Sample records for tangential strain rate

  1. Impact of heat release on strain rate field in turbulent premixed Bunsen flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coriton, Bruno Rene Leon; Frank, Jonathan H.

    2016-08-10

    The effects of combustion on the strain rate field are investigated in turbulent premixed CH 4/air Bunsen flames using simultaneous tomographic PIV and OH LIF measurements. Tomographic PIV provides three-dimensional velocity measurements, from which the complete strain rate tensor is determined. The OH LIF measurements are used to determine the position of the flame surface and the flame-normal orientation within the imaging plane. This combination of diagnostic techniques enables quantification of divergence as well as flame-normal and tangential strain rates, which are otherwise biased using only planar measurements. Measurements are compared in three lean-to-stoichiometric flames that have different amounts ofmore » heat release and Damköhler numbers greater than unity. The effects of heat release on the principal strain rates and their alignment relative to the local flame normal are analyzed. The extensive strain rate preferentially aligns with the flame normal in the reaction zone, which has been indicated by previous studies. The strength of this alignment increases with increasing heat release and, as a result, the flame-normal strain rate becomes highly extensive. These effects are associated with the gas expansion normal to the flame surface, which is largest for the stoichiometric flame. In the preheat zone, the compressive strain rate has a tendency to align with the flame normal. Away from the flame front, the flame – strain rate alignment is arbitrary in both the reactants and products. The flame-tangential strain rate is on average positive across the flame front, and therefore the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence. As a result, increases in heat release result in larger positive values of the divergence as well as flame-normal and tangential strain rates, the tangential strain rate has a weaker dependence on heat release than the flame-normal strain rate and the

  2. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert

    2011-11-01

    In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity

  3. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  4. Forebody tangential blowing for control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Kroo, I.; Rock, S.; Roberts, L.

    1991-01-01

    A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.

  5. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGES

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s 2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s 2 tangential to the shear layer. The extensive and compressive principal strain rates, s 1 and s 3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s 1¯-s 2¯ plane and orthogonal to s 3¯.« less

  6. Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner

    NASA Astrophysics Data System (ADS)

    Sandeep, Anurag; Proch, Fabian; Kempf, Andreas M.; Chakraborty, Nilanjan

    2018-06-01

    The statistical behavior of the surface density function (SDF, the magnitude of the reaction progress variable gradient) and the strain rates, which govern the evolution of the SDF, have been analyzed using a three-dimensional flame-resolved simulation database of a turbulent lean premixed methane-air flame in a bluff-body configuration. It has been found that the turbulence intensity increases with the distance from the burner, changing the flame curvature distribution and increasing the probability of the negative curvature in the downstream direction. The curvature dependences of dilatation rate ∇ṡu → and displacement speed Sd give rise to variations of these quantities in the axial direction. These variations affect the nature of the alignment between the progress variable gradient and the local principal strain rates, which in turn affects the mean flame normal strain rate, which assumes positive values close to the burner but increasingly becomes negative as the effect of turbulence increases with the axial distance from the burner exit. The axial distance dependences of the curvature and displacement speed also induce a considerable variation in the mean value of the curvature stretch. The axial distance dependences of the dilatation rate and flame normal strain rate govern the behavior of the flame tangential strain rate, and its mean value increases in the downstream direction. The current analysis indicates that the statistical behaviors of different strain rates and displacement speed and their curvature dependences need to be included in the modeling of flame surface density and scalar dissipation rate in order to accurately capture their local behaviors.

  7. Determination of Dynamic Recrystallization Process by Equivalent Strain

    NASA Astrophysics Data System (ADS)

    Qin, Xiaomei; Deng, Wei

    Based on Tpнoвckiй's displacement field, equivalent strain expression was derived. And according to the dynamic recrystallization (DRX) critical strain, DRX process was determined by equivalent strain. It was found that equivalent strain distribution in deformed specimen is inhomogeneous, and it increases with increasing true strain. Under a certain true strain, equivalent strains at the center, demisemi radius or on tangential plane just below the surface of the specimen are higher than the true strain. Thus, micrographs at those positions can not exactly reflect the true microstructures under the certain true strain. With increasing strain rate, the initial and finish time of DRX decrease. The frozen microstructures of 20Mn23AlV steel with the experimental condition validate the feasibility of predicting DRX process by equivalent strain.

  8. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital imagemore » correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.« less

  9. Ultra High Strain Rate Nanoindentation Testing.

    PubMed

    Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl

    2017-06-17

    Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.

  10. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.

    PubMed

    Munir, Ahsan; Zhu, Zanzan; Wang, Jianlong; Zhou, Hong Susan

    2014-06-01

    A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems.

  11. Conserved pattern of tangential neuronal migration during forebrain development.

    PubMed

    Métin, Christine; Alvarez, Chantal; Moudoux, David; Vitalis, Tania; Pieau, Claude; Molnár, Zoltán

    2007-08-01

    Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.

  12. Computational analysis of forebody tangential slot blowing

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.

  13. Bi-tangential hybrid IMRT for sparing the shoulder in whole breast irradiation.

    PubMed

    Farace, P; Deidda, M A; Iamundo de Cumis, I; Iamundo de Curtis, I; Deiana, E; Farigu, R; Lay, G; Porru, S

    2013-11-01

    A bi-tangential technique is proposed to reduce undesired doses to the shoulder produced by standard tangential irradiation. A total of 6 patients affected by shoulder pain and reduced functional capacity after whole-breast irradiation were retrospectively analysed. The standard tangential plan used for treatment was compared with (1) a single bi-tangential plan where, to spare the shoulder, the lateral open tangent was split into two half-beams at isocentre, with the superior portion rotated by 10-20° medially with respect to the standard lateral beam; (2) a double bi-tangential plan, where both the tangential open beams were split. The planning target volume (PTV) coverage and the dose to the portion of muscles and axilla included in the standard tangential beams were compared. PTV95 % of standard plan (91.9 ± 3.8) was not significantly different from single bi-tangential plan (91.8 ± 3.4); a small but significant (p < 0.01) decrease was observed with the double bi-tangential plan (90.1 ± 3.7). A marked dose reduction to the muscle was produced by the single bi-tangential plan around 30-40 Gy. The application of the double bi-tangential technique further reduced the volume receiving around 20 Gy, but did not markedly affect the higher doses. The dose to the axilla was reduced both in the single and the double bi-tangential plans. The single bi-tangential technique would have been able to reduce the dose to shoulder and axilla, without compromising target coverage. This simple technique is valuable for irradiation after axillary lymph node dissection or in patients without dissection due to negative or low-volume sentinel lymph node disease.

  14. Strain Rate Sensitivity of Graphite/Polymer Laminate Composites

    NASA Astrophysics Data System (ADS)

    Syed, Izhar H.; Brar, N. S.

    2002-07-01

    Strain rate sensitivities of Graphite/Epoxy and Graphite/Peek laminate composites are investigated by measuring their stress-strain response at strain rates of 0.001/s, 0.1/s, and 400/s. Tension specimens of the composite laminates are fabricated in a dog-bone shape. Stress-strain data at quasi-static rates of 0.001/s and 0.1/s are obtained using a servohydraulic test system. High strain rate data are produced with a Direct Tension Split Hopkinson Bar (DTSHB). A tensile stress pulse is generated in the DTSHB by impacting a stopper flange at the end of the incident bar with an aluminum/polymeric tube launched around the incident bar. The failure (flow) tensile stress of Graphite/Epoxy increases from 240 MPa to 280±10 MPa (ɛ = 0.06) when the strain rate is raised from 0.001/s to 400/s. For Graphite/Peek, failure (flow) tension stress increases from 175 MPa at a strain rate of 0.001/s to 270±20 MPa at a strain rate of 400/s.

  15. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  16. Physical nature of strain rate sensitivity of metals and alloys at high strain rates

    NASA Astrophysics Data System (ADS)

    Borodin, E. N.; Gruzdkov, A. A.; Mayer, A. E.; Selyutina, N. S.

    2018-04-01

    The role of instabilities of plastic flow at plastic deformation of various materials is one of the important cross-disciplinary problems which is equally important in physics, mechanics and material science. The strain rate sensitivities under slow and high strain rate conditions of loading have different physical nature. In the case of low strain rate, the sensitivity arising from the inertness of the defect structures evolution can be expressed by a single parameter characterizing the plasticity mechanism. In our approach, this is the value of the characteristic relaxation time. In the dynamic case, there are additional effects of “high-speed sensitivity” associated with the micro-localization of the plastic flow near the stress concentrators. In the frames of mechanical description, this requires to introduce additional strain rate sensitivity parameters, which is realized in numerous modifications of Johnson–Cook and Zerilli–Armstrong models. The consideration of both these factors is fundamental for an adequate description of the problems of dynamic deformation of highly inhomogeneous metallic materials such as steels and alloys. The measurement of the dispersion of particle velocities on the free surface of a shock-loaded material can be regarded as an experimental expression of the effect of micro-localization. This is also confirmed by our results of numerical simulation of the propagation of shock waves in a two-dimensional formulation and analytical estimations.

  17. Tangential System of Thomson Scattering for Tokamak T-15

    NASA Astrophysics Data System (ADS)

    Asadulin, G. M.; Bel'bas, I. S.; Gorshkov, A. V.

    2017-12-01

    Two systems of Thomson scattering diagnostics, with vertical and tangential probing, are used in the D-shaped plasma cross section in tokamak T-15. The tangential system allows measuring plasma temperature and density profiles along the major radius of the tokamak. This paper presents the tangential system project. The system is based on a Nd:YAG laser with wavelength of 1064 nm, pulse energy of 3 J, pulse duration of 10 ns, and repetition rate of 100 Hz. The chosen geometry allows collecting light from ten uniformly spaced points. Optimization of the registration system has been accomplished. The collected light will be transmitted through an optical fiber bundle with diameter of 3 mm and quartz fibers (numerical aperture is 0.22). Six-channel polychromators based on high-contrast interference filters have been chosen as spectral equipment. The radiation will be registered by avalanche photodiodes. The technique of electron temperature and density measurement is described, and estimation of its accuracy is carried out. The proposed system allows measuring the electron temperature with accuracy not worse than 10% within the range of 50 eV to 10 keV on the pinch edge over the internal contour, from 20 eV to 9 keV in the plasma central region, and from 2 eV to 400 eV on the pinch edge over the outer contour. The estimation is made for electron density of not less than 2.6 × 1013 cm-3.

  18. Properties of Tangential and Cyclic Polygons: An Application of Circulant Matrices

    ERIC Educational Resources Information Center

    Leung, Allen; Lopez-Real, Francis

    2003-01-01

    In this paper, the properties of tangential and cyclic polygons proposed by Lopez-Real are proved rigorously using the theory of circulant matrices. In particular, the concepts of slippable tangential polygons and conformable cyclic polygons are defined. It is shown that an n-sided tangential (or cyclic) polygon P[subscript n] with n even is…

  19. Simulation of a tangential soft x-ray imaging system.

    PubMed

    Battaglia, D J; Shafer, M W; Unterberg, E A; Bell, R E; Hillis, D L; LeBlanc, B P; Maingi, R; Sabbagh, S; Stratton, B C

    2010-10-01

    Tangentially viewing soft x-ray (SXR) cameras are capable of detecting nonaxisymmetric plasma structures in magnetically confined plasmas. They are particularly useful for studying stationary perturbations or phenomenon that occur on a timescale faster than the plasma rotation period. Tangential SXR camera diagnostics are planned for the DIII-D and NSTX tokamaks to elucidate the static edge magnetic structure during the application of 3D perturbations. To support the design of the proposed diagnostics, a synthetic diagnostic model was developed using the CHIANTI database to estimate the SXR emission. The model is shown to be in good agreement with the measurements from an existing tangential SXR camera diagnostic on NSTX.

  20. Tangential synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Esmaeili Monir, H.; Tadjfar, M.; Bakhtian, A.

    2014-02-01

    A numerical study of separation control has been made to investigate aerodynamic characteristics of a NACA23012 airfoil with a tangential synthetic jet. Simulations are carried out at the chord Reynolds number of Re=2.19×106. The present approach relies on solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The turbulence model used in the present computation is the Spalart-Allmaras one-equation model. All computations are performed with a finite volume based code. Stall characteristics are significantly improved by controlling the formation of separation vortices in the flow. We placed the synthetic jet at the 12% chord, xj=0.12c, where we expected the separation to occur. Two distinct jet oscillating frequencies: Fj+=0.159 and Fj+=1 were considered. We studied the effect of blowing ratio, Vj/U∞, where it was varied from 0 to 5. The inclined angle of the synthetic jet was varied from αj=0° up to αj=83°. For the non-zero inclined angles, the local maximum in the aerodynamic performance, Cl/Cd, of 6.89 was found for the inclined angle of about 43°. In the present method, by means of creating a dent on the airfoil, linear momentum is transferred to the flow system in tangential direction to the airfoil surface. Thus the absolute maximum of 11.19 was found for the tangential synthetic jet at the inclined angle of the jet of 0°. The mechanisms involved for a tangential jet appear to behave linearly, as by multiplying the activation frequency of the jet by a factor produces the same multiplication factor in the resulting frequency in the flow. However, the mechanisms involved in the non-zero inclined angle cases behave nonlinearly when the activation frequency is multiplied.

  1. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  2. Large Strain Behaviour of ZEK100 Magnesium Alloy at Various Strain Rates

    NASA Astrophysics Data System (ADS)

    Lévesque, Julie; Kurukuri, Srihari; Mishra, Raja; Worswick, Michael; Inal, Kaan

    A constitutive framework based on a rate-dependent crystal plasticity theory is employed to simulate large strain deformation in hexagonal closed-packed metals that deform by slip and twinning. The model allows the twinned zones and the parent matrix to rotate independently. ZEK100 magnesium alloy sheets which significant texture weakening compared to AZ31 sheets are investigated using the model. There is considerable in-plane anisotropy and tension compression asymmetry in the flow behavior of ZEK100. Simulations of uniaxial tension in different directions at various strain rates and the accompanying texture evolution are performed and they are in very good agreement with experimental measurements. The effect of strain rate on the activation of the various slip systems and twinning show that differences in the strain rate dependence of yield stress and Rvalues in ZEK100 have their origin in the activation of different deformation mechanisms.

  3. Relationships of left ventricular strain and strain rate to wall stress and their afterload dependency.

    PubMed

    Murai, Daisuke; Yamada, Satoshi; Hayashi, Taichi; Okada, Kazunori; Nishino, Hisao; Nakabachi, Masahiro; Yokoyama, Shinobu; Abe, Ayumu; Ichikawa, Ayako; Ono, Kota; Kaga, Sanae; Iwano, Hiroyuki; Mikami, Taisei; Tsutsui, Hiroyuki

    2017-05-01

    Whether and how left ventricular (LV) strain and strain rate correlate with wall stress is not known. Furthermore, it is not determined whether strain or strain rate is less dependent on the afterload. In 41 healthy young adults, LV global peak strain and systolic peak strain rate in the longitudinal direction (LS and LSR, respectively) and circumferential direction (CS and CSR, respectively) were measured layer-specifically using speckle tracking echocardiography (STE) before and during a handgrip exercise. Among all the points before and during the exercise, all the STE parameters significantly correlated linearly with wall stress (LS: r = -0.53, p < 0.01, LSR: r = -0.28, p < 0.05, CS in the inner layer: r = -0.72, p < 0.01, CSR in the inner layer: r = -0.47, p < 0.01). Strain more strongly correlated with wall stress than strain rate (r = -0.53 for LS vs. r = -0.28 for LSR, p < 0.05; r = -0.72 for CS vs. r = -0.47 for CSR in the inner layer, p < 0.05), whereas the interobserver variability was similar between strain and strain rate (longitudinal 6.2 vs. 5.2 %, inner circumferential 4.8 vs. 4.7 %, mid-circumferential 7.9 vs. 6.9 %, outer circumferential 10.4 vs. 9.7 %), indicating that the differences in correlation coefficients reflect those in afterload dependency. It was thus concluded that LV strain and strain rate linearly and inversely correlated with wall stress in the longitudinal and circumferential directions, and strain more strongly depended on afterload than did strain rate. Myocardial shortening should be evaluated based on the relationships between these parameters and wall stress.

  4. Strain rate effects in stress corrosion cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkins, R.N.

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this maymore » be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.« less

  5. Strain rate dependent calcite microfabric evolution at natural conditions

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

    2014-05-01

    Crystal plastic deformational behaviour of calcite has been the focus of many experimental studies. Different strain rates, pressure and temperature conditions have been addressed to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A flanking structure developed in almost pure calcite marble on Syros (Cyclades, Greece). Due to rotation of a planar feature (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation to bulging recrystallization can be observed in the dislocation creep regime. Crystallographic preferred orientations (CPO) and the grade of intracrystalline deformation were measured on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep

  6. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  7. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function.

    PubMed

    D'hooge, Jan; Bijnens, Bart; Thoen, Jan; Van de Werf, Frans; Sutherland, George R; Suetens, Paul

    2002-09-01

    Ultrasonic imaging is the noninvasive clinical imaging modality of choice for diagnosing heart disease. At present, two-dimensional ultrasonic grayscale images provide a relatively cheap, fast, bedside method to study the morphology of the heart. Several methods have been proposed to assess myocardial function. These have been based on either grayscale or motion (velocity) information measured in real-time. However, the quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. To do this, ultrasonic strain and strain-rate imaging have been introduced. In the clinical setting, these techniques currently only allow one component of the true three-dimensional deformation to be measured. Clinical, multidimensional strain (rate) information can currently thus only be obtained by combining data acquired using different transducer positions. Nevertheless, given the appropriate postprocessing, the clinical value of these techniques has already been shown. Moreover, multidimensional strain and strain-rate estimation of the heart in vivo by means of a single ultrasound acquisition has been shown to be feasible. In this paper, the new techniques of ultrasonic strain rate and strain imaging of the heart are reviewed in terms of definitions, data acquisition, strain-rate estimation, postprocessing, and parameter extraction. Their clinical validation and relevance will be discussed using clinical examples on relevant cardiac pathology. Based on these examples, suggestions are made for future developments of these techniques.

