the non-synonymous TBK1 coding sequence changes were not associated with either NTG or primary open angle glaucoma. TAP showed that NAP1, TANK and TBKBP1 interact with TBK1 and are good candidates for contributing to NTG. A mutation screen of TANK detected three non-synonymous variants. Although, it remains possible that one or more of these TANK mutations may have a role in NTG, the data in this report do not provide statistical support for an association between TANK variants and NTG.

  18. Association of PKD2 (polycystin 2) mutations with left-right laterality defects.

    PubMed

    Bataille, Stanislas; Demoulin, Nathalie; Devuyst, Olivier; Audrézet, Marie-Pierre; Dahan, Karin; Godin, Michel; Fontès, Michel; Pirson, Yves; Burtey, Stéphane

    2011-09-01

    Mutations in the PKD1 (polycystin 1) and PKD2 (polycystin 2) genes cause autosomal dominant polycystic kidney disease (ADPKD). Most Pkd2-null mouse embryos present with left-right laterality defects. For the first time, we report the association of ADPKD resulting from a mutation in PKD2 and left-right asymmetry defects. PKD1 and PKD2 were screened for mutations or large genomic rearrangements in 3 unrelated patients with ADPKD presenting with laterality defects: dextrocardia in one and situs inversus totalis in 2 others. A large gene deletion, a single-exon duplication, and an in-frame duplication respectively, were found in the 3 patients. These polymorphisms were found in all tested relatives with ADPKD, but were absent in unaffected related individuals. No left-right anomalies were found in other members of the 3 families. A possible association between heterotaxia and a PKD2 mutation in our 3 patients is suggested by: (1) the existence of laterality defects in Pkd2-null mouse and zebrafish models and (2) detection of a pathogenic PKD2 mutation in the 3 probands, although PKD2 mutations account for only 15% of ADPKD families. The presence of left-right laterality defects should be systematically screened in larger cohorts of patients with ADPKD harboring PKD2 mutations. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. FLT3 and JAK2 Mutations in Acute Myeloid Leukemia Promote Interchromosomal Homologous Recombination and the Potential for Copy Neutral Loss of Heterozygosity.

    PubMed

    Gaymes, Terry J; Mohamedali, Azim; Eiliazadeh, Anthony L; Darling, David; Mufti, Ghulam J

    2017-04-01

    Acquired copy neutral LOH (CN-LOH) is a frequent occurrence in myeloid malignancies and is often associated with resistance to standard therapeutic modalities and poor survival. Here, we show that constitutive signaling driven by mutated FLT3 and JAK2 confers interchromosomal homologous recombination (iHR), a precedent for CN-LOH. Using a targeted recombination assay, we determined significant iHR activity in internal tandem duplication FLT3 (FLT3-ITD) and JAK2V617F-mutated cells. Sister chromatid exchanges, a surrogate measure of iHR, was significantly elevated in primary FLT3-ITD normal karyotype acute myeloid leukemia (NK-AML) compared with wild-type FLT3 NK-AML. HR was harmonized to S phase of the cell cycle to repair broken chromatids and prevent iHR. Increased HR activity in G 0 arrested primary FLT3-ITD NK-AML in contrast to wild-type FLT3 NK-AML. Cells expressing mutated FLT3-ITD demonstrated a relative increase in mutation frequency as detected by thymidine kinase (TK) gene mutation assay. Moreover, resistance was associated with CN-LOH at the TK locus. Treatment of FLT3-ITD- and JAK2V617F-mutant cells with the antioxidant N -acetylcysteine diminished reactive oxygen species (ROS), restoring iHR and HR levels. Our findings show that mutated FLT3-ITD and JAK2 augment ROS production and HR, shifting the cellular milieu toward illegitimate recombination events such as iHR and CN-LOH. Therapeutic reduction of ROS may thus prevent leukemic progression and relapse in myeloid malignancies. Cancer Res; 77(7); 1697-708. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Evaluation of point mutations in dystrophin gene in Iranian Duchenne and Becker muscular dystrophy patients: introducing three novel variants.

    PubMed

    Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar

    2016-06-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.

  1. Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression

    PubMed Central

    Giorgio, Elisa; Rolyan, Harshvardhan; Kropp, Laura; Chakka, Anish Baswanth; Yatsenko, Svetlana; Gregorio, Eleonora Di; Lacerenza, Daniela; Vaula, Giovanna; Talarico, Flavia; Mandich, Paola; Toro, Camilo; Pierre, Eleonore Eymard; Labauge, Pierre; Capellari, Sabina; Cortelli, Pietro; Vairo, Filippo Pinto; Miguel, Diego; Stubbolo, Danielle; Marques, Lourenco Charles; Gahl, William; Boespflug-Tanguy, Odile; Melberg, Atle; Hassin-Baer, Sharon; Cohen, Oren S; Pjontek, Rastislav; Grau, Armin; Klopstock, Thomas; Fogel, Brent; Meijer, Inge; Rouleau, Guy; Bouchard, Jean-Pierre L; Ganapathiraju, Madhavi; Vanderver, Adeline; Dahl, Niklas; Hobson, Grace; Brusco, Alfredo; Brussino, Alessandro; Padiath, Quasar Saleem

    2013-01-01

    ABSTRACT Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients’ fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels. PMID:23649844

  2. SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome.

    PubMed

    Gervasini, Cristina; Grati, Francesca Romana; Lalatta, Faustina; Tabano, Silvia; Gentilin, Barbara; Colapietro, Patrizia; De Toffol, Simona; Frontino, Giada; Motta, Francesca; Maitz, Silvia; Bernardini, Laura; Dallapiccola, Bruno; Fedele, Luigi; Larizza, Lidia; Miozzo, Monica

    2010-10-01

    The Mayer-Rokitansky-Küster-Hauser syndrome is defined as congenital aplasia of müllerian ducts derived structures in females with a normal female chromosomal and gonadal sex. Most cases with Mayer-Rokitansky-Küster-Hauser syndrome are sporadic, although familial cases have been reported. The genetic basis of Mayer-Rokitansky-Küster-Hauser syndrome is largely unknown and seems heterogeneous, and a small number of cases were found to have mutations in the WNT4 gene. The aim of this study was to identify possible recurrent submicroscopic imbalances in a cohort of familial and sporadic cases with Mayer-Rokitansky-Küster-Hauser syndrome. Multiplex ligation-dependent probe amplification was used to screen the subtelomeric sequences of all chromosomes in 30 patients with Mayer-Rokitansky-Küster-Hauser syndrome (sporadic, n = 27 and familial, n = 3). Segregation analysis and pyrosequencing were applied to validate the MLPA results in the informative family. Partial duplication of the Xpter pseudoautosomal region 1 containing the short stature homeobox (SHOX) gene was detected in five patients with Mayer-Rokitansky-Küster-Hauser syndrome (familial, n = 3 and sporadic, n = 2) and not in 53 healthy controls. The duplications were not overlapping, and SHOX was never entirely duplicated. Haplotyping in the informative family revealed that SHOX gene duplication was inherited from the unaffected father and was absent in two healthy sisters. Partial duplication of SHOX gene is found in some cases with both familial and sporadic Mayer-Rokitansky-Küster-Hauser type I syndrome.

  3. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications.

    PubMed Central

    Den Dunnen, J T; Grootscholten, P M; Bakker, E; Blonden, L A; Ginjaar, H B; Wapenaar, M C; van Paassen, H M; van Broeckhoven, C; Pearson, P L; van Ommen, G J

    1989-01-01

    We have studied 34 Becker and 160 Duchenne muscular dystrophy (DMD) patients with the dystrophin cDNA, using conventional blots and FIGE analysis. One hundred twenty-eight mutations (65%) were found, 115 deletions and 13 duplications, of which 106 deletions and 11 duplications could be precisely mapped in relation to both the mRNA and the major and minor mutation hot spots. Junction fragments, ideal markers for carrier detection, were found in 23 (17%) of the 128 cases. We identified eight new cDNA RFLPs within the DMD gene. With the use of cDNA probes we have completed the long-range map of the DMD gene, by the identification of a 680-kb SfiI fragment containing the gene's 3' end. The size of the DMD gene is now determined to be about 2.3 million basepairs. The combination of cDNA hybridizations with long-range analysis of deletion and duplication patients yields a global picture of the exon spacing within the dystrophin gene. The gene shows a large variability of intron size, ranging from only a few kilobases to 160-180 kb for the P20 intron. Images Figure 1 Figure 4 PMID:2573997

  4. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, C.A.; Davis, S.N.; Heju, Z.

    1993-10-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. One form of CMT, CMT type 1A, is characterized by uniformly decreased nerve conduction velocities, usually shows autosomal dominant inheritance, and is associated with a large submicroscopic duplication of the p11.2-p12 region of chromosome 17. A cohort of 75 unrelated patients diagnosed clinically with CMT and evaluated by electrophysiological methods were analyzed molecularly for the presence of the CMT1A DNA duplication. Three methodologies were used to assess the duplication: Measurement of dosage differences between RFLP alleles, analysis of polymorphic (GT)[sub n] repeats, and detection of a junction fragment by pulsed-fieldmore » gel electrophoresis. The CMT1A duplication was found in 68% of the 63 unrelated CMT patients with electrophysiological studies consistent with CMT type 1 (CMT1). The CMT1A duplication was detected as a de novo event in two CMT1 families. Twelve CMT patients who did not have decreased nerve conduction velocities consistent with a diagnosis of CMT type 2 (CMT2) were found not to have the CMT1A duplication. The most informative molecular method was the detection of the CMT1A duplication-specific junction fragment. Given the high frequency of the CMT1A duplication in CMT patients and the high frequency of new mutations, the authors conclude that a molecular test for the CMT1A DNA duplication is very useful in the differential diagnosis of patients with peripheral neuropathies. 61 refs., 4 figs.« less

  5. Evolution of Gene Duplication in Plants1[OPEN

    PubMed Central

    2016-01-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  6. Congenital hyperinsulinism and Poland syndrome in association with 10p13-14 duplication.

    PubMed

    Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed; Senniappan, Senthil

    2017-01-01

    Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks' gestation with birth weight of 3.33 kg (-0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8 , KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13-14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Congenital hyperinsulinism (CHI) is known to be associated with various syndromes.This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13-14.A potential underlying genetic link between 10p13-14 duplication, PS and CHI is a possibility.

  7. Prenatal detection of a de novo terminal inverted duplication 4p in a fetus with the Wolf-Hirschhorn syndrome phenotype.

    PubMed

    Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F

    2005-06-01

    To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.

  8. Association of an α-globin gene cluster duplication and heterozygous β-thalassemia in a patient with a severe thalassemia syndrome.

    PubMed

    Jiang, Hua; Liu, Sha; Zhang, Yong-Ling; Wan, Jun-Hui; Li, Ru; Li, Dong-Zhi

    2015-01-01

    We describe a new case of a β-thalassemia (β-thal) heterozygote with the mutation IVS-II-654 (C>T) presenting with a transfusion-dependent phenotype. Multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analyses of the α-globin gene cluster revealed a full duplication of the α-globin genes including the upstream regulatory element. The duplicated allele and the normal allele in trans resulted in a total of six active α-globin genes. The severe clinical phenotype seemed to be related to the considerable excess of the α- and β-globin deficit caused by the presence of the β-thal. α-Globin cluster duplication should be considered in patients heterozygous for β-thal who show a more severe phenotype than β-thal trait.

  9. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  10. 47 CFR 69.111 - Tandem-switched transport and tandem charge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Tandem-switched transport and tandem charge. 69... SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.111 Tandem-switched transport and tandem...-switched transport shall consist of two rate elements, a transmission charge and a tandem switching charge...

  11. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  12. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  13. Quinupristin-Dalfopristin Resistance in Streptococcus pneumoniae: Novel L22 Ribosomal Protein Mutation in Two Clinical Isolates from the SENTRY Antimicrobial Surveillance Program

    PubMed Central

    Jones, Ronald N.; Farrell, David J.; Morrissey, Ian

    2003-01-01

    Resistance to quinupristin-dalfopristin (Q/D) among gram-positive cocci has been very uncommon. Two clinical isolates among 8,837 (0.02%) Streptococcus pneumoniae isolates were discovered in 2001 to 2002 with Q/D MICs of 4 μg/ml. Each had a 5-amino-acid tandem duplication (RTAHI) in the L22 ribosomal protein gene (rplV) preventing synergistic ribosomal binding of the streptogramin combination. Similar gene duplication has been reported in Q/D-resistant Staphylococcus aureus. PMID:12878545

  14. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    PubMed Central

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-01

    Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies. PMID:19154605

  15. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers.

    PubMed

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-20

    Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  16. Parkin dosage mutations have greater pathogenicity in familial PD than simple sequence mutations

    PubMed Central

    Pankratz, N; Kissell, D K.; Pauciulo, M W.; Halter, C A.; Rudolph, A; Pfeiffer, R F.; Marder, K S.; Foroud, T; Nichols, W C.

    2009-01-01

    Objective: Mutations in both alleles of parkin have been shown to result in Parkinson disease (PD). However, it is unclear whether haploinsufficiency (presence of a mutation in only 1 of the 2 parkin alleles) increases the risk for PD. Methods: We performed comprehensive dosage and sequence analysis of all 12 exons of parkin in a sample of 520 independent patients with familial PD and 263 controls. We evaluated whether presence of a single parkin mutation, either a sequence (point mutation or small insertion/deletion) or dosage (whole exon deletion or duplication) mutation, was found at increased frequency in cases as compared with controls. We then compared the clinical characteristics of cases with 0, 1, or 2 parkin mutations. Results: We identified 55 independent patients with PD with at least 1 parkin mutation and 9 controls with a single sequence mutation. Cases and controls had a similar frequency of single sequence mutations (3.1% vs 3.4%, p = 0.83); however, the cases had a significantly higher rate of dosage mutations (2.6% vs 0%, p = 0.009). Cases with a single dosage mutation were more likely to have an earlier age at onset (50% with onset at ≤45 years) compared with those with no parkin mutations (10%, p = 0.00002); this was not true for cases with only a single sequence mutation (25% with onset at ≤45 years, p = 0.06). Conclusions: Parkin haploinsufficiency, specifically for a dosage mutation rather than a point mutation or small insertion/deletion, is a risk factor for familial PD and may be associated with earlier age at onset. GLOSSARY ADL = Activities of Daily Living; GDS = Geriatric Depression Scale; MLPA = multiplex ligation-dependent probe amplification; MMSE = Mini-Mental State Examination; PD = Parkinson disease; UPDRS = Unified Parkinson’s Disease Rating Scale. PMID:19636047

  17. Gene Conversion Violates the Stepwise Mutation Model for Microsatellites in Y-Chromosomal Palindromic Repeats

    PubMed Central

    Balaresque, Patricia; King, Turi E; Parkin, Emma J; Heyer, Evelyne; Carvalho-Silva, Denise; Kraaijenbrink, Thirsa; de Knijff, Peter; Tyler-Smith, Chris; Jobling, Mark A

    2014-01-01

    The male-specific region of the human Y chromosome (MSY) contains eight large inverted repeats (palindromes), in which high-sequence similarity between repeat arms is maintained by gene conversion. These palindromes also harbor microsatellites, considered to evolve via a stepwise mutation model (SMM). Here, we ask whether gene conversion between palindrome microsatellites contributes to their mutational dynamics. First, we study the duplicated tetranucleotide microsatellite DYS385a,b lying in palindrome P4. We show, by comparing observed data with simulated data under a SMM within haplogroups, that observed heteroallelic combinations in which the modal repeat number difference between copies was large, can give rise to homoallelic combinations with zero-repeats difference, equivalent to many single-step mutations. These are unlikely to be generated under a strict SMM, suggesting the action of gene conversion. Second, we show that the intercopy repeat number difference for a large set of duplicated microsatellites in all palindromes in the MSY reference sequence is significantly reduced compared with that for nonpalindrome-duplicated microsatellites, suggesting that the former are characterized by unusual evolutionary dynamics. These observations indicate that gene conversion violates the SMM for microsatellites in palindromes, homogenizing copies within individual Y chromosomes, but increasing overall haplotype diversity among chromosomes within related groups. PMID:24610746

  18. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms.

    PubMed

    Au, Chun Hang; Wa, Anna; Ho, Dona N; Chan, Tsun Leung; Ma, Edmond S K

    2016-01-22

    Genomic techniques in recent years have allowed the identification of many mutated genes important in the pathogenesis of acute myeloid leukemia (AML). Together with cytogenetic aberrations, these gene mutations are powerful prognostic markers in AML and can be used to guide patient management, for example selection of optimal post-remission therapy. The mutated genes also hold promise as therapeutic targets themselves. We evaluated the applicability of a gene panel for the detection of AML mutations in a diagnostic molecular pathology laboratory. Fifty patient samples comprising 46 AML and 4 other myeloid neoplasms were accrued for the study. They consisted of 19 males and 31 females at a median age of 60 years (range: 18-88 years). A total of 54 genes (full coding exons of 15 genes and exonic hotspots of 39 genes) were targeted by 568 amplicons that ranged from 225 to 275 bp. The combined coverage was 141 kb in sequence length. Amplicon libraries were prepared by TruSight myeloid sequencing panel (Illumina, CA) and paired-end sequencing runs were performed on a MiSeq (Illumina) genome sequencer. Sequences obtained were analyzed by in-house bioinformatics pipeline, namely BWA-MEM, Samtools, GATK, Pindel, Ensembl Variant Effect Predictor and a novel algorithm ITDseek. The mean count of sequencing reads obtained per sample was 3.81 million and the mean sequencing depth was over 3000X. Seventy-seven mutations in 24 genes were detected in 37 of 50 samples (74 %). On average, 2 mutations (range 1-5) were detected per positive sample. TP53 gene mutations were found in 3 out of 4 patients with complex and unfavorable cytogenetics. Comparing NGS results with that of conventional molecular testing showed a concordance rate of 95.5 %. After further resolution and application of a novel bioinformatics algorithm ITDseek to aid the detection of FLT3 internal tandem duplication (ITD), the concordance rate was revised to 98.2 %. Gene panel testing by NGS approach was

  19. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  20. Congenital hyperinsulinism and Poland syndrome in association with 10p13–14 duplication

    PubMed Central

    Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed

    2017-01-01

    Summary Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks’ gestation with birth weight of 3.33 kg (−0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8, KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13–14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Learning points: Congenital hyperinsulinism (CHI) is known to be associated with various syndromes. This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13–14. A potential underlying genetic link between 10p13–14 duplication, PS and CHI is a possibility. PMID:28458900

  1. Duplicate document detection in DocBrowse

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Bruce, Andrew G.; Nguyen, Thien

    1998-04-01

    Duplicate documents are frequently found in large databases of digital documents, such as those found in digital libraries or in the government declassification effort. Efficient duplicate document detection is important not only to allow querying for similar documents, but also to filter out redundant information in large document databases. We have designed three different algorithm to identify duplicate documents. The first algorithm is based on features extracted from the textual content of a document, the second algorithm is based on wavelet features extracted from the document image itself, and the third algorithm is a combination of the first two. These algorithms are integrated within the DocBrowse system for information retrieval from document images which is currently under development at MathSoft. DocBrowse supports duplicate document detection by allowing (1) automatic filtering to hide duplicate documents, and (2) ad hoc querying for similar or duplicate documents. We have tested the duplicate document detection algorithms on 171 documents and found that text-based method has an average 11-point precision of 97.7 percent while the image-based method has an average 11- point precision of 98.9 percent. However, in general, the text-based method performs better when the document contains enough high-quality machine printed text while the image- based method performs better when the document contains little or no quality machine readable text.

  2. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases

    PubMed Central

    Kabir, Firoz; Ullah, Inayat; Ali, Shahbaz; Gottsch, Alexander D.H.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose This study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families. Methods Large consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon–intron boundaries of RP1 were sequenced to identify the causal mutation. Results The ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples. Conclusions These results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families. PMID:27307693

  3. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias.

    PubMed

    Falini, Brunangelo; Nicoletti, Ildo; Bolli, Niccolò; Martelli, Maria Paola; Liso, Arcangelo; Gorello, Paolo; Mandelli, Franco; Mecucci, Cristina; Martelli, Massimo Fabrizio

    2007-04-01

    Nucleophosmin (NPM) is a ubiquitously expressed nucleolar phoshoprotein which shuttles continuously between the nucleus and cytoplasm. Many findings have revealed a complex scenario of NPM functions and interactions, pointing to proliferative and growth-suppressive roles of this molecule. The gene NPM1 that encodes for nucleophosmin (NPM1) is translocated or mutated in various lymphomas and leukemias, forming fusion proteins (NPM-ALK, NPM-RARalpha, NPM-MLF1) or NPM mutant products. Here, we review the structure and functions of NPM, as well as the biological, clinical and pathological features of human hematologic malignancies with NPM1 gene alterations. NPM-ALK indentifies a new category of T/Null lymphomas with distinctive molecular and clinico-pathological features, that is going to be included as a novel disease entity (ALK+ anaplastic large cell lymphoma) in the new WHO classification of lymphoid neoplasms. NPM1 mutations occur specifically in about 30% of adult de novo AML and cause aberrant cytoplasmic expression of NPM (hence the term NPMc+ AML). NPMc+ AML associates with normal karyotpe, and shows wide morphological spectrum, multilineage involvement, a unique gene expression signature, a high frequency of FLT3-internal tandem duplications, and distinctive clinical and prognostic features. The availability of specific antibodies and molecular techniques for the detection of NPM1 gene alterations has an enormous impact in the biological study diagnosis, prognostic stratification, and monitoring of minimal residual disease of various lymphomas and leukemias. The discovery of NPM1 gene alterations also represents the rationale basis for development of molecular targeted drugs.

  4. The centriole duplication cycle

    PubMed Central

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  5. Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain.

    PubMed

    Cizmecioglu, Onur; Warnke, Silke; Arnold, Marc; Duensing, Stefan; Hoffmann, Ingrid

    2008-11-15

    In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The centrosome duplicates once per cell cycle. Polo like kinases (Plks) perform crucial functions in cell cycle progression and during mitosis. The polo-like kinase-2, Plk2, is activated near the G(1)/S phase transition, and plays an important role in the reproduction of centrosomes. In this study, we show that the polo-box of Plk2 is required both for association to the centrosome and centriole duplication. Mutation of critical sites in the Plk2 polo-box prevents centrosomal localization and impairs centriole duplication. Plk2 is localized to centrosomes during early G(1) phase where it only associates to the mother centriole and then distributes equally to both mother and daughter centrioles at the onset of S phase. Furthermore, our results imply that Plk2 mediated centriole duplication is dependent on Plk4 function. In addition, we find that siRNA-mediated downregulation of Plk2 leads to the formation of abnormal mitotic spindles confirming that Plk2 may have a function in the reproduction of centrioles.

  6. Clinical and Molecular Consequences of NF1 Microdeletion

    DTIC Science & Technology

    2006-05-01

    service based on meta -PCR/sequencing, dosage analysis , and loss of heterozygosity analysis . Genet Test 2004;8(4):368-80. 51. Kluwe L, Mautner VF. Mosaicism...neurofibromin in normal centrosome function and in maintaining genome stability. Our detailed analysis of human and chimpanzee genome sequences were...chromosomes and DNA fibers (1). Tandem duplication of the region would have significant impact on many aspects of NF1 research, e.g., mutational analysis

  7. Silver-Russell syndrome and Beckwith-Wiedemann syndrome phenotypes associated with 11p duplication in a single family.

