Sample records for tanel jalakas dmitri

  1. Dmitry Ivanenko-a superstar of Soviet Physics

    NASA Astrophysics Data System (ADS)

    Sardanashvily, Gennady

    A detailed biography and bibliography (about 300 articles and a number of books available in Libraries) of professor Dmitry Dmitryevich Ivanenko (Iwanenko) (1904-1994) has beeen given by one of his disciples. The book includes also references of some widely known physicists about one of the lieding theoretical physicists of the Physics Department of the Moscow State University. Some documents from the personal archive of Ivanenko(Iwanenko) are included in the book.

  2. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic)

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Tumskoy, Vladimir; Rudaya, Natalia; Kuznetsov, Vladislav; Maksimov, Fedor; Opel, Thomas; Meyer, Hanno; Andreev, Andrei A.; Schirrmeister, Lutz

    2016-09-01

    Ice Complex deposits (locally known as the Buchchagy Ice Complex) are exposed at both coasts of the East Siberian Dmitry Laptev Strait and preserved below the Yedoma Ice Complex that formed during MIS3 and MIS2 (Marine Isotope Stage) and lateglacial-Holocene thermokarst deposits (MIS1). Radioisotope disequilibria (230Th/U) of peaty horizons date the Buchchagy Ice Complex deposition to 126 + 16/-13 kyr and 117 + 19/-14 kyr until 98 ± 5 kyr and 89 ± 5 kyr. The deposit is characterised by poorly-sorted medium-to-coarse silts with cryogenic structures of horizontal ice bands, lens-like, and lens-like reticulated segregation ice. Two peaty horizons within the Buchchagy Ice Complex and syngenetic ice wedges (2-4 m wide, up to 10 m high) are striking. The isotopic composition (δ18O, δD) of Buchchagy ice-wedge ice indicates winter conditions colder than during the MIS3 interstadial and warmer than during MIS2 stadial, and similar atmospheric winter moisture sources as during the MIS2 stadial. Buchchagy Ice Complex pollen spectra reveal tundra-steppe vegetation and harsher summer conditions than during the MIS3 interstadial and rather similar vegetation as during the MIS2 stadial. Short-term climatic variability during MIS5 is reflected in the record. Even though the regional chronostratigraphic relationship of the Buchchagy Ice Complex to the Last Interglacial remains unclear because numerical dating is widely lacking, the present study indicates permafrost (Ice Complex) formation during MIS5 sensu lato, and its preservation afterwards. Palaeoenvironmental insights into past climate and the periglacial landscape dynamics of arctic lowlands in eastern Siberia are deduced from the record.

  3. Maksutov, Dmitri Dmitievich (1896-1964)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Soviet optician and telescope maker. After fighting in the Russian Revolution and the First World War, he worked on astronomical optics at Odessa, Moscow and Pulkovo, and invented the Maksutov telescope. The design is a development of the Schmidt telescope, replacing the aspheric lens with a negative meniscus lens with spherical surfaces which are easier to make. The telescope tube is also m...

  4. 78 FR 50376 - Polyethylene Retail Carrier Bags From Thailand: Final Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... INFORMATION CONTACT: Dmitry Vladimirov or Minoo Hatten, AD/ CVD Operations, Office 1, Import Administration... establishments, e.g., grocery, drug, convenience, department, specialty retail, discount stores, and restaurants...

  5. Kondratyev during Emergency Scario Drill

    NASA Image and Video Library

    2011-01-11

    ISS026-E-016985 (11 Jan. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, participates in an emergency scenarios drill in the Harmony node of the International Space Station.

  6. Kondratyev and Skripochka during emergency scenario drill

    NASA Image and Video Library

    2011-01-11

    ISS026-E-016976 (11 Jan. 2011) --- Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, look over a procedures manual during an emergency scenarios drill in the Harmony node of the International Space Station.

  7. Decomposition of the complex system into nonlinear spatio-temporal modes: algorithm and application to climate data mining

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry

    2015-04-01

    . 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.

  8. Expedition 26 Docking

    NASA Image and Video Library

    2010-12-18

    Vladislav Kondratyev, son of Expedition 26 Soyuz Commander Dmitry Kondratyev, is seen at Russian Mission Control in Korolev, Russia speaking to his father shortly after his arrival at the International Space Station on Saturday, Dec. 18, 2010. Photo Credit: (NASA/Carla Cioffi)

  9. KSC-2012-3185

    NASA Image and Video Library

    2012-06-05

    Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  10. KSC-2012-3184

    NASA Image and Video Library

    2012-06-05

    Technicians install lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  11. KSC-2012-3186

    NASA Image and Video Library

    2012-06-05

    A locker installed on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  12. 76 FR 7907 - Quarterly Publication of Individuals, Who Have Chosen To Expatriate, as Required by Section 6039G

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... EISENBIEGLER PRATIWI ADININGRUM ELSEN MARIA ANTOINETTE FACON DOMINIQUE B. FAIRMAN GARY L FARRAR CHIHO FERDON... ELIZABETH U FUNG PASCALE N GIBSON MATTHEW CHARLES GIBSON SARAH CLAIRE GIDRON GILLA MEZZAN GINDIN DMITRY... LINDA ANETTE HANSEN PAUL ROBERT HARDWICK III CHARLES CHEEVER HARRIS JANE VELDA HARSONO SUDARGO HARTLEY...

  13. Attitudes of Major Soviet Nationalities. Volume 3. The Transcaucasus. Armenia, Georgia, Azerbaidzhan

    DTIC Science & Technology

    1973-06-01

    Tabidze, a "People’s Poet of Georgia," Georgi Leonidze, Irakly Abashidze, Alexander Gomisshvlli, Crigol Abashidze, Alexander Abasheli, Sandro Shanshiashvili...era. Work of this kind is still being carried on by such artists as Irakly chiauri, Dmitry Kipshidze, Koba Guruli, and Gura Gabashvili. Professional

  14. KSC-2012-3187

    NASA Image and Video Library

    2012-06-05

    A technician installs a set of lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2012-3188

    NASA Image and Video Library

    2012-06-05

    A technician installs a set of lockers on the middeck of space shuttle Atlantis as the spacecraft is prepared for public display. The work is taking place as Atlantis sits inside Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida. Photo credit: NASA/Dmitri Gerondidakis

  16. The Basic Principles and Methods of the Music Curriculum for the General Education School.

    ERIC Educational Resources Information Center

    Kabalevskii, Dmitrii

    1988-01-01

    Delineates the foundations of Dmitri Kabalevskii's music curriculum for general education in the Soviet Union. Stresses teaching music as part of life itself. Bases teaching principles and methods on the song, dance, and march, termed "The Three Whales." Offers extensive lesson plans focusing on first grade music activities. (CH)

  17. Coleman cuts Kondratyev's hair in the JPM

    NASA Image and Video Library

    2011-01-15

    ISS026-E-017718 (15 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman assists cosmonaut Dmitry Kondratyev of Russia's Federal Space Agency (Roscosmos) with a haircut in the Kibo laboratory on the International Space Station. Kondratyev and Coleman used a vacuum cleaner to remove free-floating hair particles from the air.

  18. Dostoevsky: A Collection of Critical Essays. Twentieth Century Views Series.

    ERIC Educational Resources Information Center

    Wellek, Rene, Ed.

    One of a series of works aimed at presenting contemporary opinion on major authors, this collection includes essays by Rene Wellek, Philip Rahv, Murray Krieger, Irving Howe, Eliseo Vivas, D. H. Lawrence, Sigmund Freud, Dmitri Chizhevsky, V. V. Zenkovsky, Georg Lukacs, and Derek Traversi--all dealing with the biography and literary work of…

  19. Coleman cuts Kondratyev's hair in the JPM

    NASA Image and Video Library

    2011-01-15

    ISS026-E-017725 (15 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman assists cosmonaut Dmitry Kondratyev of Russia's Federal Space Agency (Roscosmos) with a haircut in the Kibo laboratory on the International Space Station. The two Expedition 26 flight engineers used a vacuum cleaner to remove free-floating hair particles from the air.

  20. KSC-2014-3629

    NASA Image and Video Library

    2014-08-06

    CAPE CANAVERAL, Fla. – NASA's Kurt Leucht, from left, is working with undergraduate intern Gil Montague and post-graduate intern Karl Stolleis to develop the software that will control independent robots in a way that mimics the process ants use to scout for and then collect resources. Photo credit: NASA/Dmitri Gerondidakis

  1. Nespoli cuts Kondratyev's hair in the JPM

    NASA Image and Video Library

    2011-01-15

    ISS026-E-017715 (15 Jan. 2011) --- European Space Agency astronaut Paolo Nespoli assists cosmonaut Dmitry Kondratyev of Russia's Federal Space Agency (Roscosmos) with a haircut in the Kibo laboratory on the International Space Station. The two Expedition 26 flight engineers used a vacuum cleaner to remove free-floating hair particles from the air.

  2. Deterrence and Engagement: A Blended Strategic Approach to a Resurgent Russia

    DTIC Science & Technology

    2016-04-15

    Expansionism “If you know the enemy and know yourself, you need not fear the result of a hundred battles.” – Sun Tzu , The Art of War. An analysis...55 Bibliography ...the U.S. and its European allies, could achieve greater stability and security for Europe. 57 Bibliography Adamsky, Dmitry. “If War Comes

  3. Coleman cuts Kondratyev's hair in the JPM

    NASA Image and Video Library

    2011-01-15

    ISS026-E-017689 (15 Jan. 2011) --- NASA astronaut Catherine (Cady) Coleman assists cosmonaut Dmitry Kondratyev of Russia's Federal Space Agency (Roscosmos) with a haircut in the Kibo laboratory on the International Space Station. The two Expedition 26 flight engineers used a vacuum cleaner (partially out of frame) to remove free-floating hair particles from the air.