  8. Strain rate effects on reinforcing steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  9. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  10. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  11. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    DOE PAGES

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less

  12. The strain-rate sensitivity of high-strength high-toughness steels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate.more » Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.« less

  13. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  14. Shrinkage strain-rates of dental resin-monomer and composite systems.

    PubMed

    Atai, Mohammad; Watts, David C; Atai, Zahra

    2005-08-01

    The purpose of this study was to investigate the shrinkage strain rate of different monomers, which are commonly used in dental composites and the effect of monomer functionality and molecular mass on the rate. Bis-GMA, TEGDMA, UDMA, MMA, HEMA, HPMA and different ratios of Bis-GMA/TEGDMA were mixed with Camphorquinone and Dimethyl aminoethyle methacrylate as initiator system. The shrinkage strain of the samples photopolymerised at Ca. 550 mW/cm2 and 23 degrees C was measured using the bonded-disk technique of Watts and Cash (Meas. Sci. Technol. 2 (1991) 788-794), and initial shrinkage-strain rates were obtained by numerical differentiation. Shrinkage-strain rates rose rapidly to a maximum, and then fell rapidly upon vitrification. Strain and initial strain rate were dependent upon monomer functionality, molecular mass and viscosity. Strain rates were correlated with Bis-GMA in Bis-GMA/TEGDMA mixtures up to 75-80 w/w%, due to the higher molecular mass of Bis-GMA affecting termination reactions, and then decreased due to its higher viscosity affecting propagation reactions. Monofunctional monomers exhibited lower rates. UDMA, a difunctional monomer of medium viscosity, showed the highest shrinkage strain rate (P < 0.05). Shrinkage strain rate, related to polymerization rate, is an important factor affecting the biomechanics and marginal integrity of composites cured in dental cavities. This study shows how this is related to monomer molecular structure and viscosity. The results are significant for the production, optimization and clinical application of dental composite restoratives.

  15. Deformation twinning: Influence of strain rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shockmore » wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.« less

  16. Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain

    NASA Astrophysics Data System (ADS)

    Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

    The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

  17. The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.

  18. Tangential gunshot wound with MagSafe ammunition.

    PubMed

    Rapkiewicz, Amy V; Tamburri, Robert; Basoa, Mark E; Catanese, Charles A

    2005-09-01

    MagSafe ammunition is a type of unconventional prefragmented ammunition. A fatal tangential gunshot wound involving MagSafe ammunition is presented. The ammunition and wound characteristics are discussed.

  19. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  20. Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1995-01-01

    The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  1. High Strain Rate Tensile Testing of Silver Nanowires: Rate-Dependent Brittle-to-Ductile Transition.

    PubMed

    Ramachandramoorthy, Rajaprakash; Gao, Wei; Bernal, Rodrigo; Espinosa, Horacio

    2016-01-13

    The characterization of nanomaterials under high strain rates is critical to understand their suitability for dynamic applications such as nanoresonators and nanoswitches. It is also of great theoretical importance to explore nanomechanics with dynamic and rate effects. Here, we report in situ scanning electron microscope (SEM) tensile testing of bicrystalline silver nanowires at strain rates up to 2/s, which is 2 orders of magnitude higher than previously reported in the literature. The experiments are enabled by a microelectromechanical system (MEMS) with fast response time. It was identified that the nanowire plastic deformation has a small activation volume (<10b(3)), suggesting dislocation nucleation as the rate controlling mechanism. Also, a remarkable brittle-to-ductile failure mode transition was observed at a threshold strain rate of 0.2/s. Transmission electron microscopy (TEM) revealed that along the nanowire, dislocation density and spatial distribution of plastic regions increase with increasing strain rate. Furthermore, molecular dynamic (MD) simulations show that deformation mechanisms such as grain boundary migration and dislocation interactions are responsible for such ductility. Finally, the MD and experimental results were interpreted using dislocation nucleation theory. The predicted yield stress values are in agreement with the experimental results for strain rates above 0.2/s when ductility is pronounced. At low strain rates, random imperfections on the nanowire surface trigger localized plasticity, leading to a brittle-like failure.

  2. Strain Rate Dependency of Fracture Toughness, Energy Release Rate and Geomechanical Attributes of Select Indian Shales

    NASA Astrophysics Data System (ADS)

    Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.

    2016-12-01

    In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.

  3. Tissue Doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function

    PubMed Central

    Pellerin, D; Sharma, R; Elliott, P; Veyrat, C

    2003-01-01

    Tissue Doppler (TDE), strain, and strain rate echocardiography are emerging real time ultrasound techniques that provide a measure of wall motion. They offer an objective means to quantify global and regional left and right ventricular function and to improve the accuracy and reproducibility of conventional echocardiography studies. Radial and longitudinal ventricular function can be assessed by the analysis of myocardial wall velocity and displacement indices, or by the analysis of wall deformation using the rate of deformation of a myocardial segment (strain rate) and its deformation over time (strain). A quick and easy assessment of left ventricular ejection fraction is obtained by mitral annular velocity measurement during a routine study, especially in patients with poor endocardial definition or abnormal septal motion. Strain rate and strain are less affected by passive myocardial motion and tend to be uniform throughout the left ventricle in normal subjects. This paper reviews the underlying principles of TDE, strain, and strain rate echocardiography and discusses currently available quantification tools and clinical applications. PMID:14594870

  4. Vibrotactile Compliance Feedback for Tangential Force Interaction.

    PubMed

    Heo, Seongkook; Lee, Geehyuk

    2017-01-01

    This paper presents a method to generate a haptic illusion of compliance using a vibrotactile actuator when a tangential force is applied to a rigid surface. The novel method builds on a conceptual compliance model where a physical object moves on a textured surface in response to a tangential force. The method plays vibration patterns simulating friction-induced vibrations as an applied tangential force changes. We built a prototype consisting of a two-dimensional tangential force sensor and a surface transducer to test the effectiveness of the model. Participants in user experiments with the prototype perceived the rigid surface of the prototype as a moving, rubber-like plate. The main findings of the experiments are: 1) the perceived stiffness of a simulated material can be controlled by controlling the force-playback transfer function, 2) its perceptual properties such as softness and pleasantness can be controlled by changing friction grain parameters, and 3) the use of the vibrotactile compliance feedback reduces participants' workload including physical demand and frustration while performing a force repetition task.

  5. Using strain rates to forecast seismic hazards

    USGS Publications Warehouse

    Evans, Eileen

    2017-01-01

    One essential component in forecasting seismic hazards is observing the gradual accumulation of tectonic strain accumulation along faults before this strain is suddenly released as earthquakes. Typically, seismic hazard models are based on geologic estimates of slip rates along faults and historical records of seismic activity, neither of which records actively accumulating strain. But this strain can be estimated by geodesy: the precise measurement of tiny position changes of Earth’s surface, obtained from GPS, interferometric synthetic aperture radar (InSAR), or a variety of other instruments.

  6. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  7. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  8. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  9. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Hamins, A.; Bundy, M.; Puri, I. K.; McGrattan, K.; Park, W. C.

    2001-01-01

    The agent concentration required to achieve the suppression of low strain rate nonpremixed flames is an important consideration for fire protection in a microgravity environment such as a space platform. Currently, there is a lack of understanding of the structure and extinction of low strain rate (<20 s(exp -1)) nonpremixed flames. The exception to this statement is the study by Maruta et al., who reported measurements of low strain rate suppression of methane-air diffusion flames with N2 added to the fuel stream under microgravity conditions. They found that the nitrogen concentration required to achieve extinction increased as the strain rate decreased until a critical value was obtained. As the strain rate was further decreased, the required N2 concentration decreased. This phenomenon was termed "turning point" behavior and was attributed to radiation-induced nonpremixed flame extinction. In terms of fire safety, a critical agent concentration assuring suppression under all flow conditions represents a fundamental limit for nonpremixed flames. Counterflow flames are a convenient configuration for control of the flame strain rate. In high and moderately strained near-extinction nonpremixed flames, analysis of flame structure typically neglects radiant energy loss because the flames are nonluminous and the hot gas species are confined to a thin reaction zone. In counterflowing CH4-air flames, for example, radiative heat loss fractions ranging from 1 to 6 percent have been predicted and measured. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a number of suppressants (N2, CO2, or CF3Br) was considered as they were added to either the fuel or oxidizer streams of low strain rate methane-air diffusion flames.

  10. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  11. Influence of strain rate on indentation response of porcine brain.

    PubMed

    Qian, Long; Zhao, Hongwei; Guo, Yue; Li, Yuanshang; Zhou, Mingxing; Yang, Liguo; Wang, Zhiwei; Sun, Yifan

    2018-06-01

    Knowledge of brain tissue mechanical properties may be critical for formulating hypotheses about some specific diseases mechanisms and its accurate simulations such as traumatic brain injury (TBI) and tumor growth. Compared to traditional tests (e.g. tensile and compression), indentation shows superiority by virtue of its pinpoint and nondestructive/quasi-nondestructive. As a viscoelastic material, the properties of brain tissue depend on the strain rate by definition. However most efforts focus on the aspect of velocity in the field of brain indentation, rather than strain rate. The influence of strain rate on indentation response of brain tissue is taken little attention. Further, by comparing different results from literatures, it is also obvious that strain rate rather than velocity is more appropriate to characterize mechanical properties of brain. In this paper, to systematically characterize the influence of strain rate, a series of indentation-relaxation tests n = 210) are performed on the cortex of porcine brain using a custom-designed indentation device. The mechanical response that correlates with indenter diameters, depths of indentation and velocities, is revealed for the indentation portion, and elastic behavior of brain tissue is analyzed as the function of strain rate. Similarly, a linear viscoelastic model with a Prony series is employed for the indentation-relaxation portion, wherein the brain tissue shows more viscous and responds more quickly with increasing strain rate. Understanding the effect of strain rate on mechanical properties of brain indentation may be far-reaching for brain injury biomechanics and accurate simulations, but be important for bridging between indentation results of different literatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Strain-Rate Dependence of Deformation-Twinning in Tantalum

    NASA Astrophysics Data System (ADS)

    Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon

    2017-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  13. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  14. Strain, strain rate, and the force frequency relationship in patients with and without heart failure.

    PubMed

    Mak, Susanna; Van Spall, Harriette G C; Wainstein, Rodrigo V; Sasson, Zion

    2012-03-01

    The aim of this study was to examine the effect of heart rate (HR) on indices of deformation in adults with and without heart failure (HF) who underwent simultaneous high-fidelity catheterization of the left ventricle to describe the force-frequency relationship. Right atrial pacing to control HR and high-fidelity recordings of left ventricular (LV) pressure were used to inscribe the force-frequency relationship. Simultaneous two-dimensional echocardiographic imaging was acquired for speckle-tracking analysis. Thirteen patients with normal LV function and 12 with systolic HF (LV ejection fraction, 31 ± 13%) were studied. Patients with HF had depressed isovolumic contractility and impaired longitudinal strain and strain rate. HR-dependent increases in LV+dP/dt(max), the force-frequency relationship, was demonstrated in both groups (normal LV function, baseline to 100 beats/min: 1,335 ± 296 to 1,564 ± 320 mm Hg/sec, P < .0001; HF, baseline to 100 beats/min: 970 ± 207 to 1,083 ± 233 mm Hg/sec, P < .01). Longitudinal strain decreased significantly (normal LV function, baseline to 100 beats/min: 18.0 ± 3.5% to 10.8 ± 6.0%, P < .001; HF: 9.4 ± 4.1% to 7.5 ± 3.4%, P < .01). The decrease in longitudinal strain was related to a decrease in LV end-diastolic dimensions. Strain rate did not change with right atrial pacing. Despite the inotropic effect of increasing HR, longitudinal strain decreases in parallel with stroke volume as load-dependent indices of ejection. Strain rate did not reflect the modest HR-related changes in contractility; on the other hand, the use of strain rate for quantitative stress imaging is also less likely to be confounded by chronotropic responses. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  15. INTRINSIC CURVATURE: A MARKER OF MILLIMETER-SCALE TANGENTIAL CORTICO-CORTICAL CONNECTIVITY?

    PubMed Central

    RONAN, LISA; PIENAAR, RUDOLPH; WILLIAMS, GUY; BULLMORE, ED; CROW, TIM J.; ROBERTS, NEIL; JONES, PETER B.; SUCKLING, JOHN; FLETCHER, PAUL C.

    2012-01-01

    In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential connection lengths. We suggest that differential rates of surface expansion not only lead to intrinsic curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose that there follows a consequential change in the profile of neuronal connections: specifically an enhancement of the tendency towards proportionately more short connections. Thus, the degree of cortical intrinsic curvature may have implications for short-range connectivity. PMID:21956929

  16. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.

    2004-01-01

    The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.

  17. Strain rate orientations near the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  18. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  19. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  20. Early Assessment of Right Ventricular Function in Systemic Lupus Erythematosus Patients using Strain and Strain Rate Imaging.

    PubMed

    Luo, Runlan; Cui, Hongyan; Huang, Dongmei; Sun, Lihua; Song, Shengda; Sun, Mengyao; Li, Guangsen

    2018-06-11

    Right ventricular function is a crucial factor of the prognosis of systemic lupus erythematosus (SLE). To evaluate the right ventricular function in SLE patients with different degrees of pulmonary hypertension (PH) by strain and strain rate imaging. A total of 102 SLE patients and 30 healthy volunteers were studied between October 2015 and May 2016. Patients were divided into three groups according to pulmonary artery systolic pressure (PASP) estimated by echocardiography: group control (A); PASP ≤ 30 mmHg (group B, n = 37); PASP 30-50 mmHg (mild PH; group C, n = 34); and PASP ≥ 50 mmHg (moderate-to-severe PH; group D, n = 31). Longitudinal peak systolic strain (ε) and strain rate (SR), including systolic strain rate (SRs), early diastolic strain rate (SRe) and late diastolic strain rate (SRa) were measured in the basal, middle and apical segments of the right ventricular free wall in participants by two-dimensional speckle tracking echocardiography (2D-STE) from the apical four-chamber view. A p < 0.05 was set for statistical significance. The parameters of ε, SRs, SRe, and SRa were significantly decreased in groups C and D compared with groups A and B. The ε of each segments was significantly lower in group D than in group C, while there were no differences in SRs, SRe and SRa between groups C and D. Strain and strain rate imaging could early detect the right ventricular dysfunction in SLE patients with PH, and provide important value for clinical therapy and prognosis of these patients. (Arq Bras Cardiol. 2018; [online].ahead print, PP.0-0).

  1. Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scammell, K.L.

    1987-01-01

    The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.

  2. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  3. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, T.M.; Motta, A.T.; Koss, D.A.

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less

  4. Strain rate effects on mechanical properties of fiber composites, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  5. Strain rate dependent calcite microfabric evolution - an experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; Huet, B.; Grasemann, B.; Habler, G.

    2013-12-01

    The deformation behaviour of calcite has been studied extensively in a number of experiments. Different strain rates and pressure and temperature conditions have been used to investigate a wide range of deformation regimes. However, a direct comparison with natural fault rocks remains difficult because of extreme differences between experimental and natural strain rates. A secondary shear zone (flanking structure) developed in almost pure calcite marble on Syros (Greece). Due to rotation of an elliptical inclusion (crack) a heterogeneous strain field in the surrounding area occurred resulting in different strain domains and the formation of the flanking structure. Assuming that deformation was active continuously during the development of the flanking structure, the different strain domains correspond to different strain-rate domains. The outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent deformation behaviour of calcite. Comparing the microfabrics in the 1 to 2.5 cm thick shear zone and the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Due to the extreme variation in strain and strain rate, different microstructures and textures can be observed corresponding to different deformation mechanisms. With increasing strain rate we observe a change in dominant deformation mechanism from dislocation glide to dislocation creep and finally diffusion creep. Additionally, a change from subgrain rotation (SGR) to bulging (BLG) recrystallization can be observed in the dislocation creep regime. Textures and the degree of intracrystalline deformation have been measured by electron back scatter diffraction (EBSD). At all strain rates clear CPOs developed leading to the assumption that calcite preferentially deforms within the dislocation creep field. However, we can also find clear

  6. Slipping and tangential discontinuity instabilities in quasi-one-dimensional planar and cylindrical flows

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2017-09-01

    An analytical linear theory of instability of an electron beam with a nonuniform directional velocity (slipping instability) against perturbations with wavelengths exceeding the transverse beam size is offered. An analogy with hydrodynamic instabilities of tangential discontinuity of an incompressible liquid flow is drawn. The instability growth rates are calculated for particular cases and in a general form in planar and cylindrical geometries. The stabilizing effect of the external magnetic field is analyzed.

  7. A Geodetic Strain Rate Model for the East African Rift System.

    PubMed

    Stamps, D S; Saria, E; Kreemer, C

    2018-01-15

    Here we describe the new Sub-Saharan Africa Geodetic Strain Rate Model v.1.0 (SSA-GSRM v.1.0), which provides fundamental constraints on long-term tectonic deformation in the region and an improved seismic hazards assessment in Sub-Saharan Africa. Sub-Saharan Africa encompasses the East African Rift System, the active divergent plate boundary between the Nubian and Somalian plates, where strain is largely accommodated along the boundaries of three subplates. We develop an improved geodetic strain rate field for sub-Saharan Africa that incorporates 1) an expanded geodetic velocity field, 2) redefined regions of deforming zones guided by seismicity distribution, and 3) updated constraints on block rotations. SSA-GSRM v.1.0 spans longitudes 22° to 55.5° and latitudes -52° to 20° with 0.25° (longitude) by 0.2° (latitude) spacing. For plates/sub-plates, we assign rigid block rotations as constraints on the strain rate calculation that is determined by fitting bicubic Bessel splines to a new geodetic velocity solution for an interpolated velocity gradient tensor field. We derive strain rates, velocities, and vorticity rates from the velocity gradient tensor field. A comparison with the Global Geodetic Strain Rate model v2.1 reveals regions of previously unresolved spatial heterogeneities in geodetic strain rate distribution, which indicates zones of elevated seismic risk.