    PubMed

    Cardarelli, Laura; Sparago, Angela; De Crescenzo, Agostina; Nalesso, Elisa; Zavan, Barbara; Cubellis, Maria Vittoria; Selicorni, Angelo; Cavicchioli, Paola; Pozzan, Giovanni Battista; Petrella, Marilena; Riccio, Andrea

    2010-01-01

    Genomic imprinting is an epigenetic phenomenon resulting in differential expression of maternal and paternal alleles of a subset of genes. In the mouse, mutation of imprinted genes often results in contrasting phenotypes, depending on parental origin. The overgrowth-associated Beckwith-Wiedemann syndrome (BWS) and the growth restriction-associated Silver-Russell syndrome (SRS) have been linked with a variety of epigenetic and genetic defects affecting a cluster of imprinted genes at chromosome 11p15.5. Paternally derived and maternally derived 11p15.5 duplications represent infrequent findings in BWS and SRS, respectively. Here, we report a case in which a 6.5 Mb duplication of 11p15.4-pter resulted in SRS and BWS phenotypes in a child and her mother, respectively. Molecular analyses demonstrated that the duplication involved the maternal chromosome 11p15 in the child and the paternal chromosome 11p15 in the mother. This observation provides a direct demonstration that SRS and BWS represent specular images, both at the clinical and molecular levels.

  8. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  9. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    PubMed

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  10. Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNA(Glu) in the newt.

    PubMed

    Nagahashi, S; Endoh, H; Suzuki, Y; Okada, N

    1991-11-20

    A previous report from this laboratory showed that in vitro transcription of total genomic DNA of the newt Cynopus pyrrhogaster resulted in a discrete sized 8 S RNA, which represented highly repetitive and transcribable sequences with a glutamic acid tRNA-like structure in the newt genome. We isolated four independent clones from a newt genomic library and determined the complete sequences of three 2000 to 2400 base-pair PstI fragments spanning the 8 S RNA gene. The glutamic acid tRNA-related segment in the 8 S RNA gene contains the CCA sequence expected as the 3' terminus of a tRNA molecule. Further, the 11 nucleotides located 13 nucleotides upstream from one of the two transcription initiation sites of the 8 S RNA were found to be repeated in the region upstream from the termination site, suggesting that the original unit, which is shorter than the 8 S RNA, was retrotransposed via cDNA intermediates from the PolIII transcript. In the upstream region of the 8 S RNA gene, a 360 nucleotide unit containing the glutamic acid tRNA-related segment was found to be duplicated (clones NE1 and NE10) or triplicated (clone NE3). Except for the difference in the number of the 360 nucleotide unit, the three sequences of the 2000 to 2400 base-pair PstI fragment were essentially the same with only a few mutations and minor deletions. Inverse polymerase chain reaction and sequence determination of the products, together with a Southern hybridization experiment, demonstrated that the family consists of a tandemly repeated unit of 3300, 3700 or 4100 base-pairs. Thus during evolution, this family in the newt was created by retroposition via cDNA intermediates, followed by duplication or triplication of the 360 nucleotide unit and multiplication of the 3300 to 4100 base-pair region at the DNA level.

  11. High frequency of mutations in codon 98 of the peripheral myelin protein Po gene in 20 French CMT1 patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougher, H.; LeGuern, E. Gouider, R.

    1996-03-01

    Charcot-Marie-Tooth disease, characterized by distal muscle weakness and amyotrophy, decreased or absent tendon reflexes, and high arched feet, is the most common inherited peripheral neuropathy, with a prevalence of 1 in 2,500. Two types of CMT have been distinguished on the basis of nerve conduction velocities. CMT type 1 is the most frequent, with markedly slowed velocities ({<=}40 m/s) associated with hypertrophic onion bulb changes on nerve biopsy. Autosomal dominant CMT1 is genetically heterogeneous: CMT1A is caused by a 1.5-Mb duplication in 17p11.2 and, more rarely, by a point mutation in tha PMP22 (peripheral myelin protein, 22 kD) gene locatedmore » in the duplicated region; CMT1B results from mutations in the Po (peripheral myelin protein zero) gene in 1q22-23. Forty-five percent (7/16) of the published mutations associated with CMT1 occur in exon 3 of Po. In order to determine the cause of CMT1 in 20 unrelated patients without 17p11.2 duplications, mutations were sought in exon 3 of Po with three techniques: nonradioactive SSCP, automated sequencing, and PCR enzymatic restriction. 18 refs., 2 figs.« less

  12. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    PubMed

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  13. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    PubMed

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  14. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    PubMed Central

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  15. Rational design of alpha-helical tandem repeat proteins with closed architectures

    PubMed Central

    Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip

    2015-01-01

    Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735

  16. Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass

    PubMed Central

    Munroe, Robert J; Prabhu, Vinay; Acland, Greg M; Johnson, Kenneth R; Harris, Belinda S; O'Brien, Tim P; Welsh, Ian C; Noden, Drew M; Schimenti, John C

    2009-01-01

    Background The H6 homeobox genes Hmx1, Hmx2, and Hmx3 (also known as Nkx5-3; Nkx5-2 and Nkx5-1, respectively), compose a family within the NKL subclass of the ANTP class of homeobox genes. Hmx gene family expression is mostly limited to sensory organs, branchial (pharyngeal) arches, and the rostral part of the central nervous system. Targeted mutation of either Hmx2 or Hmx3 in mice disrupts the vestibular system. These tandemly duplicated genes have functional overlap as indicated by the loss of the entire vestibular system in double mutants. Mutants have not been described for Hmx1, the most divergent of the family. Results Dumbo (dmbo) is a semi-lethal mouse mutation that was recovered in a forward genetic mutagenesis screen. Mutants exhibit enlarged ear pinnae with a distinctive ventrolateral shift. Here, we report on the basis of this phenotype and other abnormalities in the mutant, and identify the causative mutation as being an allele of Hmx1. Examination of dumbo skulls revealed only subtle changes in cranial bone morphology, namely hyperplasia of the gonial bone and irregularities along the caudal border of the squamous temporal bone. Other nearby otic structures were unaffected. The semilethality of dmbo/dmbo mice was found to be ~40%, occured perinatally, and was associated with exencephaly. Surviving mutants of both sexes exhibited reduced body mass from ~3 days postpartum onwards. Most dumbo adults were microphthalmic. Recombinant animals and specific deletion-bearing mice were used to map the dumbo mutation to a 1.8 Mb region on Chromosome 5. DNA sequencing of genes in this region revealed a nonsense mutation in the first exon of H6 Homeobox 1 (Hmx1; also Nkx5-3). An independent spontaneous allele called misplaced ears (mpe) was also identified, confirming Hmx1 as the responsible mutant gene. Conclusion The divergence of Hmx1 from its paralogs is reflected by different and diverse developmental roles exclusive of vestibular involvement. Additionally

  17. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.

    PubMed

    Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J

    2012-01-01

    MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com

  18. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains.

    PubMed

    Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang

    2015-04-01

    Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.

  19. MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services

    PubMed Central

    Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.

    2012-01-01

    Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385

  20. Investigating Associations Between Proliferation Indices, C-kit, and Lymph Node Stage in Canine Mast Cell Tumors.

    PubMed

    Krick, Erika Lauren; Kiupel, Matti; Durham, Amy C; Thaiwong, Tuddow; Brown, Dorothy C; Sorenmo, Karin U

    Previous studies have evaluated cellular proliferation indices, KIT expression, and c-kit mutations to predict the clinical behavior of canine mast cell tumors (MCTs). The study purpose was to retrospectively compare mitotic index, argyrophilic nucleolar organizer regions (AgNORs)/nucleus, Ki-67 index, KIT labeling pattern, and internal tandem duplication mutations in c-KIT between stage I and stage II grade II MCTs. Medical records and tumor biopsy samples from dogs with Grade II MCTs with cytological or histopathological regional lymph node evaluation were included. Signalment, tumor location and stage, and presence of a recurrent versus de novo tumor were recorded. Mitotic index, AgNORs/nucleus, Ki-67, KIT staining pattern, and internal tandem duplication mutations in exon 11 of c-KIT were evaluated. Sixty-six tumors (51 stage I; 15 stage II) were included. Only AgNORs/nucleus and recurrent tumors were significantly associated with stage (odds ratio 2.8, 95% confidence interval [CI] 1.0-8.0, P = .049; odds ratio 8.8, 95% CI 1.1-69.5; P = .039). Receiver-operator characteristic analysis showed that the sensitivity and specificity of AgNORs/cell ≥ 1.87 were 93.3% and 27.4%, respectively, (area under the curve: 0.65) for predicting stage. Recurrent tumors and higher AgNORs/nucleus are associated with stage II grade II MCTs; however, an AgNOR cutoff value that reliably predicts lymph node metastasis was not determined.

  1. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  2. Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution

    PubMed Central

    Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.

    2007-01-01

    A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538

  3. Identification of 5 novel mutations in the AGXT gene.

    PubMed

    Basmaison, O; Rolland, M O; Cochat, P; Bozon, D

    2000-06-01

    In order to identify additional genotypes in primary hyperoxaluria type 1, we sequenced the AGXT genes of 9 patients. We report 5 new mutations. Three are splice-site mutations situated at the end of intron 4 and 8 (647-1G>A, 969-1G>C, 969-3C>G), one is a missense mutation in exon 5 (D183N), and one is a short duplication in exon 2 (349ins7). Their consequence is always a lack of enzymatic activity of the Alanine-Glyoxylate Aminotransferase (AGT); for 4 of them, we were able to deduce that they were associated to the absence of AGT protein. These mutations are rare, as they have been found on one allele in our study (except 969-3C>G present in 2 unrelated families), and have not been previously reported.

  4. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.

    PubMed

    Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George

    2005-04-01

    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.

  5. A phase I/II study of sunitinib and intensive chemotherapy in patients over 60 years of age with acute myeloid leukaemia and activating FLT3 mutations.

    PubMed

    Fiedler, Walter; Kayser, Sabine; Kebenko, Maxim; Janning, Melanie; Krauter, Jürgen; Schittenhelm, Marcus; Götze, Katharina; Weber, Daniela; Göhring, Gudrun; Teleanu, Veronica; Thol, Felicitas; Heuser, Michael; Döhner, Konstanze; Ganser, Arnold; Döhner, Hartmut; Schlenk, Richard F

    2015-06-01

    Acute myeloid leukaemia (AML) with FLT3 mutation has a dismal prognosis in elderly patients. Treatment with a combination of FLT3 inhibitors and standard chemotherapy has not been extensively studied. Therefore, we instigated a phase I/II clinical trial of chemotherapy with cytosine arabinoside (Ara-C)/daunorubicin induction (7+3) followed by three cycles of intermediate-dose Ara-C consolidation in 22 AML patients with activating FLT3 mutations. Sunitinib was added at predefined dose levels and as maintenance therapy for 2 years. At dose level 1, sunitinib 25 mg daily continuously from day 1 onwards resulted in two cases with dose-limiting toxicity (DLT), prolonged haemotoxicity and hand-foot syndrome. At dose level -1, sunitinib 25 mg was restricted to days 1-7 of each chemotherapy cycle. One DLT was observed in six evaluable patients. Six additional patients were treated in an extension phase. Thirteen of 22 patients (59%; 8/14 with FLT3-internal tandem duplication and 5/8 with FLT3-tyrosine kinase domain) achieved a complete remission/complete remission with incomplete blood count recovery. For the 17 patients included at the lower dose level, median overall, relapse-free and event-free survival were 1·6, 1·0 and 0·4 years, respectively. Four out of five analysed patients with relapse during maintenance therapy lost their initial FLT3 mutation, suggesting outgrowth of FLT3 wild-type subclones. © 2015 John Wiley & Sons Ltd.

  6. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages

    PubMed Central

    Bassham, Susan; Cañestro, Cristian; Postlethwait, John H

    2008-01-01

    Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial

  7. Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages.

    PubMed

    Bassham, Susan; Cañestro, Cristian; Postlethwait, John H

    2008-08-22

    Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in

  8. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

    PubMed

    Kanazashi, Yuhei; Hirose, Aya; Takahashi, Ippei; Mikami, Masafumi; Endo, Masaki; Hirose, Sakiko; Toki, Seiichi; Kaga, Akito; Naito, Ken; Ishimoto, Masao; Abe, Jun; Yamada, Tetsuya

    2018-03-01

    Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T 2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T 1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T 1 and T 2 generations indicates that putative mutation induced in the T 0 plant is transmitted to the T 1 generation. The inheritable mutation induced in the T 1 plant was also detected. This result indicates that continuous induction of mutations during T 1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T 2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.

  9. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease.

    PubMed

    Falah, Nadia; Posey, Jennifer E; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar

    2017-04-01

    Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., (2004); AJMGA 127: 149-151], of an individual with 22q duplication and sex-reversal syndrome. The subject's phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain of function rather than dominant negative activity underlies PCWH. © 2017 Wiley Periodicals, Inc.

  10. 22q11.2q13 Duplication Including SOX10 causes Sex-reversal and Peripheral Demyelinating Neuropathy, Central Dysmyelinating Leukodystrophy, Waardenburg Syndrome and Hirschsprung Disease

    PubMed Central

    Falah, Nadia; Posey, Jennifer E.; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar

    2017-01-01

    Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., 2004; Ajmga 127: 149–151], of an individual with 22q duplication and sex-reversal syndrome. The subject’s phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain-of-function rather than dominant negative activity underlies PCWH. PMID:28328136

  11. Tubular duplication of the oesophagus presenting with dysphagia.

    PubMed

    Saha, A K; Kundu, A K

    2014-06-01

    Duplications of the alimentary tract are rare congenital malformations, with the ileum being the most commonly affected site, followed by the oesophagus. Among oesophageal duplications, cystic duplication is the most common and the tubular variety, the rarest. Herein, we report a rare case of tubular oesophageal duplication, complicated by adenosquamous carcinoma at the lower end of the oesophagus, in a 32-year-old man who presented with progressive dysphagia. Although proton pump inhibitors may relieve dysphagia, oesophagectomy and gastric interpositioning should be the first-line treatment for patients with tubular oesophageal duplication, in order to reduce the risk of malignant transformation at the lower end of the oesophagus.

  12. Jittery, a Mutator Distant Relative with a Paradoxical Mobile Behavior: Excision without Reinsertion

    PubMed Central

    Xu, Zhennan; Yan, Xianghe; Maurais, Steve; Fu, Huihua; O'Brien, David G.; Mottinger, John; Dooner, Hugo K.

    2004-01-01

    The unstable mutation bz-m039 arose in a maize (Zea mays) stock that originated from a plant infected with barley stripe mosaic virus. The instability of the mutation is caused by a 3.9-kb mobile element that has been named Jittery (Jit). Jit has terminal inverted repeats (TIRs) of 181 bp, causes a 9-bp direct duplication of the target site, and appears to excise autonomously. It is predicted to encode a single 709–amino acid protein, JITA, which is distantly related to the MURA transposase protein of the Mutator system but is more closely related to the MURA protein of Mutator-like elements (MULEs) from Arabidopsis thaliana and rice (Oryza sativa). Like MULEs, Jit resembles Mutator in the length of the element's TIRs, the size of the target site duplication, and in the makeup of its transposase but differs from the autonomous element Mutator–Don Robertson in that it encodes a single protein. Jit also differs from Mutator elements in the high frequency with which it excises to produce germinal revertants and in its copy number in the maize genome: Jit-like TIRs are present at low copy number in all maize lines and teosinte accessions examined, and JITA sequences occur in only a few maize inbreds. However, Jit cannot be considered a bona fide transposon in its present host line because it does not leave footprints upon excision and does not reinsert in the genome. These unusual mobile element properties are discussed in light of the structure and gene organization of Jit and related elements. PMID:15075398

  13. Molecular methods for the detection of mutations.

    PubMed

    Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A

    2000-01-01

    We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.

  14. Case Report: Whole exome sequencing helps in accurate molecular diagnosis in siblings with a rare co-occurrence of paternally inherited 22q12 duplication and autosomal recessive non-syndromic ichthyosis.

    PubMed Central

    Gupta, Aayush; Sharma, Yugal; Deo, Kirti; Vellarikkal, Shamsudheen; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Scaria, Vinod; Sivasubbu, Sridhar

    2015-01-01

    Lamellar ichthyosis (LI), considered an autosomal recessive monogenic genodermatosis, has an incidence of approximately 1 in 250,000. Usually associated with mutations in the transglutaminase gene ( TGM1), mutations in six other genes have, less frequently, been shown to be causative. Two siblings, born in a collodion membrane, presented with fish like scales all over the body. Karyotyping revealed duplication of the chromosome arm on 22q12+ in the father and two siblings. Whole exome sequencing revealed a homozygous p.Gly218Ser variation in TGM1; a variation reported earlier in an isolated Finnish population in association with autosomal recessive non-syndromic ichthyosis. This concurrence of a potentially benign 22q12+ duplication and LI, both rare individually, is reported here likely for the first time. PMID:26594337

  15. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1.

    PubMed

    Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian

    2012-05-06

    Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.

  16. 40 CFR 710.35 - Duplicative reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Duplicative reporting. 710.35 Section 710.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT TSCA CHEMICAL INVENTORY REGULATIONS 2002 Inventory Update Reporting § 710.35 Duplicative reporting...

  17. 47 CFR 76.122 - Satellite network non-duplication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant to...

  18. 47 CFR 76.122 - Satellite network non-duplication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Satellite network non-duplication. 76.122... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.122 Satellite network non-duplication. (a) Upon receiving notification pursuant to...

  19. A study of the quality of duplicated radiographs.

    PubMed

    Erales, F A; Manson-Hing, L R

    1979-01-01

    The resolution, contrast, and clinical appearance of radiographs and duplicate radiographs made with two types of duplicating film were compared. Duplicating conditions evaluated were type and shape of light, light-film distance, type of exposure surface, and developer temperature. Major observations were as follows: both Kodak and DuPont films produced clinically acceptable duplicates; Kodak film was faster; DuPont film responded better in incandescent photoflood light than Kodak film; clear glass with appropriate light-film distance was the best exposure surface.

  20. Surgical Management of Duplication of the Pituitary Gland-Plus Syndrome With Epignathus, Cleft Palate, Duplication of Mandible, and Lobulated Tongue.

    PubMed

    Noguchi, Tadahide; Sugiyama, Tomoko; Sasaguri, Ken-Ichi; Ono, Shigeru; Maeda, Kosaku; Nishino, Hiroshi; Jinbu, Yoshinori; Mori, Yoshiyuki

    2017-03-01

    A 1-day-old male infant was referred to our department for evaluation of multiple malformations in his oral cavity. He was diagnosed duplication of the pituitary gland-plus syndrome with epignathus, cleft palate, duplication of the mandible, and a lobulated tongue. A thumb-sized mass lesion was visible on the hard palate. The duplicated mandible and lower lip was fused at the midline. The alveolar ridge was protruding through a wide-cleft soft palate involving the uvula. Further examination showed a lobulated tongue, which was seen behind the duplicated part of the mandible. Five days after birth, tracheotomy and epignathus resection were performed. At 7 months of age, the excess tissue of the duplicated mandible was resected at the area of adhesion on the lingual side, and the duplicated tongue and lip were reconstructed. A palatoplasty was performed at 20 months of age. Thereafter, the patient's progress was uneventful, with no abnormality in swallowing. No recurrence of epignathus has been observed during 2 years of follow-up.

  1. A conserved segmental duplication within ELA.

    PubMed

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  2. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    PubMed

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Vetro, Annalisa; Groppetti, Debora; Bigliardi, Enrico; Luvoni, Gaia Cecilia; Rota, Ada; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2014-01-01

    Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  3. Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.

    PubMed

    Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.

  4. Analysis of LDLR mutations in familial hypercholesterolemia patients in Greece by use of the NanoChip microelectronic array technology.

    PubMed

    Laios, Eleftheria; Drogari, Euridiki

    2006-12-01

    Three mutations in the low density lipoprotein receptor (LDLR) gene account for 49% of familial hypercholesterolemia (FH) cases in Greece. We used the microelectronic array technology of the NanoChip Molecular Biology Workstation to develop a multiplex method to analyze these single-nucleotide polymorphisms (SNPs). Primer pairs amplified the region encompassing each SNP. The biotinylated PCR amplicon was electronically addressed to streptavidin-coated microarray sites. Allele-specific fluorescently labeled oligonucleotide reporters were designed and used for detection of wild-type and SNP sequences. Genotypes were compared to PCR-restriction fragment length polymorphism (PCR-RFLP). We developed three monoplex assays (1 SNP/site) and an optimized multiplex assay (3SNPs/site). We performed 92 Greece II, 100 Genoa, and 98 Afrikaner-2 NanoChip monoplex assays (addressed to duplicate sites and analyzed separately). Of the 580 monoplex genotypings (290 samples), 579 agreed with RFLP. Duplicate sites of one sample were not in agreement with each other. Of the 580 multiplex genotypings, 576 agreed with the monoplex results. Duplicate sites of three samples were not in agreement with each other, indicating requirement for repetition upon which discrepancies were resolved. The multiplex assay detects common LDLR mutations in Greek FH patients and can be extended to accommodate additional mutations.

  5. Embryonic duplications in sheep.

    PubMed

    Dennis, S M

    1975-02-01

    Twenty-seven embryonic duplications were examined during a 3-year investigation into the causes of perinatal lamb mortality. Twenty of the 27 were anomalous twins with 19 being conjoined (diplopagus 9 and heteropagus 10). The various duplications were: haloacardius acephalus 1, diprosopus 2, dicephalus 2, dipypus 3, diprosopus dipygus 1, syncephalus dipygus 1, pygopagus parasiticus 1, heteropagus dipygus 3, melodidymus 6, polyury 4, penile duplication 2, and bilateral otognathia 1. Four lambs were living and the time of death of the others was: parturient 8, and post-parturient 15. Average dry weight of the lambs was 3.35 kg (range 1.59 to 5.45 kg). Breed distribution was: Merino 77.8%, Crossbred 14.8%, Dorset Horn 3.7%, and Corriedale 3.7%. The caudal region was involved in 10 of the conjoined twins (52.6%), anterior region in 7 (36.9%), and both anterior and caudal regions in 2 (10.5%). Associated defects were present in 70.4% of the 27 lambs, the most common being atresia ani.

  6. Kit receptor tyrosine kinase dysregulations in feline splenic mast cell tumours.

    PubMed

    Sabattini, S; Barzon, G; Giantin, M; Lopparelli, R M; Dacasto, M; Prata, D; Bettini, G

    2017-09-01

    This study investigated Kit receptor dysregulations (cytoplasmic immunohistochemical expression and/or c-KIT mutations) in cats affected with splenic mast cell tumours. Twenty-two cats were included. Median survival time was 780 days (range: 1-1219). An exclusive splenic involvement was significantly (P = 0.042) associated with longer survival (807 versus 120 days). Eighteen tumours (85.7%) showed Kit cytoplasmic expression (Kit pattern 2, 3). Mutation analysis was successful in 20 cases. Fourteen missense mutations were detected in 13 out of 20 tumours (65%). Eleven (78.6%) were located in exon 8, and three (21.6%) in exon 9. No mutations were detected in exons 11 and 17. Seven mutations corresponded to the same internal tandem duplication in exon 8 (c.1245_1256dup). Although the association between Kit cytoplasmic expression and mutations was significant, immunohistochemistry cannot be considered a surrogate marker for mutation analysis. No correlation was observed between c-Kit mutations and tumour differentiation, mitotic activity or survival. © 2016 John Wiley & Sons Ltd.