  4. News of Education in Russia: [2010--The Year of the Schoolteacher in Russia

    ERIC Educational Resources Information Center

    Russian Education and Society, 2011

    2011-01-01

    This article presents statements by President Dmitry A. Medvedev at the meeting of the Council on the Implementation of Priority National Projects and Demographic Policy on the development of education, health care, and demography, and at the ceremony on the occasion of the launching of the Year of the Schoolteacher in Russia, held at the Russian…

  5. Defense.gov - Special Report - U.S., Russia Resume Military Ties

    Science.gov Websites

    Medvedev in the Kremlin in Moscow, July 6, 2009. White House photo by Pete Souza ARTICLES Obama Proposes U.S., Russia to Resume Military Relations WASHINGTON - The United States and Russia agreed July 6 - President Barack Obama and Russian President Dmitri Medvedev agreed in Moscow, July 6, 2009, to reduce U.S

  6. Expedition 26 Crew Members in the Node 1

    NASA Image and Video Library

    2010-12-31

    ISS026-E-013632 (31 Dec. 2010) --- Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. Clockwise from the left are Russian cosmonaut Oleg Skripochka, NASA astronaut Catherine (Cady) Coleman, Russian cosmonaut Alexander Kaleri, all flight engineers; NASA astronaut Scott Kelly, commander; Russian cosmonaut Dmitry Kondratyev and European Space Agency astronaut Paolo Nespoli, both flight engineers.

  7. Russian expats seek research reforms

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-11-01

    Over 170 Russian researchers working abroad have signed a letter addressed to the Russian president, Dmitry Medvedev, and prime minister Vladimir Putin raising concerns about "the catastrophic state of basic science" in the country. The letter, which appeared last month in the Moscow business paper Vedomosti, warns Russian leaders that unless urgent measures are implemented by the government, then science in the country may collapse.

  8. Expedition 26 Crew Members in the Node 1

    NASA Image and Video Library

    2010-12-31

    ISS026-E-013631 (31 Dec. 2010) --- Five of the six Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. From the left are Russian cosmonaut Dmitry Kondratyev, flight engineer; NASA astronaut Scott Kelly, commander; NASA astronaut Catherine (Cady) Coleman, European Space Agency astronaut Paolo Nespoli and Russian cosmonaut Alexander Kaleri, all flight engineers.

  9. Expedition 26 Crew Members in the Node 1

    NASA Image and Video Library

    2010-12-31

    ISS026-E-013630 (31 Dec. 2010) --- Expedition 26 crew members are pictured in the Unity node of the International Space Station on New Year’s Eve. From the left are Russian cosmonauts Oleg Skripochka and Dmitry Kondratyev, both flight engineers; NASA astronaut Scott Kelly, commander; NASA astronaut Catherine (Cady) Coleman, European Space Agency astronaut Paolo Nespoli and Russian cosmonaut Alexander Kaleri, all flight engineers.

  10. The Russian Navy and the Future of Russian Power in the Western Pacific

    DTIC Science & Technology

    2001-12-01

    34 16 Oleg (flag) 1903 6,650 3 3 12 6" 23 Avrora 1900 6,630 2 1/2 8 6" 23 Monomakh 1880 5,593 2 5 6" 6 4.7" 15 1/2 Dmitry 1885 6,200 2......FTS200000508000176, p. 2. 102 Pavel Felgenhauer, Russian Military Reform: Ten Years of Failure 103 Oleg Falichev, “Progress Noted in Military Reforms

  11. InAs1-xSbx Alloys with Native Llattice Parameters Grown on Compositionally Graded Buffers: Structural and Optical Properties

    DTIC Science & Technology

    2013-08-15

    InAsSb, compositionally graded buffer, MBE, infrared, minority carrier lifetime, reciprocal space mapping Ding Wang, Dmitry Donetsky, Youxi Lin, Gela...infrared, minority carrier lifetime; reciprocal space mapping . Introduction GaSb based Ill-Y materials are widely used in the development of mid... space mapping (RSM) at the symmetric (004) and asymmetric (335) Bragg reflections. Figure 3 presents a set of RSM measurements for a structure

  12. Expedition 26 Docking

    NASA Image and Video Library

    2010-12-18

    Vitaly Davyidov, second from right, Deputy Head of the Russian Federal Space Agency, answers reporter’s questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Saturday, Dec. 18, 2010. The Soyuz TMA-20 docked to the International Space Station carrying Expedition 26 Soyuz Commander Dmitry Kondratyev, Flight Engineer Catherine Coleman and European Space Agency Flight Engineer Paolo Nespoli. Photo Credit: (NASA/Carla Cioffi)

  13. KSC-2013-3535

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – Engineers from NASA's Johnson Space Center fly a remote-controlled helicopter equipped with a unique set of sensors and software during a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  14. KSC-2013-3537

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2013-3536

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  16. Experimental Comparison of Two Quantum Computing Architectures

    DTIC Science & Technology

    2017-03-28

    IN A U G U RA L A RT IC LE CO M PU TE R SC IE N CE S Experimental comparison of two quantum computing architectures Norbert M. Linkea,b,1, Dmitri...the vast computing power a universal quantumcomputer could offer, several candidate systems are being explored. They have allowed experimental ...existing systems and the role of architecture in quantum computer design . These will be crucial for the realization of more advanced future incarna

  17. Kondratvez sets up Sonokard Experiment in the SM during Expedition 26

    NASA Image and Video Library

    2011-01-03

    ISS026-E-014250 (3 Jan. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, sets up the Russian MBI-12 payload for a Sonokard experiment session in the Zvezda Service Module of the International Space Station. Kondratyev used a sports shirt from the Sonokard kit with a special device in the pocket for testing a new method for acquiring physiological data without using direct contact on the skin. Measurements are recorded on a data card for return to Earth.

  18. KSC-2013-3533

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center prepares to fly in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  19. Russian EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027391 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  20. Expedition 26 Crewmembers pose with European Matroshka-R Phantom Experiment

    NASA Image and Video Library

    2011-03-11

    ISS026-E-033131 (11 March 2011) --- Russian cosmonauts Alexander Kaleri (left foreground), Oleg Skripochka (right foreground), Dmitry Kondratyev (left background) and European Space Agency astronaut Paolo Nespoli, all Expedition 26 flight engineers, pose for a photo with the European Matroshka-R Phantom experiment in the Zarya Functional Cargo Block (FGB) of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies.

  1. Russia’s Counterinsurgency in North Caucasus: Performance and Consequences

    DTIC Science & Technology

    2014-03-01

    Russian Language Fluency), available from www.perepis2002.ru/ ct/doc/TOM_04_03.xls. 51. V. Zaytsev, “Nayomniki v Chechne ” (“Mercenaries in Chechnya...Taking: How It Was in the World”), Izvestiya, October 24, 2002, available from izvestia.ru/news/268869. 66. “Snayperskaya voyna v Chechne ” (“Sniper War...Alexei Malashenko and Dmitri Trenin, “Vremya yuga. Rossiya v Chechne , Chechnya v Rossii” (“The Time of the South: Russia in Chechnya and Chechnya in

  2. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027361 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  3. Kondratyev during EVA 28

    NASA Image and Video Library

    2011-02-16

    ISS026-E-027368 (16 Feb. 2011) --- Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, wearing a Russian Orlan-MK spacesuit, participates in a session of extravehicular activity (EVA) focused on the installation of two scientific experiments outside the Zvezda Service Module of the International Space Station. During the four-hour, 51-minute spacewalk, Kondratyev and Russian cosmonaut Oleg Skripochka (out of frame), flight engineer, installed a pair of earthquake and lightning sensing experiments and retrieved a pair of spacecraft material evaluation panels.

  4. KSC-2012-6402

    NASA Image and Video Library

    2012-11-16

    CAPE CANAVERAL, Fla. – Firing Room 1, also known as the Young-Crippen Firing Room, has been outfitted with computer, communications and networking systems to host rockets and spacecraft that are currently under development. The firing room is where the launch of rockets and spacecraft are controlled at NASA's Kennedy Space Center in Florida. Flight controllers also monitor processing and preparations of launch vehicles from the firing room. There are four firing rooms inside the Launch Control Center at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  5. KSC-2012-6401

    NASA Image and Video Library

    2012-11-16

    CAPE CANAVERAL, Fla. – Firing Room 1, also known as the Young-Crippen Firing Room, has been outfitted with computer, communications and networking systems to host rockets and spacecraft that are currently under development. The firing room is where the launch of rockets and spacecraft are controlled at NASA's Kennedy Space Center in Florida. Flight controllers also monitor processing and preparations of launch vehicles from the firing room. There are four firing rooms inside the Launch Control Center at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  6. KSC-2013-3542

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2013-3543

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  8. KSC-2013-3546

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Marshall Space Flight Center. Teams from Johnson Space Center, Kennedy Space Center and Marshall competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  9. KSC-2013-3540

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled aircraft takes off during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  10. KSC-2013-3541

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – A remote-controlled aircraft flies during a competition with a unique set of sensors and software to conduct a mock search-and-rescue operation. The aircraft was assembled by a team of engineers from NASA's Kennedy Space Center. Teams from Johnson Space Center, Kennedy and Marshall Space Flight Center competed in the unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  11. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-23

    Expedition 27 Flight Engineer Cady Coleman waves hello and talks on a satellite phone to her family shortly after she and Commander Dmitry Kondratyev and Flight Engineer Paolo Nespoli landed in their Soyuz TMA-20 southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-24

    Expedition 27 Commander Dmitry Kondratyev, left, is seen after arriving at the Chkalovsky airport outside Star City, Russia several hours after he and Flight Engineers Paolo Nespoli and Cady Coleman landed in their Soyuz TMA-20 southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  13. KSC-2013-3538

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  14. KSC-2013-3539

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – Engineers from NASA's Kennedy Space Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2013-3534

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – Engineers fine-tune a remote-controlled helicopter before it takes off. The helicopter is equipped with a unique set of sensors and software and was assembled by a team of engineers from NASA's Johnson Space Center for a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  16. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-23

    Russian Search and rescue helicopters are seen as they prepare for the landing of the Soyuz TMA-20 spacecraft with Expedition 27 Commander Dmitry Kondratyev and Flight Engineers Paolo Nespoli and Cady Coleman in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  17. KSC-2012-4353

    NASA Image and Video Library

    2012-08-10

    CAPE CANAVERAL, Fla. – The Radiation Belt Storm Probes, or RBSP, spacecraft are moved inside their payload fairing on the payload transporter from the Astrotech payload processing facility in Titusville, Fla. to Space Launch Complex-41 at Cape Canaveral Air Force Station. The fairing, which holds the twin RBSP spacecraft, will be lifted to the top of a United Launch Alliance Atlas V rocket for launch later in August. The two spacecraft are designed to study the Van Allen radiation belts in unprecedented detail. Photo credit: NASA/Dmitri Gerondidakis

  18. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-24

    Chief, Gagarin Cosmonaut Training Center, Sergei Krikalev shakes hands and welcomes home Expedition 27 Commander Dmitry Kondratyev at the Chkalovsky airport outside Star City, Russia several hours after Kondratyev and Flight Engineers Paolo Nespoli and Cady Coleman landed in their Soyuz TMA-20 southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  19. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-24

    Kazakh performers at the Karaganda Airport in Kazakhstan play music prior to a welcome home ceremony for Expedition 27 Commander Dmitry Kondratyev, and, Flight Engineers Paolo Nespoli, and Cady Coleman, after the three landed in their Soyuz TMA-20 spacecraft in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  20. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-23

    Expedition 27 Flight Engineer Cady Coleman answers reporters questions in traditional Kazakh dress during a press conference at the Karaganda airport shortly after she and Commander Dmitry Kondratyev and Flight Engineer Paolo Nespoli landed in their Soyuz TMA-20 southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  1. Kondratyev and Skripochka in the Pirs DC1

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018417 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.