  8. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less

  9. Dynamics of fingertip contact during the onset of tangential slip

    PubMed Central

    Delhaye, Benoit; Lefèvre, Philippe; Thonnard, Jean-Louis

    2014-01-01

    Through highly precise perceptual and sensorimotor activities, the human tactile system continuously acquires information about the environment. Mechanical interactions between the skin at the point of contact and a touched surface serve as the source of this tactile information. Using a dedicated custom robotic platform, we imaged skin deformation at the contact area between the finger and a flat surface during the onset of tangential sliding movements in four different directions (proximal, distal, radial and ulnar) and with varying normal force and tangential speeds. This simple tactile event evidenced complex mechanics. We observed a reduction of the contact area while increasing the tangential force and proposed to explain this phenomenon by nonlinear stiffening of the skin. The deformation's shape and amplitude were highly dependent on stimulation direction. We conclude that the complex, but highly patterned and reproducible, deformations measured in this study are a potential source of information for the central nervous system and that further mechanical measurement are needed to better understand tactile perceptual and motor performances. PMID:25253033

  10. Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method

    NASA Astrophysics Data System (ADS)

    Ma, G. W.; Wang, X. J.; Li, Q. M.

    2010-11-01

    The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.

  11. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading

    NASA Astrophysics Data System (ADS)

    Chu, J.-M.; Claus, B.; Chen, W.

    2017-12-01

    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  12. Tensile strength and failure mechanisms of tantalum at extreme strain rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Fensin, Saryu; Germann, Timothy; Meyers, Marc

    Non-equilibrium molecular dynamics simulations are used to probe the tensile response of monocrystalline, bicrystalline, and nanocrystalline tantalum over six orders of magnitude of strain rate. Our analysis of the strain rate dependence of strength is extended to over nine orders of magnitude by bridging the present simulations to recent laser-driven shock experiments. Tensile strength shows a power-law dependence with strain rate over this wide range, with different relationships depending on the initial microstructure and active deformation mechanism. At high strain rates, multiple spall events occur independently and continue to occur until communication occurs by means of relaxation waves. Temperature plays a significant role in the reduction of spall strength as the initial shock required to achieve such large strain rates also contributes to temperature rise, through pressure-volume work as well as visco-plastic heating, which leads to softening and sometimes melting upon release. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates at the ultimate cohesive strength of the material. UC Research Laboratories Grant (09-LR-06-118456-MEYM); Department of Energy NNSA/SSAP (DE-NA0002080); DOE ASCR Exascale Co-design Center for Materials in Extreme Environments.

  13. Influences of strain rate on yield strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Rizal, Samsul; Firdaus, Hamdani Teuku; Thaib, Razali; Homma, Hiroomi

    2005-04-01

    The simulation of aircraft has often been performing by implementing finite element code on supercomputers. The reliability an accuracy of simulation depends mainly on the material model as well as on structural model used in calculations. Consequently, an accurate knowledge of mechanical behavior of materials under impact loading is essential for safety performance evaluation of structure. Impact tension tests on specimens for aircrafts and automotive structural applications are conduct by means of the split Hopkinson bar apparatus. Small specimens having diameter 4 mm are use in the test. Tensile stress-strain relations at strain rates of 102 s-1 to over 103 s-1 are present and compared with those obtained at quasi-static strain rates. The limitations on the applicability of apparatus are also discusses. The other importance of the reference of strain, while studying void growth in elastic-viscoplastic material, is emphasized. In the present paper, a simplified plane-symmetrical two-dimensional finite element model for a SHPB with a plate specimen made of an elastic material is first established. The used of strain gage mounted at the specimens to be monitored strain during the course of impact test. Comparisons may then be made between the numerical predicted and experimentally observed of load and a specimen strain. This report also describes the apparatus and instrumentation, and also be discusses the advantages and limitations of experimental technique. Fractograph is taken by scanning electron microscope on the center of the specimens for judgment of the fracture mechanism and strain rates influences on the materials.

  14. Strain rate dependent calcite microfabric evolution - An experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Huet, Benjamin; Habler, Gerlinde

    2014-12-01

    A flanking structure developed along a secondary shear zone in calcite marbles, on Syros (Cyclades, Greece), provides a natural laboratory for directly studying the effects of strain rate variations on calcite deformation at identical pressure and temperature conditions. The presence and rotation of a fracture during progressive deformation caused extreme variations in finite strain and strain rate, forming a localized ductile shear zone that shows different microstructures and textures. Textures and the degree of intracrystalline deformation were measured by electron backscattered diffraction. Marbles from the host rocks and the shear zone, which deformed at various strain rates, display crystal-preferred orientation, suggesting that the calcite preferentially deformed by intracrystalline-plastic deformation. Increasing strain rate results in a switch from subgrain rotation to bulging recrystallization in the dislocation-creep regime. With increasing strain rate, we observe in fine-grained (3 μm) ultramylonitic zones a change in deformation regime from grain-size insensitive to grain-size sensitive. Paleowattmeter and the paleopiezometer suggest strain rates for the localized shear zone around 10-10 s-1 and for the marble host rock around 10-12 s-1. We conclude that varying natural strain rates can have a first-order effect on the microstructures and textures that developed under the same metamorphic conditions.

  15. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  16. Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume

    NASA Astrophysics Data System (ADS)

    Maier-Kiener, Verena; Durst, Karsten

    2017-11-01

    Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.

  17. Estimation of Power Consumption in the Circular Sawing of Stone Based on Tangential Force Distribution

    NASA Astrophysics Data System (ADS)

    Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng

    2018-04-01

    Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.

  18. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  19. Fiber-Optic Strain Gauge With High Resolution And Update Rate

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley

    2007-01-01

    An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.

  20. Bauschinger effect in haynes 230 alloy: Influence of strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Thakur, Aniruddha; Vecchio, Kenneth S.; Nemat-Nasser, Sia

    1996-07-01

    Quasistatic and dynamic Bauschinger behavior in HAYNES 230 alloy is examined. At low strain rate (10-3/s), the as- received 230 alloy does not show a drop in flow stress, i.e., no Bauschinger effect is displayed. At high strain rate (103/s), a drop in flow stress of 240 MPa was observed upon stress reversal. In contrast, the precipitation- strengthened condition exhibited a Bauschinger effect in both low and high strain rate stress-reversal experiments. The magnitude of the Bauschinger effect was found to increase with increasing strain rate, forward strain, and decreasing temperature. The substructure evolution accompanying the forward loading cycles was investigated by transmission electron microscopy and is related to the back stresses that developed. The increased Bauschinger stress drop observed at high strain rate and/or low temperature was correlated to an increased degree of planar slip under these conditions.

  1. Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon

    PubMed Central

    Liu, Yuan-Hsuan; Tsai, Jin-Wu; Chen, Jia-Long; Yang, Wan-Shan; Chang, Pei-Ching; Cheng, Pei-Lin; Turner, David L.; Yanagawa, Yuchio; Wang, Tsu-Wei; Yu, Jenn-Yah

    2017-01-01

    During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon. PMID:28276447

  2. a Study on Strain Rate Effect in Collision Analysis of Rolling STOCK

    NASA Astrophysics Data System (ADS)

    Kim, Seung Rok; Koo, Jeong Seo

    In this paper, the strain rate effect of energy absorption members in rolling stock is studied using the virtual testing model (VTM) for Korean high speed train (KHST). The VTM of KHST was simulated for two different strain rate conditions. The VTM is composed of FE models for structures, and nonlinear spring/damper models for dynamic components. To simplify numerical model for the full rake KHST, the first three units consist of full flexible multi-body dynamic models, and the remainder does 1-D spring/damper/mass models. To evaluate the strain rate effect of KHST, the crash simulation was performed under the accident scenario for a collision with a rigid mass of 15 tons at 110kph. The numerical results show that the overall crash response of the train is not largely affected as much as expected, but individual components have some different deformations according to strain rate. The deformation of the front end structure without strain rate effect is larger than that with it. However, the deformation of the rear end structure without strain rate effect is smaller than that with it. Finally, the intrusion of the driver's cabin is overestimated for no strain rate effect when compared to the case with it.

  3. Strain rates, stress markers and earthquake clustering (Invited)

    NASA Astrophysics Data System (ADS)

    Fry, B.; Gerstenberger, M.; Abercrombie, R. E.; Reyners, M.; Eberhart-Phillips, D. M.

    2013-12-01

    The 2010-present Canterbury earthquakes comprise a well-recorded sequence in a relatively low strain-rate shallow crustal region. We present new scientific results to test the hypothesis that: Earthquake sequences in low-strain rate areas experience high stress drop events, low-post seismic relaxation, and accentuated seismic clustering. This hypothesis is based on a physical description of the aftershock process in which the spatial distribution of stress accumulation and stress transfer are controlled by fault strength and orientation. Following large crustal earthquakes, time dependent forecasts are often developed by fitting parameters defined by Omori's aftershock decay law. In high-strain rate areas, simple forecast models utilizing a single p-value fit observed aftershock sequences well. In low-strain rate areas such as Canterbury, assumptions of simple Omori decay may not be sufficient to capture the clustering (sub-sequence) nature exhibited by the punctuated rise in activity following significant child events. In Canterbury, the moment release is more clustered than in more typical Omori sequences. The individual earthquakes in these clusters also exhibit somewhat higher stress drops than in the average crustal sequence in high-strain rate regions, suggesting the earthquakes occur on strong Andersonian-oriented faults, possibly juvenile or well-healed . We use the spectral ratio procedure outlined in (Viegas et al., 2010) to determine corner frequencies and Madariaga stress-drop values for over 800 events in the sequence. Furthermore, we will discuss the relevance of tomographic results of Reyners and Eberhart-Phillips (2013) documenting post-seismic stress-driven fluid processes following the three largest events in the sequence as well as anisotropic patterns in surface wave tomography (Fry et al., 2013). These tomographic studies are both compatible with the hypothesis, providing strong evidence for the presence of widespread and hydrated regional

  4. Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique

    NASA Astrophysics Data System (ADS)

    Murkute, Pratik; Ramkumar, J.; Mondal, K.

    2016-07-01

    An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.

  5. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  6. A New Global Geodetic Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, C. W.; Klein, E. C.; Blewitt, G.; Shen, Z.; Wang, M.; Chamot-Rooke, N. R.; Rabaute, A.

    2012-12-01

    As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. While v.1.2 contained ~25,000 deforming cells of 0.6° by 0.5° dimension, the new models contains >136,000 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested the presence of deforming areas where those previous studies did not. As a result, some plates/blocks identified by Bird (2003) we assumed to deform, and the total number of plates and blocks in GSRM v.2 is 38 (including the Bering block, which Bird (2003) did not consider). GSRM v.1.2 was based on ~5,200 GPS velocities, taken from 86 studies. The new model is based on ~17,000 GPS velocities, taken from 170 studies. The GPS velocity field consists of a 1) ~4900 velocities derived by us for CPS stations publicly available RINEX data and >3.5 years of data, 2) ~1200 velocities for China from a new analysis of all CMONOC data, and 3) velocities published in the literature or made otherwise available to us. All studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. Because the goal of the project is to model the interseismic strain rate field, we model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for most of the 38 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary

  7. High strain rate properties of off-axis composite laminates, part 2

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.

  8. High strain rate properties of angle-ply composite laminates, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Angle-ply graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens of +/-15(sub 2s), +/-22.5(sub 2s), +/-30(sub 2s), +/-45(sub 2s), +/-60(sub 2s), +/-67.5(sub 2s), and +/-75(sub 2s) degree layups were loaded under internal pressure. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all seven laminates for the two materials tested the modulus and strength increase with strain rate. The effect of strain rate varies with layup, being lowest for the fiber dominated +/-15(sub 2s) degree laminates and highest for the matrix dominated +/-75(sub 2s) degree laminates. The highest increments over the static values are 10 to 25 percent for the +/-15(sub 2s) degree layup and 200 to 275 percent for the +/-75(sub 2s) degree layup. Ultimate strains do not show any significant trends with strain rate. In almost all cases the ultimate strain values are within +/-20 percent of the mean value and in half of the cases the deviation from the mean are less than 10 percent.

  9. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  10. Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity

    USGS Publications Warehouse

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-01-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  11. Earthquake Potential in California-Nevada Implied by Correlation of Strain Rate and Seismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Yuehua; Petersen, Mark D.; Shen, Zheng-Kang

    2018-02-01

    Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6.5 are collocated with regions of highest strain rates. By contrast, smaller magnitude earthquakes of M ≥ 4 show clear spatiotemporal changes. From 1933 to the late 1980s, earthquakes of M ≥ 4 were more diffused and broadly distributed in both high and low strain rate regions (accumulation phase). From the late 1980s to 2016, earthquakes were more concentrated within the high strain rate areas focused on the major fault strands (localization phase). In the same time period, the rate of M > 6.5 events also increased significantly in the high strain rate areas. The strong correlation between current strain rate and the later period of seismicity indicates that seismicity is closely related to the strain rate. The spatial patterns suggest that before the late 1980s, the strain rate field was also broadly distributed because of the stress shadows from previous large earthquakes. As the deformation field evolved out of the shadow in the late 1980s, strain has refocused on the major fault systems and we are entering a period of increased risk for large earthquakes in California.

  12. High Strain Rate Material Behavior

    DTIC Science & Technology

    1985-12-01

    data. iii Mr. Dennis Paisely conducted the single plate impact test. Mr. Danny Yaziv is responsible for developing the double flyer plate technique and...neck developed . The sharp rise in the flow stress is due to the increased strain-rates during necking. The maximum observed value of effective stress...for the material modeling. Computer programs and special purpose subroutines were developed to use the Bodner-Partom model in the STEALTH finite

  13. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  14. Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Basu, Silva; Li, Zhiming; Pradeep, K. G.; Raabe, Dierk

    2018-05-01

    Dual-phase high-entropy alloys (DP-HEAs) with transformation induced plasticity (TRIP) have an excellent strength-ductility combination. To reveal their strain-rate sensitivity and hence further understand the corresponding deformation mechanisms, we investigated the tensile behavior and microstructural evolution of a typical TRIP-DP-HEA (Fe50Mn30Co10Cr10, at. %) under different strain rates (i.e., 5 × 10-3 s-1, 1 × 10-3 s-1, 5 × 10-4 s-1 and 1 × 10-4 s-1) at room temperature. The strain rate range was confined to this regime in order to apply the digital image correlation technique for probing the local strain evolution during tensile deformation at high resolution and to correlate it to the microstructure evolution. Grain size effects of the face-centered cubic (FCC) matrix and the volume fractions of the hexagonal-close packed (HCP) phase prior to deformation were also considered. The results show that within the explored strain rate regime the TRIP-DP-HEA has a fairly low strain rate sensitivity parameter within the range from 0.004 to 0.04, which is significantly lower than that of DP and TRIP steels. Samples with varying grain sizes (e.g., 2.8 μm and 38 μm) and starting HCP phase fractions (e.g., 25% and 72%) at different strain rates show similar deformation mechanisms, i.e., dislocation plasticity and strain-induced transformation from the FCC matrix to the HCP phase. The low strain rate sensitivity is attributed to the observed dominant displacive transformation mechanism. Also, the coarse-grained alloy samples with a very high starting HCP phase fraction ( 72%) prior to deformation show very good ductility with a total elongation of 60%, suggesting that both, the initial and the transformed HCP phase in the TRIP-DP-HEA are ductile and deform further via dislocation slip at the different strain rates which were probed.

  15. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  16. Interactive Web Interface to the Global Strain Rate Map Project

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Estey, L.; Kreemer, C.; Holt, W.

    2004-05-01

    An interactive web interface allows users to explore the results of a global strain rate and velocity model and to compare them to other geophysical observations. The most recent model, an updated version of Kreemer et al., 2003, has 25 independent rigid plate-like regions separated by deformable boundaries covered by about 25,000 grid areas. A least-squares fit was made to 4900 geodetic velocities from 79 different geodetic studies. In addition, Quaternary fault slip rate data are used to infer geologic strain rate estimates (currently only for central Asia). Information about the style and direction of expected strain rate is inferred from the principal axes of the seismic strain rate field. The current model, as well as source data, references and an interactive map tool, are located at the International Lithosphere Program (ILP) "A Global Strain Rate Map (ILP II-8)" project website: http://www-world-strain-map.org. The purpose of the ILP GSRM project is to provide new information from this, and other investigations, that will contribute to a better understanding of continental dynamics and to the quantification of seismic hazards. A unique aspect of the GSRM interactive Java map tool is that the user can zoom in and make custom views of the model grid and results for any area of the globe selecting strain rate and style contour plots and principal axes, observed and model velocity fields in specified frames of reference, and geologic fault data. The results can be displayed with other data sets such Harvard CMT earthquake focal mechanisms, stress directions from the ILP World Stress Map Project, and topography. With the GSRM Java map tool, the user views custom maps generated by a Generic Mapping Tool (GMT) server. These interactive capabilities greatly extend what is possible to present in a published paper. A JavaScript version, using pre-constructed maps, as well as a related information site have also been created for broader education and outreach access

  17. High Strain Rate Testing of Welded DOP-26 Iridium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneibel, J. H.; Miller, R. G.; Carmichael, C. A.