  7. Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7

    PubMed Central

    Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095

  8. Functional Pathway Analysis Using SCNP of FLT3 Receptor Pathway Deregulation in AML Provides Prognostic Information Independent from Mutational Status

    PubMed Central

    Cesano, Alessandra; Putta, Santosh; Rosen, David B.; Cohen, Aileen C.; Gayko, Urte; Mathi, Kavita; Woronicz, John; Hawtin, Rachael E.; Cripe, Larry; Sun, Zhuoxin; Tallman, Martin S.; Paietta, Elisabeth

    2013-01-01

    FMS-like tyrosine kinase 3 receptor (FLT3) internal tandem duplication (ITD) mutations result in constitutive activation of this receptor and have been shown to increase the risk of relapse in patients with acute myeloid leukemia (AML); however, substantial heterogeneity in clinical outcomes still exists within both the ITD mutated and unmutated AML subgroups, suggesting alternative mechanisms of disease relapse not accounted by FLT3 mutational status. Single cell network profiling (SCNP) is a multiparametric flow cytometry based assay that simultaneously measures, in a quantitative fashion and at the single cell level, both extracellular surface marker levels and changes in intracellular signaling proteins in response to extracellular modulators. We previously reported an initial characterization of FLT3 ITD-mediated signaling using SCNP. Herein SCNP was applied sequentially to two separate cohorts of samples collected from elderly AML patients at diagnosis. In the first (training) study, AML samples carrying unmutated, wild-type FLT3 (FLT3 WT) displayed a wide range of induced signaling, with a fraction having signaling profiles comparable to FLT3 ITD AML samples. Conversely, the FLT3 ITD AML samples displayed more homogeneous induced signaling, with the exception of patients with low (<40%) mutational load, which had profiles comparable to FLT3 WT AML samples. This observation was then confirmed in an independent (verification) cohort. Data from the second cohort were also used to assess the association between SCNP data and disease-free survival (DFS) in the context of FLT3 and nucleophosmin (NPM1) mutational status among patients who achieved complete remission (CR) to induction chemotherapy. The combination of SCNP read outs together with FLT3 and NPM1 molecular status improved the DFS prediction accuracy of the latter. Taken together, these results emphasize the value of comprehensive functional assessment of biologically relevant signaling pathways in AML

  9. Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)-Diagnosis and Management.

    PubMed

    Rodd, Celia; Millette, Maude; Iacovazzo, Donato; Stiles, Craig E; Barry, Sayka; Evanson, Jane; Albrecht, Steffen; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Trouillas, Jacqueline; Roncaroli, Federico; Sampson, Julian; Ellard, Sian; Korbonits, Márta

    2016-05-01

    Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 μg/L; normal, <18 μg/L), IGF-1 (745 μg/L; normal, 64-369 μg/L), and fasting GH > 35.0 μg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary.

  10. Long-Read Single Molecule Sequencing to Resolve Tandem Gene Copies: The Mst77Y Region on the Drosophila melanogaster Y Chromosome

    PubMed Central

    Krsticevic, Flavia J.; Schrago, Carlos G.; Carvalho, A. Bernardo

    2015-01-01

    The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295−307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction−induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. PMID:25858959

  11. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    PubMed

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  12. Laparoscopic resection of adult colon duplication causing intussusception

    PubMed Central

    Kyo, Kennoki; Azuma, Masaki; Okamoto, Kazuya; Nishiyama, Motohiro; Shimamura, Takahiro; Maema, Atsushi; Shirakawa, Motoaki; Nakamura, Toshio; Koda, Kenji; Yokoyama, Hidetaro

    2016-01-01

    Gastrointestinal duplications are uncommon congenital malformations that can occur anywhere along the gastrointestinal tract. Most cases are recognized before the age of 2 years, and those encountered in adults are rare. We describe here a case of ascending colon duplication in a 20-year-old male that caused intussusception and was treated laparoscopically. Although computed tomography revealed a cystic mass filled with stool-like material, the preoperative diagnosis was a submucosal tumor of the ascending colon. We performed a laparoscopic right colectomy, and the postoperative pathological diagnosis was duplication of the ascending colon, both cystic and tubular components. We conclude that gastrointestinal duplications, although rare, should be considered in the differential diagnosis of all abdominal and submucosal cystic lesions and that laparoscopy is a preferred approach for the surgical treatment of gastrointestinal duplications. PMID:26900303

  13. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  14. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  15. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline

    PubMed Central

    Giannoulatou, Eleni; McVean, Gilean; Taylor, Indira B.; McGowan, Simon J.; Maher, Geoffrey J.; Iqbal, Zamin; Pfeifer, Susanne P.; Turner, Isaac; Burkitt Wright, Emma M. M.; Shorto, Jennifer; Itani, Aysha; Turner, Karen; Gregory, Lorna; Buck, David; Rajpert-De Meyts, Ewa; Looijenga, Leendert H. J.; Kerr, Bronwyn; Wilkie, Andrew O. M.; Goriely, Anne

    2013-01-01

    The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline. PMID:24259709

  16. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline.

    PubMed

    Giannoulatou, Eleni; McVean, Gilean; Taylor, Indira B; McGowan, Simon J; Maher, Geoffrey J; Iqbal, Zamin; Pfeifer, Susanne P; Turner, Isaac; Burkitt Wright, Emma M M; Shorto, Jennifer; Itani, Aysha; Turner, Karen; Gregory, Lorna; Buck, David; Rajpert-De Meyts, Ewa; Looijenga, Leendert H J; Kerr, Bronwyn; Wilkie, Andrew O M; Goriely, Anne

    2013-12-10

    The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.

  17. Prevalence and Spectrum of Large Deletions or Duplications in the Major Long QT Syndrome-Susceptibility Genes and Implications for Long QT Syndrome Genetic Testing

    PubMed Central

    Tester, David J.; Benton, Amber J.; Train, Laura; Deal, Barbara; Baudhuin, Linnea M.; Ackerman, Michael J.

    2010-01-01

    Long QT Syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for three cardiac ion channel alpha-subunits (LQT1-3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. Here, we set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes among unrelated patients who were mutation-negative following point mutation analysis of LQT1-12-susceptibility genes. Forty-two unrelated clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification (MLPA), a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA-MLPA LQTS Kit from MRC-Holland was used to analyze the three major LQTS-associated genes: KCNQ1, KCNH2, and SCN5A and the two minor genes: KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2/42 (4.8%, CI, 1.7–11%) unrelated patients. A deletion of KCNQ1 exon 3 was identified in a 10 year-old Caucasian boy with a QTc of 660 milliseconds (ms), a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17 year-old Caucasian girl with a QTc of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, since nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. PMID:20920651

  18. Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates

    PubMed Central

    Pan, Deng; Zhang, Liqing

    2007-01-01

    Background The rate of gene duplication is an important parameter in the study of evolution, but the influence of gene conversion and technical problems have confounded previous attempts to provide a satisfying estimate. We propose a new strategy to estimate the rate that involves separate quantification of the rates of two different mechanisms of gene duplication and subsequent combination of the two rates, based on their respective contributions to the overall gene duplication rate. Results Previous estimates of gene duplication rates are based on small gene families. Therefore, to assess the applicability of this to families of all sizes, we looked at both two-copy gene families and the entire genome. We studied unequal crossover and retrotransposition, and found that these mechanisms of gene duplication are largely independent and account for a substantial amount of duplicated genes. Unequal crossover contributed more to duplications in the entire genome than retrotransposition did, but this contribution was significantly less in two-copy gene families, and duplicated genes arising from this mechanism are more likely to be retained. Combining rates of duplication using the two mechanisms, we estimated the overall rates to be from approximately 0.515 to 1.49 × 10-3 per gene per million years in human, and from approximately 1.23 to 4.23 × 10-3 in mouse. The rates estimated from two-copy gene families are always lower than those from the entire genome, and so it is not appropriate to use small families to estimate the rate for the entire genome. Conclusion We present a novel strategy for estimating gene duplication rates. Our results show that different mechanisms contribute differently to the evolution of small and large gene families. PMID:17683522

  19. Duplicate Record Elimination in Large Data Files.

    DTIC Science & Technology

    1981-08-01

    UNCLASSIFIJED CSTR -445 NL LmEE~hhE - I1.0 . 111112----5 1.~4 __112 ___IL25_ 1.4 111111.6 EI24 COMPUTER SCIENCES DEPARTMENT oUniversity of Wisconsin...we propose a combinatorial model for the use in the analysis of algorithms for duplicate elimination. We contend that this model can serve as a...duplicates in a multiset of records, knowing the size of the multiset and the number of distinct records in it. 3. Algorithms for Duplicate Elimination

  20. Genetic transformation of Neurospora tetrasperma, demonstration of repeat-induced point mutation (RIP) in self-crosses and a screen for recessive RIP-defective mutants.

    PubMed Central

    Bhat, Ashwin; Tamuli, Ranjan; Kasbekar, Durgadas P

    2004-01-01

    The pseudohomothallic fungus Neurospora tetrasperma is naturally resistant to the antibiotic hygromycin. We discovered that mutation of its erg-3 (sterol C-14 reductase) gene confers a hygromycin-sensitive phenotype that can be used to select transformants on hygromycin medium by complementation with the N. crassa erg-3+ and bacterial hph genes. Cotransformation of hph with PCR-amplified DNA of other genes enabled us to construct strains duplicated for the amplified DNA. Using transformation we constructed self-fertile strains that were homoallelic for an ectopic erg-3+ transgene and a mutant erg-3 allele at the endogenous locus. Self-crosses of these strains yielded erg-3 mutant ascospores that produced colonies with the characteristic morphology on Vogel's sorbose agar described previously for erg-3 mutants of N. crassa. The mutants were generated by repeat-induced point mutation (RIP), a genome defense process that causes numerous G:C to A:T mutations in duplicated DNA sequences. Homozygosity for novel recessive RIP-deficient mutations was signaled by self-crosses of erg-3-duplication strains that fail to produce erg-3 mutant progeny. Using this assay we isolated a UV-induced mutant with a putative partial RIP defect. RIP-induced mutants were isolated in rid-1 and sad-1, which are essential genes, respectively, for RIP and another genome defense mechanism called meiotic silencing by unpaired DNA. PMID:15280231

  1. Partial craniofacial duplication: a review of the literature and case report.

    PubMed

    Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P

    2014-06-01

    Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity. Published by Elsevier Ltd.

  2. Levels of duplicate gene expression in armoured catfishes.

    PubMed

    Dunham, R A; Philipp, D P; Whitt, G S

    1980-01-01

    Species of armoured catfishes differ significantly in their cellular DNA content and chromosome number. Starch gel electrophoresis of isozymes was used to determine whether each of 16 enzyme loci was expressed in a single or duplicate state. The percent of enzyme loci exhibiting duplicate locus expression in Corydoras aeneus, Corydoras julii, Corydoras melanistius, and Corydoras myersi was 37.5 percent, 18.75 percent, 12.5 percent, and 6.25 percent, respectively. The percentage of loci expressed in duplicate is higher in the species with higher haploid DNA contents, which are 4.4 pg, 3.0 pg, and 2.3 pg, respectively. These differences in DNA contents are also associated with differences in chromosome number. These data are consistent with the hypothesis that increases in DNA contents and enzyme loci occur both by tetraploidization and by regional gene duplication and that these increases are then followed by a partial loss of DNA and a reduction in the number of the duplicate isozyme loci expressed. Such analyses provide insight into the mechanisms of genome amplification and reduction as well as insights into the fats of duplicate genes.

  3. Computerized analysis and duplication of mandibular motion.

    PubMed

    Knap, F J; Abler, J H; Richardson, B L

    1975-05-01

    A new digital system has been devised to analyze and duplicate jaw motion. The arrangement of the electronic system offers a range of versatility which includes graphic as well as numerical data analysis. The duplicator linkage is identical to the sensor linkage which, together with an accurate model transfer system, results in an encouraging level of accuracy in jaw-motion duplication. The data collected from normal subjects should offer some new knowledge in the normal motions of the mandible as well as establish a reference for comparison with abnormal masticatory function.

  4. A 21 Nucleotide Duplication on the α1- and α2-Globin Genes Involves a Variety of Hypochromic Microcytic Anemias, From Mild to Hb H Disease.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Zeinali, Fatemeh; Vakili, Shadi; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita; Tamaddoni, Ahmad

    2015-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects in the α-globin gene cluster can result in α-thal that may develop into a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. Loss of one functional α gene, indicated as heterozygous α(+)-thal, shows minor hematological abnormalities. Homozygosity for α(+)- or heterozygosity for α(0)-thal have more severe hematological abnormalities due to a markedly reduced α chain output. At the molecular level, the absence of three α-globin genes resulting from the compound heterozygous state for α(0)- and α(+)-thal, lead to Hb H disease. Here we present a 21 nucleotide (nt) duplication consisting of six amino acids and 3 bp of intronic sequence at the exon-intron boundary, in both the α-globin genes, detected by direct DNA sequencing. This duplication was identified in three patients originating from two different Iranian ethnic groups and one Arab during more than 12 years. The clinical presentation of these individuals varies widely from a mild asymptomatic anemia (heterozygote in α1-globin gene) to a severely anemic state, diagnosed as an Hb H individual requiring blood transfusion (duplication on the α2-globin gene in combination with the - -(MED) double α-globin gene deletion). The third individual, who was homozygous for this nt duplication on the α1-globin gene, showed severe hypochromic microcytic anemia and splenomegaly. In the last decade, numerous α-globin mutations have demonstrated the necessity of prenatal diagnosis (PND) for α-thal, and this study has contributed another mutation as important enough that needs to be considered.

  5. Delimitation of duplicated segments and identification of their parental origin in two partial chromosome 3p duplications.

    PubMed

    Antonini, Sylvie; Kim, Chong A; Sugayama, Sofia M; Vianna-Morgante, Angela M

    2002-11-22

    Two chromosome 3 short arm duplications identified through G-banding were further investigated using fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) of microsatellite markers, aiming at mapping breakpoints and disclosing mechanisms of origin of these chromosome aberrations. Patient 1 was found to be a mosaic: a 3p12 --> 3p21 duplication was observed in most of his cells, and a normal cell line occurred with a frequency of about 3% in blood. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the short-arm duplication. Using FISH of short-arm sequences, the YAC 961_h_3 was shown to contain the proximal breakpoint (3p12.1 or 3p12.2), and the distal breakpoint was located between the YACs 729_c_3 and 806_h_2, which are adjacent in the WC 3.10 contig (3p21.1). In Patient 2, G-banding indicated a 3p21 --> 3p24 duplication, without mosaicism. In situ hybridization of chromosome 3 short- and long-arm libraries confirmed the duplication of short-arm sequences. FISH of chromosome 3 sequences showed that the YAC 749_a_7 spanned the proximal breakpoint (3p21.33). The distal breakpoint mapped to the interval between YACs 932_b_6 (3p24.3) and 909_b_6 (3p25). In both cases, microsatellite genotyping pointed to a rearrangement between paternal sister chromatids. Copyright 2002 Wiley-Liss, Inc.

  6. Hypergastrinemia and a duodenal ulcer caused by gastric duplication.

    PubMed

    Tanaka, Hideaki; Masumoto, Kouji; Sasaki, Takato; Sakamoto, Naoya; Gotoh, Chikashi; Urita, Yasuhisa; Shinkai, Toko; Takayasu, Hajime; Nakano, Noriyuki; Noguchi, Masayuki; Kudo, Toyoichiro

    2016-12-01

    Hypergastrinemia and the resultant peptic ulcer related to an enteric duplication has been quite rarely reported in the literature. We herein report the case of a 4-year-old girl who presented with hypergastrinemia and a duodenal ulcer at 2 years of age. She had been followed up with a proton pump inhibitor, which resulted in resolution of the ulcer; however, unexplained hypergastrinemia had continued. A cystic lesion at the antrum was discovered at 4 years of age, which we suspected to be a gastric duplication. After we resected the lesion, the hypergastrinemia resolved without recurrence of the duodenal ulcer. The histology was compatible with a gastric duplication, and the lumen was lined with antral mucosa that strongly stained positive for gastrin. We presumed that the antral mucosa inside the duplication in our case had no hydrogen ion feedback inhibition of gastrin release from gastrin cells and increased release of gastrin from the mucosa inside the duplication led to the duodenal ulcer. Only two cases have been reported in the literature that had hypergastrinemia related to enteric duplication. Gastric duplication should be included in the differential diagnosis of sustained hypergastrinemia in children.

  7. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes.

    PubMed

    Yuan, Jian; He, Zhuzi; Yuan, Xiangnan; Jiang, Xiayun; Sun, Xiaowen; Zou, Shuming

    2010-09-15

    Recent studies on comparative genomics have suggested that a round of fish-specific whole genome duplication (3R) in ray-finned fishes might have occurred around 226-316 Mya. Additional genome duplication, specifically in cyprinids, may have occurred more recently after the divergence of the teleosts. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing the polyploid Cyprinidae fish, common carp (Cyprinus carpio, 2n=100), crucian carp (Carassius auratus auratus, 2n=100), and silver crucian carp (C. auratus gibelio, 2n=156), and then compared them with known sequences from the diploid Cyprinidae fish, blunt snout bream (Megalobrama amblycephala, 2n=48). Our results showed the presence of two distinct Hox duplicates in the genomes of common and crucian carp. Three distinct Hox sequences, one of them orthologous to a Hox gene in common carp and the other two orthologous to a Hox gene in crucian carp, were isolated in silver crucian carp, indicating a possible hybrid origin of silver crucian carp from crucian and common carp. The gene duplication resulting in the origin of the common ancestor of common and crucian carp likely occurred around 10.9-13.2 Mya. The speciations of common vs. crucian carp and silver crucian vs. crucian carp likely occurred around 8.1-11.4 and 2.3-3.0 Mya, respectively. Finally, nonfunctionalization resulting from point mutations in the coding region is a probable fate for some Hox duplicates. Taken together, these results suggested an evolutionary model for polyploidization in speciation and diversification of polyploid fish. (c) 2010 Wiley-Liss, Inc.

  8. [Intestinal volvulus due to yeyunal duplication].

    PubMed

    Rodríguez Iglesias, P; Carazo Palacios, M E; Lluna González, J; Ibáñez Pradas, V; Rodríguez Caraballo, L

    2014-10-01

    Duplications of the alimentary tract are congenital malformations. The ileum is the most commonly affected organ. A lot of duplications are incidentally diagnosed but most of patients present a combination of pain or complications such as obstructive symptoms, intestinal intussusception, perforation or volvulus. We report the case of a 6-years-old girl, with intermittent abdominal pain and vomits for two months long. Laboratory work was completely normal and in the radiology analysis (abdominal sonography and magnetic resonance) a cystic image with intestinal volvulus was observed. The patient underwent laparotomy, Ladd's procedure was done and the cyst was resected. In conclusion, if a patient is admitted with abdominal pain and obstructive symptoms, it is important to consider duplication of the alimentary tract as a possible diagnosis.

  9. Somatic GPR101 Duplication Causing X-Linked Acrogigantism (XLAG)—Diagnosis and Management

    PubMed Central

    Rodd, Celia; Millette, Maude; Iacovazzo, Donato; Stiles, Craig E.; Barry, Sayka; Evanson, Jane; Albrecht, Steffen; Caswell, Richard; Bunce, Benjamin; Jose, Sian; Trouillas, Jacqueline; Roncaroli, Federico; Sampson, Julian; Ellard, Sian

    2016-01-01

    Context: Recent reports have proposed that sporadic or familial germline Xq26.3 microduplications involving the GPR101 gene are associated with early-onset X-linked acrogigantism (XLAG) with a female preponderance. Case Description: A 4-year-old boy presented with rapid growth over the previous 2 years. He complained of sporadic headaches and had coarse facial features. His height Z-score was +4.89, and weight Z-score was +5.57. Laboratory testing revealed elevated serum prolactin (185 μg/L; normal, <18 μg/L), IGF-1 (745 μg/L; normal, 64–369 μg/L), and fasting GH > 35.0 μg/L. Magnetic resonance imaging demonstrated a homogenous bulky pituitary gland (18 × 15 × 13 mm) without obvious adenoma. A pituitary biopsy showed hyperplastic pituitary tissue with enlarged cords of GH and prolactin cells. Germline PRKAR1A, MEN1, AIP, DICER1, CDKN1B, and somatic GNAS mutations were negative. Medical management was challenging until institution of continuous sc infusion of short-acting octreotide combined with sc pegvisomant and oral cabergoline. The patient remains well controlled with minimal side effects 7 years after presentation. His phenotype suggested XLAG, but his peripheral leukocyte-, saliva-, and buccal cell-derived DNA tested negative for microduplication in Xq26.3 or GPR101. However, DNA isolated from the pituitary tissue and forearm skin showed duplicated dosage of GPR101, suggesting that he is mosaic for this genetic abnormality. Conclusions: Our patient is the first to be described with somatic microduplication leading to typical XLAG phenotype. This patient demonstrates that a negative test for Xq26.3 microduplication or GPR101 duplication on peripheral blood DNA does not exclude the diagnosis of XLAG because it can result from a mosaic mutation affecting the pituitary. PMID:26982009

  10. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred

    PubMed Central

    Vidal, Ruben; Révész, Tamas; Rostagno, Agueda; Kim, Eugene; Holton, Janice L.; Bek, Toke; Bojsen-Møller, Marie; Braendgaard, Hans; Plant, Gordon; Ghiso, Jorge; Frangione, Blas

    2000-01-01

    Familial Danish dementia (FDD), also known as heredopathia ophthalmo-oto-encephalica, is an autosomal dominant disorder characterized by cataracts, deafness, progressive ataxia, and dementia. Neuropathological findings include severe widespread cerebral amyloid angiopathy, hippocampal plaques, and neurofibrillary tangles, similar to Alzheimer's disease. N-terminal sequence analysis of isolated leptomeningeal amyloid fibrils revealed homology to ABri, the peptide originated by a point mutation at the stop codon of gene BRI in familial British dementia. Molecular genetic analysis of the BRI gene in the Danish kindred showed a different defect, namely the presence of a 10-nt duplication (795–796insTTTAATTTGT) between codons 265 and 266, one codon before the normal stop codon 267. The decamer duplication mutation produces a frame-shift in the BRI sequence generating a larger-than-normal precursor protein, of which the amyloid subunit (designated ADan) comprises the last 34 C-terminal amino acids. This de novo-created amyloidogenic peptide, associated with a genetic defect in the Danish kindred, stresses the importance of amyloid formation as a causative factor in neurodegeneration and dementia. PMID:10781099

  11. Performance of probabilistic method to detect duplicate individual case safety reports.

    PubMed

    Tregunno, Philip Michael; Fink, Dorthe Bech; Fernandez-Fernandez, Cristina; Lázaro-Bengoa, Edurne; Norén, G Niklas

    2014-04-01

    Individual case reports of suspected harm from medicines are fundamental for signal detection in postmarketing surveillance. Their effective analysis requires reliable data and one challenge is report duplication. These are multiple unlinked records describing the same suspected adverse drug reaction (ADR) in a particular patient. They distort statistical screening and can mislead clinical assessment. Many organisations rely on rule-based detection, but probabilistic record matching is an alternative. The aim of this study was to evaluate probabilistic record matching for duplicate detection, and to characterise the main sources of duplicate reports within each data set. vigiMatch™, a published probabilistic record matching algorithm, was applied to the WHO global individual case safety reports database, VigiBase(®), for reports submitted between 2000 and 2010. Reported drugs, ADRs, patient age, sex, country of origin, and date of onset were considered in the matching. Suspected duplicates for the UK, Denmark, and Spain were reviewed and classified by the respective national centre. This included evaluation to determine whether confirmed duplicates had already been identified by in-house, rule-based screening. Furthermore, each confirmed duplicate was classified with respect to the likely source of duplication. For each country, the proportions of suspected duplicates classified as confirmed duplicates, likely duplicates, otherwise related, and unrelated were obtained. The proportions of confirmed or likely duplicates that were not previously known by the national organisation were determined, and variations in the rates of suspected duplicates across subsets of reports were characterised. Overall, 2.5 % of the reports with sufficient information to be evaluated by vigiMatch were classified as suspected duplicates. The rates for the three countries considered in this study were 1.4 % (UK), 1.0 % (Denmark), and 0.7 % (Spain). Higher rates of suspected duplicates

  12. Brooke-Spiegler syndrome: report of 10 patients from 8 families with novel germline mutations: evidence of diverse somatic mutations in the same patient regardless of tumor type.