  2. Kondratyev and Skripochka in the Pirs DC1

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018421 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.

  3. Kondratyev and Skripochka in the Pirs DC1

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018429 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.

  4. Kondratyev and Skripochka in the Pirs DC1

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018411 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.

  5. Kondratyev and Skripochka in the Pirs DC1

    NASA Image and Video Library

    2011-01-18

    ISS026-E-018424 (18 Jan. 2011) --- Attired in blue thermal undergarments that complement the Russian Orlan spacesuit, Russian cosmonauts Dmitry Kondratyev (left) and Oleg Skripochka, both Expedition 26 flight engineers, prepare to don and check out their Orlan spacesuits in preparation for a spacewalk scheduled for Jan. 21, 2011. During the spacewalk Kondratyev and Skripochka will complete the installation of a new high-speed data transmission system, remove an old plasma pulse experiment, install a camera for the new Rassvet docking module and retrieve a materials exposure package.

  6. KSC-2013-3544

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – Engineers from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2013-3545

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center prep a remote-controlled aircraft for take-off. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined the Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  8. KSC-2013-3547

    NASA Image and Video Library

    2013-09-11

    CAPE CANAVERAL, Fla. – An engineer from NASA's Marshall Space Flight Center watches the landing of remote-controlled aircraft. The aircraft is equipped with a unique set of sensors and software and was assembled by a team of engineers for a competition at the agency's Kennedy Space Center. Teams from Johnson Space Center and Marshall Space Flight Center joined a Kennedy team in competing in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis

  9. Expedition 27 Crew with HTV2 Poster and Paper Cranes

    NASA Image and Video Library

    2011-03-27

    ISS027-E-007888 (27 March 2011) --- In honor of those affected by the Tohoku-Kanto Earthquake in Japan, Russian cosmonaut Dmitry Kondratyev (center), Expedition 27 commander; European Space Agency astronaut Paolo Nespoli and NASA astronaut Cady Coleman, both flight engineers, are pictured with paper cranes (origami craft) which they folded to be placed in the Kounotori2 H-II Transfer Vehicle (HTV-2). The HTV2 is scheduled to be released by the International Space Station?s robotic arm at 11:45 a.m. EDT on March 28, and re-enter Earth?s atmosphere on March 29, 2011.

  10. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-24

    Expedition 27 Commander Dmitry Kondratyev, left, shakes hands with Deputy Chair of the State Commission Mr. Skorobogotov after Kondratyev arrived at the Chkalovsky airport outside Star City, Russia and several hours after he and Flight Engineers Paolo Nespoli and Cady Coleman landed in their Soyuz TMA-20 southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  11. KSC-2011-8167

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck positions a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex at a temporary storage area at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  12. KSC-2011-8163

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A pair of 149-foot-long, space shuttle solid rocket booster, or SRB, displays from the Kennedy Space Center Visitor Complex sit inside a temporary storage area at NASA's Kennedy Space Center. The SRBs were part of a display of the external tank and two SRBs at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The SRBs burned out after about two-and-a-half minutes of flight. After recovery from the ocean, the boosters could be used repeatedly. Photo credit: NASA/ Dmitri Gerondidakis

  13. KSC-2012-6422

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  14. KSC-2012-6427

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2012-6424

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  16. KSC-2012-6417

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  17. KSC-2012-6419

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  18. KSC-2012-6425

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  19. KSC-2012-6420

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  20. KSC-2012-6421

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  1. KSC-2012-6412

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  2. KSC-2012-6414

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  3. KSC-2012-6423

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  4. KSC-2012-6413

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  5. KSC-2012-6416

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  6. KSC-2012-6415

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  7. KSC-2012-6418

    NASA Image and Video Library

    2012-12-05

    CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis

  8. KSC-2012-5891

    NASA Image and Video Library

    2012-10-19

    CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lifted in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  9. KSC-2012-5893

    NASA Image and Video Library

    2012-10-19

    CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  10. KSC-2012-4319

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  11. KSC-2012-4316

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  12. KSC-2011-8159

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  13. KSC-2011-8157

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A crane positions a full-size display of a space shuttle external fuel tank onto a truck to move it from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  14. KSC-2011-8165

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  15. KSC-2011-8158

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A crane positions a full-size display of a space shuttle external fuel tank onto a truck to move it from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  16. KSC-2011-8166

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  17. KSC-2011-8164

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  18. KSC-2011-8162

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  19. KSC-2011-8160

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  20. KSC-2011-8161

    NASA Image and Video Library

    2011-12-02

    CAPE CANAVERAL, Fla. – A truck hauls a full-size display of a space shuttle external fuel tank from the Kennedy Space Center Visitor Complex as the space-themed attraction makes way for a new exhibit featuring space shuttle Atlantis, which is currently undergoing preparations to go on public display. The tank is being placed into temporary storage at NASA's Kennedy Space Center. The tank was part of a display of the external tank and two solid rocket boosters at the visitor complex that were used to show visitors the size of actual space shuttle components. A space shuttle rode piggyback on the tank and boosters at liftoff and during the ascent into space. The tank, which held propellants for the shuttle's three main engines, was not reused, but burned up in the atmosphere and fell into the ocean. Photo credit: NASA/Dmitri Gerondidakis

  1. KSC-2012-5892

    NASA Image and Video Library

    2012-10-19

    CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lifted in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  2. KSC-2012-4320

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – The Orion mockup spacecraft sits atop its service module simulator in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. To the left is the aerodynamic shell that will cover the capsule during launch. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  3. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  4. “Gunslinger’s gait”: a new cause of unilaterally reduced arm swing

    PubMed Central

    Araújo, Rui; Ferreira, Joaquim J; Antonini, Angelo

    2015-01-01

    Objective To postulate a new possible cause of a unilaterally reduced arm swing in addition to the known medical conditions such as shoulder pathology, Erb’s palsy, stroke, and Parkinson’s disease. Methods Analysis of YouTube videos depicting the gait of highly ranked Russian officials. Results We found a similar walking pattern in President Vladimir Putin, Prime Minister Dmitry Medvedev and three other highly ranked Russian officials, all presenting with a consistently reduced right arm swing in the absence of other overt neurological abnormalities. Conclusions We propose that this new gait pattern, which we term “gunslinger’s gait,” may result from a behavioural adaptation, possibly triggered by KGB or other forms of weapons training where trainees are taught to keep their right hand close to the chest while walking, allowing them to quickly draw a gun when faced with a foe. This should be included in the differential diagnosis of a unilaterally reduced arm swing. PMID:26666758

  5. Neurological problems of famous musicians: the classical genre.

    PubMed

    Newmark, Jonathan

    2009-08-01

    Neurological histories of great musicians allow for a unique perspective on music physiology. Bedrich Smetana's autobiographical string quartet ends with the musical equivalent of tinnitus in the fourth movement, rendering the youthful and passionate themes of earlier movements moot as the piece ends depicting his ultimately fatal disease, neurosyphilis. Dmitri Shostakovich survived the censorship of Joseph Stalin's apparatchiks but suffered a prolonged form of paralysis attributable to slowly progressive motor neuron disease, although the viola sonata he wrote on his deathbed has become standard repertoire. Glenn Gould was a hypochondriacal pianist with obsessive-compulsive disorder and suspected Asperger syndrome. Vissarion Shebalin and (Ira) Randall Thompson had strokes followed by aphasia without amusia. Domenico Scarlatti provides an example of how even great composers must alter their technical expectations depending upon the skills and body habitus of their chief patrons. The focal dystonia afflicting Leon Fleisher and Gary Graffman catalyzed the discipline of performing arts medicine.

  6. KSC-2012-5894

    NASA Image and Video Library

    2012-10-19

    CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  7. KSC-2012-5895

    NASA Image and Video Library

    2012-10-19

    CAPE CANAVERAL, Fla. – An Orion mockup spacecraft atop its service module simulator is lowered onto a transporter in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. The Orion mockup is exact in details on the outside, but mostly empty on the inside. The work in the VAB is crucial to making sure the designs are accurate. Visible in the background on the left is the space shuttle Atlantis being readied for its move to the Kennedy Space Center Visitor Complex. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  8. "Gunslinger's gait": a new cause of unilaterally reduced arm swing.