    The iridium alloy DOP-26 is used to produce Clad Vent Set cups that protect the radioactive fuel in radioisotope thermoelectric generators (RTGs) which provide electric power for spacecraft and rovers. In a previous study, the tensile properties of DOP-26 were measured over a wide range of strain rates and temperatures and reported in ORNL/TM-2007/81. While that study established the properties of the base material, the fabrication of the heat sources requires welding, and the mechanical properties of welded DOP-26 have not been extensively characterized in the past. Therefore, this study was undertaken to determine the mechanical properties of DOP-26 specimensmore » containing a transverse weld in the center of their gage sections. Tensile tests were performed at room temperature, 750, 900, and 1090°C and engineering strain rates of 1×10 -3 and 10 s -1. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1×10 -4 Torr. The welded specimens had a significantly higher yield stress, by up to a factor of ~2, than the non-welded base material. The yield stress did not depend on the strain rate except at 1090°C, where it was slightly higher for the faster strain rate. The ultimate tensile stress, on the other hand, was significantly higher for the faster strain rate at temperatures of 750°C and above. At 750°C and above, the specimens deformed at 1×10 -3 s -1 showed pronounced necking resulting sometimes in perfect chisel-edge fracture. The specimens deformed at 10 s -1 exhibited this fracture behavior only at the highest test temperature, 1090°C. Fracture occurred usually in the fusion zone of the weld and was, in most cases, primarily intergranular.« less

  18. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp; Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580; Coda, S.

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ionmore » temperature gradient/trapped electron mode.« less

  19. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  20. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  1. Effects of Recovery Behavior and Strain-Rate Dependence of Stress-Strain Curve on Prediction Accuracy of Thermal Stress Analysis During Casting

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2017-06-01

    Recovery behavior (recovery) and strain-rate dependence of the stress-strain curve (strain-rate dependence) are incorporated into constitutive equations of alloys to predict residual stress and thermal stress during casting. Nevertheless, few studies have systematically investigated the effects of these metallurgical phenomena on the prediction accuracy of thermal stress in a casting. This study compares the thermal stress analysis results with in situ thermal stress measurement results of an Al-Si-Cu specimen during casting. The results underscore the importance for the alloy constitutive equation of incorporating strain-rate dependence to predict thermal stress that develops at high temperatures where the alloy shows strong strain-rate dependence of the stress-strain curve. However, the prediction accuracy of the thermal stress developed at low temperatures did not improve by considering the strain-rate dependence. Incorporating recovery into the constitutive equation improved the accuracy of the simulated thermal stress at low temperatures. Results of comparison implied that the constitutive equation should include strain-rate dependence to simulate defects that develop from thermal stress at high temperatures, such as hot tearing and hot cracking. Recovery should be incorporated into the alloy constitutive equation to predict the casting residual stress and deformation caused by the thermal stress developed mainly in the low temperature range.

  2. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  3. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  4. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  5. TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.

    2016-10-01

    The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.

  6. Analysis of the tensile stress-strain behavior of elastomers at constant strain rates. I - Criteria for separability of the time and strain effects

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.

    1981-01-01

    A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.

  7. Feasibility and reproducibility of feature-tracking-based strain and strain rate measures of the left ventricle in different diseases and genders.

    PubMed

    Maceira, Alicia M; Tuset-Sanchis, Luis; López-Garrido, Miguel; San Andres, Marta; López-Lereu, M Pilar; Monmeneu, Jose V; García-González, M Pilar; Higueras, Laura

    2018-05-01

    The measurement of myocardial deformation by strain analysis is an evolving tool to quantify regional and global myocardial function. To assess the feasibility and reproducibility of myocardial strain/strain rate measurements with magnetic resonance feature tracking (MR-FT) in healthy subjects and in patient groups. Prospective study. Sixty patients (20 hypertensives with left ventricular (LV) hypertrophy (H); 20 nonischemic dilated cardiomyopathy (D); 20 ischemic heart disease (I); as well as 20 controls (C) were included, 10 men and 10 women in each group. A 1.5T MR protocol including steady-state free precession (SSFP) cine sequences in the standard views and late enhancement sequences. LV volumes, mass, global and regional radial, circumferential, and longitudinal strain/strain rate were measured using CVI42 software. The analysis time was recorded. Intraobserver and interobserver agreement and intraclass correlation coefficients (ICC) were obtained for reproducibility assessment as well as differences according to gender and group of pertinence. Strain/strain rate analysis could be achieved in all subjects. The average analysis time was 14 ± 3 minutes. The average intraobserver ICC was excellent (ICC >0.90) for strain and good (ICC >0.75) for strain rate. Reproducibility of strain measurements was good to excellent (ICC >0.75) for all groups of subjects and both genders. Reproducibility of strain measurements was good for basal segments (ICC >0.75) and excellent for middle and apical segments (ICC >0.90). Reproducibility of strain rate measurements was moderate for basal segments (ICC >0.50) and good for middle and apical segments. MR-FT for strain/strain rate analysis is a feasible and highly reproducible technique. CVI42 FT analysis was equally feasible and reproducible in various pathologies and between genders. Better reproducibility was seen globally for middle and apical segments, which needs further clarification. 3 Technical Efficacy Stage 2 J

  8. A New Global Geodetic Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, C.; Blewitt, G.; Klein, E. C.; Shen, Z.; Wang, M.; Estey, L.; Wier, S.

    2013-12-01

    As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. The new model contains ~144,700 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested either the presence of deforming areas or a rigid block where those previous studies did not. GSRM v.2 includes 50 plates and blocks, including many not considered by Bird (2003). The new GSRM model is based on over 20,700 horizontal geodetic velocities at over 17,000 unique locations. The GPS velocity field consists of a 1) Over 6500 velocities derived by the University of Nevada, Reno, for CGPS stations for which >2.5 years of RINEX data are available until April 2013, 2) ~1200 velocities for China from a new analysis of all data from the Crustal Movement Network of China (CMONOC), and 3) about 13,000 velocities from 212 studies published in the literature or made otherwise available to us. Velocities from all studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. We model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for 36 of the 50 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary conditions in the strain rate calculations. For the strain rate calculations we used the method of Haines and Holt. In order to fit the data equally well

  9. Optimization of Tangential Mass Injection for Minimizing Flow Separation in a Scramjet Inlet

    DTIC Science & Technology

    1991-12-01

    34 Aerospace EnQineering, Vol. 11. No. 8, August 1991, p.23. 26. Heppenheimer , Thomas A . Lecture notes from Hypersonic Technologies seminar. University...AFIT/GAE/ENY,/9 lD-2 ( /~ AD-A243 868 "DTIC OPTIMIZATION OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SC.R-.MJET INLET THESIS...OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SCRAMJET INLEr THESIS Presented to the Faculty of the School of E.ngineering of the

  10. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.

    PubMed

    Quintana-Urzainqui, Idoia; Rodríguez-Moldes, Isabel; Mazan, Sylvie; Candal, Eva

    2015-09-01

    Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the "rostral migratory stream" of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.

  11. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  12. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    DTIC Science & Technology

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  13. Strain rate dependent activation of slip systems in calcite marbles from Syros (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Morales, Luiz F. G.; Huet, Benjamin; White, Joseph C.

    2017-04-01

    The activation of certain slip systems in calcite has been experimentally proven to be highly temperature dependent, but also the strain rate plays an important role on the activation of the dominant slip system. In this study, observations from a flanking structure (i.e. shear zone) that developed under lower greenschist-facies conditions, in an almost pure calcite marble (Syros Island, Greece) are presented. The shear zone is characterized by a strain gradient from the slightly deformed tips (γ ˜ 50) to the highly strained centre (γ up to 1000) while the host rock is moderately deformed (γ ˜ 3). During the shear zone development, the strain gradient coincided with a strain rate gradient with strain rate varying from 10-13 to 10-9 s-1. The studied outcrop thus represents the final state of a natural experiment and gives us a great opportunity to get natural constraints on strain rate dependent mechanical behaviour in a calcite marble. Detailed microstructural analyses have been performed via optical microscopy, electron microscopy, electron backscatter diffraction mapping and transmission electron microscopy, on samples from the highly strained shear zone and the host rock. The analyses show that the calcite microfabric varies depending on position within the shear zone, indicating activation of different deformation, recrystallization mechanisms and slip systems at different strain rates. Up to strain rates of ˜10-10 s-1 the marble deformed exclusively within the dislocation creep field, showing a change in recrystallization mechanism and dominant active slip system. While the marble preferentially recrystallized by grain boundary migration at relatively low strain rates (˜10-13 s-1), subgrain rotation recrystallization seems to be the dominant mechanism at higher strain rates (˜10-12 to 10-10 s-1). At higher strain rates (˜10-9 s-1), the recrystallization mechanism is bulging, resulting in the development of an extremely fine grained ultramylonite

  14. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    PubMed

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  15. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    PubMed

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2017-05-01

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio <0.34 and the "√"-shaped longitudinal strain-rate waveform were 85 and 63 %, and 74 and 80 %, respectively. In conclusion, in patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  16. Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit; Zikry, M. A.

    2014-01-01

    A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.

  17. Cyclic strain rate effects in fatigued face-centred and body-centred cubic metals

    NASA Astrophysics Data System (ADS)

    Mughrabi, Haël

    2013-09-01

    The present work deals mainly with the effect and the use of strain rate and temperature changes during cyclic deformation as a means to obtain valuable information on the thermally activated dislocation glide processes, based on the assessment of reversible changes of the thermal effective stress and of transient changes of the athermal stress. The importance of closed-loop testing in true plastic strain control with constant cyclic plastic strain rate throughout the cycle is explained and emphasized, especially with respect to the case of strain rate sensitive materials. Stress responses of face-centred cubic and body-centred cubic (bcc) metals to cyclic strain rate changes are presented to illustrate that the deformation modes of these two classes of materials differ characteristically at temperatures below that the so-called knee temperature of bcc metals. When such tests are performed in cyclic saturation, the temperature and strain rate dependence of bcc metals can be measured very accurately on one and the same specimen, permitting a thorough analysis of thermal activation.

  18. High-rate operant behavior in two mouse strains: a response-bout analysis.

    PubMed

    Johnson, Joshua E; Pesek, Erin F; Newland, M Christopher

    2009-06-01

    Operant behavior sometimes occurs in bouts characterized by an initiation rate, within-bout response rate, and bout length. The generality of this structure was tested using high-rate nose-poking in mice. Reinforcement of short interresponse times produced high response rates while a random-interval schedule held reinforcement rates constant. BALB/c mice produced bouts that were more frequent, longer, and contained a higher within-bout rate of responding (nine nose-pokes/s) than did the C57BL/6 mice (five nose-pokes/s). Adding a running wheel decreased total nose-pokes and bout length, and increased bout-initiation rate. Free-feeding reduced nose-poking by decreasing bout-initiation rate. Photoperiod reversal decreased bout-initiation rate but not total nose-poke rate. Despite strain differences in bout structure, both strains responded similarly to the interventions. The three bout measures were correlated with overall rate but not with each other. Log-survival analyses provided independent descriptors of the structure of high-rate responding in these two strains.

  19. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    PubMed

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. © 2015 Wiley Periodicals, Inc.

  20. A tangentially viewing fast ion D-alpha diagnostic for NSTX.

    PubMed

    Bortolon, A; Heidbrink, W W; Podestà, M

    2010-10-01

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  1. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  2. High Strain-Rate and Temperature Effects on the Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2004-01-01

    The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.

  3. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  4. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates.

    PubMed

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-21

    Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro 8.0 software. The t test was performed for infinitesimal shear modules. The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (p<0.01). The immature brainstem is a rate-dependent material in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the future.

  5. Rotation and strain rate of Sulawesi from geometrical velocity field

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.

  6. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  7. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  8. Abnormal Strain Rate Sensitivity Driven by a Unit Dislocation-Obstacle Interaction in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Fan, Yue

    2018-03-01

    The interaction between an edge dislocation and a sessile vacancy cluster in bcc Fe is investigated over a wide range of strain rates from 108 down to 103 s-1 , which is enabled by employing an energy landscape-based atomistic modeling algorithm. It is observed that, at low strain rates regime less than 105 s-1 , such interaction leads to a surprising negative strain rate sensitivity behavior because of the different intermediate microstructures emerged under the complex interplays between thermal activation and applied strain rate. Implications of our findings regarding the previously established global diffusion model are also discussed.

  9. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  10. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  11. Effects of Adiabatic Heating on the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.

    2017-01-01

    Polymer matrix composites (PMCs) are increasingly being used in aerospace structures that are expected to experience complex dynamic loading conditions throughout their lifetime. As such, a detailed understanding of the high strain rate behavior of the constituents, particularly the strain rate, temperature, and pressure dependent polymer matrix, is paramount. In this paper, preliminary efforts in modeling experimentally observed temperature rises due to plastic deformation in PMCs subjected to dynamic loading are presented. To this end, an existing isothermal viscoplastic polymer constitutive formulation is extended to model adiabatic conditions by incorporating temperature dependent elastic properties and modifying the components of the inelastic strain rate tensor to explicitly depend on temperature. It is demonstrated that the modified polymer constitutive model is capable of capturing strain rate and temperature dependent yield as well as thermal softening associated with the conversion of plastic work to heat at high rates of strain. The modified constitutive model is then embedded within a strength of materials based micromechanics framework to investigate the manifestation of matrix thermal softening, due to the conversion of plastic work to heat, on the high strain rate response of a T700Epon 862 (T700E862) unidirectional composite. Adiabatic model predictions for high strain rate composite longitudinal tensile, transverse tensile, and in-plane shear loading are presented. Results show a substantial deviation from isothermal conditions; significant thermal softening is observed for matrix dominated deformation modes (transverse tension and in-plane shear), highlighting the importance of accounting for the conversion of plastic work to heat in the polymer matrix in the high strain rate analysis of PMC structures.

  12. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells

    PubMed Central

    Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan

    2016-01-01

    Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063

  13. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    NASA Astrophysics Data System (ADS)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  14. The influence of the region of interest width on two-dimensional speckle tracking-based measurements of strain and strain rate.

    PubMed

    Spriestersbach, Hendrik; Oh-Icí, Darach; Schmitt, Boris; Berger, Felix; Schmitz, Lothar

    2015-01-01

    There are significant variations in the published normal values of two-dimensional speckle tracking-derived strain and strain rate. These occur even when authors use the same software. To measure strain, the operator creates a region of interest (ROI) to define the myocardium to be analyzed. The purpose of this study was to test the hypothesis that measurements vary significantly with the chosen ROI width. In 20 healthy subjects (11 males, mean age 17.6 ± 6.18 years) an apical four-chamber view (4CH) and parasternal short-axis view (SAX) were analyzed. Initially ROI width was set automatically by the software. Two subsequent measurements were obtained from each cine loop by choosing the ROI width one step narrower and one step wider than the automatic ROI width. The mean differences between the measurements of narrower and automatic ROI and between automatic and wider ROI were -1.8 ± 0.7% and -0.9 ± 0.5% for global longitudinal strain (SL), -2.2 ± 0.6% and -1.7 ± 0.7% for global circumferential strain (SC), -0.10 ± 0.06/sec and -0.07 ± 0.06/sec for global longitudinal strain rate (SrL), and -0.15 ± 0.09/sec and -0.12 ± 0.07/sec for global circumferential strain rate (SrC) (all P < 0.000). This corresponds to a relative difference to the mean of both measurements of -4.4 to -11.0%. Layer-specific myocardial deformation and curvature dependency lead to an inverse correlation between the chosen ROI width and strain and strain rate measurements. Just one step of ROI-width change leads to a significant bias. Precise ROI-width definition is essential but technical factors limit its feasibility. © 2014, Wiley Periodicals, Inc.

  15. Effect of Strengthening Mechanism on Strain-Rate Related Tensile Properties of Low-Carbon Sheet Steels for Automotive Application

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Biswas, Pinaki; Tarafder, S.; Chakrabarti, D.; Sivaprasad, S.

    2018-05-01

    In order to ensure crash resistance of the steels used in automotive components, the ensile deformation behavior needs to be studied and predicted not only under quasi-static condition, but also under dynamic loading rates. In the present study, tensile tests have been performed on four different automobile grade sheet steels, namely interstitial free steel, dual-phase 600 and 800, and a carbon manganese steel over the strain rate regime of 0.001-800/s. Apart from the variation in strength (which always increased with strain rate), the effect of strengthening mechanism on strain rate sensitivity and strain hardening behavior has been evaluated. Strain rate sensitivity was found to increase at high-strain rate regime for all the steels. Contribution of solid solution hardening on strain rate sensitivity at lower plastic strains was found to be higher compared to dislocation strengthening and second-phase hardening. However, precipitation hardening coupled with solid solution hardening produced the highest strain rate sensitivity, in C-Mn-440 steel at high strain rates. Different strain-rate-sensitive models which take into account the change in yield stress and strain hardening behavior with strain rate for ductile materials were used to predict the flow behavior of these sheet steels at strain rates up to 800/s.

  16. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature

    PubMed Central

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015

  17. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  18. Comparison of histologic margin status in low-grade cutaneous and subcutaneous canine mast cell tumours examined by radial and tangential sections.

    PubMed

    Dores, C B; Milovancev, M; Russell, D S

    2018-03-01

    Radial sections are widely used to estimate adequacy of excision in canine cutaneous mast cell tumours (MCTs); however, this sectioning technique estimates only a small fraction of total margin circumference. This study aimed to compare histologic margin status in grade II/low grade MCTs sectioned using both radial and tangential sectioning techniques. A total of 43 circumferential margins were evaluated from 21 different tumours. Margins were first sectioned radially, followed by tangential sections. Tissues were examined by routine histopathology. Tangential margin status differed in 10 of 43 (23.3%) margins compared with their initial status on radial section. Of 39 margins, 9 (23.1%) categorized as histologic tumour-free margin (HTFM) >0 mm were positive on tangential sectioning. Tangential sections detected a significantly higher proportion of positive margins relative to radial sections (exact 2-tailed P-value = .0215). The HTFM was significantly longer in negative tangential margins than positive tangential margins (mean 10.1 vs 3.2 mm; P = .0008). A receiver operating characteristic curve comparing HTFM and tangentially negative margins found an area under the curve of 0.83 (95% confidence interval: 0.71-0.96). Although correct classification peaked at the sixth cut-point of HTFM ≥1 mm, radial sections still incorrectly classified 50% of margins as lacking tumour cells. Radial sections had 100% specificity for predicting negative tangential margins at a cut-point of 10.9 mm. These data indicate that for low grade MCTs, HTFMs >0 mm should not be considered completely excised, particularly when HTFM is <10.9 mm. This will inform future studies that use HTFM and overall excisional status as dependent variables in multivariable prognostic models. © 2017 John Wiley & Sons Ltd.