    PubMed

    Sima, Radek; Vanecek, Tomas; Kacerovska, Denisa; Trubac, Pavel; Cribier, Bernard; Rutten, Arno; Vazmitel, Marina; Spagnolo, Dominic V; Litvik, Radek; Vantuchova, Yvetta; Weyers, Wolfgang; Pearce, Robert L; Pearn, John; Michal, Michal; Kazakov, Dmitry V

    2010-06-01

    Brooke-Spiegler syndrome (BSS) is an inherited autosomal dominant disease characterized by the development of multiple adnexal cutaneous neoplasms including spiradenoma, cylindroma, spiradenocylindroma, and trichoepithelioma (cribriform trichoblastoma). BSS patients have various mutations in the CYLD gene, a tumor suppressor gene located on chromosome 16q. Our search of the literature revealed 51 germline CYLD mutations reported to date. Somatic CYLD mutations have rarely been investigated. We studied 10 patients from 8 families with BSS. Analysis of germline mutations of the CYLD gene was performed using either peripheral blood or nontumorous tissue. In addition, 19 formalin-fixed paraffin-embedded tumor samples were analyzed for somatic mutations, including loss of heterozygosity studies. A total of 38 tumors were available for histopathologic review. We have identified 8 novel germline mutations, all of which consisted of substitutions, deletions, and insertions/duplications and all except one led to premature stop codons. The substitution mutation in a single case was also predicted to disrupt protein function and seems causally implicated in tumor formation. We demonstrate for the first time that somatic events, loss of heterozygosity, or sequence mutations may differ among multiple neoplasms even of the same histologic type, occurring in the same patient.

  13. Functional requirements driving the gene duplication in 12 Drosophila species.

    PubMed

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  14. Segmental duplications: evolution and impact among the current Lepidoptera genomes.

    PubMed

    Zhao, Qian; Ma, Dongna; Vasseur, Liette; You, Minsheng

    2017-07-06

    Structural variation among genomes is now viewed to be as important as single nucleoid polymorphisms in influencing the phenotype and evolution of a species. Segmental duplication (SD) is defined as segments of DNA with homologous sequence. Here, we performed a systematic analysis of segmental duplications (SDs) among five lepidopteran reference genomes (Plutella xylostella, Danaus plexippus, Bombyx mori, Manduca sexta and Heliconius melpomene) to understand their potential impact on the evolution of these species. We find that the SDs content differed substantially among species, ranging from 1.2% of the genome in B. mori to 15.2% in H. melpomene. Most SDs formed very high identity (similarity higher than 90%) blocks but had very few large blocks. Comparative analysis showed that most of the SDs arose after the divergence of each linage and we found that P. xylostella and H. melpomene showed more duplications than other species, suggesting they might be able to tolerate extensive levels of variation in their genomes. Conserved ancestral and species specific SD events were assessed, revealing multiple examples of the gain, loss or maintenance of SDs over time. SDs content analysis showed that most of the genes embedded in SDs regions belonged to species-specific SDs ("Unique" SDs). Functional analysis of these genes suggested their potential roles in the lineage-specific evolution. SDs and flanking regions often contained transposable elements (TEs) and this association suggested some involvement in SDs formation. Further studies on comparison of gene expression level between SDs and non-SDs showed that the expression level of genes embedded in SDs was significantly lower, suggesting that structure changes in the genomes are involved in gene expression differences in species. The results showed that most of the SDs were "unique SDs", which originated after species formation. Functional analysis suggested that SDs might play different roles in different species. Our

  15. Neutral Evolution of Duplicated DNA: An Evolutionary Stick-Breaking Process Causes Scale-Invariant Behavior

    NASA Astrophysics Data System (ADS)

    Massip, Florian; Arndt, Peter F.

    2013-04-01

    Recently, an enrichment of identical matching sequences has been found in many eukaryotic genomes. Their length distribution exhibits a power law tail raising the question of what evolutionary mechanism or functional constraints would be able to shape this distribution. Here we introduce a simple and evolutionarily neutral model, which involves only point mutations and segmental duplications, and produces the same statistical features as observed for genomic data. Further, we extend a mathematical model for random stick breaking to analytically show that the exponent of the power law tail is -3 and universal as it does not depend on the microscopic details of the model.

  16. Gene duplication and the evolution of phenotypic diversity in insect societies.

    PubMed

    Chau, Linh M; Goodisman, Michael A D

    2017-12-01

    Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. A 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region in 17p11.2-p12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Tatsufumi; Lupski, J.R.

    1996-05-15

    Charcot-Marie-Tooth disease type 1A (CMT1A) is associated with a 1.5-Mb tandem duplication in chromosome 17p11.2-p12, and hereditary neuropathy with liability to pressure palsies (HNPP) is associated with a 1.5-Mb deletion at this locus. Both diseases appear to result from an altered copy number of the peripheral myelin protein-22 gene, PMP22, which maps within the critical region. To identify additional genes and characterize chromosomal elements, a 1.5-Mb cosmid contig of the CMT1A duplication/HNPP deletion critical region was assembled using a yeast artificial chromosome (YAC)-based isolation and binning strategy. Whole YAC probes were used for screening a high-density arrayed chromosome 17-specific cosmidmore » library. Selected cosmids were spotted on dot blots and assigned to bins defined by YACs. This binning of cosmids facilitated the subsequent fingerprint analysis. The 1.5-Mb region was covered by 137 cosmids with a minimum overlap set of 52 cosmids assigned to 17 bins and 9 contigs. 20 refs., 2 figs.« less

  18. Prevalence and spectrum of large deletions or duplications in the major long QT syndrome-susceptibility genes and implications for long QT syndrome genetic testing.

    PubMed

    Tester, David J; Benton, Amber J; Train, Laura; Deal, Barbara; Baudhuin, Linnea M; Ackerman, Michael J

    2010-10-15

    Long QT syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for 3 cardiac ion channel α-subunits (LQT1 to LQT3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. We set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes in unrelated patients who were mutation negative after point mutation analysis of LQT1- to LQT12-susceptibility genes. Forty-two unrelated, clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification, a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA multiplex ligation-dependent probe amplification LQTS kit from MRC-Holland was used to analyze the 3 major LQTS-associated genes, KCNQ1, KCNH2, and SCN5A, and the 2 minor genes, KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2 of 42 unrelated patients (4.8%, confidence interval 1.7 to 11). A deletion of KCNQ1 exon 3 was identified in a 10-year-old Caucasian boy with a corrected QT duration of 660 ms, a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17-year-old Caucasian girl with a corrected QT duration of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, because nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. De Novo duplication in Charcot-Marie-Tooth Type 1A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandich, P.; Bellone, E.; Ajmar, F.

    1996-09-01

    We read with interest the paper on {open_quotes}Prevalence and Origin of De Novo Duplications in Charcot-Marie-Tooth Disease Type 1A: First Report of a De Novo Duplication with a Maternal Origin,{close_quotes}. They reported their experience with 10 sporadic cases of Charcot-Marie-Tooth type 1A (CMT1A) in which it was demonstrated that the disease had arisen as the result of a de novo duplication. They analyzed the de novo-duplication families by using microsatellite markers and identified the parental origin of the duplication in eight cases. In one family the duplication was of maternal origin, whereas in the remaining seven cases it was ofmore » paternal origin. The authors concluded that their report was the first evidence of a de novo duplication of maternal origin, suggesting that this is not a phenomenon associated solely with male meiosis. 7 refs.« less

  20. 29 CFR 1912.4 - Avoidance of duplication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Avoidance of duplication. 1912.4 Section 1912.4 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.4 Avoidance of duplication. No...

  1. 29 CFR 1912.4 - Avoidance of duplication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Avoidance of duplication. 1912.4 Section 1912.4 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.4 Avoidance of duplication. No...

  2. Covalently Linked Tandem Lesions in DNA

    PubMed Central

    Patrzyc, Helen B.; Dawidzik, Jean B.; Budzinski, Edwin E.; Freund, Harold G.; Wilton, John H.; Box, Harold C.

    2013-01-01

    Reactive oxygen species (ROS) generate a type of DNA damage called tandem lesions, two adjacent nucleotides both modified. A subcategory of tandem lesions consists of adjacent nucleotides linked by a covalent bond. Covalently linked tandem lesions generate highly characteristic liquid chromotography-tandem mass spectrometry (LC-MS/MS) elution profiles. We have used this property to comprehensively survey X-irradiated DNA for covalently linked tandem lesions. A total of 15 tandem lesions were detected in DNA irradiated in deoxygenated aqueous solution, five tandem lesions were detected in DNA that was irradiated in oxygenated solution. PMID:23106212

  3. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice

    PubMed Central

    Barber, Ruth; Plumb, Mark A.; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E.

    2002-01-01

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans. PMID:11997464

  4. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    PubMed

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  5. Use of ATC to describe duplicate medications in primary care prescriptions.

    PubMed

    Lim, Chiao Mei; Aryani Md Yusof, Faridah; Selvarajah, Sharmini; Lim, Teck Onn

    2011-10-01

    We aimed to demonstrate the suitability of the Anatomical Therapeutic Chemical Classification (ATC) to describe duplicate drugs and duplicate drug classes in prescription data and describe the pattern of duplicates from public and private primary care clinics of Kuala Lumpur, Malaysia. We analyzed prescription data year 2005 from all 14 public clinics in Kuala Lumpur with 12,157 prescriptions, and a sample of 188 private clinics with 25,612 prescriptions. As ATC Level 5 code represents the molecule and Level 4 represents the pharmacological subgroup, we used repetitions of codes in the same prescription to describe duplicate drugs or duplicate drug classes and compared them between the public and private clinics. At Level 4 ATC, prescriptions with duplicates drug classes were 1.46% of all prescriptions in private and 0.04% in public clinics. At Level 5 ATC, prescriptions with duplicate drugs were 1.81% for private and 0.95% for public clinics. In private clinics at Level 5, 73.3% of prescriptions with duplicates involved systemic combination drugs; at Level 4, 40.3% involved systemic combination drugs. In the public sector at Level 5, 95.7% of prescriptions with duplicates involved topical products. Repetitions of the same ATC codes were mostly useful to describe duplicate medications; however, we recommend avoid using ATC codes for tropical products for this purpose due to ambiguity. Combination products were often involved in duplicate prescribing; redesign of these products might improve prescribing quality. Duplicates occurred more often in private clinics than public clinics in Malaysia.

  6. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Craniofacial duplication (diprosopus).

    PubMed

    Turpin, I M; Furnas, D W; Amlie, R N

    1981-02-01

    No congenital malformation in infants is more profound than anterior craniofacial duplication. The precise term for this rare anomaly is diprosopus, referring to a fetus with a single trunk, normal limbs, and varying degrees of facial duplication. A search of the world literature produced only 16 cases of diprosopus since 1864. Despite the rarity of this anomaly, three such infants were born in the Southern California area during the past year, making this the largest reported series to date. The three infants were born with two distinctly formed faces. Each had four separate eyes, two mouths, two noses, and two ears with a primitive ear or sinus tract at the plane of fusion. In addition, multiple congenital aberrations existed which involved a variety of internal organs. The pathogenesis of diprosopus is not well understood, but environmental stress early in embryologic development has been suggested as a possible factor. The apparent mechanism is a slowing of pregastrulation oxidation with resultant focal developmental arrests.

  8. Quantification of sequence exchange events between PMS2 and PMS2CL provides a basis for improved mutation scanning of Lynch syndrome patients.

    PubMed

    van der Klift, Heleen M; Tops, Carli M J; Bik, Elsa C; Boogaard, Merel W; Borgstein, Anne-Marijke; Hansson, Kerstin B M; Ausems, Margreet G E M; Gomez Garcia, Encarna; Green, Andrew; Hes, Frederik J; Izatt, Louise; van Hest, Liselotte P; Alonso, Angel M; Vriends, Annette H J T; Wagner, Anja; van Zelst-Stams, Wendy A G; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Wijnen, Juul T

    2010-05-01

    Heterozygous mutations in PMS2 are involved in Lynch syndrome, whereas biallelic mutations are found in Constitutional mismatch repair-deficiency syndrome patients. Mutation detection is complicated by the occurrence of sequence exchange events between the duplicated regions of PMS2 and PMS2CL. We investigated the frequency of such events with a nonspecific polymerase chain reaction (PCR) strategy, co-amplifying both PMS2 and PMS2CL sequences. This allowed us to score ratios between gene and pseudogene-specific nucleotides at 29 PSV sites from exon 11 to the end of the gene. We found sequence transfer at all investigated PSVs from intron 12 to the 3' end of the gene in 4 to 52% of DNA samples. Overall, sequence exchange between PMS2 and PMS2CL was observed in 69% (83/120) of individuals. We demonstrate that mutation scanning with PMS2-specific PCR primers and MLPA probes, designed on PSVs, in the 3' duplicated region is unreliable, and present an RNA-based mutation detection strategy to improve reliability. Using this strategy, we found 19 different putative pathogenic PMS2 mutations. Four of these (21%) are lying in the region with frequent sequence transfer and are missed or called incorrectly as homozygous with several PSV-based mutation detection methods. (c) 2010 Wiley-Liss, Inc.

  9. Gallbladder Duplication: Evaluation, Treatment, and Classification

    DTIC Science & Technology

    2010-02-01

    2009; revised 16 December 2009; accepted 16 December 2009h o th 0 d Key words: Duplicate gallbladder; Hepatobiliary embryology ; Multiple gallbladders...anatomic variations [5]. These three types vary depending upon the embryologic development and occur in the same manner as duplicated gallbladders. Given... embryology and adds a third group that occurs when there is a combination of types 1 and 2 anatomy. The triple combined group occurs from a split in

  10. A Homozygous TPO Gene Duplication (c.1184_1187dup4) Causes Congenital Hypothyroidism in Three Siblings Born to a Consanguineous Family

    PubMed Central

    Cangul, Hakan; Aydin, Banu K.; Bas, Firdevs

    2015-01-01

    Congenital hypothyroidism (CH) is the most common neonatal endocrine disease, and germ-line mutations in the TPO gene cause the inherited form of the disease. Our aim in this study was to determine the genetic basis of congenital hypothyroidism in three affected children coming from a consanguineous Turkish family. Because CH is usually inherited in autosomal recessive manner in consanguineous/multicase families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First, we investigated the potential genetic linkage of the family to any known CH locus, using microsatellite markers, and then screened for mutations in linked-gene by conventional sequencing. The family showed potential linkage to the TPO gene and we detected a homozygous duplication (c.1184_1187dup4) in all cases. The mutation segregated with disease status in the family. This study confirms the pathogenicity of the c.1184_1187dup4 mutation in the TPO gene and helps establish a genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH. PMID:27617131

  11. Pericentromeric Effects Shape the Patterns of Divergence, Retention, and Expression of Duplicated Genes in the Paleopolyploid Soybean[C][W

    PubMed Central

    Du, Jianchang; Tian, Zhixi; Sui, Yi; Zhao, Meixia; Song, Qijian; Cannon, Steven B.; Cregan, Perry; Ma, Jianxin

    2012-01-01

    The evolutionary forces that govern the divergence and retention of duplicated genes in polyploids are poorly understood. In this study, we first investigated the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) for a nearly complete set of genes in the paleopolyploid soybean (Glycine max) by comparing the orthologs between soybean and its progenitor species Glycine soja and then compared the patterns of gene divergence and expression between pericentromeric regions and chromosomal arms in different gene categories. Our results reveal strong associations between duplication status and Ka and gene expression levels and overall low Ks and low levels of gene expression in pericentromeric regions. It is theorized that deleterious mutations can easily accumulate in recombination-suppressed regions, because of Hill-Robertson effects. Intriguingly, the genes in pericentromeric regions—the cold spots for meiotic recombination in soybean—showed significantly lower Ka and higher levels of expression than their homoeologs in chromosomal arms. This asymmetric evolution of two members of individual whole genome duplication (WGD)-derived gene pairs, echoing the biased accumulation of singletons in pericentromeric regions, suggests that distinct genomic features between the two distinct chromatin types are important determinants shaping the patterns of divergence and retention of WGD-derived genes. PMID:22227891

  12. Evaluation of a patient with classical Ehlers-Danlos syndrome due to a 9q34 duplication affecting COL5A1.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Naruto, Takuya; Ida, Kazumi; Enomoto, Yumi; Saito, Toshiyuki; Nagai, Jun-Ichi; Kurosawa, Kenji

    2018-03-09

    Ehlers-Danlos syndrome classical type is a connective tissue disorder characterized by skin hyperextensibility, atrophic scarring, and joint hypermobility. The condition typically results from mutations in COL5A1 or COL5A2 leading to the functional haploinsufficiency. Here, we report of a 24-year-old male with mild intellectual disability, dysmorphic features, and a phenotype consistent with Ehlers-Danlos syndrome classical type. A copy number variant-calling algorithm from panel sequencing data identified the deletions exons 2-11 and duplications of exons 12-67 within COL5A1. Array comparative genomic hybridization confirmed a 94 kb deletion at 9q34.3 involving exons 2-11 of COL5A1, and a 3.4 Mb duplication at 9q34.3 involving exons 12-67 of COL5A1. © 2018 Japanese Teratology Society.

  13. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    PubMed Central

    Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190

  14. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    PubMed

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  15. Missense suppression in Coprinus lagopus associated wtih a chromosome duplication.

    PubMed

    Lewis, D; Casselton, L A

    1975-05-01

    Amongst some 70 recessive suppressors of a met-I mutation in Coprinus lagopus, one unstable suppressor was identified. The unstable suppressor, designated sup-6plus, could be maintained on minimal medium, but was lost within 24h on minimal medium containing more than 1-7 p.p.m. DL-methionine or 0-75 p.p.m. L-methionine. Isolation of hyphal tips from the monokaryotic strain carrying sup-6plus yielded three types of colony: the unstable parental type, the stable met-I auxotroph and a stable prototroph which was slow-growing and inhibited by methionine in the growth medium. This stable sup-6plus type was recovered with difficulty by resolving dikaryons formed between the unstable sup-6plus strain and strains carring the wild-type allele of the suppressor gene. From sexual crosses, neither the unstable nor stable sup-6plus type segregated, only the met-I auxotrophic revertant. The unstable sup-6plus strain is thought to have an extra chromosome carrying the sup-6plus mutation. For vigorous growth the wild-type allele, sup-6, is indispensable and would be carried on the homologous chromosome. The selective pressures on different media account for loss of the duplicated chromosomes. The results are interpreted as missense suppression by a mutant of an indispensable tRNA.

  16. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics.

    PubMed

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-03-18

    Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Prospective analysis. 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype-phenotype analyses. All analyses were performed in a large German laboratory specialised in genetic diagnostics. 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype-phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum that is influenced by MITF mutation type and position.

  17. A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication.

    PubMed

    Lee, Gyung Min; Ko, Jung Min; Shin, Choong Ho; Yang, Sei Won

    2014-06-01

    The 46,XX testicular disorder of sex development (DSD), also known as 46,XX male syndrome, is a rare form of DSD and clinical phenotype shows complete sex reversal from female to male. The sex-determining region Y (SRY) gene can be identified in most 46,XX testicular DSD patients; however, approximately 20% of patients with 46,XX testicular DSD are SRY-negative. The SRY-box 9 (SOX9) gene has several important functions during testis development and differentiation in males, and overexpression of SOX9 leads to the male development of 46,XX gonads in the absence of SRY. In addition, SOX9 duplication has been found to be a rare cause of 46,XX testicular DSD in humans. Here, we report a 4.2-year-old SRY-negative 46,XX boy with complete sex reversal caused by SOX9 duplication for the first time in Korea. He showed normal external and internal male genitalia except for small testes. Fluorescence in situ hybridization and polymerase chain reaction (PCR) analyses failed to detect the presence of SRY, and SOX9 intragenic mutation was not identified by direct sequencing analysis. Therefore, we performed real-time PCR analyses with specific primer pairs, and duplication of the SOX9 gene was revealed. Although SRY-negative 46,XX testicular DSD is a rare condition, an effort to make an accurate diagnosis is important for the provision of proper genetic counseling and for guiding patients in their long-term management.

  18. Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study

    PubMed Central

    Chen, Qingyu; Zobel, Justin; Verspoor, Karin

    2017-01-01

    GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a period of decades. As a consequence, they contain a great many duplicates, redundancies and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics databases has not been carefully assessed, making it difficult to judge the value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in bioinformatics databases, through a retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting of duplicates manually identified in INSDC—a dataset of 67 888 merged groups with 111 823 duplicate pairs across 21 organisms from INSDC databases – in terms of the prevalence, types and impacts of duplicates. (2) We categorize duplicates at both sequence and annotation level, with supporting quantitative statistics, showing that different organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of duplicates has practical impact via a simple case study on duplicates, in terms of GC content and melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of duplication in biological databases. Database URL: the merged records are available at https

  19. Typewriting: Toward Duplicating Success

    ERIC Educational Resources Information Center

    Orsborn, Karen J.

    1977-01-01

    A description of two projects (secretarial handbook and memo pad and personalized stationery) for use in teaching the duplication process that will capture the interests of students in an advanced typewriting class. (HD)

  20. Identification of approximately duplicate material records in ERP systems

    NASA Astrophysics Data System (ADS)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  1. Identification of three duplicated Spin genes in medaka (Oryzias latipes).

    PubMed

    Wang, Xiao-Lei; Mei, Jie; Sun, Min; Hong, Yun-Han; Gui, Jian-Fang

    2005-05-09

    Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.

  2. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups

    PubMed Central

    2013-01-01

    Background WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. Results We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. Conclusions In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have

  3. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups.

    PubMed

    Yin, Guangjun; Xu, Hongliang; Xiao, Shuyang; Qin, Yajuan; Li, Yaxuan; Yan, Yueming; Hu, Yingkao

    2013-10-03

    WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates

  4. Spectrum of SMARCB1/INI1 Mutations in Familial and Sporadic Rhabdoid Tumors

    PubMed Central

    Eaton, Katherine W.; Tooke, Laura S.; Wainwright, Luanne M.; Judkins, Alexander R.; Biegel, Jaclyn A.

    2011-01-01

    Background Germline mutations and deletions of SMARCB1/INI1 in chromosome band 22q11.2 predispose patients to rhabdoid tumor and schwannomatosis. Previous estimates suggested that 15–20% of rhabdoid tumors were caused by an underlying germline abnormality of SMARCB1. However, these studies were limited by case selection and an inability to detect intragenic deletions and duplications. Procedure One hundred matched tumor and blood samples from patients with rhabdoid tumors of the brain, kidney, or soft tissues were analyzed for mutations and deletions of SMARCB1 by FISH, multiplex ligation-dependent probe amplification (MLPA), sequence analysis and high resolution Illumina 610K SNP based oligonucleotide array studies. Results Thirty-five of 100 patients were found to have a germline SMARCB1 abnormality. These abnormalities included point and frameshift mutations, intragenic deletions and duplications, and larger deletions including regions both proximal and distal to SMARCB1. There were 9 cases that demonstrated parent to child transmission of a mutated copy of SMARCB1. In 8 of the 9 cases, one or more family members were also diagnosed with rhabdoid tumor or schwannoma, and 2 of the 8 families presented with multiple affected children in a manner consistent with gonadal mosaicism. Conclusions Approximately one third of newly diagnosed patients with rhabdoid tumor have an underlying genetic predisposition to tumors due to a germline SMARCB1 alteration. Families may demonstrate incomplete penetrance and gonadal mosaicism, which must be considered when counseling families of patients with rhabdoid tumor. PMID:21108436

  5. Duplicated genes evolve independently in allopolyploid cotton.

    Treesearch

    Richard C. Cronn; Randall L. Small; Jonathan F. Wendel

    1999-01-01

    Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci...

  6. Partial duplication of head--a rare congenital anomaly.

    PubMed

    Hemachandran, Manikkapurath; Radotra, Bishan Dass

    2004-10-01

    Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.