    PubMed

    Araújo, Rui; Ferreira, Joaquim J; Antonini, Angelo; Bloem, Bastiaan R

    2015-12-14

    To postulate a new possible cause of a unilaterally reduced arm swing in addition to the known medical conditions such as shoulder pathology, Erb's palsy, stroke, and Parkinson's disease. Analysis of YouTube videos depicting the gait of highly ranked Russian officials. We found a similar walking pattern in President Vladimir Putin, Prime Minister Dmitry Medvedev and three other highly ranked Russian officials, all presenting with a consistently reduced right arm swing in the absence of other overt neurological abnormalities. We propose that this new gait pattern, which we term "gunslinger's gait," may result from a behavioural adaptation, possibly triggered by KGB or other forms of weapons training where trainees are taught to keep their right hand close to the chest while walking, allowing them to quickly draw a gun when faced with a foe. This should be included in the differential diagnosis of a unilaterally reduced arm swing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. KSC-2012-4315

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground are the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  10. KSC-2012-4317

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System. In the background is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  11. New START, Eyjafjallajökull, and Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, Alan

    2010-11-01

    On 8 April 2010, U.S. president Barack Obama and Russian president Dmitry Medvedev signed the Treaty Between the United States of America and the Russian Federation on Measures for the Further Reduction and Limitation of Strategic Offensive Arms, committing the United States and Russia to reducing their nuclear arsenals to levels less than 5% of the maximum during the height of the cold war in the 1980s. This treaty is called “New START,” as it is a follow-on to the 1991 Strategic Arms Reductions Treaty (START). On 14 April 2010 the Eyjafjallajökull volcano in Iceland began an explosive eruption phase that shut down air traffic in Europe for 6 days and continued to disrupt it for another month. What do these two events have in common? Nuclear weapons, when targeted at cities and industrial areas, would start fires, producing clouds of sooty smoke. Volcanic eruptions emit ash particles and sulfur dioxide (SO2), which forms sulfate aerosols in the atmosphere. Thus, both the use of nuclear weapons and volcanic eruptions produce particles that can be transported large distances from the source and can affect weather and climate.

  12. KSC-2012-4321

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  13. KSC-2012-4318

    NASA Image and Video Library

    2012-08-06

    CAPE CANAVERAL, Fla. – Seen from overhead, mockup components of an Orion spacecraft are laid out in the transfer aisle of the Vehicle Assembly Building, or VAB, at NASA's Kennedy Space Center in Florida. In the foreground is the Launch Abort System and the aerodynamic shell that will cover the capsule during launch. To the right is the Orion capsule model on top of a service module simulator. Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. The first uncrewed test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on a Space Launch System rocket. The Orion mockup is exact in details on the outside, but mostly empty on the inside except for four mockup astronaut seats and hatch. The work in the VAB is crucial to making sure the designs are accurate. For more information, visit http://www.nasa.gov/orion Photo credit: NASA/ Dmitri Gerondidakis

  14. Experiments and simulations of flux rope dynamics in a plasma

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  15. New measurement technology for 'Critical Dynamics in Microgravity'

    NASA Astrophysics Data System (ADS)

    Duncan, Robert

    2000-03-01

    When driven away from equilibrium by a heat flux Q, the superfluid transition in ^4He evolves from a simple critical point into a fascinating and complex nonlinear region, where the onset of macroscopic quantum order is masked by Earth's gravity. Prior measurements of heat transport within this nonlinear region on Earth (and scheduled measurements on the International Space Station) require temperature resolution to 0.1 nK at 2.2 K in an exceptionally stable thermometer, with all heat flow stable to 3 fW/s. These measurements of the liquid helium temperature must be localized along the side of the experimental cell with a spatial resolution of 5 microns, and systematic offsets of the measured temperature from the true helium temperature must be controlled to within 0.3 nK. Such measurement technology has recently been developed, out-performing these demanding requirements by a comfortable margin. A new class of fundamental physics experiments may be facilitated by these recent advances in metrology. This work has been supported by the Microgravity Science Division of NASA, conducted in cooperation with JPL, and in collaboration with Mary Jayne Adriaans, Alex Babkin, S.T.P. Boyd, Peter Day, David Elliott, Beverly Klemme, T.D. McCarson, Ray Nelson, and Dmitri Sergatskov.

  16. Gallium--A smart metal

    USGS Publications Warehouse

    Foley, Nora; Jaskula, Brian W.

    2013-01-01

    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  17. Theory and Experiment on Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2005-07-01

    The current generation of high-energy-density research facilities has enabled the beginnings of experimental studies of radiation hydrodynamic systems, common in astrophysics but difficult to produce in the laboratory. Radiative shock experiments specifically have been a topic of increasing effort in recent years. Our group and collaborators [1] have emphasized the radiographic observation of structure in radiative shocks. These shocks have been produced on the Omega laser by driving a Be piston through Xenon at velocities above 100 km/s. The talk will summarize these experiments and their results. Interpreting these and other experiments is hampered by the limited range of assumptions used in published theories, and by the limitations in readily available simulation tools. This has motivated an examination of radiative shock theory [2]. The talk will summarize the key issues and present results for specific cases. [ 1 ] Gail Glendinning, Ted Perry, Bruce Remington, Jim Knauer, Tom Boehly, and other members of the NLUF Experimental Astrophysics Team. Publications: Reighard et al., Phys. Rev. Lett. submitted; Leibrandt, et al., Ap J., in press, Reighard et al., IFSA 03 Proceedings, Amer. Nucl. Soc. (2004). [2] Useful discussions with Dmitri Ryutov and Serge Bouquet. Supported by the NNSA programs via DOE Grants DE-FG52-03NA00064 and DE FG53 2005 NA26014

  18. Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS

    NASA Astrophysics Data System (ADS)

    Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel

    2016-01-01

    The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.

  19. KSC-2012-6319

    NASA Image and Video Library

    2012-11-28

    KSC-2012-6319 - CAPE CANAVERAL, Fla. - Paul Hintze is the researcher leading the trash-to-gas project at NASA's Kennedy Space Center in Florida. Hintze's group of six researchers at Kennedy and groups from NASA centers in Ohio, California and Texas wrote in a recent paper that the current methods of handling trash – either carrying it along on the round trip through space or gathering it into an expendable module and burning it up in Earth's atmosphere – are not suitable answers for missions that go beyond Earth orbit or even past the moon. Working in a laboratory at Kennedy, Hintze's team built an 80-pound device that looks like a three-foot-long metal pipe to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It's expected to take astronauts four hours to burn a day's worth of trash from a crew of four. During the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said. Photo credit: NASA/Dmitri Gerondidakis

  20. KSC-2012-6320

    NASA Image and Video Library

    2012-11-28

    KSC-2012-6320 – CAPE CANAVERAL, Fla. - Stephen Anthony works with an experimental reactor as part of the trash-to-gas project at NASA's Kennedy Space Center in Florida. A group of six researchers at Kennedy and groups from NASA centers in Ohio, California and Texas wrote in a recent paper that the current methods of handling trash – either carrying it along on the round trip through space or gathering it into an expendable module and burning it up in Earth's atmosphere – are not suitable answers for missions that go beyond Earth orbit or even past the moon. Working in a laboratory at Kennedy, Hintze's team built an 80-pound device that looks like a three-foot-long metal pipe to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It's expected to take astronauts four hours to burn a day's worth of trash from a crew of four. During the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said. Photo credit: NASA/Dmitri Gerondidakis

  1. KSC-2012-6321

    NASA Image and Video Library

    2012-11-28

    KSC-2012-6321 – CAPE CANAVERAL, Fla. – Anne Caraccio works with an experimental reactor as part of the trash-to-gas project at NASA's Kennedy Space Center in Florida. A group of six researchers at Kennedy and groups from NASA centers in Ohio, California and Texas wrote in a recent paper that the current methods of handling trash – either carrying it along on the round trip through space or gathering it into an expendable module and burning it up in Earth's atmosphere – are not suitable answers for missions that go beyond Earth orbit or even past the moon. Working in a laboratory at Kennedy, Hintze's team built an 80-pound device that looks like a three-foot-long metal pipe to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It's expected to take astronauts four hours to burn a day's worth of trash from a crew of four. During the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said. Photo credit: NASA/Dmitri Gerondidakis

  2. Social background of the discovery and the reception of the periodic law of the elements: recognizing the contributions of Dmitri Ivanovich Mendeleev and Julius Lothar Meyer.

    PubMed

    Kaji, Masanori

    2003-05-01

    The favorable and relatively rapid reception of Mendeleev's periodic table of the elements can be attributed, in part at least, to his social connections. These connections were evident in the recently organized Russian Chemical Society. In addition, Mendeleev enjoyed the support of the editorial board of the journal of the German Chemical Society.

  3. List of Organizing Committees and Conference Programme

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.

  4. KSC-2012-6322

    NASA Image and Video Library

    2012-11-28

    CAPE CANAVERAL, Fla. – The prototype reactor researchers have begun working with to refine what is needed for a space-ready trash-to-gas device. Designers will reduce the weight and size of the machine so it can take up as little room as possible in a spacecraft. A group of six researchers at Kennedy and groups from NASA centers in Ohio, California and Texas wrote in a recent paper that the current methods of handling trash – either carrying it along on the round trip through space or gathering it into an expendable module and burning it up in Earth's atmosphere – are not suitable answers for missions that go beyond Earth orbit or even past the moon. Working in a laboratory at Kennedy, Hintze's team built an 80-pound device that looks like a three-foot-long metal pipe to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It's expected to take astronauts four hours to burn a day's worth of trash from a crew of four. During the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said. Photo credit: NASA/Dmitri Gerondidakis

  5. IUPAC Periodic Table of Isotopes for the Educational Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less

  6. List of Posters

    NASA Astrophysics Data System (ADS)

    List of Posters: Dark matter annihilation in the Galactic galo, by Dokuchaev Vyacheslav, et al. NEMO developments towards km3 telescope in the Mediterranean Sea. The NEMO project. Neutrino Mediterranean Observatory By Antonio Capone, NEMO Collaboration. Alignment as a result from QCD jet production or new still unknown physics at LHC? By Alexander Snigirev. Small-scale fluctuations of extensive air showers: systematics in energy and muon density estimation By Grigory Rubtsov. SHINIE: Simulation of High-Energy Neutrino Interacting with the Earth By Lin Guey-Lin, et al.. Thermodynamics of rotating solutions in n+1 dimensional Einstein - Maxwell -dilation gravity By Ahmad Sheykhi, et al.. Supernova neutrino physics with future large Cherenkov detectors By Daniele Montanino. Crossing of the Cosmological Constant Barrier in the string Inspired Dark Energy Model By S. Yu. Vernov. Calculations of radio signals produced by ultra-high and extremely high energy neutrino induced cascades in Antarctic ice By D. Besson, et al.. Inflation, Cosmic Acceleration and string Gravity By Ischwaree Neupane. Neutrino Physics: Charm and J/Psi production in the atmosphere By Liudmila Volkova. Three generation flavor transitions and decays of supernova relic neutrinos By Daniele Montanino. Lattice calculations & computational quantum field theory: Sonification of Quark and Baryon Spectra By Markum Harald, et al.. Generalized Kramers-Wannier Duality for spin systems with non-commutative symmetry By V. M. Buchstaber, et al.. Heavy ion collisions & quark matter: Nuclear matter jets and multifragmentation By Danut Argintaru, et al.. QCD hard interactions: The qT-spectrum of the Higgs and Slepton-pairs at the LHC By Guiseppe Bozzi. QCD soft interactions: Nonperturbative effects in Single-Spin Asymmetries: Instantons and TMD-parton distributions By Igor Cherednikov, et al.. Gluon dominance model and high multiplicity By Elena Kokoulina. Resonances in eta pi- pi- pi+ system By Dmitry Ryabchikov

  7. CarboPerm: An interdisciplinary Russian-German project on the formation, turnover and release of carbon in Siberian permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Bolshiyanov, D.; Eliseev, A. V.; Evgrafova, S.; Fedorova, I.; Glagolev, M.; Grigoriev, M.; Hubberten, H. W.; Knoblauch, C.; Kunitsky, V.; Kutzbach, L.; Reichstein, M.; Rethemeyer, J.; Schirrmeister, L.; Wagner, D.; Zimov, S. A.; Pfeiffer, E.