  19. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    NASA Technical Reports Server (NTRS)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  20. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.

    PubMed

    Reillo, Isabel; de Juan Romero, Camino; García-Cabezas, Miguel Ángel; Borrell, Víctor

    2011-07-01

    The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.

  1. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  2. Strain Rate and Stress Relaxation Effects on Pressuremeter Testing in Clays

    DTIC Science & Technology

    1992-03-01

    CHARACTERISTICS OF KAOLINITE AND GROUND SILICA 245 APPENDIX E COMPUTER PROGRAMS ....................... 248 0 0 0 0 0 0 0 iv LIST OF TABLES Table Page 3.1 A...Comparison of Three Types of Boundary Conditions in a Multiaxial Cubical Test Apparatus ................... 37 3.2 Properties of the Kaolinite and Kaolin...to 0.01 %/min Versus Strain Rate for Kaolinite Clay ................... 102 4.3 Shear Strength Normalized with Respect to 0.01 %/min Versus Strain Rate

  3. Strain Rate Behavior of HTPB-Based Magnetorheological Materials

    NASA Astrophysics Data System (ADS)

    Stoltz, Chad; Seminuk, Kenneth; Joshi, Vasant

    2013-06-01

    It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Strain rate response of two HTPB/Fe (Hydroxyl-terminated Polybutadiene/Iron) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field coil. Strain gauge data taken from the Split Hopkinson Pressure bar has been used to determine what mechanical properties were changed by inducing a mild electromagnetic field onto each sample. The data reduction method to obtain stress-strain plots included dispersion corrections for deciphering minute changes due to compositional alterations. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field. We acknowledge the Defense Threat Reduction Agency for funding.

  4. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  5. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  6. Effect of strain rate and dislocation density on the twinning behavior in Tantalum

    DOE PAGES

    Florando, Jeffrey N.; El-Dasher, Bassem S.; Chen, Changqiang; ...

    2016-04-28

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10 –4/s to 10 3/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount ofmore » pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. Additionally, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less

  7. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  8. THE EFFECT OF STRAIN RATE ON FRACTURE TOUGHNESS OF HUMAN CORTICAL BONE: A FINITE ELEMENT STUDY

    PubMed Central

    Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak

    2011-01-01

    Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08 to 18 s−1). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of microcomputed tomography-based compact tension specimens. The simulation results showed that bone’s resistance against the propagation of fracture decreased sharply with increase in strain rates up to 1 s−1 and attained an almost constant value for strain rates larger than 1 s−1. On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone’s resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture. PMID:21783112

  9. Measurement at low strain rates of the elastic properties of dental polymeric materials.

    PubMed

    Chabrier, F; Lloyd, C H; Scrimgeour, S N

    1999-01-01

    To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.

  10. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  11. Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging.

    PubMed

    Graf, Iulia M; Kim, Seungsoo; Wang, Bo; Smalling, Richard; Emelianov, Stanislav

    2012-03-01

    The structure, composition and mechanics of carotid artery are good indicators of early progressive atherosclerotic lesions. The combination of three imaging modalities (ultrasound, strain rate and photoacoustic imaging) which could provide corroborative information about the named arterial properties could enhance the characterization of intimal xanthoma. The experiments were performed using a New Zealand white rabbit model of atherosclerosis. The aorta excised from an atherosclerotic rabbit was scanned ex vivo using the three imaging techniques: (1) ultrasound imaging of the longitudinal section: standard ultrasound B-mode (74Hz frame rate); (2) strain rate imaging: the artery was flushed with blood and a 1.5Hz physiologic pulsation was induced, while the ultrasound data were recorded at higher frame rate (296Hz); (3) photoacoustic imaging: the artery was irradiated with nanosecond pulsed laser light of low fluence in the 1210-1230nm wavelength range and the photoacoustic data was recorded at 10Hz frame rate. Post processing algorithms based on cross-correlation and optical absorption variation were implemented to derive strain rate and spectroscopic photoacoustic images, respectively. Based on the spatio-temporal variation in displacement of different regions within the arterial wall, strain rate imaging reveals differences in tissue mechanical properties. Additionally, spectroscopic photoacoustic imaging can spatially resolve the optical absorption properties of arterial tissue and identify the location of lipid pools. The study demonstrates that ultrasound, strain rate and photoacoustic imaging can be used to simultaneously evaluate the structure, the mechanics and the composition of atherosclerotic lesions to improve the assessment of plaque vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Material properties of rat middle cerebral arteries at high strain rates.

    PubMed

    Bell, E David; Converse, Matthew; Mao, Haojie; Unnikrishnan, Ginu; Reifman, Jaques; Monson, Kenneth L

    2018-03-19

    Traumatic brain injury (TBI), resulting from either impact- or non-impact blast-related mechanisms, is a devastating cause of death and disability. The cerebral blood vessels, which provide critical support for brain tissue in both health and disease, are commonly injured in TBI. However, little is known about how vessels respond to traumatic loading, particularly at rates relevant to blast. To better understand vessel responses to trauma, the objective of this project was to characterize the high-rate response of passive cerebral arteries. Rat middle cerebral arteries were isolated and subjected to high-rate deformation in the axial direction. Vessels were perfused at physiological pressures and stretched to failure at strain rates ranging from approximately 100 to 1300 s-1. Although both in vivo stiffness and failure stress increased significantly with strain rate, failure stretch did not depend on rate.

  13. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  14. Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)

    DTIC Science & Technology

    2008-04-01

    1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20

  15. Interaction of rate- and size-effect using a dislocation density based strain gradient viscoplasticity model

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung N.; Siegmund, Thomas; Tomar, Vikas; Kruzic, Jamie J.

    2017-12-01

    Size effects occur in non-uniform plastically deformed metals confined in a volume on the scale of micrometer or sub-micrometer. Such problems have been well studied using strain gradient rate-independent plasticity theories. Yet, plasticity theories describing the time-dependent behavior of metals in the presence of size effects are presently limited, and there is no consensus about how the size effects vary with strain rates or whether there is an interaction between them. This paper introduces a constitutive model which enables the analysis of complex load scenarios, including loading rate sensitivity, creep, relaxation and interactions thereof under the consideration of plastic strain gradient effects. A strain gradient viscoplasticity constitutive model based on the Kocks-Mecking theory of dislocation evolution, namely the strain gradient Kocks-Mecking (SG-KM) model, is established and allows one to capture both rate and size effects, and their interaction. A formulation of the model in the finite element analysis framework is derived. Numerical examples are presented. In a special virtual creep test with the presence of plastic strain gradients, creep rates are found to diminish with the specimen size, and are also found to depend on the loading rate in an initial ramp loading step. Stress relaxation in a solid medium containing cylindrical microvoids is predicted to increase with decreasing void radius and strain rate in a prior ramp loading step.

  16. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  17. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  18. Residual thermal and moisture influences on the strain energy release rate analysis of edge delamination

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Raju, I. S.; Garber, D. P.

    1985-01-01

    A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions.

  19. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  20. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  1. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florando, Jeffrey N., E-mail: florando1@llnl.gov; Swift, Damian C.; Barton, Nathan R.

    2016-04-15

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10{sup −4}/s to 10{sup 3}/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77 K at strain rates from 1/s to 10{sup 3}/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a givenmore » amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.« less

  2. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.

    PubMed

    Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani

    2017-01-28

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  3. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    PubMed

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  4. Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction.

    PubMed

    Furtak, Vyacheslav; Roivainen, Merja; Mirochnichenko, Olga; Zagorodnyaya, Tatiana; Laassri, Majid; Zaidi, Sohail Z; Rehman, Lubna; Alam, Muhammad M; Chizhikov, Vladimir; Chumakov, Konstantin

    2016-04-14

    An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses.

  5. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  6. Effect of Strain Rate on Mechanical Properties of Wrought Sintered Tungsten at Temperatures above 2500 F

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F.; Hall, Robert W.

    1961-01-01

    Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.

  7. Computational Investigation of Tangential Slot Blowing on a Generic Chined Forebody

    NASA Technical Reports Server (NTRS)

    Agosta-Greenman, Roxana M.; Gee, Ken; Cummings, Russell M.; Schiff, Lewis B.

    1995-01-01

    The effect of tangential slot blowing on the flowfield about a generic chined forebody at high angles of attack is investigated numerically using solutions of the thin-layer, Reynolds-averaged, Navier-Stokes equations. The effects of jet mass now ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results compare well with available wind-tunnel experimental data. Computational results show that for a given mass now rate, the yawing moments generated by slot blowing increase as the body angle of attack increases. It is observed that greater changes in the yawing moments are produced by a slot located closest to the lip of the nose. Also, computational solutions show that inboard blowing across the top surface is more effective at generating yawing moments than blowing outboard from the bottom surface.

  8. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1987-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  9. Influence of strain rate and temperature on the mechanical behavior of iron aluminide-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T.

    Iron aluminides are receiving increasing attention as potential high temperature structural materials due to their excellent oxidation and sulfidation resistance. Although the influence of strain rate on the microstructure/property relationships of pure iron and a variety of iron alloys and steels has been extensively studied, the effect of strain rate on the stress-strain and deformation response of iron aluminides remains poorly understood. In this paper the influence of strain rate, varied between 0.001 and 10{sup 4} s{sup {minus}1}, and temperature, between 77 & 1073{degree}K, on the mechanical behavior of Fe-40Al-0.1B and Fe-16.12Al-5.44Cr-0.11Zr-0.13C-1.07Mo-006Y, called FAP-Y, (both in at.%) is presented. Themore » rate sensitivity and work hardening of Fe-40Al and the disordered alloy based on Fe-16% Al are discussed as a function of strain rate and temperature.« less

  10. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    NASA Astrophysics Data System (ADS)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-06-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy ( r) and normal anisotropy ( r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  11. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    NASA Astrophysics Data System (ADS)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-04-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  12. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin; ...

    2018-03-07

    Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less

  13. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin

    Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less

  14. Feasibility and reproducibility of a standard protocol for 2D speckle tracking and tissue Doppler-based strain and strain rate analysis of the fetal heart.

    PubMed

    Crispi, Fàtima; Sepulveda-Swatson, Eduardo; Cruz-Lemini, Monica; Rojas-Benavente, Juan; Garcia-Posada, Raul; Dominguez, Jesus Maria; Sitges, Marta; Bijnens, Bart; Gratacós, Eduard

    2012-01-01

    Assessment of cardiac function in the fetal heart is challenging because of its small size and high heart rate, restricted physical access to the fetus, and impossibility of fetal ECG recording. We aimed to standardize the acquisition and postprocessing of fetal echocardiography for deformation analysis and to assess its feasibility, reproducibility, and correlation for longitudinal strain and strain rate measurements by tissue Doppler imaging (TDI) and 2D speckle tracking (2D-strain) during pregnancy. Echocardiography was performed in 56 fetuses. 2D and color TDI in apical or basal four-chamber views were recorded for subsequent analysis. Caution was taken to achieve a frame rate >70 Hz for speckle tracking and >150 Hz for TDI analysis. For each acquisition, 7.5 s of noncompressed data were stored in cine loop format and analyzed offline. Since fetal ECG information is by definition not available, aortic valve closure was marked from aortic flow and the onset of each cardiac cycle was manually indicated in the 2D images. Sample volume length was standardized at the minimum size. Two observers measured the left and right ventricular peak systolic longitudinal strain and strain-rate. Strain and strain rate measurements were feasible in 93% of the TDI and 2D-strain acquisitions. The mean time spent on analyzing TDI images was 18 min, with an intraclass agreement coefficient of 0.86 (95% CI 0.77-0.92), 0.83 (95% CI 0.72-0.90), 0.96 (95% CI 0.93-0.98), and 0.86 (95% CI 0.76-0.92) for basal left and right free wall peak systolic strain and strain rate, respectively. Agreement between observers using tissue Doppler also showed high reliability. The mean time spent for 2D-strain analysis was 15 min, with an intraclass agreement coefficient of 0.97 (95% CI 0.95-0.98), 0.94 (95% CI 0.89-0.96), 0.96 (95% CI 0.93-0.98), and 0.84 (95% CI 0.73-0.90) for basal left and right free wall peak systolic strain and strain rate, respectively. Agreement between observers also showed a

  15. Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

    NASA Astrophysics Data System (ADS)

    Gümrük, Recep; Mines, R. A. W.; Karadeniz, Sami

    2018-03-01

    Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10-3 to 6000 s-1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper-Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper-Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

  16. Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite

    PubMed Central

    Kuokkala, Veli-Tapani

    2017-01-01

    This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513

  17. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  18. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    NASA Astrophysics Data System (ADS)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2017-08-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  19. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    NASA Astrophysics Data System (ADS)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2018-06-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  20. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.

  1. Effect of high strain rates on peak stress in a Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Sunny, George; Yuan, Fuping; Prakash, Vikas; Lewandowski, John

    2008-11-01

    The mechanical behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 102-105/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 105/s.

  2. Nonlinear interaction of a fast magnetogasdynamic shock with a tangential discontinuity

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1973-01-01

    A basic problem, which is of considerable interest in geoastrophysical applications of magnetogasdynamics, is the nonlinear interaction of a fast shock (S sub f) with a tangential discontinuity (T). The problem is treated for an arbitrary S sub f interacting with an arbitrary T under the assumption that in the frame of reference in which S sub f and T are at rest, the flow is superfast on both sides of T, and that a steady flow develops. As a result of the nonlinear analysis a flow pattern is obtained consisting of the incident discontinuities S sub f 1 and T2 and a transmitted fast shock S sub f 3, the modified tangential discontinuity T4 and a reflected fast shock S sub f 5 or fast rarefaction wave R sub f 5. The results are discussed in terms of seven significant similarity parameters. In addition special cases like changes in magnetic field direction only, changes in desnity or velocity shear only etc. are discussed.

  3. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    PubMed

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  4. EFFECT OF AXIAL TIBIAL TORQUE DIRECTION ON ACL RELATIVE STRAIN AND STRAIN RATE IN AN IN VITRO SIMULATED PIVOT LANDING

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2011-01-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment and internal or external tibial torque) was applied to the distal tibia while recording the 3-D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3mm DVRT. In this repeated measures experiment, the Wilcoxon Signed-Rank test was used to test the null hypotheses with p<0.05 considered significant. The mean (± SD) peak AM-ACL relative strains were 5.4±3.7 % and 3.1±2.8 % under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4±160.1 %/sec and 179.4±109.9 %/sec, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70% and 42% greater under internal than external tibial torque, respectively (p=0.023, p=0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. PMID:22025178

  5. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  6. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-06-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  7. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    NASA Astrophysics Data System (ADS)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  8. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field

    NASA Astrophysics Data System (ADS)

    Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan

    2016-10-01

    In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.

  9. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  10. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    PubMed

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  11. Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87

    NASA Astrophysics Data System (ADS)

    Rincon, Carlos D.

    A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp

  12. Effects of Applied Strain on Rates of Ageing: Project Overview

    NASA Technical Reports Server (NTRS)

    Campion, R. P.

    1997-01-01

    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided.

  13. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  14. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

    PubMed

    Borrell, Víctor; Marín, Oscar

    2006-10-01

    Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.

  15. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    PubMed

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  17. Yielding of tantalum at strain rates up to 10{sup 9 }s{sup −1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowhurst, Jonathan C., E-mail: crowhurst1@llnl.gov; Armstrong, Michael R., E-mail: armstrong30@llnl.gov; Gates, Sean D.

    2016-08-29

    We have used a 45 μJ laser pulse to accelerate the free surface of fine-grained tantalum films up to peak velocities of ∼1.2 km s{sup −1}. The films had thicknesses of ∼1–2 μm and in-plane grain widths of ∼75–150 nm. Using ultrafast interferometry, we have measured the time history of the velocity of the surface at different spatial positions across the accelerated region. The initial part of the histories (assumed to correspond to the “elastic precursor” observed previously) exhibited measured strain rates of ∼0.6 to ∼3.2 × 10{sup 9 }s{sup −1} and stresses of ∼4 to ∼22 GPa. Importantly, we find that elastic amplitudes exhibit littlemore » variation with strain rate for a constant peak surface velocity, even though, via covariation of the strain rate with peak surface velocity, they vary with strain rate. Furthermore, by comparison with data obtained at lower strain rates, we find that amplitudes are much better predicted by peak velocities rather than by either strain rate or sample thickness.« less

  18. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements.

    PubMed

    Ferferieva, V; Van den Bergh, A; Claus, P; Jasaityte, R; La Gerche, A; Rademakers, F; Herijgers, P; D'hooge, J

    2013-08-01

    This study was designed in order to compare the strain and strain rate deformation parameters assessed by speckle tracking imaging (STI) with those of tissue Doppler imaging (TDI) and conductance catheter measurements in chronic murine models of left ventricular (LV) dysfunction. Twenty-four male C57BL/6J mice were assigned to wild-type (n = 8), myocardial infarction (n = 8) and transaortic constriction (n = 8) groups. Echocardiographic and conductance measurements were simultaneously performed at rest and during dobutamine infusion (5 µg/kg/min) in all animals 10 weeks post-surgery. The LV circumferential strain (Scirc) and the strain rate (SRcirc) were derived from grey scale and tissue Doppler data at frame rates of 224 and 375 Hz, respectively. Scirc and SRcirc by TDI/STI correlated well with the preload recruitable stroke work (PRSW) (r = -0.64 and -0.71 for TDI; r = -0.46 and -0.50 for STI, P < 0.05). Both modalities showed a good agreement with respect to Scirc and SRcirc (r = 0.60 and r = 0.63, P < 0.05). During stress, however, TDI-estimated Scirc and SRcirc values were predominantly higher than those measured by STI (P < 0.05). The similarity of Scirc and SRcirc measurements with respect to the STI/TDI data was examined by the Bland-Altman analysis. In mice, the STI- and TDI-derived strain and strain rate deformation parameters relate closely to intrinsic myocardial function. At low heart rate-to-frame rate ratios (HR/FR), both STI and TDI are equally acceptable for assessing the LV function non-invasively in these animals. At HR/FR (e.g. dobutamine challenge), however, these methods cannot be used interchangeably as STI underestimates S and SR at high values.