  7. Communication between Tandem cAMP Binding Domains in the Regulatory Subunit of Protein Kinase A-Iα as Revealed by Domain-silencing Mutations*

    PubMed Central

    McNicholl, E. Tyler; Das, Rahul; SilDas, Soumita; Taylor, Susan S.; Melacini, Giuseppe

    2010-01-01

    Protein kinase A (PKA) is the main receptor for the universal cAMP second messenger. PKA is a tetramer with two catalytic (C) and two regulatory (R) subunits, each including two tandem cAMP binding domains, i.e. CBD-A and -B. Structural investigations of RIα have revealed that although CBD-A plays a pivotal role in the cAMP-dependent inhibition of C, the main function of CBD-B is to regulate the access of cAMP to site A. To further understand the mechanism underlying the cross-talk between CBD-A and -B, we report here the NMR investigation of a construct of R, RIα-(119–379), which unlike previous fragments characterized by NMR, spans in full both CBDs. Our NMR studies were also extended to two mutants, R209K and the corresponding R333K, which severely reduce the affinity of cAMP for CBD-A and -B, respectively. The comparative NMR analysis of wild-type RIα-(119–379) and of the two domain silencing mutations has led to the definition at an unprecedented level of detail of both intra- and interdomain allosteric networks, revealing several striking differences between the two CBDs. First, the two domains, although homologous in sequence and structure, exhibit remarkably different responses to the R/K mutations especially at the β2-3 allosteric “hot spot.” Second, although the two CBDs are reciprocally coupled at the level of local unfolding of the hinge, the A-to-B and B-to-A pathways are dramatically asymmetrical at the level of global unfolding. Such an asymmetric interdomain cross-talk ensures efficiency and robustness in both the activation and de-activation of PKA. PMID:20202931

  8. Prevention of data duplication for high throughput sequencing repositories

    PubMed Central

    Gabdank, Idan; Chan, Esther T; Davidson, Jean M; Hilton, Jason A; Davis, Carrie A; Baymuradov, Ulugbek K; Narayanan, Aditi; Onate, Kathrina C; Graham, Keenan; Miyasato, Stuart R; Dreszer, Timothy R; Strattan, J Seth; Jolanki, Otto; Tanaka, Forrest Y; Hitz, Benjamin C

    2018-01-01

    Abstract Prevention of unintended duplication is one of the ongoing challenges many databases have to address. Working with high-throughput sequencing data, the complexity of that challenge increases with the complexity of the definition of a duplicate. In a computational data model, a data object represents a real entity like a reagent or a biosample. This representation is similar to how a card represents a book in a paper library catalog. Duplicated data objects not only waste storage, they can mislead users into assuming the model represents more than the single entity. Even if it is clear that two objects represent a single entity, data duplication opens the door to potential inconsistencies between the objects since the content of the duplicated objects can be updated independently, allowing divergence of the metadata associated with the objects. Analogously to a situation in which a catalog in a paper library would contain by mistake two cards for a single copy of a book. If these cards are listing simultaneously two different individuals as current book borrowers, it would be difficult to determine which borrower (out of the two listed) actually has the book. Unfortunately, in a large database with multiple submitters, unintended duplication is to be expected. In this article, we present three principal guidelines the Encyclopedia of DNA Elements (ENCODE) Portal follows in order to prevent unintended duplication of both actual files and data objects: definition of identifiable data objects (I), object uniqueness validation (II) and de-duplication mechanism (III). In addition to explaining our modus operandi, we elaborate on the methods used for identification of sequencing data files. Comparison of the approach taken by the ENCODE Portal vs other widely used biological data repositories is provided. Database URL: https://www.encodeproject.org/ PMID:29688363

  9. Targeted 'next-generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations.

    PubMed

    Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M

    2011-12-28

    Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

  10. Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    PubMed Central

    2011-01-01

    Background Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M. PMID:22204637

  11. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  12. Duplication of 20qter and deletion of 20pter due to paternal pericentric inversion: patient report and review of 20qter duplications.

    PubMed

    Starr, Lois J; Truemper, Edward J; Pickering, Diane L; Sanger, Warren G; Olney, Ann Haskins

    2014-08-01

    Duplications of the terminal long arm of chromosome 20 are rare chromosomal anomalies. We report a male infant found on array comparative genomic hybridization analysis to have a 19.5 Mb duplication of chromosome 20q13.12-13.33, as well as an 886 kb deletion of 20p13 at 18,580-904,299 bp. This anomaly occurred as the recombinant product of a paternal pericentric inversion. There have been 23 reported clinical cases involving 20qter duplications; however, to our knowledge this is only the second reported patient with a paternal pericentric inversion resulting in 46,XY,rec(20)dup(20q). This patient shares many characteristics with previously described patients with 20qter duplications, including microphthalmia, anteverted nares, long ears, cleft palate, small chin, dimpled chin, cardiac malformations, and normal intrauterine growth. While there is variable morbidity in patients with terminal duplications of 20q, a review of previously reported patients and comparison to our patient's findings shows significant phenotypic similarity. © 2014 Wiley Periodicals, Inc.

  13. TERT promoter mutations: a genetic signature of benign and malignant thyroid tumours occurring in the context of tinea capitis irradiation.

    PubMed

    Boaventura, Paula; Batista, Rui; Pestana, Ana; Reis, Marta; Mendes, Adélia; Eloy, Catarina; Sobrinho-Simões, Manuel; Soares, Paula

    2017-01-01

    The aim of this study is to evaluate the frequency and molecular characteristics of TERTp mutations in thyroid adenomas and carcinomas occurring in the low-dose radiation exposure tinea capitis setting. Twenty-seven patients with 34 well-differentiated thyroid carcinomas and 28 patients with 29 follicular adenomas diagnosed in a Portuguese tinea capitis cohort were studied. Blood samples were obtained from all the patients. Screening for TERTp mutations was performed by PCR amplification followed by Sanger sequencing. A series of 33 sporadic thyroid adenomas was used as control. TERTp mutations were detected in six of the 28 patients with adenoma (21.4%) and in four of the 27 patients with carcinoma (14.8%). Three tumours (two carcinomas and one adenoma) had the tandem mutation -124/-125 GG>AA (30.0%), whereas the remaining seven had the -124G > A. The 20.7% frequency of TERTp mutations in adenomas contrasts with the absence of mutations in the adenomas from the control group and from most series on record, whereas the one found in carcinomas (11.8%) is similar to those reported in the literature for sporadic carcinomas. TERTp mutations, including the tandem mutation -124/-125 GG>AA not described previously in thyroid tumours, appear to represent a genetic signature for thyroid tumours in patients submitted to low-dose X-ray irradiation. The high frequency of TERTp mutations in the adenomas of our cohort contrasts with their absence in sporadically occurring, as well as in adenomas of the Chernobyl series. © 2017 European Society of Endocrinology.

  14. Duplicates, redundancies and inconsistencies in the primary nucleotide databases: a descriptive study.

    PubMed

    Chen, Qingyu; Zobel, Justin; Verspoor, Karin

    2017-01-01

    GenBank, the EMBL European Nucleotide Archive and the DNA DataBank of Japan, known collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three most significant nucleotide sequence databases. Their records are derived from laboratory work undertaken by different individuals, by different teams, with a range of technologies and assumptions and over a period of decades. As a consequence, they contain a great many duplicates, redundancies and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics databases has not been carefully assessed, making it difficult to judge the value of such methods. Our goal is to assess the scale, kinds and impact of duplicates in bioinformatics databases, through a retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We analyse a benchmark dataset consisting of duplicates manually identified in INSDC-a dataset of 67 888 merged groups with 111 823 duplicate pairs across 21 organisms from INSDC databases - in terms of the prevalence, types and impacts of duplicates. (2) We categorize duplicates at both sequence and annotation level, with supporting quantitative statistics, showing that different organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of duplicates has practical impact via a simple case study on duplicates, in terms of GC content and melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of duplication in biological databases.Database URL: the merged records are available at https

  15. Orthogonal tandem catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohr, Tracy L.; Marks, Tobin J.

    2015-05-20

    Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, withmore » particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.« less

  16. Duplication Is Ubiquitous

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2005-01-01

    This article discusses how Phil Davis, Life Sciences Bibliographer at Cornell University, found duplicate articles in Emerald/MCB University Press journals. According to Davis, he has found hundreds of examples of the same article published in more than one journal in at least 73 Emerald/MCB journals over 30 years. This article gives the details…

  17. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers or...

  18. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers or...

  19. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers or...

  20. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers or...

  1. 7 CFR 27.23 - Duplicate sets of samples of cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Duplicate sets of samples of cotton. 27.23 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.23 Duplicate sets of samples of cotton. The duplicate sets of samples shall be inclosed in wrappers or...

  2. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    PubMed

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  3. Cecum duplication in a 14-year-old female. Case report.

    PubMed

    Galván-Montaño, Alfonso; Guzmán-Martínez, Sonia; Lorenzana-Sandoval, Cuauhtémoc; Recinos-Carrera, Elio

    2011-01-01

    Duplications of the alimentary tract are a group of rare malformations occurring in about 1/5,000 live births. These may be either spherical or tubular and may communicate with the intestinal tract. Duplications of the cecum are very uncommon. A 14-year-old female was admitted to the emergency department with a 1-day history of abdominal pain, vomiting, constipation and abdominal distension. Abdominal examination revealed distension and tenderness around the umbilicus. Plain abdominal radiography showed dilated colon. The patient underwent surgical management with diagnosis of sigmoid volvulus. Laparotomy revealed spherical duplication from the cecum. Hemicolectomy was done and alimentary continuity was restored by end-to-end anastomosis. Pathological report was a spherical communicated duplication from the cecum (22 × 32 cm). Duplication of the cecum is extremely rare and is seen in 0.4% of duplications of the alimentary tract. The majority of cases (85%) are diagnosed before age 2 years. It is rare at 14 years of age. Diagnosis is difficult and volvulus, intussusception or appendicitis should be considered in the differential diagnosis. Ultrasonography and tomography are the imaging studies of choice. Plain abdominal x-ray is not specific. Resection of the duplication with restoration of alimentary continuity is the treatment of choice.

  4. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    PubMed

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  5. Spectra of spontaneous frameshift mutations at the hisD3052 allele of Salmonella typhimurium in four DNA repair backgrounds.

    PubMed Central

    DeMarini, D M; Shelton, M L; Abu-Shakra, A; Szakmary, A; Levine, J G

    1998-01-01

    To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins. PMID:9584083

  6. Segmental Duplications and Copy-Number Variation in the Human Genome

    PubMed Central

    Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E. 

    2005-01-01

    The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic

  7. Founder mutations characterise the mutation panorama in 200 Swedish index cases referred for Long QT syndrome genetic testing.

    PubMed

    Stattin, Eva-Lena; Boström, Ida Maria; Winbo, Annika; Cederquist, Kristina; Jonasson, Jenni; Jonsson, Björn-Anders; Diamant, Ulla-Britt; Jensen, Steen M; Rydberg, Annika; Norberg, Anna

    2012-10-25

    Long QT syndrome (LQTS) is an inherited arrhythmic disorder characterised by prolongation of the QT interval on ECG, presence of syncope and sudden death. The symptoms in LQTS patients are highly variable, and genotype influences the clinical course. This study aims to report the spectrum of LQTS mutations in a Swedish cohort. Between March 2006 and October 2009, two hundred, unrelated index cases were referred to the Department of Clinical Genetics, Umeå University Hospital, Sweden, for LQTS genetic testing. We scanned five of the LQTS-susceptibility genes (KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2) for mutations by DHPLC and/or sequencing. We applied MLPA to detect large deletions or duplications in the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes. Furthermore, the gene RYR2 was screened in 36 selected LQTS genotype-negative patients to detect cases with the clinically overlapping disease catecholaminergic polymorphic ventricular tachycardia (CPVT). In total, a disease-causing mutation was identified in 103 of the 200 (52%) index cases. Of these, altered exon copy numbers in the KCNH2 gene accounted for 2% of the mutations, whereas a RYR2 mutation accounted for 3% of the mutations. The genotype-positive cases stemmed from 64 distinct mutations, of which 28% were novel to this cohort. The majority of the distinct mutations were found in a single case (80%), whereas 20% of the mutations were observed more than once. Two founder mutations, KCNQ1 p.Y111C and KCNQ1 p.R518*, accounted for 25% of the genotype-positive index cases. Genetic cascade screening of 481 relatives to the 103 index cases with an identified mutation revealed 41% mutation carriers who were at risk of cardiac events such as syncope or sudden unexpected death. In this cohort of Swedish index cases with suspected LQTS, a disease-causing mutation was identified in 52% of the referred patients. Copy number variations explained 2% of the mutations and 3 of 36 selected cases (8%) harboured a mutation in the

  8. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    PubMed

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  9. Molecular characterization and distribution of a 145-bp tandem repeat family in the genus Populus.

    PubMed

    Rajagopal, J; Das, S; Khurana, D K; Srivastava, P S; Lakshmikumaran, M

    1999-10-01

    This report aims to describe the identification and molecular characterization of a 145-bp tandem repeat family that accounts for nearly 1.5% of the Populus genome. Three members of this repeat family were cloned and sequenced from Populus deltoides and P. ciliata. The dimers of the repeat were sequenced in order to confirm the head-to-tail organization of the repeat. Hybridization-based analysis using the 145-bp tandem repeat as a probe on genomic DNA gave rise to ladder patterns which were identified to be a result of methylation and (or) sequence heterogeneity. Analysis of the methylation pattern of the repeat family using methylation-sensitive isoschizomers revealed variable methylation of the C residues and lack of methylation of the A residues. Sequence comparisons between the monomers revealed a high degree of sequence divergence that ranged between 6% and 11% in P. deltoides and between 4.2% and 8.3% in P. ciliata. This indicated the presence of sub-families within the 145-bp tandem family of repeats. Divergence was mainly due to the accumulation of point mutations and was concentrated in the central region of the repeat. The 145-bp tandem repeat family did not show significant homology to known tandem repeats from plants. A short stretch of 36 bp was found to show homology of 66.7% to a centromeric repeat from Chironomus plumosus. Dot-blot analysis and Southern hybridization data revealed the presence of the repeat family in 13 of the 14 Populus species examined. The absence of the 145-bp repeat from P. euphratica suggested that this species is relatively distant from other members of the genus, which correlates with taxonomic classifications. The widespread occurrence of the tandem family in the genus indicated that this family may be of ancient origin.

  10. TECHNIQUES OF TAPE PREPARATION AND DUPLICATION, WITH SUGGESTIONS FOR A LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    Kansas State Dept. of Public Instruction, Topeka.

    PART ONE OF THIS BULLETIN PROVIDES HELP IN THE TWO CRITICAL AREAS OF MASTER TAPE PREPARATION AND DUPLICATION. SUPPLEMENTED BY NUMEROUS PHOTOGRAPHS AND DIAGRAMS OF EQUIPMENT AND DUPLICATION TECHNIQUES, THE BULLETIN DESCRIBES MASTER PROGRAM DUPLICATION USING LANGUAGE LABORATORY EQUIPMENT, A PROFESSIONAL MASS DUPLICATOR, A TAPE RECORDER, A RECORD…

  11. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.

    PubMed

    Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M

    2015-03-01

    To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.

  12. 47 CFR 76.93 - Parties entitled to network non-duplication protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Parties entitled to network non-duplication... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.93 Parties entitled to network non-duplication protection...

  13. 47 CFR 76.93 - Parties entitled to network non-duplication protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Parties entitled to network non-duplication... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.93 Parties entitled to network non-duplication protection...

  14. Fanconi anemia founder mutation in Macedonian patients.

    PubMed

    Madjunkova, Svetlana; Kocheva, Svetlana A; Plaseska-Karanfilska, Dijana

    2014-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disorder clinically characterized by developmental abnormalities, progressive bone marrow failure (BMF) and profound cancer predisposition. Approximately 65% of all affected individuals have mutation in the FANCA (Fanconi anemia complementation group A) gene. The mutation spectrum of the FANCA gene is highly heterogeneous. FA-A is usually associated with private FANCA mutations in individual families. We describe 3 unrelated patients with FA with a similar clinical presentation: BMF, renal anomalies and café-au-lait pigmentation without major skeletal abnormality. The molecular analysis of the FANCA gene using the FA MLPA kit P031-A2/P032 FANCA, showed homozygous deletion of exon 3 in all 3 patients. Molecular analysis of the flanking regions of exon 3 precisely defined unique deletion of 2,040 bp and duplication of C (1788_3828dupC). These are the first 3 patients homozygous for deletion of FANCA exon 3 described to date. Although not related, the patients originated from the same Gypsy-like ethnic population. We conclude that c.190-256_283 + 1680del2040 dupC mutation in the FANCA gene is a founder mutation in Macedonian FA patients of Gypsy-like ethnic origin. Our finding has very strong implications for these patients in formulating diagnostic and carrier-screening strategy for BMF and FA and to enable comprehensive genetic counseling. © 2013 S. Karger AG, Basel.

  15. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  16. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Characterization of the first intragenic SATB2 duplication in a girl with intellectual disability, nearly absent speech and suspected hypodontia.

    PubMed

    Kaiser, Ann-Sophie; Maas, Bianca; Wolff, Anna; Sutter, Christian; Janssen, Johannes W G; Hinderhofer, Katrin; Moog, Ute

    2015-05-01

    SATB2, a gene encoding a highly conserved DNA-binding protein, is known to have an important role in craniofacial and neuronal development. Only a few patients with SATB2 variants have been described so far. Recently, Döcker et al provided a summary of these patients and delineated the SAS (SATB2-associated syndrome). We here report on a girl with intellectual disability, nearly absent speech and suspected hypodontia who was shown to carry an intragenic SATB2 tandem duplication hypothesized to lead to haploinsufficiency of SATB2. Preliminary information on this patient had already been included in the article by Döcker et al. We want to give a detailed description of the patient's phenotype and genotype, providing further insight into the spectrum of the molecular mechanisms leading to SAS.

  18. Mutation rate estimation for 15 autosomal STR loci in a large population from Mainland China.

    PubMed

    Zhao, Zhuo; Zhang, Jie; Wang, Hua; Liu, Zhi-Peng; Liu, Ming; Zhang, Yuan; Sun, Li; Zhang, Hui

    2015-09-01

    STR, short tandem repeats, are well known as a type of powerful genetic marker and widely used in studying human population genetics. Compared with the conventional genetic markers, the mutation rate of STR is higher. Additionally, the mutations of STR loci do not lead to genetic inconsistencies between the genotypes of parents and children; therefore, the analysis of STR mutation is more suited to assess the population mutation. In this study, we focused on 15 autosomal STR loci. DNA samples from a total of 42,416 unrelated healthy individuals (19,037 trios) from the population of Mainland China collected between Jan 2012 and May 2014 were successfully investigated. In our study, the allele frequencies, paternal mutation rates, maternal mutation rates and average mutation rates were detected. Furthermore, we also investigated the relationship between paternal ages, maternal ages, area, the time of pregnancy and average mutation rate. We found that the paternal mutation rate was higher than the maternal mutation rate and the paternal, maternal, and average mutation rates had a positive correlation with paternal age, maternal age and the time of pregnancy respectively. Additionally, the average mutation rate of coastal areas was higher than that of inland areas.

  19. Duplicate retention in signalling proteins and constraints from network dynamics.

    PubMed

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  20. 47 CFR 76.92 - Cable network non-duplication; extent of protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Cable network non-duplication; extent of... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.92 Cable network non-duplication; extent of protection. (a...

  1. 47 CFR 76.92 - Cable network non-duplication; extent of protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable network non-duplication; extent of... RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Network Non-duplication Protection, Syndicated Exclusivity and Sports Blackout § 76.92 Cable network non-duplication; extent of protection. (a...

  2. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML.

    PubMed

    Knapper, Steven; Russell, Nigel; Gilkes, Amanda; Hills, Robert K; Gale, Rosemary E; Cavenagh, James D; Jones, Gail; Kjeldsen, Lars; Grunwald, Michael R; Thomas, Ian; Konig, Heiko; Levis, Mark J; Burnett, Alan K

    2017-03-02

    The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3 -internal tandem duplication mutations, 23% FLT3 -tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3 -mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside

  3. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    PubMed

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  4. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  5. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  6. Duplication of the EFNB1 Gene in Familial Hypertelorism: Imbalance in Ephrin-B1 Expression and Abnormal Phenotypes in Humans and Mice

    PubMed Central

    Babbs, Christian; Stewart, Helen S; Williams, Louise J; Connell, Lyndsey; Goriely, Anne; Twigg, Stephen RF; Smith, Kim; Lester, Tracy; Wilkie, Andrew OM

    2011-01-01

    Familial hypertelorism, characterized by widely spaced eyes, classically shows autosomal dominant inheritance (Teebi type), but some pedigrees are compatible with X-linkage. No mechanism has been described previously, but clinical similarity has been noted to craniofrontonasal syndrome (CFNS), which is caused by mutations in the X-linked EFNB1 gene. Here we report a family in which females in three generations presented with hypertelorism, but lacked either craniosynostosis or a grooved nasal tip, excluding CFNS. DNA sequencing of EFNB1 was normal, but further analysis revealed a duplication of 937 kb including EFNB1 and two flanking genes: PJA1 and STARD8. We found that the X chromosome bearing the duplication produces ∼1.6-fold more EFNB1 transcript than the normal X chromosome and propose that, in the context of X-inactivation, this difference in expression level of EFNB1 results in abnormal cell sorting leading to hypertelorism. To support this hypothesis, we provide evidence from a mouse model carrying a targeted human EFNB1 cDNA, that abnormal cell sorting occurs in the cranial region. Hence, we propose that X-linked cases resembling Teebi hypertelorism may have a similar mechanism to CFNS, and that cellular mosaicism for different levels of ephrin-B1 (as well as simple presence/absence) leads to craniofacial abnormalities. Hum Mutat 32:1–9, 2011. © 2011 Wiley-Liss, Inc. PMID:21542058

  7. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.

    PubMed

    Gout, Jean-Francois; Lynch, Michael

    2015-08-01

    Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Drosophila Ana2 is a conserved centriole duplication factor

    PubMed Central

    Stevens, Naomi R.; Dobbelaere, Jeroen; Brunk, Kathrin; Franz, Anna

    2010-01-01

    In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP—orthologues of ZYG-1, SAS-6, and SAS-4, respectively—are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery. PMID:20123993

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryo, H.; Yoo, M.A.; Fujikawa, K.

    Somatic reversion of strains with the ivory (wi) allele, a mutation associated with a tandem duplication of a DNA sequence at the white locus, increased with the age of larvae at the time of X-irradiation as expected from the increase in the number of target cells. In contrast, two independently isolated strains with unstable w+ loci associated with insertion of transposable elements showed higher reversion frequencies after treatment with X rays or ethyl methanesulfonate (EMS) at early larval stages than at late stages. Nevertheless, both the wi strain and the two unstable w+ strains reverted at nearly equal rates aftermore » treatment with X rays or EMS at early larval stages. Possible similarity in hot spot structure for the high reversibility of the two types of mutations is discussed in relation to production of presumed mutator-type cofactors specific to the transposon-caused mutations at early larval stages.« less

  10. Carcinogens induce reversion of the mouse pink-eyed unstable mutation

    PubMed Central

    Schiestl, Robert H.; Aubrecht, Jiri; Khogali, Fathia; Carls, Nicholas

    1997-01-01

    Deletions and other genome rearrangements are associated with carcinogenesis and inheritable diseases. The pink-eyed unstable (pun) mutation in the mouse is caused by duplication of a 70-kb internal fragment of the p gene. Spontaneous reversion events in homozygous pun/pun mice occur through deletion of a duplicated sequence. Reversion events in premelanocytes in the mouse embryo detected as black spots on the gray fur of the offspring were inducible by the carcinogen x-rays, ethyl methanesulfonate, methyl methanesulfonate, ethyl nitrosourea, benzo[a]pyrene, trichloroethylene, benzene, and sodium arsenate. The latter three carcinogens are not detectable with several in vitro or in vivo mutagenesis assays. We studied the molecular mechanism of the carcinogen-induced reversion events by cDNA analysis using reverse transcriptase–PCR method and identified the induced reversion events as deletions. DNA deletion assays may be sensitive indicators for carcinogen exposure. PMID:9114032

  11. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation.