    2013-12-01

    Permafrost-affected soils of the northern hemisphere have accumulated large pools of organic carbon (OC) since continuous low temperatures in the permafrost prevented organic carbon decomposition. According to recent estimates these soils contain 1670 Pg of OC, or about 2.5-times the carbon within the global vegetation. Rising arctic temperatures will result in increased permafrost thawing resulting in a mobilization of formerly frozen OC. The degradation of the newly available OC will result in an increased formation of trace gases such as methane and carbon dioxide which can be released to the atmosphere. Rising trace gas concentrations due to permafrost thawing would thereby form a positive feedback on climate warming. CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and release of OC in Siberian permafrost. It aims to gain increased understanding of how permafrost-affected landscapes will respond to global warming and how this response will influence the local, regional and global trace gas balance. Permafrost scientists from Russia and Germany will work together at different key sites in the Siberian Arctic. These sites are: the coast and islands at the Dmitry Laptev Strait, the Lena River Delta, and the Kolyma lowlands close to Cherskii. The scientific work packages comprise studies on (i) the origin, properties, and dynamics of fossil carbon, (ii) the age and quality of organic matter, (iii) the recent carbon dynamics in permafrost landscapes, (iv) the microbial transformation of organic carbon in permafrost, and (v) process-driven modeling of soil carbon dynamics in permafrost areas. The coordination will be at the University of Hamburg (scientific), the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Potsdam (logistic) and the Arctic and Antarctic Research Institute in St. Petersburg

  8. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    Kirova, University Paris-Sud, France Andrei Sergeev, Department of Electrical Engineering, The University of Buffalo, The State University of New Your, Buffalo, NY, USA Magnus Willander, Linkoping University (LIU), Department of Science and Technology, Linkopings, Sweden Dmitry R Khohlov, Physical Faculty, Lomonosov Moscow State University, Russia Vladimir L Vaks, Institute for Physics of Microstructures of Russian Academy of Sciences, Russia

  9. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and

  10. OBITUARY: Dorianna Twersky (1922-2010) Dorianna Twersky (1922-2010)

    NASA Astrophysics Data System (ADS)

    Thomas, P.

    2010-03-01

    Dorianna Twersky, Editor Emerita of Nuclear Fusion, passed away on 22 January 2010. Dorianna was Editor of Nuclear Fusion for nearly two decades, from 1967 to 1985. During her tenure, the journal underwent an impressive development. In 1967 Nuclear Fusion was a quarterly with 300 pages published each year, by 1978 it had become a monthly journal. Reflecting the developments in the field, it had evolved from a general plasma physics journal to one that was far more fusion relevant. Dorianna ensured that Nuclear Fusion had a strong peer review system and that effective journal policies were developed and adhered to. Dorianna drove the success of the journal. Her dynamic personality and commitment to the international fusion community underpinned that success. She had a well deserved reputation for toughness and for critical and intuitive thinking. Perhaps her most valuable trait was her persuasiveness and ability to motivate people to help with the journal and contribute to its development. She was able to inspire a sense of dedication and enthusiasm in the people she worked with and was highly respected. Dorianna Twersky will be greatly missed. Four of the prominent scientists who served on the Nuclear Fusion Board of Editors during Dorianna's Editorship have written a few lines in her memory: Professor Dmitri Ryutov, Professor Folker Engelmann, Professor Jim Callen and Professor Karl Lackner. "Dorianna Twersky was one of the best journal editors who I have met during my half-century in physics and plasma physics. An author and a referee would immediately sense that she was a friendly and open-minded person who would always try to resolve conflicts in a constructive way. That was the time well before the emergence of the Internet, and the paper correspondence added a personal touch to the journal business. Sometimes she would add a handwritten joke, or a small cartoon at the corner of her letter. Dorianna spoke perfect Russian. That was of significant help to a

  11. PREFACE: 21st International Conference on Laser Spectroscopy - ICOLS 2013

    NASA Astrophysics Data System (ADS)

    Budker, Dmitry; Häffner, Hartmut; Müller, Holger

    2013-12-01

    videos of the reception and banquet presentations available at the conference web site https://icols.berkeley.edu/. On behalf of the organizing and program committees, Berkeley, October 2013 Dmitry Budker, Hartmut Häffner, and Holger Müller

  12. Last Interview with D.V. Volkov

    NASA Astrophysics Data System (ADS)

    Volkov, D. V.

    Q. Dmitry Vasilyevich, could you tell me, please, what was your path into theoretical physics, how did you become a theoretician, and was this accidental or was there any specific cause. A. I was born in Leningrad. When I was 16 years old and when I was studying in the 8th grade, the Great Patriotic War began. I was evacuated from Leningrad. These were very difficult years for young people. In this period I came to work on a collective farm and in a military factory. After that I was drafted into the army and took part as a soldier in the war on the Karelian front, above the polar circle. When the war began with Japan, I participated in military action on the Far Eastern front. I want to say that the war had a considerable influence on my attitude to life. In my generation the war created a feeling of responsibility for the country. After the war we carried over the same ideology into civilian life. When the question of a choice of profession arose, many of us thought about how we might be useful to our country. During all the war years I dreamed about going into science, because already in school I was attracted especially to the exact sciences: mathematics and physics. After the demobilization I entered Leningrad State University, in the faculty of physics. At that time prominent scientists such as V.A. Fock and T.P. Kravets were teaching there. The lectures of T.P. Kravets were distinguished by his ability to link the study material with personal moments. He taught us that physics is created by living people and he spoke much about his teacher Lebedev. From the first days Kravets infected us with a deep love for science, and for physics in particular. Aside from that, I listened to the lectures of V.I. Smirnov, whose widely known multi-volume works were specially intended for theoretical physicists, and, in fact, formed the basis of our whole education. We learned a lot from other mathematicians of his school: O.A. Ladyzhenskaya, M.I. Petrashen. In the final

  13. ESA to present the latest Venus Express results to the media

    NASA Astrophysics Data System (ADS)

    2007-11-01

    s atmosphere and the solar wind, by Stas Barabash, ASPERA Principal Investigator 15:50 Climate and evolution, by David Grinspoon, Venus Express Interdisciplinary Scientist 16:00 Conclusion, by Dmitri Titov, Venus Express Science Coordinator and VMC scientist 16:05 Questions and Answers 16:25 Individual interviews 17:30 End of event

  14. Examining Environmental Gradients with Remotely Sensed Data - the ESA GlobPermafrost project

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin; Obu, Jaroslav; Nitze, Ingmar; Heim, Birgit; Haas, Antoni; Widhalm, Barbara

    2017-04-01

    , Claude R; Grosse, Guido; Günther, Frank; Heim, Birgit; Högström, Elin; Kääb, Andreas; Keuper, Frida; Lanckman, Jean-Pierre; Lantuit, Hugues; Lauknes, Tom Rune; Leibman, Marina O; Liu, Lin; Morgenstern, Anne; Necsoiu, Marius; Overduin, Pier Paul; Pope, Allen; Sachs, Torsten; Séjourné, Antoine; Streletskiy, Dmitry A; Strozzi, Tazio; Ullmann, Tobias; Ullrich, Matthias S; Vieira, Goncalo; Widhalm, Barbara (2014): Requirements for monitoring of permafrost in polar regions - A community white paper in response to the WMO Polar Space Task Group (PSTG), Version 4, 2014-10-09. Austrian Polar Research Institute, Vienna, Austria, 20 pp, hdl:10013/epic.45648.d001

  15. Extensive survey of terrestrial organic carbon in surface sediments of the East Siberian Sea

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien; Gustafsson, Örjan; Alling, Vanja; Sánchez-García, Laura; van Dongen, Bart; Andersson, Per; Dudarev, Oleg; Semiletov, Igor; Eglinton, Tim

    2010-05-01

    coastline and in Sannikov and Dmitry Laptev Strait) and minimal values of 10-35% (outer shelf and Long Strait). An extensive set of bulk organic 14C data of the sedimentary OC in the ESS will also be interpreted with respect to relative contributions of coastal Yedoma erosion versus river input. Based on published and calculated (calculated from ISSS08 sediment cores) sedimentation velocities, we estimated terrOC burial sink on the East Siberian Shelf Sea.