  19. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  20. High strain-rate soft material characterization via inertial cavitation

    NASA Astrophysics Data System (ADS)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  1. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  2. Dynamic Response of AA2519 Aluminum Alloy under High Strain Rates

    NASA Astrophysics Data System (ADS)

    Olasumboye, Adewale Taiwo

    Like others in the AA2000 series, AA2519 is a heat-treatable Al-Cu alloy. Its excellent ballistic properties and stress corrosion cracking resistance, combined with other properties, qualify it as a prime candidate for armored vehicle and aircraft applications. However, available data on its high strain-rate response remains limited. In this study, AA2519 aluminum alloy was investigated in three different temper conditions: T4, T6, and T8, to determine the effects of heat treatment on the microstructure and dynamic deformation behavior of the material at high strain rates ranging within 1000 ≤ epsilon ≤ 4000 s-1. Split Hopkinson pressure bar integrated with digital image correlation system was used for mechanical response characterization. Optical microscopy and scanning electron microscopy were used to assess the microstructure of the material after following standard metallographic specimen preparation techniques. Results showed heterogeneous deformation in the three temper conditions. It was observed that dynamic behavior in each condition was dependent on strength properties due to the aging type controlling the strengthening precipitates produced and initial microstructure. At 1500 s -1, AA2519-T6 exhibited peak dynamic yield strength and flow stress of 509 and 667 MPa respectively, which are comparable with what were observed in T8 condition at higher rate of 3500 s-1 but AA2519-T4 showed the least strength and flow stress properties. Early stress collapse, dynamic strain aging, and higher susceptibility to shear band formation and fracture were observed in the T6 condition within the selected range of high strain rates. The alloy's general mode of damage evolution was by dispersoid particle nucleation, shearing and cracking.

  3. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less

  4. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  5. Biologically inspired crack delocalization in a high strain-rate environment.

    PubMed

    Knipprath, Christian; Bond, Ian P; Trask, Richard S

    2012-04-07

    Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an 'engineered' nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the

  6. Biologically inspired crack delocalization in a high strain-rate environment

    PubMed Central

    Knipprath, Christian; Bond, Ian P.; Trask, Richard S.

    2012-01-01

    Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an ‘engineered’ nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the

  7. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  8. Strain rates estimated by geodetic observations in the Borborema Province, Brazil

    NASA Astrophysics Data System (ADS)

    Marotta, Giuliano Sant'Anna; França, George Sand; Monico, João Francisco Galera; Bezerra, Francisco Hilário R.; Fuck, Reinhardt Adolfo

    2015-03-01

    The strain rates for the Borborema Province, located in northeastern Brazil, were estimated in this study. For this purpose, we used GNSS tracking stations with a minimum of two years data. The data were processed using the software GIPSY, version 6.2, provided by the JPL of the California Institute of Technology. The PPP method was used to process the data using the non-fiducial approach. Satellite orbits and clock were supplied by the JPL. Absolute phase center offsets and variations for both the receiver and the satellite antennaes were applied, together with ambiguity resolution; corrections of the first and second order effects of the ionosphere and troposphere models adopting the VMF1 mapping function; 10° elevation mask; FES2004 oceanic load model and terrestrial tide WahrK1 PolTid FreqDepLove OctTid. From a multi annual solution, involving at least 2 years of continuous data, the coordinates and velocities as well as their accuracies were estimated. The strain rates were calculated using the Delaunay triangulation and the Finite Element Method. The results show that the velocity direction is predominantly west and north, with maximum variation of 4.0 ± 1.5 mm/year and 4.1 ± 0.5 mm/year for the x and y components, respectively. The highest strain values of extension and contraction were 0.109552 × 10-6 ± 3.65 × 10-10/year and -0.072838 × 10-6 ± 2.32 × 10-10/year, respectively. In general, the results show that the highest strain and variation of velocity values are located close to the Potiguar Basin, region that concentrates seismic activities of magnitudes of up to 5.2 mb. We conclude that the contraction direction of strain is consistent with the maximum horizontal stress derived from focal mechanism and breakout data. In addition, we conclude that the largest strain rates occur around the Potiguar Basin, an area already recognized as one of the major sites of seismicity in intraplate South America.

  9. High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian

    2016-04-01

    Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain

  10. Comparison of epoxy-based encapsulating materials over temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Khan, Amnah S.; Wilgeroth, James; Balzer, Jens; Proud, William G.

    2017-01-01

    The highly insulating, adhesive and bonding properties of thermosetting epoxies, their ability to be injection moulded in an uncured state, as well as their presence in a wide number of composites, has resulted in their widespread use in both electrical and aerospace applications. There is thus a need to understand the compressive response of epoxies over the range of temperatures likely to be experienced within their working environment. The effects of varying strain rates and temperatures on an epoxy resin (Scotchcast 8) and an epoxy-based syntactic foam (Stycast 1090) were investigated. The samples were studied from -20 °C to +80 °C over a range of strain rates (10-4 - 10+3 s-1). Stress-strain data was obtained, with further analysis from high-speed images. Dynamic Mechanical Analysis (DMA) was also performed on the two materials. Data obtained from these experiments demonstrated key differences in the behaviour of the two materials, forming a basis for comparison with numerical simulations.

  11. The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse.

    PubMed

    Evans, G P; Behiri, J C; Vaughan, L C; Bonfield, W

    1992-03-01

    The behaviour of cortical bone under load is strain rate-dependent, i.e. it is dependent on the rate at which the load is applied. This is particularly relevant in the galloping horse since the strain rates experienced by the bone are far in excess of those recorded for any other species. In this study the effect of strain rates between 0.0001 and 1 sec-1 on the mechanical properties of equine cortical bone were assessed. Initially, increasing strain rates resulted in increased mechanical properties. Beyond a critical value, however, further increases in strain rate resulted in lower strain to failure and energy absorbing capacity. This critical rate occurred around 0.1 sec-1 which is within the in vivo range for a galloping racehorse. Analysis of the stress-strain curves revealed a transition in the type of deformation at this point from pseudo-ductile to brittle. Bones undergoing brittle deformation are more likely to fail under load, leading to catastrophic fracture and destruction of the animal.

  12. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B

    2011-10-01

    To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc

  13. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    NASA Astrophysics Data System (ADS)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  14. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  15. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  16. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    NASA Technical Reports Server (NTRS)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  17. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    NASA Astrophysics Data System (ADS)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  18. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1994-01-01

    Current and future fighter aircraft can maneuver in the high-angle-of-attack flight regime while flying at low subsonic and transonic freestream Mach numbers. However, at any flight speed, the ability of the vertical tails to generate yawing moment is limited in high-angle-of-attack flight. Thus, any system designed to provide the pilot with additional side force and yawing moment must work in both low subsonic and transonic flight. However, previous investigations of the effectiveness of forebody tangential slot blowing in generating the desired control forces and moments have been limited to the low subsonic freestream flow regime. In order to investigate the effectiveness of tangential slot blowing in transonic flight, a computational fluid dynamics analysis was carried out during the grant period. Computational solutions were obtained at three different freestream Mach numbers and at various jet mass flow ratios. All results were obtained using the isolated F/A-18 forebody grid geometry at 30.3 degrees angle of attack. One goal of the research was to determine the effect of freestream Mach number on the effectiveness of forebody tangential slot blowing in generating yawing moment. The second part of the research studied the force onset time lag associated with blowing. The time required for the yawing moment to reach a steady-state value from the onset of blowing may have an impact on the implementation of a pneumatic system on a flight vehicle.

  19. Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Lifshitz, J. M.

    1981-01-01

    Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.

  20. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  1. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  2. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment

    NASA Astrophysics Data System (ADS)

    Zimin, B. A.; Sventitskaya, V. E.; Smirnov, I. V.; Sud'enkov, Yu. V.

    2018-04-01

    The paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10-3-10-2 s-1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress-strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.

  3. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGES

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  4. Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald

    1997-01-01

    For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the

  5. Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint)

    DTIC Science & Technology

    2010-05-01

    List of parameters for the modified MuUiken- model for PMMA . Von Mises [MPa] ^AJ3 V 00 ^ Aa ^Afi CR ha hp Value 3386 1748 0.35 298 1979...AFRL-RW-EG-TP-2010-073 Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) Eric B. Herbold Jennifer L...SUBTITLE Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  6. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spätig, Philippe

    2011-07-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  7. Tensile characterisation of the aorta across quasi-static to blast loading strain rates

    NASA Astrophysics Data System (ADS)

    Magnus, Danyal; Proud, William; Haller, Antoine; Jouffroy, Apolline

    2017-06-01

    The dynamic tensile failure mechanisms of the aorta during Traumatic Aortic Injury (TAI) are poorly understood. In automotive incidents, where the aorta may be under strains of the order of 100/s, TAI is the second largest cause of mortality. In these studies, the proximal descending aorta is the most common site where rupture is observed. In particular, the transverse direction is most commonly affected due to the circumferential orientation of elastin, and hence the literature generally concentrates upon axial samples. This project extends these dynamic studies to the blast loading regime where strain-rates are of the order of 1000/s. A campaign of uniaxial tensile experiments are conducted at quasi-static, intermediate (drop-weight) and high (tensile Split-Hopkinson Pressure Bar) strain rates. In each case, murine and porcine aorta models are considered and the extent of damage assessed post-loading using histology. Experimental data will be compared against current viscoelastic models of the aorta under axial stress. Their applicability across strain rates will be discussed. Using a multi-disciplinary approach, the conditions applied to the samples replicate in vivo conditions, employing a blood simulant-filled tubular specimen surrounded by a physiological solution.

  8. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  9. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.

    2015-09-01

    The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.

  10. Effects of cold-treatment and strain-rate on mechanical properties of NbTi/Cu superconducting composite wires.

    PubMed

    Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe

    2015-01-01

    During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires.

  11. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  12. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  13. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF

  14. Ratchet flow of thin liquid films induced by a two-frequency tangential forcing

    NASA Astrophysics Data System (ADS)

    Sterman-Cohen, Elad; Bestehorn, Michael; Oron, Alexander

    2018-02-01

    A possibility of saturating Rayleigh-Taylor instability in a thin liquid film on the underside of a substrate in the gravity field by harmonic vibration of the substrate was recently investigated [E. Sterman-Cohen, M. Bestehorn, and A. Oron, Phys. Fluids 29, 052105 (2017); Erratum, Phys. Fluids 29, 109901 (2017)]. In the present work, we investigate the feasibility of creating a directional flow of the fluid in a film in the Rayleigh-Taylor configuration and controlling its flow rate by applying a two-frequency tangential forcing to the substrate. It is shown that in this situation, a ratchet flow develops, and the dependence of its flow rate on the vibration frequency, amplitude, its periodicity, and asymmetry level is investigated for water and silicone-oil films. A cause for the emergence of symmetry-breaking and an ensuing flow in a preferred direction is discussed. Some aspects of a ratchet flow in a liquid film placed on top of the substrate are discussed as well. A comparison with the case of a neglected fluid inertia is made, and the differences are explained.

  15. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI.

    PubMed

    Kuppahally, Suman S; Akoum, Nazem; Burgon, Nathan S; Badger, Troy J; Kholmovski, Eugene G; Vijayakumar, Sathya; Rao, Swati N; Blauer, Joshua; Fish, Eric N; Dibella, Edward V R; Macleod, Rob S; McGann, Christopher; Litwin, Sheldon E; Marrouche, Nassir F

    2010-05-01

    Atrial fibrillation (AF) is a progressive condition that begins with hemodynamic and/or structural changes in the left atrium (LA) and evolves through paroxysmal and persistent stages. Because of limitations with current noninvasive imaging techniques, the relationship between LA structure and function is not well understood. Sixty-five patients (age, 61.2+/-14.2 years; 67% men) with paroxysmal (44%) or persistent (56%) AF underwent 3D delayed-enhancement MRI. Segmentation of the LA wall was performed and degree of enhancement (fibrosis) was determined using a semiautomated quantification algorithm. Two-dimensional echocardiography and longitudinal LA strain and strain rate during ventricular systole with velocity vector imaging were obtained. Mean fibrosis was 17.8+/-14.5%. Log-transformed fibrosis values correlated inversely with LA midlateral strain (r=-0.5, P=0.003) and strain rate (r=-0.4, P<0.005). Patients with persistent AF as compared with paroxysmal AF had more fibrosis (22+/-17% versus 14+/-9%, P=0.04) and lower midseptal (27+/-14% versus 38+/-16%, P=0.01) and midlateral (35+/-16% versus 45+/-14% P=0.03) strains. Multivariable stepwise regression showed that midlateral strain (r=-0.5, P=0.006) and strain rate (r=-0.4, P=0.01) inversely predicted the extent of fibrosis independent of other echocardiographic parameters and the rhythm during imaging. LA wall fibrosis by delayed-enhancement MRI is inversely related to LA strain and strain rate, and these are related to the AF burden. Echocardiographic assessment of LA structural and functional remodeling is quick and feasible and may be helpful in predicting outcomes in AF.

  16. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    PubMed Central

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  17. Do uniform tangential interfacial stresses enhance adhesion?

    NASA Astrophysics Data System (ADS)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  18. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  19. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  20. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  1. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  2. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan

    2014-09-01

    A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  3. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  4. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  5. Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior

    NASA Astrophysics Data System (ADS)

    Rahmat, Meysam

    2018-05-01

    A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.

  6. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  7. Major effect of inherited rheology weakening in the crust and mantle on continental intraplate strain and seismicity rates

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Mazzotti, Stephane

    2017-04-01

    Stable Continental Regions (SCR, i.e., intraplate) are commonly viewed as non-deforming and very high resistance lithosphere domains, except in localized regions of higher strain and seismicity rates that often related to fossilized tectonic zones acting as weaker domains (e.g., Rhine Graben, New Madrid). Two main categories of models have been proposed to explain strain concentration in SCR: Local stress concentration (fault intersection, erosion pulse, …) and local lithosphere weakness (high geotherm, mantle anisotropy, …). In order to test the respective role of these various parameters of the stress - rheology - strain relationship, we propose a simple 1D model to quantify first-order continental strain rate variations using laboratory and field-based rheology laws for the crust and mantle. In particular, we include new strain-weakening rheologies in order to simulate tectonic heritage. Within the framework of near-failure equilibrium between tectonic forces and strain rates, we show that inherited rheology weakening plays a fundamental role in allowing for and explaining strain and seismicity concentration in intraplate weak zones. A comparison with empirical strain rate estimations in SCR and intraplate weak zones shows that inherited weakening rheologies can increase local strain rates by as much as three orders of magnitude, about one to two orders higher than that permitted by other processes such as stress concentration, thermal anomaly, etc.

  8. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire

    NASA Astrophysics Data System (ADS)

    Shi, Guo-Jie; Wang, Jin-Guo; Hou, Zhao-Yang; Wang, Zhen; Liu, Rang-Su

    2017-09-01

    The mechanical properties and deformation mechanisms of Au nanowire during the tensile processes at different strain rates are revealed by the molecular dynamics method. It is found that the Au nanowire displays three distinct types of mechanical behaviors when tensioning at low, medium and high strain rates, respectively. At the low strain rate, the stress-strain curve displays a periodic zigzag increase-decrease feature, and the plastic deformation is resulted from the slide of dislocation. The dislocations nucleate, propagate, and finally annihilate in every decreasing stages of stress, and the nanowire always can recover to FCC-ordered structure. At the medium strain rate, the stress-strain curve gently decreases during the plastic process, and the deformation is contributed from sliding and twinning. The dislocations formed in the yield stage do not fully propagate and further escape from the nanowire. At the high strain rate, the stress-strain curve wave-like oscillates during the plastic process, and the deformation is resulted from amorphization. The FCC atoms quickly transform into disordered amorphous structure in the yield stage. The relative magnitude between the loading velocity of strain and the propagation velocity of phonons determines the different deformation mechanisms. The mechanical behavior of Au nanowire is similar to Ni, Cu and Pt nanowires, but their deformation mechanisms are not completely identical with each other.

  9. Antecedent Avian Immunity Limits Tangential Transmission of West Nile Virus to Humans

    PubMed Central

    Kwan, Jennifer L.; Kluh, Susanne; Reisen, William K.

    2012-01-01

    Background West Nile virus (WNV) is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011. Methods Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND) cases reported to the Los Angeles County Department of Public Health. Results Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4–6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan – Mar) was negatively correlated with the number of WNND cases during the succeeding summer (Jul–Sep). Conclusions Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by outbreaks of WNND

  10. Global stability analysis of two-strain epidemic model with bilinear and non-monotone incidence rates

    NASA Astrophysics Data System (ADS)

    Baba, Isa Abdullahi; Hincal, Evren

    2017-05-01

    In this article we studied an epidemic model consisting of two strains with different types of incidence rates; bilinear and non-monotone. The model consists of four equilibrium points: disease-free equilibrium, endemic with respect to strain 1, endemic with respect to strain 2, and endemic with respect to both strains. The global stability analysis of the equilibrium points was carried out through the use of Lyapunov functions. Two basic reproduction ratios R 1 0 and R 2 0 are found, and we have shown that if both are less than one, the disease dies out, and if both are greater than one epidemic occurs. Furthermore, epidemics occur with respect to any strain with a basic reproduction ratio greater than one and disease dies out with respect to any strain with a basic reproduction ratio less than one. It was also shown that any strain with highest basic reproduction ratio will automatically outperform the other strain, thereby eliminating it. Numerical simulations were carried out to support the analytic result and to show the effect of the parameter k in the non-monotone incidence rate, which describes the psychological effect of general public towards infection.