    PubMed

    Trivellin, Giampaolo; Daly, Adrian F; Faucz, Fabio R; Yuan, Bo; Rostomyan, Liliya; Larco, Darwin O; Schernthaner-Reiter, Marie Helene; Szarek, Eva; Leal, Letícia F; Caberg, Jean-Hubert; Castermans, Emilie; Villa, Chiara; Dimopoulos, Aggeliki; Chittiboina, Prashant; Xekouki, Paraskevi; Shah, Nalini; Metzger, Daniel; Lysy, Philippe A; Ferrante, Emanuele; Strebkova, Natalia; Mazerkina, Nadia; Zatelli, Maria Chiara; Lodish, Maya; Horvath, Anelia; de Alexandre, Rodrigo Bertollo; Manning, Allison D; Levy, Isaac; Keil, Margaret F; Sierra, Maria de la Luz; Palmeira, Leonor; Coppieters, Wouter; Georges, Michel; Naves, Luciana A; Jamar, Mauricette; Bours, Vincent; Wu, T John; Choong, Catherine S; Bertherat, Jerome; Chanson, Philippe; Kamenický, Peter; Farrell, William E; Barlier, Anne; Quezado, Martha; Bjelobaba, Ivana; Stojilkovic, Stanko S; Wess, Jurgen; Costanzi, Stefano; Liu, Pengfei; Lupski, James R; Beckers, Albert; Stratakis, Constantine A

    2014-12-18

    Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).

  12. Gigantism and Acromegaly Due to Xq26 Microduplications and GPR101 Mutation

    PubMed Central

    Trivellin, G.; Daly, A.F.; Faucz, F.R.; Yuan, B.; Rostomyan, L.; Larco, D.O.; Schernthaner-Reiter, M.H.; Szarek, E.; Leal, L.F.; Caberg, J.-H.; Castermans, E.; Villa, C.; Dimopoulos, A.; Chittiboina, P.; Xekouki, P.; Shah, N.; Metzger, D.; Lysy, P.A.; Ferrante, E.; Strebkova, N.; Mazerkina, N.; Zatelli, M.C.; Lodish, M.; Horvath, A.; de Alexandre, R. Bertollo; Manning, A.D.; Levy, I.; Keil, M.F.; de la Luz Sierra, M.; Palmeira, L.; Coppieters, W.; Georges, M.; Naves, L.A.; Jamar, M.; Bours, V.; Wu, T.J.; Choong, C.S.; Bertherat, J.; Chanson, P.; Kamenický, P.; Farrell, W.E.; Barlier, A.; Quezado, M.; Bjelobaba, I.; Stojilkovic, S.S.; Wess, J.; Costanzi, S.; Liu, P.; Lupski, J.R.; Beckers, A.; Stratakis, C.A.

    2015-01-01

    BACKGROUND Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein–coupled receptor, was overexpressed in patients’ pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone–producing cells. CONCLUSIONS We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.) PMID:25470569

  13. Centrioles: duplicating precariously.

    PubMed

    Pelletier, Laurence

    2007-09-04

    To assemble a mitotic spindle and accurately segregate chromosomes to progeny, a cell needs to precisely regulate its centrosome number, a feat largely accomplished through the tight control of centriole duplication. Recent work showing that the overexpression of centriolar proteins can lead to the formation of multiple centrioles in the absence of pre-existing centrioles challenges the idea that it is a self-replicating organelle.

  14. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group.

    PubMed

    Boissel, Nicolas; Nibourel, Olivier; Renneville, Aline; Gardin, Claude; Reman, Oumedaly; Contentin, Nathalie; Bordessoule, Dominique; Pautas, Cécile; de Revel, Thierry; Quesnel, Bruno; Huchette, Pascal; Philippe, Nathalie; Geffroy, Sandrine; Terre, Christine; Thomas, Xavier; Castaigne, Sylvie; Dombret, Hervé; Preudhomme, Claude

    2010-08-10

    Recently, whole-genome sequencing in acute myeloid leukemia (AML) identified recurrent isocitrate dehydrogenase enzyme isoform (IDH1) mutations (IDH1m), previously reported to be involved in gliomas as well as IDH2 mutations (IDH2m). The prognosis of both IDH1m and IDH2m in AML remains unclear. The prevalence and the prognostic impact of R132 IDH1 and R172 IDH2 mutations were evaluated in a cohort of 520 adults with AML homogeneously treated in the French Acute Leukemia French Association (ALFA) -9801 and -9802 trials. The prevalence of IDH1m and IDH2m was 9.6% and 3.0%, respectively, mostly associated with normal cytogenetics (CN). In patients with CN-AML, IDH1m were associated with NPM1m (P = .008), but exclusive of CEBPAm (P = .03). In contrary, no other mutations were detected in IDH2m patients. In CN-AML patients, IDH1m were found in 19% of favorable genotype ([NPM1m or CEBPAm] without fms-related tyrosine kinase 3 [FLT3] internal tandem duplication [ITD]) and were associated with a higher risk of relapse (RR) and a shorter overall survival (OS). Favorable genotype in CN-AML could thus be defined by the association of NPM1m or CEBPAm with neither FLT3-ITD nor IDH1m. In IDH2m CN-AML patients, we observed a higher risk of induction failure, a higher RR and a shorter OS. In multivariate analysis, age, WBC count, the four-gene favorable genotype and IDH2m were independently associated with a higher RR and a shorter OS. Contrarily to what is reported in gliomas, IDH1m and IDH2m in AML are associated with a poor prognosis. Screening of IDH1m could help to identify high-risk patients within the subset of CN-AML with a favorable genotype.

  15. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication.

    PubMed

    Hossain, Manzar; Stillman, Bruce

    2012-08-15

    Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.

  16. Length Variation in Mitochondrial DNA of the Minnow Cyprinella Spiloptera

    PubMed Central

    Broughton, R. E.; Dowling, T. E.

    1994-01-01

    Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation. PMID:8001785

  17. Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies

    PubMed Central

    McKerrell, Thomas; Moreno, Thaidy; Ponstingl, Hannes; Bolli, Niccolo; Dias, João M. L.; Tischler, German; Colonna, Vincenza; Manasse, Bridget; Bench, Anthony; Bloxham, David; Herman, Bram; Fletcher, Danielle; Park, Naomi; Quail, Michael A.; Manes, Nicla; Hodkinson, Clare; Baxter, Joanna; Sierra, Jorge; Foukaneli, Theodora; Warren, Alan J.; Chi, Jianxiang; Costeas, Paul; Rad, Roland; Huntly, Brian; Grove, Carolyn; Ning, Zemin; Tyler-Smith, Chris; Varela, Ignacio; Scott, Mike; Nomdedeu, Josep; Mustonen, Ville

    2016-01-01

    The diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal. Here we describe Karyogene, an integrated targeted resequencing/analytical platform that detects nucleotide substitutions, insertions/deletions, chromosomal translocations, copy number abnormalities, and zygosity changes in a single assay. We validate the approach against 62 acute myeloid leukemia, 50 myelodysplastic syndrome, and 40 blood DNA samples from individuals without evidence of clonal blood disorders. We demonstrate robust detection of sequence changes in 49 genes, including difficult-to-detect mutations such as FLT3 internal-tandem and mixed-lineage leukemia (MLL) partial-tandem duplications, and clinically significant chromosomal rearrangements including MLL translocations to known and unknown partners, identifying the novel fusion gene MLL-DIAPH2 in the process. Additionally, we identify most significant chromosomal gains and losses, and several copy neutral loss-of-heterozygosity mutations at a genome-wide level, including previously unreported changes such as homozygosity for DNMT3A R882 mutations. Karyogene represents a dependable genomic diagnosis platform for translational research and for the clinical management of myeloid malignancies, which can be readily adapted for use in other cancers. PMID:27121471

  18. [Clinical investigation and mutation analysis of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia].

    PubMed

    Wen, Peng-qiang; Wang, Guo-bing; Chen, Zhan-ling; Liu, Xiao-hong; Cui, Dong; Shang, Yue; Li, Cheng-rong

    2013-12-01

    To analyze the clinical features and SLC25A13 gene mutations of a child with citrin deficiency complicated with purpura, convulsive seizures and methioninemia. The patient was subjected to physical examination and routine laboratory tests. Blood amino acids and acylcarnitines, and urine organic acids and galactose were analyzed respectively with tandem mass spectrometry and gas chromatographic mass spectrometry. SLC25A13 gene mutation screening was conducted by high resolution melt (HRM) analysis. The petechiae on the patient's face and platelet count (27×10(9)/L, reference range 100×10(9)/L-300×10(9)/L) supported the diagnosis of immunologic thrombocytopenic purpura (ITP). Laboratory tests found that the patient have abnormal coagulation, cardiac enzyme, liver function and liver enzymes dysfunction. Tandem mass spectrometry also found methionine to be increased (286 μmol/L, reference ranges 8-35 μmol/L). The patient did not manifest any galactosemia, citrullinemia and tyrosinemia. Analysis of SLC25A13 gene mutation found that the patient has carried IVS16ins3kb, in addition with abnormal HRM result for exon 6. Direct sequencing of exon 6 revealed a novel mutation c.495delA. The same mutation was not detected in 100 unrelated healthy controls. Further analysis of her family has confirmed that the c.495delA mutation has derived from her farther, and that the IVS16ins3kb was derived from her mother. The clinical features and metabolic spectrum of citrin deficiency can be variable. The poor prognosis and severity of clinical symptoms of the patient may be attributed to the novel c.495delA mutation.

  19. Spectrum of novel mutations found in Waardenburg syndrome types 1 and 2: implications for molecular genetic diagnostics

    PubMed Central

    Wildhardt, Gabriele; Zirn, Birgit; Graul-Neumann, Luitgard M; Wechtenbruch, Juliane; Suckfüll, Markus; Buske, Annegret; Bohring, Axel; Kubisch, Christian; Vogt, Stefanie; Strobl-Wildemann, Gertrud; Greally, Marie; Bartsch, Oliver; Steinberger, Daniela

    2013-01-01

    Objectives Till date, mutations in the genes PAX3 and MITF have been described in Waardenburg syndrome (WS), which is clinically characterised by congenital hearing loss and pigmentation anomalies. Our study intended to determine the frequency of mutations and deletions in these genes, to assess the clinical phenotype in detail and to identify rational priorities for molecular genetic diagnostics procedures. Design Prospective analysis. Patients 19 Caucasian patients with typical features of WS underwent stepwise investigation of PAX3 and MITF. When point mutations and small insertions/deletions were excluded by direct sequencing, copy number analysis by multiplex ligation-dependent probe amplification was performed to detect larger deletions and duplications. Clinical data and photographs were collected to facilitate genotype–phenotype analyses. Setting All analyses were performed in a large German laboratory specialised in genetic diagnostics. Results 15 novel and 4 previously published heterozygous mutations in PAX3 and MITF were identified. Of these, six were large deletions or duplications that were only detectable by copy number analysis. All patients with PAX3 mutations had typical phenotype of WS with dystopia canthorum (WS1), whereas patients with MITF gene mutations presented without dystopia canthorum (WS2). In addition, one patient with bilateral hearing loss and blue eyes with iris stroma dysplasia had a de novo missense mutation (p.Arg217Ile) in MITF. MITF 3-bp deletions at amino acid position 217 have previously been described in patients with Tietz syndrome (TS), a clinical entity with hearing loss and generalised hypopigmentation. Conclusions On the basis of these findings, we conclude that sequencing and copy number analysis of both PAX3 and MITF have to be recommended in the routine molecular diagnostic setting for patients, WS1 and WS2. Furthermore, our genotype–phenotype analyses indicate that WS2 and TS correspond to a clinical spectrum

  20. NASA printing, duplicating, and copying management handbook

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This handbook provides information and procedures for the implementation of NASA policy and applicable laws and regulations relating to printing, duplicating, and copying. The topics addressed include a description of relevant laws and regulations, authorizations required, and responsible entities for NASA printing, duplicating, and copying. The policy of NASA is to ensure understanding and application of authority and responsibility on printing matters. Where necessary, the handbook clarifies the intent of basic laws and regulations applicable to NASA.

  1. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    PubMed

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  2. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Non-duplication and syndicated exclusivity. 76.1609 Section 76.1609 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated...

  3. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Non-duplication and syndicated exclusivity. 76.1609 Section 76.1609 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated...

  4. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Non-duplication and syndicated exclusivity. 76.1609 Section 76.1609 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated...

  5. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Non-duplication and syndicated exclusivity. 76.1609 Section 76.1609 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated...

  6. 47 CFR 76.1609 - Non-duplication and syndicated exclusivity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Non-duplication and syndicated exclusivity. 76.1609 Section 76.1609 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1609 Non-duplication and syndicated...

  7. Use of Diagnostic Imaging in the Evaluation of Gastrointestinal Tract Duplications

    PubMed Central

    Laskowska, Katarzyna; Gałązka, Przemysław; Daniluk-Matraś, Irena; Leszczyński, Waldemar; Serafin, Zbigniew

    2014-01-01

    Summary Background Gastrointestinal tract duplication is a rare malformation associated with the presence of additional segment of the fetal gut. The aim of this study was to retrospectively review clinical features and imaging findings in intraoperatively confirmed cases of gastrointestinal tract duplication in children. Material/Methods The analysis included own material from the years 2002–2012. The analyzed group included 14 children, among them 8 boys and 6 girls. The youngest patient was diagnosed at the age of three weeks, and the oldest at 12 years of age. Results The duplication cysts were identified in the esophagus (n=2), stomach (n=5), duodenum (n=1), terminal ileum (n=5), and rectum (n=1). In four cases, the duplication coexisted with other anomalies, such as patent urachus, Meckel’s diverticulum, mesenteric cyst, and accessory pancreas. Clinical manifestation of gastrointestinal duplication cysts was variable, and some of them were detected accidently. Thin- or thick-walled cystic structures adjacent to the wall of neighboring gastrointestinal segment were documented on diagnostic imaging. Conclusions Ultrasound and computed tomography are the methods of choice in the evaluation of gastrointestinal duplication cysts. Apart from the diagnosis of the duplication cyst, an important issue is the detection of concomitant developmental pathologies, including pancreatic heterotopy. PMID:25114725

  8. Homozygous STIL Mutation Causes Holoprosencephaly and Microcephaly in Two Siblings

    PubMed Central

    Mouden, Charlotte; de Tayrac, Marie; Dubourg, Christèle; Rose, Sophie; Carré, Wilfrid; Hamdi-Rozé, Houda; Babron, Marie-Claude; Akloul, Linda; Héron-Longe, Bénédicte; Odent, Sylvie; Dupé, Valérie; Giet, Régis; David, Véronique

    2015-01-01

    Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis. PMID:25658757

  9. Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome

    PubMed Central

    Lan, Tianying; Renner, Tanya; Ibarra-Laclette, Enrique; Farr, Kimberly M.; Chang, Tien-Hao; Cervantes-Pérez, Sergio Alan; Zheng, Chunfang; Sankoff, David; Tang, Haibao; Purbojati, Rikky W.; Putra, Alexander; Drautz-Moses, Daniela I.; Schuster, Stephan C.; Herrera-Estrella, Luis; Albert, Victor A.

    2017-01-01

    Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome. PMID:28507139

  10. Generation of megabase-scale deletions, inversions and duplications involving the Contactin-6 gene in mice by CRISPR/Cas9 technology.

    PubMed

    Korablev, Alexei N; Serova, Irina A; Serov, Oleg L

    2017-12-28

    Copy Number Variation (CNV) of the human CNTN6 gene (encoding the contactin-6 protein), caused by deletions or duplications, is responsible for severe neurodevelopmental impairments, often in combination with facial dysmorphias. Conversely, deleterious point mutations of this gene do not show any clinical phenotypes. The aim of this study is to generate mice carrying large deletions, duplications and inversions involving the Cntn6 gene as a new experimental model to study CNV of the human CNTN6 locus. To generate large chromosomal rearrangements on mouse chromosome 6, we applied CRISPR/Cas9 technology in zygotes. Two guide RNAs (gRNAs) (flanking a DNA fragment of 1137 Mb) together with Cas9 mRNA and single-stranded DNA oligonucleotides (ssODN) were microinjected into the cytoplasm of 599 zygotes of F1 (C57BL x CBA) mice, and 256 of them were transplanted into oviducts of CD-1 females. As a result, we observed the birth of 41 viable F0 offspring. Genotyping of these mice was performed by PCR analysis and sequencing of PCR products. Among the 41 F0 offspring, we identified seven mice with deletions, two animals carrying duplications of the gene and four carrying inversions. Interestingly, two F0 offspring had both deletions and duplications. It is important to note that while three of seven deletion carriers showed expected sequences at the new joint sites, in another three, we identified an absence of 1-10 nucleotides at the CRISPR/Cas9 cut sites, and in one animal, 103 bp were missing, presumably due to error-prone non-homologous end joining. In addition, we detected the absence of 5 and 13 nucleotides at these sites in two F0 duplication carriers. Similar sequence changes at CRISPR/Cas9 cut sites were observed at the right and left boundaries of inversions. Thus, megabase-scale deletions, duplications and inversions were identified in 11 F0 offspring among 41 analyzed, i.e., approximately 25% efficiency. All genetically modified F0 offspring were viable and

  11. A novel PTCH1 mutation in a patient with Gorlin syndrome.

    PubMed

    Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei

    2014-01-01

    Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified.

  12. TANDEM: matching proteins with tandem mass spectra.

    PubMed

    Craig, Robertson; Beavis, Ronald C

    2004-06-12

    Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.

  13. Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22

    PubMed Central

    Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E. 

    2002-01-01

    In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936

  14. Testing of duplicate rinse aliquots for presence of Salmonella

    USDA-ARS?s Scientific Manuscript database

    Testing of chicken carcass rinses for Salmonella prevalence is often performed in duplicate because of the potential importance of the results, but anecdotal reports indicate that duplicate samples often disagree. This might be due to normal variation in microbiological methods or to the testing of...

  15. Methods, apparatus and system for selective duplication of subtasks

    DOEpatents

    Andrade Costa, Carlos H.; Cher, Chen-Yong; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2016-03-29

    A method for selective duplication of subtasks in a high-performance computing system includes: monitoring a health status of one or more nodes in a high-performance computing system, where one or more subtasks of a parallel task execute on the one or more nodes; identifying one or more nodes as having a likelihood of failure which exceeds a first prescribed threshold; selectively duplicating the one or more subtasks that execute on the one or more nodes having a likelihood of failure which exceeds the first prescribed threshold; and notifying a messaging library that one or more subtasks were duplicated.

  16. P16 UV mutations in human skin epithelial tumors.

    PubMed

    Soufir, N; Molès, J P; Vilmer, C; Moch, C; Verola, O; Rivet, J; Tesniere, A; Dubertret, L; Basset-Seguin, N

    1999-09-23

    The p16 gene expresses two alternative transcripts (p16alpha and p16beta) involved in tumor suppression via the retinoblastoma (Rb) or p53 pathways. Disruption of these pathways can occur through inactivation of p16 or p53, or activating mutations of cyclin dependant kinase 4 gene (Cdk4). We searched for p16, Cdk4 and p53 gene mutations in 20 squamous cell carcinomas (SSCs), 1 actinic keratosis (AK), and 28 basal cell carcinomas (BCCs), using PCR-SSCP. A deletion and methylation analysis of p16 was also performed. Six different mutations (12%) were detected in exon 2 of p16 (common to p16alpha and p16beta), in five out of 21 squamous lesions (24%) (one AK and four SCCs) and one out of 28 BCCs (3.5%). These included four (66%) ultraviolet (UV)-type mutations (two tandems CC : GG to TT : AA transitions and two C : G to T : A transitions at dipyrimidic site) and two transversions. P53 mutations were present in 18 samples (37%), mostly of UV type. Of these, only two (one BCC and one AK) harboured simultaneously mutations of p16, but with no consequence on p16beta transcript. Our data demonstrate for the first time the presence of p16 UV induced mutations in non melanoma skin cancer, particularly in the most aggressive SCC type, and support that p16 and p53 are involved in two independent pathways in skin carcinogenesis.

  17. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis.

    PubMed

    Kojima, K; Konopleva, M; Tsao, T; Andreeff, M; Ishida, H; Shiotsu, Y; Jin, L; Tabe, Y; Nakakuma, H

    2010-01-01

    Treatment using Fms-like tyrosine kinase-3 (FLT3) inhibitors is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. We found that FI-700 immediately reduced antiapoptotic Mcl-1 levels and enhanced Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/internal tandem duplication cells through the Mcl-1/Noxa axis. FI-700 induced proteasome-mediated degradation of Mcl-1, resulting in the reduced ability of Mcl-1 to sequester proapoptotic Bim. Nutlin-3 induced Noxa, which displaced Bim from Mcl-1. The FI-700/Nutlin-3 combination profoundly activated Bax and induced apoptosis. Our findings suggest that FI-700 actively enhances p53 signaling toward mitochondrial apoptosis and that a combination strategy aimed at inhibiting FLT3 and activating p53 signaling could potentially be effective in AML.

  18. Copy Number Heterogeneity, Large Origin Tandem Repeats, and Interspecies Recombination in Human Herpesvirus 6A (HHV-6A) and HHV-6B Reference Strains

    PubMed Central

    Roychoudhury, Pavitra; Makhsous, Negar; Hanson, Derek; Chase, Jill; Krueger, Gerhard; Xie, Hong; Huang, Meei-Li; Saunders, Lindsay; Ablashi, Dharam; Koelle, David M.; Cook, Linda; Jerome, Keith R.

    2018-01-01

    ABSTRACT Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae. IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of

  19. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  20. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    PubMed Central

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel MA; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin AM; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-01-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication, and protect, repair and restart damaged forks. Here we identify DONSON as a novel fork protection factor, and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilises forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATR-dependent signalling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity, and potentiating chromosomal instability. Hypomorphic mutations substantially reduce DONSON protein levels and impair fork stability in patient cells, consistent with defective DNA replication underlying the disease phenotype. In summary, we identify mutations in DONSON as a common cause of microcephalic dwarfism, and establish DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability. PMID:28191891

  1. Asymmetric histone modifications between the original and derived loci of human segmental duplications

    PubMed Central

    Zheng, Deyou

    2008-01-01

    Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352

  2. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate

    PubMed Central

    Dehal, Paramvir; Boore, Jeffrey L

    2005-01-01

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622

  3. [Hyperuricemia and gene mutations: a case report].

    PubMed

    Tattoli, Fabio; Falconi, Daniela; De Prisco, Ornella; Maurizio, Gherzi; Marazzi, Federico; Marengo, Marita; Serra, Ilaria; Tamagnone, Michela; Cordero di Montezemolo, Luca; Pasini, Barbara; Formica, Marco

    2017-06-01

    Hyperuricemia is frequently found in nephrology. The case presented may be useful to clarify some pathogenetic aspects. It is a patient of 18 years, hyperuricaemic. Non-consanguineous parents, hyperuricemia in the paternal line, not neuropsychiatric disorders in the family. Delay in neuromotor acquisitions, average intellectual disabilities, anxiety disorder, obsessive-compulsive personality traits. Normal renal function and renal ultrasound. Evidence of hyperuricemia in 2015. Never gouty episodes and / or lithiasis, initiated allopurinol 100 mg on alternate days, with no side effects, urea in the control range, slightly below normal uricuria. Given the complex clinical, he carried out a genetic analysis of array-CGH. He showed a deletion on the short arm of chromosome 3 (3p12.3) and a duplication of the long arm of chromosome 1 (19q13-42). The deletion 3p12.3 (paternal inheritance), involves the ROBO2 gene. Duplication 19q13.42, (maternal inheritance), includes NLRP12, DPRX, ZNF331 genes. The ROBO2 gene with its mutation, is associated with vesicoureteral reflux. The NLRP12 gene encodes proteins called "Nalps", forming a subfamily of proteins "CATERPILLAR". Many "Nalps" as well as the "Nalps 12" have an N-terminal domain (DYP) with a purin. Since uric acid is a byproduct of purine metabolism, considered the familiarity, we believe that we can hypothesize that the mutations found. In particular those concerning the NLRP-12 gene, may have a role in the presence of hyperuricemia. We believe that in patients with hyperuricemia, associated with a particular impairment of neurological picture, it is likely that there is a subtended common genetic deficiency. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.