  16. Welcome to the 21st International Conference on Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Dear Participants and Guests On behalf of the Rector's Office, welcome to St. Petersburg University, one of the oldest, largest and most prestigious universities in Russia. The 12 Colleges Building (named after the Collegia of Peter the Great's time, Ministries in the modern sense of the word) has been home to the University since 1804. St. Petersburg State University is the successor of the first Russian University founded by Peter the Great on 24 January 1724. It's distinguished faculty members include mathematicians Chebyshev and Smirnov, physicists Lenz and Fock, chemists Mendeleev and Butlerov, embryologist Kovalevsky, and physiologist Sechenov. Several of our alumni won Nobel Prizes - Pavlov, Semenov, Kantorovich, Landau and Prokhorov. The University is the alma mater of two presidents of Russia, Vladimir Putin and Dmitry Medvedev. St. Petersburg State University today consists of 19 faculties on two campuses: in the historic downtown, on Vasilyevsky Island, and in Peterhof. The Faculty of Physics carries out research projects through the efforts of 260 employees, of which 150 hold doctoral degrees, and 50 have been awarded Grand Doctorates. The work is done in a vast variety of areas, from the physics of elementary particles to the physics of the atmosphere. Optics and spectroscopy has been a particularly significant area of research. This field of inquiry goes back to the work of Academician D S Rozhdestvensky more than 70 years ago, when he first suggested his famous hook method. After him the work was headed by S Frisch, corresponding member of the Academy of Sciences and editor-in-chief of Optics and Spectroscopy Journal. Today research projects in optics involve over 50 staff members, graduate and post-graduate students. Work involves projects on spectroscopy of cold and hot plasma, atomic and molecular spectroscopy, non-linear spectroscopy and spectroscopic analysis. Our scholars support active international ties with their colleagues worldwide. The

  17. A Bilateral U.S. - Russia Contribution to Disaster Risk Reduction in the Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E.; Bratton, J.; Ismail-Zadeh, A.

    2012-12-01

    An accepted principle of disaster risk reduction is that all stakeholders should be engaged in the process. For extreme geophysical events, this almost always means stakeholders in more than one country. Even when the direct impacts on the ground from violent shaking or explosive eruptions are confined to a single country, effects to lives and property may be carried thousands of kilometers from the event source by tsunamis or ash clouds, respectively. The formation of G-EVER recognizes the need for neighbors to join together on disaster risk reduction. There is much to be gained by sharing real-time monitoring data and databases on past extreme events, mapping risks seamlessly across borders, and establishing best practices through sharing of experiences. Each extreme event is a learning opportunity, and the recent lessons have been particularly painful. Our science, while progressing, is still inadequate both in content and in application. There has also been lack of recognition that the "worst case" is indeed possible. Among the various collaborations needed to reduce disaster risk is bilateral collaboration, because borders are obstacles and exist between two countries with rules that have been determined by those countries. Borders are used by all countries for protection of national and economic security. They restrict flow of people, equipment, and information, but not seismic waves, tsunamis, and ash. Even the relatively minor event of sea ice arriving early in Nome, Alaska last fall involved both Russia and the U.S. in a relief effort to bring fuel. It is the responsibility of natural hazard scientists and crisis managers to work together across borders, and where necessary make the case to their governments for sharing of data and information based on an expanded view of national security. The Bilateral Presidential Commission initiated by U.S. President Barrack Obama and Russian President Dmitry Medvedev has provided a framework in which to expand

  18. Artistic Research on Freedom in Space and Science

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    which light manipulating machines continuously alter the projected image. Development: In order to delve deeper into the subject of freedom in space and science this setup can serve as a vantage point. And it can offer an interactive environment to explore notions of freedom in space and science. The addition of a specific environment around and above the installation, referring to the fabric of space would highly increase the impact it has on an audience. You would then be able to immerse yourself in the world of this settlement, somewhere in outer space. Sound, light and projection screens will orbit the table changing the projections even more. Triggering the imagination with every movement. Results: Freedome has been exhibited at TecArt in Rotterdam, at ILEWG/Artscience day and the Lunar conference at ESTEC in February 2014. The images underneath (courtesy J. Preusterink BH Foing) depict the installation in some ways it can be experienced http://www.youtube.com/watch?v=Qn8DHARrlU (images: Jolanda Preusterink and Bernard Foing, from ILEWG/ESTEC/ArtScience-The Hague workshop Space Science in the Arts) Authors: Ronald Schelfhout, Bernard Foing, Evelina Domnitch, Dmitry Gelfand, Edwin van der Heide, Jolanda Preusterink

  19. Walking to Olympus: An EVA Chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Trevino, Robert C.

    1997-01-01

    display the large num- ber of flights in which EVA played a role. This approach also makes apparent significant EVA gaps, for example, the U.S. gap between 1985 and 1991 following the Challenger accident. This NASA History Monograph is an edited extract from an extensive EVA Chronology and Reference Book being produced by the EVA Project Office, NASA Johnson Space Center, Houston, Texas. The larger work will be published as part of the NASA Formal Series in 1998. The authors gratefully acknowledge the assistance rendered by Max Ary, Ashot Bakunts, Gert-Jan Bartelds, Frank Cepollina, Andrew Chaikin, Phillip Clark, Richard Fullerton, Steven Glenn, Linda Godwin, Jennifer Green, Greg Harris, Clifford Hess, Jeffrey Hoffman, David Homan, Steven Hopkins, Nicholas Johnson, Eric Jones, Neville Kidger, Joseph Kosmo, Alexei Lebedev, Mark Lee, James LeBlanc, Dmitri Leshchenskii, Jerry Linenger, Igor Lissov, James McBarron, Clay McCullough, Joseph McMann, Story Musgrave, Dennis Newkirk, James Oberg, Joel Powell, Lee Saegesser, Andy Salmon, Glen Swanson, Joseph Tatarewicz, Kathy Thornton, Chris Vandenberg, Charles Vick, Bert Vis, David Woods, Mike Wright, John Young, and Keith Zimmerman. Special thanks to Laurie Buchanan, John Charles, Janet Kovacevich, Joseph Loftus, Sue McDonald, Martha Munies, Colleen Rapp, and Jerry Ross. Any errors remain the responsibility of the authors.

  20. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    identifying the causes. The length scales of most energetic dynamic features in both ocean and atmosphere are defined by the Rossby radius of deformation, which is about 1000 km (a typical size of a cyclone) in the atmosphere while only 10-20 km (a size of a mesoscale eddy) in a shallow sea. However sub-mesoscale atmospheric patterns such as patchiness in the cloud cover could result in smaller scale variations of both the wind and solar radiation hence creating a direct link of these smaller atmospheric features with the ocean mesoscale variability. The simulation has been performed using a version of POLCOMS numerical model (Enriquez et al, 2005). Tidal boundary conditions were taken from the Oregon State University European Shelf Tidal Model (Egbert et al, 2010) and the temperature/ salinity initial fields and boundary conditions were taken from the World Ocean Database (Boyer et al, 2004). The paper discusses what elements of the circulation and water column structure are mostly sensitive to the meteo-fields resolution. References Kara, A.B., Wallcraft, A.J., Hurlburt, H.E., Loh, W.-Y., 2009. Which surface atmospheric variable drives the seasonal cycle of sea surface temperature over the global ocean? Journal of Geophysical Research, Vol. 114, D05101. Boyer, .T, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, T. Boyer, S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, 2004. Objective Analyses of Annual, Seasonal, and Monthly Temperature and Salinity for the World Ocean on a ¼ Grid. International Journal of Climatology, 25, 931-945. Egbert, G. D., S. Y. Erofeeva, and R. D. Ray, 2010. Assimilation of altimetry data for nonlinear shallow-water tides: quarter-diurnal tides of the Northwest European Shelf, Continental Shelf Research, 30, 668-679. Enriquez, C. E., G. I. Shapiro, A. J. Souza, and A. G. Zatsepin, 2005. Hydrodynamic modelling of mesoscale eddies in the Black Sea. Ocean Dyn., 55, 476-489. Georgy Shapiro, Dmitry Aleynik , Andrei

  1. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    superconducting material," said Peter Shternin of the Ioffe Institute in St Petersburg, Russia, leader of a team with a paper accepted in the journal Monthly Notices of the Royal Astronomical Society. Both teams show that this rapid cooling is explained by the formation of a neutron superfluid in the core of the neutron star within about the last 100 years as seen from Earth. The rapid cooling is expected to continue for a few decades and then it should slow down. "It turns out that Cas A may be a gift from the Universe because we would have to catch a very young neutron star at just the right point in time," said Page's co-author Madappa Prakash, from Ohio University. "Sometimes a little good fortune can go a long way in science." The onset of superfluidity in materials on Earth occurs at extremely low temperatures near absolute zero, but in neutron stars, it can occur at temperatures near a billion degrees Celsius. Until now there was a very large uncertainty in estimates of this critical temperature. This new research constrains the critical temperature to between one half a billion to just under a billion degrees. Cas A will allow researchers to test models of how the strong nuclear force, which binds subatomic particles, behaves in ultradense matter. These results are also important for understanding a range of behavior in neutron stars, including "glitches," neutron star precession and pulsation, magnetar outbursts and the evolution of neutron star magnetic fields. Small sudden changes in the spin rate of rotating neutron stars, called glitches, have previously given evidence for superfluid neutrons in the crust of a neutron star, where densities are much lower than seen in the core of the star. This latest news from Cas A unveils new information about the ultra-dense inner region of the neutron star. "Previously we had no idea how extended superconductivity of protons was in a neutron star," said Shternin's co-author Dmitry Yakovlev, also from the Ioffe Institute. The

  2. PREFACE: XXI International Conference on Spectral Line Shapes (ICSLS 2012)

    NASA Astrophysics Data System (ADS)

    Devdariani, Alexander Z.