  11. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Radhakanta; Matlock, David K; Speer, John G

    2016-11-16

    The effects of temperature (-60 to 100 °C) and strain rate (0.002 to 0.2 s-1) on the properties of Al-alloyed 7 and 10 wt-% Mn steels containing 34.8 and 57.3 vol-% austenite respectively were evaluated by tensile tests in isothermal liquid baths. The tensile strengths of both medium Mn steels increased with a decrease in temperature owing to the decreased austenite stability with a decrease in temperature. At lower temperatures the strength of the 10MnAl steel was highest, a consequence of the higher strain hardening rate caused by more austenite transformation to martensite with deformation. The resulting properties are assessedmore » with a consideration of the effects of strain rate and deformation on adiabatic heating which was observed to be as high as 95o C.« less

  12. Prediction of Mechanical Behaviour of Low Carbon Steel at High Strain Rate Using Thermal Activation Theory and Static Data

    NASA Astrophysics Data System (ADS)

    Ogawa, Kinya; Kobayashi, Hidetoshi; Sugiyama, Fumiko; Horikawa, Keitaro

    Thermal activation theory is well-known to be a useful theory to explain the mechanical behaviour of various metals in the wide range of temperature and strain-rate. In this study, a number of trials to obtain the lower yield stress or flow stress at high strain rates from quasi-static data were carried out using the data shown in the report titled “The final report of research group on high-speed deformation of steels for automotive use”. A relation between the thermal component of stress and the strain rate obtained from experiments for αFe and the temperature-strain rate parameter were used with thermal activation theory. The predictions were successfully performed and they showed that the stress-strain behaviour at high strain rates can be evaluated from quasi-static data with good accuracy.

  13. Study of high strain rate plastic deformation of low carbon microalloyed steels using experimental observation and computational modeling

    NASA Astrophysics Data System (ADS)

    Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.

    2003-09-01

    This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.

  14. Can the starpatch on Xi Bootis A be explained by using tangential flows?

    NASA Technical Reports Server (NTRS)

    Toner, Clifford G.; Labonte, Barry J.

    1991-01-01

    It is demonstrated that a modification of the starpatch model of Toner and Gray (1988), using tangential flows instead of an enhanced granulation velocity dispersion within the patch, is very successful at reproducing both the observed line asymmetry and the line broadening variations observed in the G8 dwarf Xi Boo A. Areal coverage of 10 percent + or - 3 percent of the visible disk, latitude 30 deg + or - 4 deg, mean brightness 0.85 + or - 0.05 relative to the 'quiet' photosphere, mean tangential flow velocities of 8.0 + or - 1.5 km/s, and dispersions about the mean of 8/0 + or - 2.0 km/s are inferred for the patch. A feature at a latitude of about 30 deg is inferred which covers about 10 percent of the visible disk and is 10-20 percent fainter than the rest of the photosphere. It is inferred that 70-80 percent of the patch is penumbra.

  15. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  16. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    NASA Technical Reports Server (NTRS)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  17. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  18. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  19. The dynamic Virtual Fields Method on rubbers at medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Ho; Siviour, Clive R.

    2015-09-01

    Elastomeric materials are widely used for energy absorption applications, often experiencing high strain rate deformations. The mechanical characterization of rubbers at high strain rates presents several experimental difficulties, especially associated with achieving adequate signal to noise ratio and static stress equilibrium, when using a conventional technique such as the split Hopkinson pressure bar. In the present study, these problems are avoided by using the dynamic Virtual Fields Method (VFM) in which acceleration fields, clearly generated by the non-equilibrium state, are utilized as a force measurement with in the frame work of the principle of virtual work equation. In this paper, two dynamic VFM based techniques are used to characterise an EPDM rubber. These are denoted as the linear and nonlinear VFM and are developed for (respectively) medium (drop-weight) and high (gas-gun) strain-rate experiments. The use of the two VFMs combined with high-speed imaging analysed by digital imaging correlation allows the identification of the parameters of a given rubber mechanical model; in this case the Ogden model is used.

  20. Modeling of grain size strengthening in tantalum at high pressures and strain rates

    DOE PAGES

    Rudd, Robert E.; Park, H. -S.; Cavallo, R. M.; ...

    2017-01-01

    Laser-driven ramp wave compression experiments have been used to investigate the strength (flow stress) of tantalum and other metals at high pressures and high strain rates. Recently this kind of experiment has been used to assess the dependence of the strength on the average grain size of the material, finding no detectable variation with grain size. The insensitivity to grain size has been understood theoretically to result from the dominant effect of the high dislocation density generated at the extremely high strain rates of the experiment. Here we review the experiments and describe in detail the multiscale strength model usedmore » to simulate them. The multiscale strength model has been extended to include the effect of geometrically necessary dislocations generated at the grain boundaries during compatible plastic flow in the polycrystalline metal. Lastly, we use the extended model to make predictions of the threshold strain rates and grain sizes below which grain size strengthening would be observed in the laser-driven Rayleigh-Taylor experiments.« less

  1. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  2. Tangential Field Changes in the Great Flare of 1990 May 24.

    PubMed

    Cameron; Sammis

    1999-11-01

    We examine the great (solar) flare of 1990 May 24 that occurred in active region NOAA 6063. The Big Bear Solar Observatory videomagnetograph Stokes V and I images show a change in the longitudinal field before and after the flare. Since the flare occurred near the limb, the change reflects a rearrangement of the tangential components of the magnetic field. These observations lack the 180 degrees ambiguity that characterizes vector magnetograms.

  3. Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids

    NASA Astrophysics Data System (ADS)

    Cao, Penghui; Park, Harold S.; Lin, Xi

    2013-10-01

    We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.

  4. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  5. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.

    PubMed

    Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.

  6. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities

    PubMed Central

    Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617

  7. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  8. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  9. Behavior of fiber reinforced metal laminates at high strain rate

    NASA Astrophysics Data System (ADS)

    Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo

    2018-05-01

    Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.

  10. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  11. Molecular Based Temperature and Strain Rate Dependent Yield Criterion for Anisotropic Elastomeric Thin Films

    NASA Technical Reports Server (NTRS)

    Bosi, F.; Pellegrino, S.

    2017-01-01

    A molecular formulation of the onset of plasticity is proposed to assess temperature and strain rate effects in anisotropic semi-crystalline rubbery films. The presented plane stress criterion is based on the strain rate-temperature superposition principle and the cooperative theory of yielding, where some parameters are assumed to be material constants, while others are considered to depend on specific modes of deformation. An orthotropic yield function is developed for a linear low density polyethylene thin film. Uniaxial and biaxial inflation experiments were carried out to determine the yield stress of the membrane via a strain recovery method. It is shown that the 3% offset method predicts the uniaxial elastoplastic transition with good accuracy. Both the tensile yield points along the two principal directions of the film and the biaxial yield stresses are found to obey the superposition principle. The proposed yield criterion is compared against experimental measurements, showing excellent agreement over a wide range of deformation rates and temperatures.

  12. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    PubMed Central

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  13. Forming limit curves of DP600 determined in high-speed Nakajima tests and predicted by two different strain-rate-sensitive models

    NASA Astrophysics Data System (ADS)

    Weiß-Borkowski, Nathalie; Lian, Junhe; Camberg, Alan; Tröster, Thomas; Münstermann, Sebastian; Bleck, Wolfgang; Gese, Helmut; Richter, Helmut

    2018-05-01

    Determination of forming limit curves (FLC) to describe the multi-axial forming behaviour is possible via either experimental measurements or theoretical calculations. In case of theoretical determination, different models are available and some of them consider the influence of strain rate in the quasi-static and dynamic strain rate regime. Consideration of the strain rate effect is necessary as many material characteristics such as yield strength and failure strain are affected by loading speed. In addition, the start of instability and necking depends not only on the strain hardening coefficient but also on the strain rate sensitivity parameter. Therefore, the strain rate dependency of materials for both plasticity and the failure behaviour is taken into account in crash simulations for strain rates up to 1000 s-1 and FLC can be used for the description of the material's instability behaviour at multi-axial loading. In this context, due to the strain rate dependency of the material behaviour, an extrapolation of the quasi-static FLC to dynamic loading condition is not reliable. Therefore, experimental high-speed Nakajima tests or theoretical models shall be used to determine the FLC at high strain rates. In this study, two theoretical models for determination of FLC at high strain rates and results of experimental high-speed Nakajima tests for a DP600 are presented. One of the theoretical models is the numerical algorithm CRACH as part of the modular material and failure model MF GenYld+CrachFEM 4.2, which is based on an initial imperfection. Furthermore, the extended modified maximum force criterion considering the strain rate effect is also used to predict the FLC. These two models are calibrated by the quasi-static and dynamic uniaxial tensile tests and bulge tests. The predictions for the quasi-static and dynamic FLC by both models are presented and compared with the experimental results.

  14. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  15. Constitutive equations for multiphase TRIP steels at high rates of strain

    NASA Astrophysics Data System (ADS)

    van Slycken, J.; Verleysen, P.; Degrieck, J.; Bouquerel, J.

    2006-08-01

    Multiphase TRansformation Induced Plasticity (TRIP) steels show an excellent combination of high strength and high strain values, making them ideally suited for use in vehicle body structures. A complex synergy of three different phases (ferrite, bainite and austenite) on the one hand, and the meta-stable character of the austenite on the other hand, give the material indeed a high energy absorption potential. The knowledge and understanding of the dynamic behaviour of these sheet steels is essential to investigate the impact-dynamic characteristics of the structures. Therefore split Hopkinson tensile tests are performed in a strain rate range of 500 to 2000 s-1. Three TRIP steel grades with a different Al and Si content were studied. The experimental results show that these steels preserve their excellent shock-absorbing properties in dynamic conditions. The typical high strain rate loading conditions and the complex behaviour of TRIP steels offer a unique investigation opportunity. This behaviour can be described with phenomenological material models that can be used for numerical simulations of car crashes. The Johnson-Cook model, a frequently used model in finite element codes, is well-suited to describe the dynamic behaviour of the investigated TRIP steels. This model is compared to the Rusinek-Klepaczko model.

  16. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  17. The young's modulus of 1018 steel and 67061-T6 aluminum measured from quasi-static to elastic precursor strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rae, Philip J; Trujillo, Carl; Lovato, Manuel

    2009-01-01

    The assumption that Young's modulus is strain-rate invariant is tested for 6061-T6 aluminium alloy and 1018 steel over 10 decades of strain-rate. For the same billets of material, 3 quasi-static strain-rates are investigated with foil strain gauges at room temperature. The ultrasonic sound speeds are measured and used to calculate the moduli at approximately 10{sup 4} s{sup -1}. Finally, ID plate impact is used to generate an elastic pre-cursor in the alloys at a strain-rate of approximately 10{sup 6} s{sup -1} from which the longitudinal sound speed may be obtained. It is found that indeed the Young's modulus is strain-ratemore » independent within the experimental accuracy.« less

  18. A real-time heat strain risk classifier using heart rate and skin temperature.

    PubMed

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-12-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system.

  19. Phenol and Benzoate Metabolism by Pseudomonas putida: Regulation of Tangential Pathways

    PubMed Central

    Feist, Carol F.; Hegeman, G. D.

    1969-01-01

    Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the β-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to β-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself. PMID:5354952

  20. Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample.

    PubMed

    Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika; Torén, Kjell

    2016-03-05

    Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden) (n = 1552). Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001-2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38), but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient -0.18, 95 % CI -0.30 to -0.02). However, there were no significant associations in the fully adjusted model. Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.

  1. Characterization of a Strain Rate Transient Along the San Andreas and San Jacinto Faults Following the October 1999 Hector Mine Earthquake.

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Holt, W. E.; Bennett, R. A.; Dimitrova, L.; Haines, A. J.

    2006-12-01

    We are continuing work on developing and refining a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. We determined time-averaged velocity values in 0.05 year epochs using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. A self-consistent model velocity gradient tensor field solution is determined for each epoch by fitting bi-cubic Bessel interpolation to the GPS velocity vectors and we determine model dilatation strain rates, shear strain rates, and the rotation rates. Departures of the time dependent model strain rate and velocity fields from a master solution, obtained from a time-averaged solution for the period 1999-2004, with imposed plate motion constraints and Quaternary fault data, are evaluated in order to best characterize the time dependent strain rate field. A particular problem in determining the transient strain rate fields is the level of smoothing or damping that is applied. Our current approach is to choose a damping that both maximizes the departure of the transient strain rate field from the long-term master solution and achieves a reduced chi-squared value between model and observed GPS velocities of around 1.0 for all time epochs. We observe several noteworthy time-dependent changes. First, in the Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, there occurs a significant spatial increase of relatively high shear strain rate, which encompasses a significant portion of the ECSZ. Second, also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting the ECSZ to the San Andreas fault segment in the Salton Trough region. As this signal slowly decays, shear strain rates on segments of the San

  2. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    PubMed

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p < or = 0.01), which represented the primary orientation of the collagen fibers. Strain rate dependency was evident for loading along the anteroposterior axis but not along the mediolateral axis. No significant differences in any property were noted between pristine and impulsively loaded disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  3. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    PubMed Central

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  4. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  5. Experimental and numerical investigation of strain rate effect on low cycle fatigue behaviour of AA 5754 alloy

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Singh, A.

    2018-04-01

    The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.

  6. Strain Rate Sensitivity of Polymer-Matrix Composites under Mode I delamination

    DTIC Science & Technology

    1990-12-01

    unstable growth system requires two values. In reality , the fracture toughness may vary along the length of the specimen due to strain rate effects...18 M. F. Kanninen. An Augmented Double Cantilever Beam Model for Studying Crack Propagation and Arrest. International Journal of Fracture. Vol. 9

  7. The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying

    2016-11-01

    The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.

  8. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  9. Environmental and strain rate effects on graphite/epoxy composites. Final Report; M.S. Thesis, 1987

    NASA Technical Reports Server (NTRS)

    Peimandis, Konstantinos

    1991-01-01

    The hygrothermal characterization of unidirectional graphite/epoxy composites over a range of strain rates was investigated. Special techniques developed for such hygrothermal characterization are also described. The mechanical properties of the composite material were obtained and analyzed by means of a time-temperature-moisture superposition principle. The results show the following: (1) the embedded gage technique was thoroughly examined and found to be appropriate for both hygrothermal expansion and mechanical strain measurements; (2) all transverse properties were found to decrease with increasing temperature and moisture content; and (3) ultimate transverse properties were found to increase with strain rate at low temperatures but follow an opposite trend at high temperatures compared to dry specimens.

  10. Residual thermal and moisture influences on the strain energy release rate analysis of local delaminations from matrix cracks

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1991-01-01

    An analysis utilizing laminated plate theory is developed to calculate the strain energy release rate associated with local delaminations originating at off-axis, single ply, matrix cracks in laminates subjected to uniaxial loads. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. Examples are calculated for the strain energy release rate associated with local delaminations originating at 90 degrees and angle-ply (non-90 degrees) matrix ply cracks in glass epoxy and graphite epoxy laminates. The solution developed may be used to assess the relative contribution of mechanical, residual thermal, and moisture stresses on the strain energy release rate for local delamination for a variety of layups and materials.

  11. Associations between strain in domestic work and self-rated health: a study of employed women in Sweden.

    PubMed

    Staland-Nyman, Carin; Alexanderson, Kristina; Hensing, Gunnel

    2008-01-01

    The aim of this study was to analyse the association between strain in domestic work and self-rated health among employed women in Sweden, using two different methods of measuring strain in domestic work. Questionnaire data were collected on health and living conditions in paid and unpaid work for employed women (n=1,417), aged 17-64 years. "Domestic job strain'' was an application of the demand-control model developed by Karasek and Theorell, and "Domestic work equity and marital satisfaction'' was measured by questions on the division of and responsibility for domestic work and relationship with spouse/cohabiter. Self-rated health was measured using the SF-36 Health Survey. Associations were analysed by bivariate and multivariate linear regression analyses, and reported as standardized regression coefficients. Higher strain in domestic work was associated with lower self-rated health, also after controlling for potential confounders and according to both strain measures. "Domestic work equity and marital satisfaction'' showed for example negative associations with mental health beta -0.211 (p<0.001), vitality beta -0.195 (p<0.001), social function -0.132 (p<0.01) and physical role beta -0.115 (p<0.01). The highest associations between "Domestic job strain'' and SF-36 were found for vitality beta -0.156 (p<0.001), mental health beta -0.123 (p<0.001). Strain in domestic work, including perceived inequity in the relationship and lack of a satisfactory relationship with a spouse/cohabiter, was associated with lower self-rated health in this cross-sectional study. Future research needs to address the specific importance of strain in domestic work as a contributory factor to women's ill-health.

  12. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  13. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  14. On the response of rubbers at high strain rates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemczura, Johnathan Greenberg

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between themore » experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.« less

  15. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    PubMed

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  16. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing

    PubMed Central

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2013-01-01

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the −2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the −1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow. PMID:24218624

  17. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    PubMed

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (p<.0001) and between v1 and v3 (p<.0001). A significant positive effect of loading on delta BM was observed in the distal peri-implant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  18. Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.

    PubMed

    Kim, Jong-Woong; Jung, Seung-Boo

    2012-04-01

    The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.