  4. A Duplicate Construction Experiment.

    ERIC Educational Resources Information Center

    Bridgeman, Brent

    This experiment was designed to assess the ability of item writers to construct truly parallel tests based on a "duplicate-construction experiment" in which Cronbach argues that if the universe description and sampling are ideally refined, the two independently constructed tests will be entirely equivalent, and that within the limits of item…

  5. Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients.

    PubMed

    Ahmad, Firoz; Lad, Purnima; Bhatia, Simi; Das, Bibhu Ranjan

    2015-01-01

    KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.

  6. 10 CFR 7.21 - Cost of duplication of documents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  7. 10 CFR 7.21 - Cost of duplication of documents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  8. 10 CFR 7.21 - Cost of duplication of documents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  9. 10 CFR 7.21 - Cost of duplication of documents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  10. 10 CFR 7.21 - Cost of duplication of documents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  11. An autosomal recessive mutation in SCL24A4 causing enamel hypoplasia in Samoyed and its relationship to breed-wide genetic diversity.

    PubMed

    Pedersen, Niels C; Shope, Bonnie; Liu, Hongwei

    2017-01-01

    Pure breeding of dogs has led to over 700 heritable disorders, of which almost 300 are Mendelian in nature. Seventy percent of the characterized mutations have an autosomal recessive mode of inheritance, indicative of positive selection during bouts of inbreeding primarily for new desired conformational traits. Samoyed suffer from several common complex genetic disorders, but up to this time only two X-linked and one autosomal dominant disorder have been identified. Previous studies based on pedigrees and SNP arrays have concluded that Samoyed breeders have done a good job in maintaining genetic diversity and avoiding excessive inbreeding. This may explain why autosomal recessive disorders have not occurred to the extent observed in many other breeds. However, an enamel hypoplasia analogous to a form of autosomal recessive amelogenesis imperfecta (ARAI) in humans has been recently characterized in Samoyed, although the causative mutation appears to have existed for three or more decades. The rise of such a mutation indicates that bouts of inbreeding for desired conformational traits are still occurring despite an old and well-defined breed standard. Therefore, the present study has two objectives: 1) measure genetic diversity in the breed using DNA and short tandem repeats (STR), and 2) identify the exact mutation responsible for enamel hypoplasia in the breed, possible explanations for its recent spread, and the effect of eliminating the mutation on existing genetic diversity. The recent discovery of an autosomal recessive amelogenesis imperfecta (ARAI) in Samoyed provides an opportunity to study the mutation as well as genetic factors that favored its occurrence and subsequent spread. The first step in the study was to use 33 short tandem repeat (STR) loci on 25/38 autosomes and seven STRs across the dog leukocyte antigen (DLA) class I and II regions on CFA12 to determine the DNA-based genetic profile of 182 individuals from North America, Europe and Australia

  12. Age at cancer onset in germline TP53 mutation carriers: association with polymorphisms in predicted G-quadruplex structures

    PubMed Central

    Hainaut, Pierre

    2014-01-01

    Germline TP53 mutations predispose to multiple cancers defining Li-Fraumeni/Li-Fraumeni-like syndrome (LFS/LFL), a disease with large individual disparities in cancer profiles and age of onset. G-quadruplexes (G4s) are secondary structural motifs occurring in guanine tracks, with regulatory effects on DNA and RNA. We analyzed 85 polymorphisms within or near five predicted G4s in TP53 in search of modifiers of penetrance of LFS/LFL in Brazilian cancer families with (n = 35) or without (n = 110) TP53 mutations. Statistical analyses stratified on family structure showed that cancer tended to occur ~15 years later in mutation carriers who also carried the variant alleles of two polymorphisms within predicted G4-forming regions, rs17878362 (TP53 PIN3, 16 bp duplication in intron 3; P = 0.082) and rs17880560 (6 bp duplication in 3′ flanking region; P = 0.067). Haplotype analysis showed that this inverse association was driven by the polymorphic status of the remaining wild-type (WT) haplotype in mutation carriers: in carriers with a WT haplotype containing at least one variant allele of rs17878362 or rs17880560, cancer occurred ~15 years later than in carriers with other WT haplotypes (P = 0.019). No effect on age of cancer onset was observed in subjects without a TP53 mutation. The G4 in intron 3 has been shown to regulate alternative p53 messenger RNA splicing, whereas the biological roles of predicted G4s in the 3′ flanking region remain to be elucidated. In conclusion, this study demonstrates that G4 polymorphisms in haplotypes of the WT TP53 allele have an impact on LFS/LFL penetrance in germline TP53 mutation carriers. PMID:24336192

  13. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  14. Identification of 15 novel partial SHOX deletions and 13 partial duplications, and a review of the literature reveals intron 3 to be a hotspot region.

    PubMed

    Benito-Sanz, Sara; Belinchon-Martínez, Alberta; Aza-Carmona, Miriam; de la Torre, Carolina; Huber, Celine; González-Casado, Isabel; Ross, Judith L; Thomas, N Simon; Zinn, Andrew R; Cormier-Daire, Valerie; Heath, Karen E

    2017-02-01

    Short stature homeobox gene (SHOX) is located in the pseudoautosomal region 1 of the sex chromosomes. It encodes a transcription factor implicated in the skeletal growth. Point mutations, deletions or duplications of SHOX or its transcriptional regulatory elements are associated with two skeletal dysplasias, Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), as well as in a small proportion of idiopathic short stature (ISS) individuals. We have identified a total of 15 partial SHOX deletions and 13 partial SHOX duplications in LWD, LMD and ISS patients referred for routine SHOX diagnostics during a 10 year period (2004-2014). Subsequently, we characterized these alterations using MLPA (multiplex ligation-dependent probe amplification assay), fine-tiling array CGH (comparative genomic hybridation) and breakpoint PCR. Nearly half of the alterations have a distal or proximal breakpoint in intron 3. Evaluation of our data and that in the literature reveals that although partial deletions and duplications only account for a small fraction of SHOX alterations, intron 3 appears to be a breakpoint hotspot, with alterations arising by non-allelic homologous recombination, non-homologous end joining or other complex mechanisms.

  15. Duplicate laboratory test reduction using a clinical decision support tool.

    PubMed

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  16. A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.

    PubMed

    Bansal, Vikas

    2017-03-14

    PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .

  17. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  18. Perspectives on Program Duplication

    ERIC Educational Resources Information Center

    Morrison, Gail M.

    2010-01-01

    Concerns about program duplication in higher education are often reminiscent of Supreme Court Justice Potter Stewart's now famous remark about pornography: "I know it when I see it." The problem with that reaction is that, at least on its surface, this response seems intuitive and emotional, to say nothing of subjective and personal. The…

  19. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    PubMed

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  20. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.).

    PubMed

    Vatansever, Recep; Koc, Ibrahim; Ozyigit, Ibrahim Ilker; Sen, Ugur; Uras, Mehmet Emin; Anjum, Naser A; Pereira, Eduarda; Filiz, Ertugrul

    2016-12-01

    Solanum tuberosum genome analysis revealed 12 StSULTR genes encoding 18 transcripts. Among genes annotated at group level ( StSULTR I-IV), group III members formed the largest SULTRs-cluster and were potentially involved in biotic/abiotic stress responses via various regulatory factors, and stress and signaling proteins. Employing bioinformatics tools, this study performed genome-wide identification and expression analysis of SULTR (StSULTR) genes in potato (Solanum tuberosum L.). Very strict homology search and subsequent domain verification with Hidden Markov Model revealed 12 StSULTR genes encoding 18 transcripts. StSULTR genes were mapped on seven S. tuberosum chromosomes. Annotation of StSULTR genes was also done as StSULTR I-IV at group level based mainly on the phylogenetic distribution with Arabidopsis SULTRs. Several tandem and segmental duplications were identified between StSULTR genes. Among these duplications, Ka/Ks ratios indicated neutral nature of mutations that might not be causing any selection. Two segmental and one-tandem duplications were calculated to occur around 147.69, 180.80 and 191.00 million years ago (MYA), approximately corresponding to the time of monocot/dicot divergence. Two other segmental duplications were found to occur around 61.23 and 67.83 MYA, which is very close to the origination of monocotyledons. Most cis-regulatory elements in StSULTRs were found associated with major hormones (such as abscisic acid and methyl jasmonate), and defense and stress responsiveness. The cis-element distribution in duplicated gene pairs indicated the contribution of duplication events in conferring the neofunctionalization/s in StSULTR genes. Notably, RNAseq data analyses unveiled expression profiles of StSULTR genes under different stress conditions. In particular, expression profiles of StSULTR III members suggested their involvement in plant stress responses. Additionally, gene co-expression networks of these group members included various

  1. Consensus properties and their large-scale applications for the gene duplication problem.

    PubMed

    Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver

    2016-06-01

    Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets.

  2. A novel species-specific tandem repeat DNA family from Sinapis arvensis: detection of telomere-like sequences.

    PubMed

    Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M

    1996-08-01

    DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.

  3. Brief Report: Regression Timing and Associated Features in "MECP2" Duplication Syndrome

    ERIC Educational Resources Information Center

    Peters, S. U.; Hundley, R. J.; Wilson, A. K.; Carvalho, C. M. B.; Lupski, J. R.; Ramocki, M. B.

    2013-01-01

    The aim of this study was to determine the frequency, timing, and associated features of developmental regression in "MECP2" duplication syndrome. We also examined whether duplication size was associated with regression. Comprehensive psychological evaluations were used to assess 17 boys with "MECP2" duplication syndrome.…

  4. [Anterior rectal duplication in adult patient: a case report].

    PubMed

    Rodríguez-Cabrera, J; Villanueva-Sáenz, E; Bolaños-Badillo, L E

    2009-01-01

    To report a case of rectal duplication in the adult and make a literature review. The intestinal duplications are injuries of congenital origin that can exist from the base of the tongue to the anal verge, being the most frequent site at level of terminal ileum (22%) and at the rectal level in 5% To date approximately exist 80 reports in world-wide Literature generally in the pediatric population being little frequent in the adult age. Its presentation could be tubular or cystic. The recommended treatment is the surgical resection generally in block with coloanal anastomosis. A case review of rectal duplication in the adult and the conducted treatment. The case of a patient appears with diagnose of rectal duplication with tubular type,whose main symptom was constipation and fecal impactation. In the exploration was detect double rectal lumen (anterior and posterior) that it above initiates by of the anorectal ring with fibrous ulcer of fibrinoid aspect of 3 approx cm of length x 1 cm wide, at level of the septum that separates both rectal lumina. The rectal duplication is a rare pathology in the adult nevertheless is due to suspect before the existence of alterations in the mechanics of the defecation, rectal prolapse and rectal bleeding,the election treatment is a protectomy with colonic pouch in "J" and coloanal anastomosis.

  5. Genome duplication and the evolution of conspecific pollen precedence.

    PubMed

    Baldwin, Sarah J; Husband, Brian C

    2011-07-07

    Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event.

  6. A novel PTCH1 mutation in a patient with Gorlin syndrome

    PubMed Central

    Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei

    2014-01-01

    Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified. PMID:27081512

  7. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  8. 41 CFR 302-2.20 - What is a duplicate reimbursement disclosure statement?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What is a duplicate reimbursement disclosure statement? 302-2.20 Section 302-2.20 Public Contracts and Property Management Federal... knowledge, no third party has accepted duplicate reimbursement for your relocation expenses. The duplicate...

  9. 41 CFR 302-2.20 - What is a duplicate reimbursement disclosure statement?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What is a duplicate reimbursement disclosure statement? 302-2.20 Section 302-2.20 Public Contracts and Property Management Federal... knowledge, no third party has accepted duplicate reimbursement for your relocation expenses. The duplicate...

  10. 41 CFR 302-2.20 - What is a duplicate reimbursement disclosure statement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What is a duplicate reimbursement disclosure statement? 302-2.20 Section 302-2.20 Public Contracts and Property Management Federal... knowledge, no third party has accepted duplicate reimbursement for your relocation expenses. The duplicate...

  11. Identification of 14 novel mutations in the long isoform of USH2A in Spanish patients with Usher syndrome type II

    PubMed Central

    Aller, E; Jaijo, T; Beneyto, M; Nájera, C; Oltra, S; Ayuso, C; Baiget, M; Carballo, M; Antiñolo, G; Valverde, D; Moreno, F; Vilela, C; Collado, D; Pérez‐Garrigues, H; Navea, A; Millán, J M

    2006-01-01

    Mutations in USH2A gene have been shown to be responsible for Usher syndrome type II, an autosomal recessive disorder characterised by hearing loss and retinitis pigmentosa. USH2A was firstly described as consisting of 21 exons, but 52 novel exons at the 3' end of the gene were recently identified. In this report, a mutation analysis of the new 52 exons of USH2A gene was carried out in 32 unrelated patients in which both disease‐causing mutations could not be found after the screening of the first 21 exons of the USH2A gene. On analysing the new 52 exons, fourteen novel mutations were identified in 14 out of the 32 cases studied, including 7 missense, 5 frameshift, 1 duplication and a putative splice-site mutation. PMID:17085681

  12. Genotype-phenotype characterization in 13 individuals with chromosome Xp11.22 duplications.

    PubMed

    Grams, Sarah E; Argiropoulos, Bob; Lines, Matthew; Chakraborty, Pranesh; Mcgowan-Jordan, Jean; Geraghty, Michael T; Tsang, Marilyn; Eswara, Marthand; Tezcan, Kamer; Adams, Kelly L; Linck, Leesa; Himes, Patricia; Kostiner, Dana; Zand, Dina J; Stalker, Heather; Driscoll, Daniel J; Huang, Taosheng; Rosenfeld, Jill A; Li, Xu; Chen, Emily

    2016-04-01

    We report 13 new individuals with duplications in Xp11.22-p11.23. The index family has one male and two female members in three generations with mild-severe intellectual disability (ID), speech delay, dysmorphic features, early puberty, constipation, and/or hand and foot abnormalities. Affected individuals were found to have two small duplications in Xp11.22 at nucleotide position (hg19) 50,112,063-50,456,458 bp (distal) and 53,160,114-53,713,154 bp (proximal). Collectively, these two regions include 14 RefSeq genes, prompting collection of a larger cohort of patients, in an attempt to delineate critical genes associated with the observed phenotype. In total, we have collected data on nine individuals with duplications overlapping the distal duplication region containing SHROOM4 and DGKK and eight individuals overlapping the proximal region including HUWE1. Duplications of HUWE1 have been previously associated with non-syndromic ID. Our data, with previously published reports, suggest that duplications involving SHROOM4 and DGKK may represent a new syndromic X-linked ID critical region associated with mild to severe ID, speech delay +/- dysarthria, attention deficit disorder, precocious puberty, constipation, and motor delay. We frequently observed foot abnormalities, 5th finger clinodactyly, tapering fingers, constipation, and exercise intolerance in patients with duplications of these two genes. Regarding duplications including the proximal region, our observations agree with previous studies, which have found associations with intellectual disability. In addition, expressive language delay, failure to thrive, motor delay, and 5th finger clinodactyly were also frequently observed in patients with the proximal duplication. © 2015 Wiley Periodicals, Inc.

  13. Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells.

    PubMed

    Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori

    2015-01-01

    It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation

  14. Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

    PubMed Central

    Rogozin, Igor B.

    2014-01-01

    Ongoing debates about functional importance of gene duplications have been recently intensified by a heated discussion of the “ortholog conjecture” (OC). Under the OC, which is central to functional annotation of genomes, orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of gene ontology (GO) annotations and expression profiles, among within-species paralogs compared to orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. Subsequent studies suggested that the OC appears to be generally valid when applied to mammalian evolution but the complete picture of evolution of gene expression also has to incorporate lineage-specific aspects of paralogy. The observed complexity of gene expression evolution after duplication can be explained through selection for gene dosage effect combined with the duplication-degeneration-complementation model. This paper discusses expression divergence of recent duplications occurring before functional divergence of proteins encoded by duplicate genes. PMID:25197576

  15. PGDD: a database of gene and genome duplication in plants

    PubMed Central

    Lee, Tae-Ho; Tang, Haibao; Wang, Xiyin; Paterson, Andrew H.

    2013-01-01

    Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD. PMID:23180799

  16. A PLK4 mutation causing azoospermia in a man with Sertoli cell-only syndrome.

    PubMed

    Miyamoto, T; Bando, Y; Koh, E; Tsujimura, A; Miyagawa, Y; Iijima, M; Namiki, M; Shiina, M; Ogata, K; Matsumoto, N; Sengoku, K

    2016-01-01

    About 15% of couples wishing to have children are infertile; approximately half these cases involve a male factor. Polo-like kinase 4 (PLK-4) is a member of the polo protein family and a key regulator of centriole duplication. Male mice with a point mutation in the Plk4 gene show azoospermia associated with germ cell loss. Mutational analysis of 81 patients with azoospermia and Sertoli cell-only syndrome (SCOS) identified one man with a heterozygous 13-bp deletion in the Ser/Thr kinase domain of PLK4. Division of centrioles occurred in wild-type PLK4-transfected cells, but was hampered in PLK-4-mutant transfectants, which also showed abnormal nuclei. Thus, this PLK4 mutation might be a cause of human SCOS and nonobstructive azoospermia. © 2015 American Society of Andrology and European Academy of Andrology.

  17. Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon

    PubMed Central

    Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian

    2014-01-01

    Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567

  18. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.

    PubMed

    Song, Xiaowei; Wang, Yajun; Tang, Yezhong

    2013-01-01

    As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.

  19. Rapid Diversification of FoxP2 in Teleosts through Gene Duplication in the Teleost-Specific Whole Genome Duplication Event

    PubMed Central

    Song, Xiaowei; Wang, Yajun; Tang, Yezhong

    2013-01-01

    As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication. PMID:24349554

  20. Inflammatory peeling skin syndrome caused a novel mutation in CDSN.

    PubMed

    Telem, Dana Fuchs; Israeli, Shirli; Sarig, Ofer; Sprecher, Eli

    2012-04-01

    Generalized peeling skin syndrome (PSS) is a rare autosomal recessive dermatosis manifesting with continuous exfoliation of the stratum corneum. The inflammatory (type B) subtype of PSS was recently found to be caused by deleterious mutations in the CDSN gene encoding corneodesmosin, a major component of desmosomal junctions in the uppermost layers of the epidermis. In the present study, we assessed a 10-month-old baby, who presented with generalized superficial peeling of the skin. Using PCR amplification and direct sequencing, we identified the third PSS-associated mutation in CDSN, a homozygous 4 bp duplication in the second exon of the gene (c.164_167dup GCCT; p.Thr57ProfsX6). These data further support the notion that corneodesmosin deficiency impairs cell-cell adhesion in the upper epidermis, paving the way for an abnormal inflammatory response due to epidermal barrier disruption.

  1. ALTERNATIVES TO DUPLICATE DIET METHODOLOGY

    EPA Science Inventory

    Duplicate Diet (DD) methodology has been used to collect information about the dietary exposure component in the context of total exposure studies. DD methods have been used to characterize the dietary exposure component in the NHEXAS pilot studies. NERL desired to evaluate it...

  2. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element.

    PubMed

    Uchiumi, Fumiaki; Watanabe, Takeshi; Tanuma, Sei-ichi

    2010-05-15

    DNA helicases are important in the regulation of DNA transaction and thereby various cellular functions. In this study, we developed a cost-effective multiple DNA transfection assay with DEAE-dextran reagent and analyzed the promoter activities of the human DNA helicases. The 5'-flanking regions of the human DNA helicase-encoding genes were isolated and subcloned into luciferase (Luc) expression plasmids. They were coated onto 96-well plate and used for co-transfection with a renilla-Luc expression vector into various cells, and dual-Luc assays were performed. The profiles of promoter activities were dependent on cell lines used. Among these human DNA helicase genes, XPB, RecQL5, and RTEL promoters were activated during TPA-induced HL-60 cell differentiation. Interestingly, duplicated ets (GGAA) elements are commonly located around the transcription start sites of these genes. The duplicated GGAA motifs are also found in the promoters of DNA replication/repair synthesis factor genes including PARG, ATR, TERC, and Rb1. Mutation analyses suggested that the duplicated GGAA-motifs are necessary for the basal promoter activity in various cells and some of them positively respond to TPA in HL-60 cells. TPA-induced response of 44-bp in the RTEL promoter was attenuated by co-transfection of the PU.1 expression vector. These findings suggest that the duplicated ets motifs regulate DNA-repair associated gene expressions during macrophage-like differentiation of HL-60 cells. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Hypospadiac Duplication of Anterior Urethra-a Rare Congenital Anomaly.

    PubMed

    Goyal, Bhawana; Gupta, Suresh; Goyal, Parag

    2017-02-01

    Duplication of the urethra is a complex and rarely seen congenital anomaly with three anatomic variants: epispadiac (dorsal), hypospadiac (ventral), and Y-type. We report here a case of hypospadiac duplication of anterior urethra with dorsal blind ending urethra in a 9-year-old boy who presented with complaint of passing urine from the ventral aspect of penis.

  4. Comparing genomes with rearrangements and segmental duplications.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  5. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform.

    PubMed

    Norling, A; Hirschberg, A L; Rodriguez-Wallberg, K A; Iwarsson, E; Wedell, A; Barbaro, M

    2014-08-01

    Can high-resolution array comparative genomic hybridization (CGH) analysis of DNA samples from women with primary ovarian insufficiency (POI) improve the diagnosis of the condition and identify novel candidate genes for POI? A mutation affecting the regulatory region of growth differentiation factor 9 (GDF9) was identified for the first time together with several novel candidate genes for POI. Most patients with POI do not receive a molecular diagnosis despite a significant genetic component in the pathogenesis. We performed a case-control study. Twenty-six patients were analyzed by array CGH for identification of copy number variants. Novel changes were investigated in 95 controls and in a separate population of 28 additional patients with POI. The experimental procedures were performed during a 1-year period. DNA samples from 26 patients with POI were analyzed by a customized 1M array-CGH platform with whole genome coverage and probe enrichment targeting 78 genes in sex development. By PCR amplification and sequencing, the breakpoint of an identified partial GDF9 gene duplication was characterized. A multiplex ligation-dependent probe amplification (MLPA) probe set for specific identification of deletions/duplications affecting GDF9 was developed. An MLPA probe set for the identification of additional cases or controls carrying novel candidate regions identified by array-CGH was developed. Sequencing of three candidate genes was performed. Eleven unique copy number changes were identified in a total of 11 patients, including a tandem duplication of 475 bp, containing part of the GDF9 gene promoter region. The duplicated region contains three NOBOX-binding elements and an E-box, important for GDF9 gene regulation. This aberration is likely causative of POI. Fifty-four patients were investigated for copy number changes within GDF9, but no additional cases were found. Ten aberrations constituting novel candidate regions were detected, including a second DNAH6

  6. Duplicate publications and related problems in published papers on oral and maxillofacial surgery.

    PubMed

    Le, A; Moran, C M P; Bezuhly, M; Hong, P

    2015-07-01

    As duplicate publication is unethical, our aim was to find out how common it is among published papers on oral and maxillofacial surgery. We used PubMed to identify index articles published in 2010 in the Journal of Oral and Maxillofacial Surgery, the British Journal of Oral and Maxillofacial Surgery, and the European Journal of Cranio-Maxillo-Facial Surgery, and searched for possible duplicate publications from 2008 to 2012 using the first or second and last authors' names. Suspected duplicates were categorised into "non-duplicate" (no overlap), "duplicate" (identical results and conclusions), or "salami-sliced" publications (part of the index article repeated or continued). Of the 589 index articles, 17 (3%) had some form of duplication, but specifically, we found 3 duplicate, and 15 salami-sliced publications. Most redundant articles originated from China (n=4), followed by Italy, Japan, and Germany (3 from each) and the United States and Denmark (2 each). Of the 18 redundant publications, 9 did not reference the related index article. Duplicate material is still being published, and salami-slicing is relatively common among publications on oral and maxillofacial surgery. Further research is required into the extent and impact of this finding. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. The evolution of duplicate gene expression in mammalian organs

    PubMed Central

    Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik

    2017-01-01

    Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766

  8. True duplication of the vas deferens: a case report and review of literature.

    PubMed

    Liang, Mike K; Subramanian, Anuradha; Weedin, John; Griffith, Donald P; Awad, Samir S

    2012-04-01

    Duplication of the vas deferens is the identification of a second vas deferens within the spermatic cord; it is a rarely reported congenital anomaly. Duplicate vas deferens should not be confused with double vas deferens that describes ipsilateral renal agenesis with a blind ureter ending in the ejaculatory system. We present a case of duplicated vas deferens, and a PubMed Medline (National Library of Medicine) search was performed using the terms "[duplicated OR double]" and "vas deferens". Nineteen papers for a total of twenty-two cases (including ours) were identified. Duplication of vas deferens is a rare finding; it is likely under-reported and underrecognized. Failure to recognize this variation can result in injury to the vas deferens or an ineffective vasectomy. Following identification of a suspected duplicated vas deferens, the structure should be tracked from the internal ring down to the epididymis and intra-operative Doppler should be performed. Post-operatively, renal and bladder imaging can be considered though there have been no reported cases of non-testicular genito-urinary anomalies associated with duplicated vas deferens.