    2012-12-01

    Conference would like to wish him and his colleagues every success for the next conference in Tennessee. The St Petersburg Conference was supported by the grants from St Petersburg State University, the Russian Foundation for Basic Research and Dynasty, Dmitry Zimin's Foundation for Non-Profit Programs. The Organizing Committee would like to thank them for their support. A word of thanks also goes to staff of the Research Department of St Petersburg State University for assistance with administrative issues, and to Mr S Slyusarev for creating the Conference logo and website. I would like to thank personally Professor A Kouzov, and Dr V Alexeev for providing much support in the process of preparing and holding the event in 2012. Alexander Z Devdariani St Petersburg University Conference photograph Sponsors St Petersburg University St Petersburg University Dynasty Foundation Dynasty Foundation Russian Foundation for Basic Research Russian Foundation for Basic Research

  3. EDITORIAL: Focus on Quantum Control

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2009-10-01

    represent two-photon power spectra of arbitrarily and adaptively shaped broadband laser pulses M A Montgomery and N H Damrauer Accurate and efficient implementation of the von Neumann representation for laser pulses with discrete and finite spectra Frank Dimler, Susanne Fechner, Alexander Rodenberg, Tobias Brixner and David J Tannor Coherent strong-field control of multiple states by a single chirped femtosecond laser pulse M Krug, T Bayer, M Wollenhaupt, C Sarpe-Tudoran, T Baumert, S S Ivanov and N V Vitanov Quantum-state measurement of ionic Rydberg wavepackets X Zhang and R R Jones On the paradigm of coherent control: the phase-dependent light-matter interaction in the shaping window Tiago Buckup, Jurgen Hauer and Marcus Motzkus Use of the spatial phase of a focused laser beam to yield mechanistic information about photo-induced chemical reactions V J Barge, Z Hu and R J Gordon Coherent control of multiple vibrational excitations for optimal detection S D McGrane, R J Scharff, M Greenfield and D S Moore Mode selectivity with polarization shaping in the mid-IR David B Strasfeld, Chris T Middleton and Martin T Zanni Laser-guided relativistic quantum dynamics Chengpu Liu, Markus C Kohler, Karen Z Hatsagortsyan, Carsten Muller and Christoph H Keitel Continuous quantum error correction as classical hybrid control Hideo Mabuchi Quantum filter reduction for measurement-feedback control via unsupervised manifold learning Anne E B Nielsen, Asa S Hopkins and Hideo Mabuchi Control of the temporal profile of the local electromagnetic field near metallic nanostructures Ilya Grigorenko and Anatoly Efimov Laser-assisted molecular orientation in gaseous media: new possibilities and applications Dmitry V Zhdanov and Victor N Zadkov Optimization of laser field-free orientation of a state-selected NO molecular sample Arnaud Rouzee, Arjan Gijsbertsen, Omair Ghafur, Ofer M Shir, Thomas Back, Steven Stolte and Marc J J Vrakking Controlling the sense of molecular rotation Sharly Fleischer

  4. PREFACE: Ultrathin layers of graphene, h-BN and other honeycomb structures Ultrathin layers of graphene, h-BN and other honeycomb structures

    NASA Astrophysics Data System (ADS)

    Geber, Thomas; Oshima, Chuhei

    2012-08-01

    nanometer scale. This special section contains interesting papers on graphene, h-BN and related 'honeycomb' compounds on solid surfaces, which are currently in development. Interfacial interaction strongly modifies the electronic and atomic structures of these overlayer systems and substrate surfaces. In addition, one can recognize a variety of growth phenomena by changing the surface and growth conditions, which are promising as regards fabricating those noble nanosystems. We have great pleasure in acknowledging the enthusiastic response and participation of our invited authors and their diligent preparation of the manuscripts. Ultrathin layers of graphene, h-BN and other honeycomb structures contents Ultrathin layers of graphene, h-BN and other honeycomb structuresThomas Geber and Chuhei Oshima Templating of arrays of Ru nanoclusters by monolayer graphene/Ru Moirés with different periodicitiesEli Sutter, Bin Wang, Peter Albrecht, Jayeeta Lahiri, Marie-Laure Bocquet and Peter Sutter Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3N A Vinogradov, K A Simonov, A V Generalov, A S Vinogradov, D V Vyalikh, C Laubschat, N Mårtensson and A B Preobrajenski Optimizing long-range order, band gap, and group velocities for graphene on close-packed metal surfacesF D Natterer, S Rusponi, M Papagno, C Carbone and H Brune Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase depositionSamuel Grandthyll, Stefan Gsell, Michael Weinl, Matthias Schreck, Stefan Hüfner and Frank Müller High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer compositesXuebin Wang, Amir Pakdel, Chunyi Zhi, Kentaro Watanabe, Takashi Sekiguchi, Dmitri Golberg and Yoshio Bando BCx layers with honeycomb lattices on an NbB2(0001) surfaceChuhei Oshima Epitaxial growth of boron-doped graphene by thermal decomposition of B4CWataru Norimatsu, Koichiro Hirata, Yuta Yamamoto, Shigeo Arai and Michiko

  5. List of Participants

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Mohab Abou ZeidInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Ido AdamMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Henrik AdorfLeibniz Universität Hannover Mohammad Ali-AkbariIPM, Tehran Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Martin Ammon Max-Planck-Institut für Physik, München Christopher AndreyÉcole Polytechnique Fédérale de Lausanne (EPFL) Laura AndrianopoliPolitecnico di Torino David AndriotLPTHE, Université UPMC Paris VI Carlo Angelantonj Università di Torino Pantelis ApostolopoulosUniversitat de les Illes Balears, Palma Gleb ArutyunovInstitute for Theoretical Physics, Utrecht University Davide AstolfiUniversità di Perugia Spyros AvramisUniversité de Neuchâtel Mirela BabalicChalmers University, Göteborg Foday BahDigicom Ioannis Bakas University of Patras Igor BandosUniversidad de Valencia Jose L F BarbonIFTE UAM/CSIC Madrid Till BargheerMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marco Baumgartl Eidgenössische Technische Hochschule (ETH), Zürich James BedfordImperial College London Raphael BenichouLaboratoire de Physique Théorique, École Normale Supérieure, Paris Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Alice BernamontiVrije Universiteit, Brussel Julia BernardLaboratoire de Physique Théorique, École Normale Supérieure, Paris Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure, Paris Marco Billo' Università di Torino Matthias Blau Université de Neuchâtel Guillaume BossardAlbert-Einstein-Institut, Golm Leonardo BriziÉcole Polytechnique Fédérale de Lausanne (EPFL) Johannes BroedelLeibniz Universität Hannover (AEI) Tom BrownQueen Mary, University of London Ilka BrunnerEidgenössische Technische Hochschule (ETH), Zürich Erling BrynjolfssonUniversity of Iceland Dmitri BykovSteklov Institute, Moscow and Trinity College, Dublin Joan CampsUniversitat de Barcelona

  6. Towards A Moon Village: Vision and Opportunities

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2016-04-01

    or interest. Just let us know your views! Highlights and recommendations can be found on https://ildwg.wordpress.com/ *Moon Village Workshops Organisers Team: Bernard Foing (ESA/ESTEC & ILEWG), Aidan Cowley, Guillermo Ortega, Linda van Hilten (ESA), Vid Beldavs, David Dunlop, Jim Crisafulli (International Lunar Decade), ESTEC Moon Village workshop 2015 WGs co-conveners: Peter Batenburg, Andrea Jaime, Abigail Calzada, Angeliki Kapoglou, Chris Welch, Susanne Pieterse, Daniel Esser, Audrey Berquand, Daniel Winter, Dmitri Ivanov, Simone Paternostro, Matias Hazadi, Oscar Kamps, Marloes Offringa

  7. EDITORIAL: Ongoing climatic change in Northern Eurasia: justification for expedient research

    NASA Astrophysics Data System (ADS)

    Groisman, Pavel; Soja, Amber J.

    2009-12-01

    season weather in Kazakhstan C K Wright, K M de Beurs, Z K Akhmadieva, P Y Groisman and G M Henebry Climate change in Inner Mongolia from 1955 to 2005—trends at regional, biome and local scales N Lu, B Wilske, J Ni, R John and J Chen Application of the Snowmelt Runoff model in the Kuban river basin using MODIS satellite images M V Georgievsky Record Russian river discharge in 2007 and the limits of analysis A I Shiklomanov and R B Lammers Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming E Novenko, A Olchev, O Desherevskaya and I Zuganova Diagnosis of the record discharge of Arctic-draining Eurasian rivers in 2007 Michael A Rawlins, Mark C Serreze, Ronny Schroeder, Xiangdong Zhang and Kyle C McDonald Studies of the cryosphere in Northern Eurasia Groundwater storage changes in arctic permafrost watersheds from GRACE and in situ measurements Reginald R Muskett and Vladimir E Romanovsky Changes in snow cover over Northern Eurasia in the last few decades O N Bulygina, V N Razuvaev and N N Korshunova Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait D Nicolsky and N Shakhova Snow cover basal ice layer changes over Northern Eurasia since 1966 Olga N Bulygina, Pavel Ya Groisman, Vyacheslav N Razuvaev and Vladimir F Radionov Snow cover and permafrost evolution in Siberia as simulated by the MGO regional climate model in the 20th and 21st centuries I M Shkolnik, E D Nadyozhina, T V Pavlova, E K Molkentin and A A Semioshina Studies of the biosphere in Northern Eurasia The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites A Bartsch, H Balzter and C George Change and persistence in land surface phenologies of the Don and Dnieper river basins V Kovalskyy and G M Henebry Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of

  8. PREFACE: XXXth International Colloquium on Group Theoretical Methods in Physics (ICGTMP) (Group30)

    NASA Astrophysics Data System (ADS)

    Brackx, Fred; De Schepper, Hennie; Van der Jeugt, Joris

    2015-04-01

    Christophe Peeters, Deputy Mayor of the City of Ghent, was followed by a reception in the historical "Pacificatiezaal" of the City Hall. On Wednesday afternoon the participants had the opportunity to take a guided tour through medieval Ghent, admiring its wide range of monuments. The tour was followed by a much-appreciated boat trip exploring the canals and rivers of Ghent, all in sunny weather. On Thursday evening the conference banquet was held in the "Brasserie HA". Located in the Handelsbeurs Ghent. In the majestic banquet hall, the participants were not only treated to an exclusive dinner, but also to some fine piano music by Dmitry Gal'tsov and Richard Kerner. The conference was sponsored by: American Institute of Physics (AIP Publishing), Clay Mathematics Institute, Clifford Research Group - Faculty of Engineering and Architecture (Ghent Unviversity), Elsevier, Faculty of Sciences (Ghent University), Fonds de la Recherche Scientifique (FNRS), Foundation Compositio Mathematica, FWO Research Foundation - Flanders, International Association of Mathematical Physics, International Solvay Institutes, International Union of Pure and Applied Physics, National Science Foundation (USA) and Springer Birkhäuser. We would like to thank all our sponsors for their generous support. It took more than two years to organise a conference of such a size and importance. We express our gratitude to the International Advisory Committee for its help in selecting the plenary speakers and to the external members of the Organising Committee for their helpful suggestions and advice. We thank Wouter Dewolf for his devoted secretarial, administrative and organisational work and Vera Vanden Driessche for arranging the "Accompanying persons' programme". Finally, a big 'thank you' to all the local people (administrative and technical staff, research assistants and research students) for their devoted and tireless work in preparing and running the conference. Fred Brackx, Hennie De Schepper and Joris

  9. PREFACE: Fourth Meeting on Constrained Dynamics and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Cadoni, Mariano; Cavaglia, Marco; Nelson, Jeanette E.

    2006-04-01

    Cagliari, Italy) Roberto De Pietri (Università di Parma, Italy) Giuseppe De Risi (Università di Bari, Italy) Hans-Thomas Elze (Univ. Federal do Rio de Janeiro, Brasil) Alessandro Fabbri (Università di Bologna, Italy) Sergey Fadeev (VNIIMS, Moscow, Russia) Serena Fagnocchi (Università di Bologna, Italy) Sara Farese (Universidad de Valencia, Spain) Alessandra Feo (Università di Parma, Italy) Dario Francia (Università di Roma Tor Vergata, Italy) Francesco Fucito (Università di Roma Tor Vergata, Italy) Dmitri Fursaev (JINR, Dubna, Russia) Daniel Galehouse (University of Akron, Ohio, USA) Remo Garattini (Università di Bergamo, Italy) Florian Girelli (Perimeter Institute, Waterloo, Canada) Luca Griguolo (Università di Parma, Italy) Daniel Grumiller (Universität Leipzig, Germany) Shinichi Horata (Hayama Center of Advanced Research, Japan) Giorgio Immirzi (Università di Perugia, Italy) Roman Jackiw (MIT, Cambridge, USA) Matyas Karadi (DAMTP, University of Cambridge, UK) Mikhail Katanaev (Steklov Mathematical Institute, Moscow, Russia) Claus Kiefer (Universität Koln, Germany) John Klauder (University of Florida, Gainesville, USA) Pavel Klepac (Masaryk University, Brno, Czech Republic) Jen-Chi Lee (National Chiao-Tung University, Taiwan) Carlos Leiva (Universidad de Tarapacá, Arica, Chile) Stefano Liberati (SISSA/ISAS, Trieste, Italy) Jorma Louko (University of Nottingham, UK) Luca Lusanna (INFN, Sezione di Firenze, Italy) Roy Maartens (University of Portsmouth, UK) Fotini Markopoulou (Perimeter Institute, Waterloo, Canada) Annalisa Marzuoli (Università di Pavia, Italy) Evangelos Melas (QMW, University of London, UK) Maurizio Melis (Università di Cagliary, Italy) Vitaly Melnikov (VNIIMS, Moscow, Russia) Guillermo A. Mena Marugan (CSIC, Madrid, Spain) Pietro Menotti (Università di Pisa, Italy) Salvatore Mignemi (Università di Cagliari, Italy) Aleksandar Mikovic (Universidade Lusófona, Lisboa, Portugal) Leonardo Modesto (Université de la Mediterranée, Marseille

  10. Towards a Moon Village: Young Lunar Explorers Report

    NASA Astrophysics Data System (ADS)

    Kamps, Oscar; Foing, Bernard; Batenburg, Peter

    2016-04-01

    : ESA delegations, media, national governments, citizens and taxpayers. References: [1] http://sci.esa.int/ilewg/ and https://ildwg.wordpress.com/ [2] Foing B. Moon explora-tion highlights and Moon Village introduction. [3] Young Lunar Explorers Report ESTEC Moon village sessions with community and young professionals. *Organisation: Bernard Foing, ESA/ESTEC & ILEWG, ESTEC Moon Village workshop WGs co-conveners: Peter Batenburg, Andrea Jaime, Abigail Calzada, Angeliki Kapoglou, Chris Welch, Susanne Pieterse, Daniel Esser, Audrey Berquand, Daniel Winter, Hanna Läkk, Dmitri Ivanov, S Paternostro, Matias Hazadi, Oscar Kamps

  11. List of Participants

    NASA Astrophysics Data System (ADS)

    2007-11-01

    de Física Teórica, Madrid Aaron Sim Imperial College, London Woojoo Sim Pohang University of Science and Technology (POSTECH) Sergey Slizovskiy Department of Theoretical Physics, Uppsala University Paul Smyth Katholieke Universiteit Leuven Corneliu Sochichiu Laboratori Nazionali di Frascati Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Kellogg Stelle Imperial College, London Piotr Surowka Jagiellonian University, Krakow Yasutoshi Takayama Niels Bohr Institute, København Laura Tamassia Katholieke Universiteit Leuven Radu Tatar University of Liverpool Larus Thorlacius University of Iceland Paavo Tiitola Helsinki Institute of Physics Diego Trancanelli Stony Brook University, NY Michele TraplettiInstitut für Theoretische Physik, Universität Heidelberg Mario Trigiante Politecnico di Torino Angel Uranga CERN, Geneva and Instituto de Física Teórica, Madrid Roberto Valandro SISSA, Trieste Dieter Van den Bleeken Katholieke Universiteit Leuven Antoine Van Proeyen Katholieke Universiteit Leuven Thomas Van Riet Centre for Theoretical Physics, University of Groningen Pierre Vanhove Service de Physique Théorique, Saclay Oscar Varela Universidad de Valencia Alessandro Vichi Scuola Normale Superiore di Pisa Massimiliano VinconQueen Mary, University of London John Ward Queen Mary, University of London and CERN, Geneva Brian Wecht Massachusetts Institute of Technology, Cambridge, MA Marlene Weiss Eidgenössische Technische Hochschule, Zürich and CERN, Geneva Sebastian Weiss Université de Neuchâtel Alexander Wijns Vrije Universiteit, Brussel Przemek Witaszczyk Jagiellonian University, Krakow Timm Wrase University of Texas at Austin Jun-Bao Wu SISSA, Trieste Amos Yarom Ludwig-Maximilians-Universität, München Marco Zagermann Max-Planck-Institut für Physik, München Daniela Zanon Dipartimento di Fisica, Università di Milano Andrea Zanzi University of Bonn Andrey Zayakin Moscow State University (MSU) and Institute for Theoretical and Experimental Physics (ITEP

  12. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    , Ojeda-Lopez M A and Arauz-Lara J L 2012 J. Phys. Condens. Matter 24 464126 [31]Leferink op Reinink A B G M, van den Pol E, Byelov D V, Petukhov A V and Vroege G J 2012 J. Phys. Condens. Matter 24 464127 [32]Taylor S L, Evans R and Royall C P 2012 J. Phys. Condens. Matter 24 464128 [33]Toner J, Tu Y H and Ramaswamy S 2012 J. Phys. Condens. Matter 24 464110 [34]Schmitz R and Dünweg B 2005 J. Phys. Condens. Matter 318 170 [35]Cates M E 2012 Rep. Prog. Phys. 75 042601 [36]Tarama M and Ohta T 2012 J. Phys. Condens. Matter 24 464129 [37]Wensink H H and Löwen H 2012 J. Phys. Condens. Matter 24 464130 Colloidal dispersions in external fields contents Colloidal dispersions in external fieldsHartmut Löwen Depletion induced clustering in mixtures of colloidal spheres and fd-virusD Guu, J K G Dhont, G A Vliegenthart and M P Lettinga Advanced rheological characterization of soft colloidal model systemsS Gupta, S K Kundu, J Stellbrink, L Willner, J Allgaier and D Richter Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flowSunil P Singh, Dmitry A Fedosov, Apratim Chatterji, Roland G Winkler and Gerhard Gompper Transient dynamics in dense colloidal suspensions under shear: shear rate dependenceM Laurati, K J Mutch, N Koumakis, J Zausch, C P Amann, A B Schofield, G Petekidis, J F Brady, J Horbach, M Fuchs and S U Egelhaaf Force-induced diffusion in microrheologyCh J Harrer, D Winter, J Horbach, M Fuchs and Th Voigtmann Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoidsRyan J DePuit and Todd M Squires Micro-macro discrepancies in nonlinear microrheology: II. Effect of probe shapeRyan J DePuit and Todd M Squires Viscosity of electrolyte solutions: a mode-coupling theoryClaudio Contreras-Aburto and Gerhard Nägele Electro-kinetics of charged-sphere suspensions explored by integral low-angle super-heterodyne laser Doppler velocimetryThomas Palberg, Tetyana K

  13. EDITORIAL: Focus on Molecular Electronics FOCUS ON MOLECULAR ELECTRONICS

    NASA Astrophysics Data System (ADS)

    Scheer, Elke; Reineker, Peter

    2008-06-01

    : American Scientific Publishers) [7] Petty M C 2007 Molecular Electronics, (Weinheim: Wiley-VCH) [8] 2006 Molecular Wires and Nanoscale Conductors Faraday Discuss. 131 1-420 Focus on Molecular Electronics Contents Model of mixed Frenkel and charge-transfer excitons in donor-acceptor molecular crystals: investigation of vibronic spectra I J Lalov, C Warns and P Reineker Suppressing the current through molecular wires: comparison of two mechanisms GuangQi Li, Michael Schreiber and Ulrich Kleinekathöfer Charge-memory effect in a polaron model: equation-of-motion method for Green functions Pino D'Amico, Dmitry A Ryndyk, Gianaurelio Cuniberti and Klaus Richter Determination of transport levels of organic semiconductors by UPS and IPS S Krause, M B Casu, A Schöll and E Umbach Electrical characterization of alkane monolayers using micro-transfer printing: tunneling and molecular transport C Kreuter, S Bächle, E Scheer and A Erbe Correlated charge transfer along molecular chains L Mühlbacher and J Ankerhold Non-equilibrium Green's functions in density functional tight binding: method and applications A Pecchia, G Penazzi, L Salvucci and A Di Carlo Asymmetric Coulomb blockade and Kondo temperature of single-molecule transistors Florian Elste and Felix von Oppen Electron-phonon scattering in molecular electronics: from inelastic electron tunnelling spectroscopy to heating effects Alessio Gagliardi, Giuseppe Romano, Alessandro Pecchia, Aldo Di Carlo, Thomas Frauenheim and Thomas A Niehaus Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules Jianhui Liao, Markus A Mangold, Sergio Grunder, Marcel Mayor, Christian Schönenberger and Michel Calame Conductance values of alkanedithiol molecular junctions M Teresa González, Jan Brunner, Roman Huber, Songmei Wu, Christian Schönenberger and Michel Calame Particularities of surface plasmon-exciton strong coupling with large Rabi splitting C Symonds, C Bonnand, J C Plenet, A Bréhier, R Parashkov, J S Lauret, E