  9. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry themore » most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.« less

  10. Duplication methods for replacement of broken orthoses.

    PubMed

    Bradbury, R L; Gastwirth, B W; O'Connor, K J; Bloom, J

    1988-04-01

    The methods presented for replacement of broken orthoses have proved very effective (Fig. 9). In more than 5 years of employing such duplication techniques, we have found patient satisfaction in the product to be commensurate with that for their originally prescribed devices. The techniques presented are not the only methods by which orthoses can be duplicated. We recognize that the clinician should refabricate the same orthosis only when the cause of breakage has been determined to be material fatigue or stress. Should the patient's weight, foot structure, or activities have changed, new orthoses should be fabricated with those factors in mind.

  11. Therapeutic Duplicates in a Cohort of Hospitalized Elderly Patients: Results from the REPOSI Study.

    PubMed

    Pasina, Luca; Astuto, Sarah; Cortesi, Laura; Tettamanti, Mauro; Franchi, Carlotta; Marengoni, Alessandra; Mannucci, Pier Mannuccio; Nobili, Alessandro

    2016-09-01

    Explicit criteria for potentially inappropriate prescriptions in the elderly are recommended to avoid prescriptions of duplicate drug classes and to optimize monotherapy within a single drug class before a new agent is considered. Duplicate drug class prescription (or therapeutic duplicates) puts the patient at increased risk of adverse drug reactions with no additional therapeutic benefits. To our knowledge, the prevalence of elderly inpatients receiving therapeutic duplicates has never been studied. Our objective was to assess the prevalence of therapeutic duplicates at admission, discharge, and 3-month follow-up of hospitalized elderly patients. This cross-sectional prospective study was conducted in 97 Italian internal medicine and geriatric wards. Therapeutic duplicates were defined as at least two drugs of the same therapeutic class prescribed simultaneously to a patient. A patient's drug therapy at admission relates to prescriptions from general practitioners, whereas prescriptions at discharge are those from hospital internists or geriatricians. The study sample comprised 5821 admitted and 4983 discharged patients. In all, 143 therapeutic duplicates were found at admission and 170 at discharge. The prevalence of patients exposed to at least one therapeutic duplicate rose significantly from hospital admission (2.5 %) to discharge (3.4 %; p = 0.0032). Psychotropic drugs and drugs for peptic ulcer or gastroesophageal reflux disease were the most frequently involved. A total of 86.8 % of patients discharged with at least one therapeutic duplicate were still receiving them at 3-month follow-up. Hospitalization and drugs prescribed by internists and geriatricians are both factors associated with a small but definite increase in overall therapeutic duplicates in elderly patients admitted to internal medicine and geriatric wards. More attention should be paid to the indications for each drug prescribed, because therapeutic duplicates are not supported by evidence

  12. Xq28 duplication presenting with intestinal and bladder dysfunction and a distinctive facial appearance

    PubMed Central

    Clayton-Smith, Jill; Walters, Sarah; Hobson, Emma; Burkitt-Wright, Emma; Smith, Rupert; Toutain, Annick; Amiel, Jeanne; Lyonnet, Stanislas; Mansour, Sahar; Fitzpatrick, David; Ciccone, Roberto; Ricca, Ivana; Zuffardi, Orsetta; Donnai, Dian

    2009-01-01

    Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability and recurrent pneumonia. We identified an Xq28 duplication in three families where several male patients had presented with intestinal pseudo-obstruction or bladder distension. The affected boys had similar dysmorphic facial appearances. Subsequently, we ascertained seven further families where the proband presented with similar features. We demonstrated duplications of the Xq28 region in five of these additional families. In addition to MECP2, these duplications encompassed several other genes already known to be associated with diseases including SLC6A8, L1CAM and Filamin A (FLNA). The two remaining families were shown to have intragenic duplications of FLNA only. We discuss which elements of the Xq28 duplication phenotype may be associated with the various genes in the duplication. We propose that duplication of FLNA may contribute to the bowel and bladder phenotype seen in these seven families. PMID:18854860

  13. Population-Scale Sequencing Data Enable Precise Estimates of Y-STR Mutation Rates

    PubMed Central

    Willems, Thomas; Gymrek, Melissa; Poznik, G. David; Tyler-Smith, Chris; Erlich, Yaniv

    2016-01-01

    Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2–6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes. PMID:27126583

  14. Neonatal intestinal obstruction secondary to a small bowel duplication cyst

    PubMed Central

    Puralingegowda, Anil Kumar; Mohanty, Pankaj Kumar; Razak, Abdul; Nagesh N, Karthik; Chandrayya, Ramachandra

    2014-01-01

    A 3-week-old neonate developed abdominal distension and vomiting which subsided after conservative management. However, there was a recurrence of symptoms for which a lower gastrointestinal tract contrast study was performed. The infant had a filling defect in the area of the transverse colon. A CT scan was performed, showing a duplication cyst arising from the small bowel and indenting the transverse colon. Resection of the duplication cyst and end-to-end anastomosis of the bowel was performed. The duplication cyst was of tubular type, and a sealed perforation was noted in the cyst wall. PMID:25006055

  15. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J.

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosomemore » 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.« less

  16. Prognostic significance of FLT3 internal tandem repeat in patients with de novo acute myeloid leukemia treated with reinforced courses of chemotherapy.

    PubMed

    Boissel, N; Cayuela, J M; Preudhomme, C; Thomas, X; Grardel, N; Fund, X; Tigaud, I; Raffoux, E; Rousselot, P; Sigaux, F; Degos, L; Castaigne, S; Fenaux, P; Dombret, H

    2002-09-01

    FLT3 internal tandem duplications (FLT3-ITDs) are present in nearly 25% of patients with AML and have been associated with poor response to conventional therapy and poor outcome. We retrospectively evaluated the effect of reinforced courses of chemotherapy on the prognostic value of FLT3-ITDs in 159 AML patients prospectively enrolled in the ALFA-9000 trial, which randomly compared three reinforced induction regimens (standard 3+7 including high-dose daunorubicin, double induction, and timed-sequential therapy). FLT3-ITD was present in 40/159 (25%) blast samples and associated with high WBC (P = 0.002) and cytogenetics (P < 0.001) with a higher incidence (35%) in patients with a normal karyotype. There was no difference in CR rate between FLT3-wt and FLT3-ITD patients (80% vs 78%). Relapse-free survival (RFS) was similar in both groups (5-year RFS, 33% vs 32%; P = 0.41), even after adjustment for age, sex, WBC, cytogenetics, and treatment arm. A trend to a worse survival was observed in the FLT3-ITD group (estimated 5-year OS, 23% vs 37%; P = 0.09), mainly in patients with a normal karyotype. This was associated with a dramatic outcome in relapsing FLT3-ITD patients (estimated 3-year post-relapse survival, 0% vs 27%; P = 0.04). These results suggest that the bad prognosis associated with FLT3-ITDs in AML might be partly overcome using reinforced chemotherapy. Early detection of FLT3 mutations might thus be useful to intensify induction as well as post-remission therapy in FLT3-ITD patients.

  17. Prevalence and Characterization of Somatic Mutations in Chinese Aldosterone-Producing Adenoma Patients

    PubMed Central

    Wang, Baojun; Li, Xintao; Zhang, Xu; Ma, Xin; Chen, Luyao; Zhang, Yu; Lyu, Xiangjun; Tang, Yuzhe; Huang, Qingbo; Gao, Yu; Fan, Yang; Ouyang, Jinzhi

    2015-01-01

    Abstract Recently somatic mutations of KCNJ5, ATP1A1, ATP2B3, and CACNA1D have been identified in patients with aldosterone-producing adenoma (APA). The present study sequenced the DNA in the tissues and blood samples from Chinese patients with APA for KCNJ5, ATP1A1, ATP2B3, and CACNA1D gene mutations. Among the 114 patients, 86 (75.4%) were identified with KCNJ5 somatic mutations, including 3 previously reported (G151R, L168R, T158A) and 2 other unreported mutations. One patient presented with both a point mutation (E147) and an insertion mutation, whereas another had a 36-base duplication, G153_G164dup. No mutation of ATP1A1 and ATP2B3 in the known hotspots was identified and only 1 male patient was detected with a novel CACNA1D mutation, V748I. Unlike other studies, male and female patients had similar KCNJ5 mutation rates (76.9% vs 74.2%). Mutation carriers were younger and had lower preoperative potassium level, whereas male (but not female) mutation carriers had higher preoperative plasma aldosterone concentration and preoperative blood pressures. Mutation carriers also had higher LV mass index (LVMI) than nonmutation carriers. After surgery, LVMI improved significantly in the KCNJ5 mutation group but not in the nonmutation group. The mRNA expression of KCNJ5, CYP11B2, and ATP2B3 was higher in the KCNJ5-mutated APA tissues. Functional characterization of the 2 novel KCNJ5 mutations showed that they were associated with decreased proliferation, membrane depolarization, elevated secretion of aldosterone, and increased expression of CYP11B1 and CYP11B2. In conclusion, Chinese APA patients appear to have a high frequency of somatic KCNJ5 mutation. Mutation prevalence rates are similar among men and women and 2 novel mutations are identified. KCNJ5-mutated patients benefit more from surgical resection of APA than nonmutated patients. PMID:25906099

  18. p53 protects against genome instability following centriole duplication failure

    PubMed Central

    Lambrus, Bramwell G.; Uetake, Yumi; Clutario, Kevin M.; Daggubati, Vikas; Snyder, Michael; Sluder, Greenfield

    2015-01-01

    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure. PMID:26150389

  19. Verification and characterization of chromosome duplication in haploid maize.

    PubMed

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-06-26

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization.

  20. Short Tandem Repeat DNA Internet Database

    National Institute of Standards and Technology Data Gateway

    SRD 130 Short Tandem Repeat DNA Internet Database (Web, free access)   Short Tandem Repeat DNA Internet Database is intended to benefit research and application of short tandem repeat DNA markers for human identity testing. Facts and sequence information on each STR system, population data, commonly used multiplex STR systems, PCR primers and conditions, and a review of various technologies for analysis of STR alleles have been included.

  1. [Partial facial duplication (a rare diprosopus): Case report and review of the literature].

    PubMed

    Es-Seddiki, A; Rkain, M; Ayyad, A; Nkhili, H; Amrani, R; Benajiba, N

    2015-12-01

    Diprosopus, or partial facial duplication, is a very rare congenital abnormality. It is a rare form of conjoined twins. Partial facial duplication may be symmetric or not and may involve the nose, the maxilla, the mandible, the palate, the tongue and the mouth. A male newborn springing from inbred parents was admitted at his first day of life for facial deformity. He presented with hypertelorism, 2 eyes, a tendency to nose duplication (flatted large nose, 2 columellae, 2 lateral nostrils separated in the midline by a third deformed hole), two mouths and a duplicated maxilla. Laboratory tests were normal. The cranio-facial CT confirmed the maxillary duplication. This type of cranio-facial duplication is a rare entity with about 35 reported cases in the literature. Our patient was similar to a rare case of living diprosopus reported by Stiehm in 1972. Diprosopus is often associated with abnormalities of the gastrointestinal tract, the central nervous system, the cardiovascular and respiratory systems and with a high incidence of cleft lip and palate. Surgical treatment consists in the resection of the duplicated components. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome

    USGS Publications Warehouse

    Limborg, Morten T.; Larson, Wesley; Seeb, Lisa W.; Seeb, James E.

    2017-01-01

    A whole-genome duplication (WGD) doubles the entire genomic content of a species and is thought to have catalysed adaptive radiation in some polyploid-origin lineages. However, little is known about general consequences of a WGD because gene duplicates (i.e., paralogs) are commonly filtered in genomic studies; such filtering may remove substantial portions of the genome in data sets from polyploid-origin species. We demonstrate a new method that enables genome-wide scans for signatures of selection at both nonduplicated and duplicated loci by taking locus-specific copy number into account. We apply this method to RAD sequence data from different ecotypes of a polyploid-origin salmonid (Oncorhynchus nerka) and reveal signatures of divergent selection that would have been missed if duplicated loci were filtered. We also find conserved signatures of elevated divergence at pairs of homeologous chromosomes with residual tetrasomic inheritance, suggesting that joint evolution of some nondiverged gene duplicates may affect the adaptive potential of these genes. These findings illustrate that including duplicated loci in genomic analyses enables novel insights into the evolutionary consequences of WGDs and local segmental gene duplications.

  3. Myelodysplastic syndrome in an infant with constitutional pure duplication 1q41-qter.

    PubMed

    Morokawa, Hirokazu; Kamiya, Motoko; Wakui, Keiko; Kobayashi, Mikiko; Kurata, Takashi; Matsuda, Kazuyuki; Kawamura, Rie; Kanno, Hiroyuki; Fukushima, Yoshimitsu; Nakazawa, Yozo; Kosho, Tomoki

    2018-01-01

    We report on a Japanese female infant as the fourth patient with the constitutional pure duplication 1q41-qter confirmed by chromosomal microarray and as the first who developed myelodysplastic syndrome (MDS) among those with the constitutional 1q duplication. Common clinical features of the constitutional pure duplication 1q41-qter include developmental delay, craniofacial characteristics, foot malformation, hypertrichosis, and respiratory insufficiency. The association between MDS and the duplication of the genes in the 1q41-qter region remains unknown.

  4. Inferring evolution of gene duplicates using probabilistic models and nonparametric belief propagation.

    PubMed

    Zeng, Jia; Hannenhalli, Sridhar

    2013-01-01

    Gene duplication, followed by functional evolution of duplicate genes, is a primary engine of evolutionary innovation. In turn, gene expression evolution is a critical component of overall functional evolution of paralogs. Inferring evolutionary history of gene expression among paralogs is therefore a problem of considerable interest. It also represents significant challenges. The standard approaches of evolutionary reconstruction assume that at an internal node of the duplication tree, the two duplicates evolve independently. However, because of various selection pressures functional evolution of the two paralogs may be coupled. The coupling of paralog evolution corresponds to three major fates of gene duplicates: subfunctionalization (SF), conserved function (CF) or neofunctionalization (NF). Quantitative analysis of these fates is of great interest and clearly influences evolutionary inference of expression. These two interrelated problems of inferring gene expression and evolutionary fates of gene duplicates have not been studied together previously and motivate the present study. Here we propose a novel probabilistic framework and algorithm to simultaneously infer (i) ancestral gene expression and (ii) the likely fate (SF, NF, CF) at each duplication event during the evolution of gene family. Using tissue-specific gene expression data, we develop a nonparametric belief propagation (NBP) algorithm to predict the ancestral expression level as a proxy for function, and describe a novel probabilistic model that relates the predicted and known expression levels to the possible evolutionary fates. We validate our model using simulation and then apply it to a genome-wide set of gene duplicates in human. Our results suggest that SF tends to be more frequent at the earlier stage of gene family expansion, while NF occurs more frequently later on.

  5. MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.

    PubMed

    Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S

    2012-04-01

    Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.

  6. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  7. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism.

    PubMed

    Reynolds, John J; Bicknell, Louise S; Carroll, Paula; Higgs, Martin R; Shaheen, Ranad; Murray, Jennie E; Papadopoulos, Dimitrios K; Leitch, Andrea; Murina, Olga; Tarnauskaitė, Žygimantė; Wessel, Sarah R; Zlatanou, Anastasia; Vernet, Audrey; von Kriegsheim, Alex; Mottram, Rachel M A; Logan, Clare V; Bye, Hannah; Li, Yun; Brean, Alexander; Maddirevula, Sateesh; Challis, Rachel C; Skouloudaki, Kassiani; Almoisheer, Agaadir; Alsaif, Hessa S; Amar, Ariella; Prescott, Natalie J; Bober, Michael B; Duker, Angela; Faqeih, Eissa; Seidahmed, Mohammed Zain; Al Tala, Saeed; Alswaid, Abdulrahman; Ahmed, Saleem; Al-Aama, Jumana Yousuf; Altmüller, Janine; Al Balwi, Mohammed; Brady, Angela F; Chessa, Luciana; Cox, Helen; Fischetto, Rita; Heller, Raoul; Henderson, Bertram D; Hobson, Emma; Nürnberg, Peter; Percin, E Ferda; Peron, Angela; Spaccini, Luigina; Quigley, Alan J; Thakur, Seema; Wise, Carol A; Yoon, Grace; Alnemer, Maha; Tomancak, Pavel; Yigit, Gökhan; Taylor, A Malcolm R; Reijns, Martin A M; Simpson, Michael A; Cortez, David; Alkuraya, Fowzan S; Mathew, Christopher G; Jackson, Andrew P; Stewart, Grant S

    2017-04-01

    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability.

  8. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Non-duplicated hydraulic rudder actuators. 58.25-60... actuators. Non-duplicated hydraulic rudder actuators may be installed in the steering-gear control systems on each vessel of less than 100,000 deadweight tons. These actuators must meet IMO A.467(XII...

  9. Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy.

    PubMed

    Akiyama, Masashi; Sakai, Kaori; Ogawa, Masaya; McMillan, James R; Sawamura, Daisuke; Shimizu, Hiroshi

    2007-12-01

    Recently, mutations in PNPLA2 encoding adipose triglyceride lipase (ATGL) were reported to underlie a neutral lipid storage disease (NLSD) subgroup characterized by mild myopathy and the absence of ichthyosis. In the present study a novel homozygous PNPLA2 mutation c.475_478dupCTCC (p.Gln160ProfsX19) in the patatin domain, the ATGL active site, was detected in a woman with NLSD and severe myopathy. The present results suggest that a premature truncation mutation in the patatin domain causes NLSD with severe myopathy.

  10. The HOPA Gene Dodecamer Duplication Is Not a Significant Etiological Factor in Autism.

    ERIC Educational Resources Information Center

    Michaelis, Ron C.; Copeland-Yates, Susan A.; Sossey-Alaoui, Khalid; Skinner, Cindy; Friez, Michael J.; Longshore, John W.; Simensen, Richard J.; Schroer, Richard J.; Stevenson, Roger E.

    2000-01-01

    A study of 202 patients with autism found the incidence of a dodecamer duplication in the HOPA gene was not significantly different between patients and controls. Three female patients inherited the duplication from nonautistic fathers. Also, there was no systematic skewing of X inactivation in female patients with the duplication. (Contains…

  11. Eight previously unidentified mutations found in the OA1 ocular albinism gene

    PubMed Central

    Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc

    2006-01-01

    Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960

  12. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.

    PubMed

    Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2011-05-16

    Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.

  13. Craniofacial duplication (diprosopus): CT, MR imaging, and MR angiography findings case report.

    PubMed

    Hähnel, Stefan; Schramm, Peter; Hassfeld, Stefan; Steiner, Hans H; Seitz, Angelika

    2003-01-01

    Diprosopus is one of the rarest malformations in humans. In addition to the facial structures, the cerebral frontal lobes were duplicated in this case. Three pairs of anterior cerebral arteries were detected, and the rostral parts of the superior sagittal sinus were duplicated. Computed tomography, magnetic resonance (MR) imaging, and MR angiography allowed study of the degree of duplicative changes in diprosopus, especially for planning cosmetic correction. Copyright RSNA, 2002

  14. Detection and correction of false segmental duplications caused by genome mis-assembly

    PubMed Central

    2010-01-01

    Diploid genomes with divergent chromosomes present special problems for assembly software as two copies of especially polymorphic regions may be mistakenly constructed, creating the appearance of a recent segmental duplication. We developed a method for identifying such false duplications and applied it to four vertebrate genomes. For each genome, we corrected mis-assemblies, improved estimates of the amount of duplicated sequence, and recovered polymorphisms between the sequenced chromosomes. PMID:20219098

  15. EIF2AK4 Mutations in Patients Diagnosed With Pulmonary Arterial Hypertension.

    PubMed

    Best, D Hunter; Sumner, Kelli L; Smith, Benjamin P; Damjanovich-Colmenares, Kristy; Nakayama, Ikue; Brown, Lynette M; Ha, Youna; Paul, Eleri; Morris, Ashley; Jama, Mohamed A; Dodson, Mark W; Bayrak-Toydemir, Pinar; Elliott, C Gregory

    2017-04-01

    Differentiating pulmonary venoocclusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH) from idiopathic pulmonary arterial hypertension (IPAH) or heritable pulmonary arterial hypertension (HPAH) is important clinically. Mutations in eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) cause heritable PVOD and PCH, whereas mutations in other genes cause HPAH. The aim of this study was to describe the frequency of pathogenic EIF2AK4 mutations in patients diagnosed clinically with IPAH or HPAH. Sanger sequencing and deletion/duplication analysis were performed to detect mutations in the bone morphogenetic protein receptor type II (BMPR2) gene in 81 patients diagnosed at 30 North American medical centers with IPAH (n = 72) or HPAH (n = 9). BMPR2 mutation-negative patients (n = 67) were sequenced for mutations in four other genes (ACVRL1, ENG, CAV1, and KCNK3) known to cause HPAH. Patients negative for mutations in all known PAH genes (n = 66) were then sequenced for mutations in EIF2AK4. We assessed the pathogenicity of EIF2AK4 mutations and reviewed clinical characteristics of patients with pathogenic EIF2AK4 mutations. Pathogenic BMPR2 mutations were identified in 8 of 72 (11.1%) patients with IPAH and 6 of 9 (66.7%) patients with HPAH. A novel homozygous EIF2AK4 mutation (c.257+4A>C) was identified in 1 of 9 (11.1%) patients diagnosed with HPAH. The novel EIF2AK4 mutation (c.257+4A>C) was homozygous in two sisters with severe pulmonary hypertension. None of the 72 patients with IPAH had biallelic EIF2AK4 mutations. Pathogenic biallelic EIF2AK4 mutations are rarely identified in patients diagnosed with HPAH. Identification of pathogenic biallelic EIF2AK4 mutations can aid clinicians in differentiating HPAH from heritable PVOD or PCH. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  17. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    PubMed

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  18. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae)

    PubMed Central

    Baker, Richard H.; Narechania, Apurva; Johns, Philip M.; Wilkinson, Gerald S.

    2012-01-01

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict. PMID:22777023

  19. Formation of new chromatin domains determines pathogenicity of genomic duplications.

    PubMed

    Franke, Martin; Ibrahim, Daniel M; Andrey, Guillaume; Schwarzer, Wibke; Heinrich, Verena; Schöpflin, Robert; Kraft, Katerina; Kempfer, Rieke; Jerković, Ivana; Chan, Wing-Lee; Spielmann, Malte; Timmermann, Bernd; Wittler, Lars; Kurth, Ingo; Cambiaso, Paola; Zuffardi, Orsetta; Houge, Gunnar; Lambie, Lindsay; Brancati, Francesco; Pombo, Ana; Vingron, Martin; Spitz, Francois; Mundlos, Stefan

    2016-10-13

    Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of

  20. 10 CFR 9.39 - Search and duplication provided without charge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Search and duplication provided without charge. 9.39... § 9.39 Search and duplication provided without charge. (a) The NRC will search for agency records... the news media. (b) The NRC will search for agency records requested under § 9.23(b) without charges...