  19. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-06-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  20. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    NASA Astrophysics Data System (ADS)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  1. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Su, Xingya; Zhao, Longmao

    The dynamic compressive behavior of D1 railway wheel steel at high strain rates was investigated using a split Hopkinson pressure bar (SHPB) apparatus. Three types of specimens, which were derived from the different positions (i.e., the rim, web and hub) of a railway wheel, were tested over a wide range of strain rates from 10-3 s-1 to 2.4 × 103 s-1 and temperatures from 213 K to 973 K. Influences of the strain rate and temperature on flow stress were discussed, and rate- and temperature-dependent constitutive relationships were assessed by the Cowper-Symonds model, Johnson-Cook model and a physically-based model, respectively. The experimental results show that the compressive true stress versus true strain response of D1 wheel steel is strain rate-dependent, and the strain hardening rate during the plastic flow stage decreases with the elevation of strain rate. Besides, the D1 wheel steel displays obvious temperature-dependence, and the third-type strain aging (3rd SA) is occurred at the temperature region of 673-973 K at a strain rate of ∼1500 s-1. Comparisons of experimental results with theoretical predictions indicate that the physically-based model has a better prediction capability for the 3rd SA characteristic of the tested D1 wheel steel.

  2. Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Lim, Hobin; Kim, YoungHee; Song, Teh-Ru Alex; Shen, Xuzhang

    2018-03-01

    Accurate determination of the seismometer orientation is a prerequisite for seismic studies including, but not limited to seismic anisotropy. While borehole seismometers on land produce seismic waveform data somewhat free of human-induced noise, they might have a drawback of an uncertain orientation. This study calculates a harmonic decomposition of teleseismic receiver functions from the P and PP phases and determines the orientation of a seismometer by minimizing a constant term in a harmonic expansion of tangential receiver functions in backazimuth near and at 0 s. This method normalizes the effect of seismic sources and determines the orientation of a seismometer without having to assume for an isotropic medium. Compared to the method of minimizing the amplitudes of a mean of the tangential receiver functions near and at 0 s, the method yields more accurate orientations in cases where the backazimuthal coverage of earthquake sources (even in the case of ocean bottom seismometers) is uneven and incomplete. We apply this method to data from the Korean seismic network (52 broad-band velocity seismometers, 30 of which are borehole sensors) to estimate the sensor orientation in the period of 2005-2016. We also track temporal changes in the sensor orientation through the change in the polarity and the amplitude of the tangential receiver function. Six borehole stations are confirmed to experience a significant orientation change (10°-180°) over the period of 10 yr. We demonstrate the usefulness of our method by estimating the orientation of ocean bottom sensors, which are known to have high noise level during the relatively short deployment period.

  3. Roll-Yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  4. Roll-yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  5. An alternative to FASTSIM for tangential solution of the wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Sichani, Matin Sh.; Enblom, Roger; Berg, Mats

    2016-06-01

    In most rail vehicle dynamics simulation packages, tangential solution of the wheel-rail contact is gained by means of Kalker's FASTSIM algorithm. While 5-25% error is expected for creep force estimation, the errors of shear stress distribution, needed for wheel-rail damage analysis, may rise above 30% due to the parabolic traction bound. Therefore, a novel algorithm named FaStrip is proposed as an alternative to FASTSIM. It is based on the strip theory which extends the two-dimensional rolling contact solution to three-dimensional contacts. To form FaStrip, the original strip theory is amended to obtain accurate estimations for any contact ellipse size and it is combined by a numerical algorithm to handle spin. The comparison between the two algorithms shows that using FaStrip improves the accuracy of the estimated shear stress distribution and the creep force estimation in all studied cases. In combined lateral creepage and spin cases, for instance, the error in force estimation reduces from 18% to less than 2%. The estimation of the slip velocities in the slip zone, needed for wear analysis, is also studied. Since FaStrip is as fast as FASTSIM, it can be an alternative for tangential solution of the wheel-rail contact in simulation packages.

  6. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  7. The Influence of Strain-Rate History and Temperature on the Shear Strength of Copper, Titanium and Mild Steel

    DTIC Science & Technology

    1976-03-01

    Temperature dependence of flow stress of titanium, at (a) low and (b) high strain rates. 76 18 Strain dependence of apparent and intrinsic strain-rate...Cryostat in position surrounding specimen 98 B3 General view of low- temperature apparatus 98 CI Design of high - temperature titanium specimen and grip 99 C2... High - temperature titanium specimen and stainless- steel grips 100 C3 Transmission of torsional wave through mechanical connectors, at (a) 2000C (b

  8. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  9. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    NASA Astrophysics Data System (ADS)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh

    2017-01-01

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  10. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  11. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGES

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  12. Interseismic strain and rotation rates in the northeast Mojave domain, eastern California

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Prescott, II W.

    2004-01-01

    The northeast Mojave domain, a type locality for bookshelf faulting, is a region of east striking, left-lateral faults in the northeast comer of the Mojave block, a block otherwise dominated by ??N40??W striking, right-lateral faults. Paleomagnetic evidence suggests that blocks within the domain have rotated clockwise about a vertical axis as much as 60?? since 12.8 Ma [Schermer et al., 1996]. In 1994, and again in 2002, the U.S. Geological Survey surveyed an array of 14 geodetic monuments distributed across the northeast Mojave domain. The 2002 survey results were adjusted to remove the coseismic offsets imposed by the nearby Hector Mine earthquake (16 October 1999, Mw = 7.1). The adjusted deformation across the array appears to be uniform and can be approximated by the principal strain rates ??:1 = 28.9 ?? 9.1 N77.2??W ?? 4.8?? and ??2 = -48.2 ?? 8.9 N12.8??E ?? 4.8?? nstrain yr-1; extension reckoned positive, and quoted uncertainties are standard deviations. That strain accumulation could be released by slip . on faults striking N32??W but not by bookshelf faulting on the east striking faults alone. The vertical axis rotation rate of the northeast Mojave domain as a whole relative to fixed North America is 71.0 ?? 6.4 nrad yr-1 (4.07?? ?? 0.37?? Myr-1) clockwise, about twice the maximum tenser shear strain rate. The observed rotation rate acting over 12.8 Myr would produce'a clockwise rotation of 52.1?? ?? 4.7??, exclusive of possible coseismic rotations. That rotation is in rough agreement with the paleomagnetic rotation accumulated in the individual fault blocks within the northeast Mojave domain since 12.8 Ma.

  13. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    PubMed

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  14. Effect of pressure on tangential-injection film cooling in a combustor exhaust stream

    NASA Technical Reports Server (NTRS)

    Marek, C. J.

    1973-01-01

    A tangential-injection film cooled test section was placed in the exhaust stream of a high pressure combustor. Film cooling data were taken at pressure of 1, 10, and 20 atmospheres. The film cooling effectiveness was found to be independent of pressure. The data were correlated adequately by a turbulent-mixing film cooling correlation with a turbulent-mixing coefficient of 0.05 + or - 0.02.

  15. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGES

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  16. Continent-Wide Estimates of Antarctic Strain Rates from Landsat 8-Derived Velocity Grids and Their Application to Ice Shelf Studies

    NASA Astrophysics Data System (ADS)

    Alley, K. E.; Scambos, T.; Anderson, R. S.; Rajaram, H.; Pope, A.; Haran, T.

    2017-12-01

    Strain rates are fundamental measures of ice flow used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, application to Glen's flow law, and many other studies. However, despite their extensive application, strain rates are calculated using widely varying methods and length scales, and the calculation details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two commonly used approaches in the glaciological literature. We evaluate the errors introduced by each code and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can have large local impacts on other derived quantities such as basal mass balance on ice shelves. We present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent. Finally, we explore the applications of comprehensive strain-rate maps to future ice shelf studies, including investigations of ice fracture, calving patterns, and stability analyses.

  17. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE PAGES

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.; ...

    2017-02-23

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  18. Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening [Direct numerical simulations of a high Ka laboratory premixed jet flame - an analysis of flame stretch and flame thickening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    This article reports an analysis of the first detailed chemistry direct numerical simulation (DNS) of a high Karlovitz number laboratory premixed flame. The DNS results are first compared with those from laser-based diagnostics with good agreement. The subsequent analysis focuses on a detailed investigation of the flame area, its local thickness and their rates of change in isosurface following reference frames, quantities that are intimately connected. The net flame stretch is demonstrated to be a small residual of large competing terms: the positive tangential strain term and the negative curvature stretch term. The latter is found to be driven bymore » flame speed–curvature correlations and dominated in net by low probability highly curved regions. Flame thickening is demonstrated to be substantial on average, while local regions of flame thinning are also observed. The rate of change of the flame thickness (as measured by the scalar gradient magnitude) is demonstrated, analogously to flame stretch, to be a competition between straining tending to increase gradients and flame speed variations in the normal direction tending to decrease them. The flame stretch and flame thickness analyses are connected by the observation that high positive tangential strain rate regions generally correspond with low curvature regions; these regions tend to be positively stretched in net and are relatively thinner compared with other regions. Finally, high curvature magnitude regions (both positive and negative) generally correspond with lower tangential strain; these regions are in net negatively stretched and thickened substantially.« less

  19. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    PubMed

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  20. Large tangential electric fields in plasmas close to temperature screening

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; García-Regaña, J. M.; Parra, F. I.; Satake, S.; Alonso, J. A.; the LHD team

    2018-07-01

    Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.

  1. Growth rates of three geographically separated strains of the ichthyotoxic Prymnesium parvum (Prymnesiophyceae) in response to six different pH levels

    NASA Astrophysics Data System (ADS)

    Lysgaard, Maria L.; Eckford-Soper, Lisa; Daugbjerg, Niels

    2018-05-01

    Continued anthropogenic carbon emissions are expected to cause a decline in global average pH of the oceans to a projected value of 7.8 by the end of the century. Understanding how harmful algal bloom (HAB) species will respond to lowered pH levels will be important when predicting future HAB events and their ecological consequences. In this study, we examined how manipulated pH levels affected the growth rate of three strains of Prymnesium parvum from North America, Denmark and Japan. Triplicate strains were grown under pH conditions ranging from 6.6 to 9.1 to simulate plausible future levels. Different tolerances were evident for all strains. Significantly higher growth rates were observed at pH 6.6-8.1 compared to growth rates at pH 8.6-9.1 and a lower pH limit was not observed. The Japanese strain (NIES-1017) had the highest maximum growth rate of 0.39 divisions day-1 at pH 6.6 but a low tolerance (0.22 divisions day-1) to high levels (pH 9.1) with growth declining markedly after pH 7.6. The Danish (SCCAP K-0081) and North American (UTEX LB 2797) strains had maximum growth rates of 0.26 and 0.35 divisions day-1, respectively between pH 6.6-8.1. Compared to the other two strains the Danish strain had a statistically lower growth rate across all pH treatments. Strain differences were either attributed to their provenance or the length of time the strain had been in culture.

  2. Design of tangential multi-energy SXR cameras for tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Yamazaki, H.; Delgado-Aparicio, L. F.; Pablant, N.; Hill, K.; Bitter, M.; Takase, Y.; Ono, M.; Stratton, B.

    2017-10-01

    A new synthetic diagnostic capability has been built to study the response of tangential multi-energy soft x-ray pin-hole cameras for arbitrary plasma densities (ne , D), temperature (Te) and ion concentrations (nZ). For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy soft xray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (e.g. Te, nZ and ΔZeff). These systems are designed to sample the continuum- and line-emission from low- to high-Z impurities (e.g. C, O, Al, Si, Ar, Ca, Fe, Ni and Mo) in multiple energy-ranges. These x-ray cameras will be installed in the MST-RFP, as well as NSTX-U and DIII-D tokamaks, measuring the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected for the new systems will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed for the case of NSTX-U.

  3. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  4. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  5. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  6. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    PubMed

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  7. The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

    NASA Astrophysics Data System (ADS)

    Skripnyak, N. V.

    2015-09-01

    The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10-3 to 103 s-1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

  8. Strain Rate Dependant Material Model for Orthotropic Metals

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade

    2016-08-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In

  9. The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations

    NASA Astrophysics Data System (ADS)

    Stern, Daniel P.

    The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to

  10. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.

    2014-01-01

    Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…

  11. Calving laws and strain rates: a comparison between modelled relationships and observations from InSAR velocity maps from across Greenland.

    NASA Astrophysics Data System (ADS)

    Lea, James; Nick, Faezeh; Benn, Douglas; Kirchner, Nina

    2017-04-01

    Calving is a major mechanism of cryospheric ice mass loss and a significant contributor to global sea level change, though it is currently poorly understood as a process. Longitudinal strain rate is often cited as a first order control on calving, however multiple different calving laws (not always including the strain rate) have been used to represent this in numerical models of ice sheets. This study seeks to investigate how (1) different calving laws within a 1D flowline model predict strain rate will evolve within increasing terminus thickness for steady state and transient simulations, and (2) how these relationships compare with observed strains (derived from MEaSUREs Greenland InSAR velocity maps; Joughin et al., 2010 [updated 2016]) and depths (from BedMachine v.2 subglacial topography data; Morlighem et al., 2014). We identify that systematic relationships with terminus thickness exist for height above buoyancy, waterline and full-depth crevasse calving laws amongst others for both steady state and transient simulations. However, analysis of observed near-terminus strain rates for multiple Greenlandic glaciers using a variety of metrics (with a range of bed depths predicted by BedMachine) does not reproduce the shape or magnitude of any of these modelled relationships. Relationships between strain rate and depth derived from simple 1D model simulations therefore cannot be realistically compared to current real-world observations. This suggests that the magnitude of observed strain rates at an individual point, or area-averaged conditions near a real-world terminus are not meaningful in determining the potential for calving when taken in isolation. To improve understanding of first/second order calving processes, future modelling work should therefore look to analyse how/if the distribution of strain across the terminus region impacts calving as part of 2D-planform/3D models.

  12. High-resolution surface velocity and strain rate mapping across the Alpine-Himalayan belt using InSAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Walters, R. J.; Wright, T. J.; Hussain, E.; González, P. J.; Hooper, A. J.

    2017-12-01

    Accurate and high-resolution measurements of interseismic crustal velocity and the strain-rate fields derived from these measurements are an important input for the assessment of earthquake hazard. However, most strain-rate estimation methods and associated seismicity forecasts rely heavily on Global Navigation Satellite System (GNSS) networks with sparse and heterogeneous spatial coverage, limiting both accuracy and resolution. Interferometric Synthetic Aperture Radar (InSAR) provides remotely-sensed observations of surface motion, with accuracy comparable to GNSS data, and with a spatial resolution of a few tens of meters. The recently launched Sentinel-1 (S1) radar satellites can measure deformation at the tectonic-plate scale and across slowly straining regions where earthquake hazard is poorly characterised. We are producing large-scale crustal velocity and strain-rate fields for the Alpine-Himalayan belt (AHB) by augmenting global GNSS data compilations with InSAR-derived surface velocities. We are also systematically processing S1 interferograms for the AHB and these products are freely available to the geoscience community. We focus on the Anatolian microplate, where we have used both Envisat and S1 data to measure crustal velocity. We address some of the challenges associated with merging the complementary geodetic datasets including reference-frame issues, treatment of uncertainties, and comparison of different velocity/strain-rate inversion methods. We use synthetic displacement fields to illustrate how inclusion of InSAR can aid in identifying features such as unmapped active faults and fault segments that are creeping. From our preliminary results for Anatolia, we investigate the spatial distribution of strain and variation of strain rates during the seismic cycle.

  13. Recovery of strain-hardening rate in Ni-Si alloys.

    PubMed

    Yang, C L; Zhang, Z J; Cai, T; Zhang, P; Zhang, Z F

    2015-10-21

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  14. Recovery of strain-hardening rate in Ni-Si alloys

    PubMed Central

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-01-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects. PMID:26487419

  15. Recovery of strain-hardening rate in Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Yang, C. L.; Zhang, Z. J.; Cai, T.; Zhang, P.; Zhang, Z. F.

    2015-10-01

    In this study, the recovery of strain-hardening rate (RSHR) was discovered for the first time in polycrystalline materials (Ni-Si alloys) that have only dislocation activities during tensile test. Detailed microstructure characterizations show that the activation of dislocations in the secondary slip systems during tensile deformation is the major reason for this RSHR. By taking into account other metals that also exhibit RSHR during tension, a more general mechanism for the RSHR was proposed, i.e. the occurrence of a sharp decrease of dislocation mean free path (Λ) during plastic deformation, caused by either planar defects or linear defects.

  16. Constitutive Behavior Modelling of AA1100-O AT Large Strain and High Strain Rates

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Iannitti, Gianluca; Ruggiero, Andrew; Gentile, Domenico; Bonora, Nicola

    2017-06-01

    Constitutive behavior of AA1100-O, provided as extruded bar, was investigated. Microscopic observation showed that the cross-section has a peculiar microstructure consisting in the inner core with a large grain size surrounded by an external annulus with finer grains. Low and high strain rates tensile tests were carried out at different temperature ranging from -190 ° C to 100 ° C. Constitutive behavior was modelled using a modified version of Rusinek & Klepaczko model. Parameters were calibrated on tensile test results. Tests and numerical simulations of symmetric Taylor (RoR) and dynamic tensile extrusion (DTE) tests at different impact velocities were carried out in order to validate the model under complex deformation paths.

  17. Flow behavior of Ti-24Al-11Nb at high strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbison, L.S.; Koss, D.A.; Bourcier, R.J.

    The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloymore » is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.« less

  18. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  19. High strain rate deformation of layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  20. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  1. A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys

    NASA Astrophysics Data System (ADS)

    Chan, Dennis K.

    SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the

  2. Potential pitfalls of strain rate imaging: angle dependency

    NASA Technical Reports Server (NTRS)

    Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.

  3. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  4. Measurement of fracture properties of concrete at high strain rates

    PubMed Central

    Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510

  5. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    PubMed

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (P<0.01). The AUC, sensitivity and specificity for elastic strain rate and VTQ for single or combined use were higher than those of conventional ultrasound (0.904, 97.5%, 69.2%; 0.946, 87.5%, 87.2%; 0.976, 90%, 97.4% vs 0.783, 85%, 61.5%). The AUC and specificity of VTQ were higher than those of the elastic strain rate (0.946, 87.2% vs 0.904, 69.2%), but the sensitivity of VTQ was higher than that of the latter (87.5% vs 97.5%). The AUC and specificity for combination of both methods were higher than those of single method, but the sensitivity was lower than that of the elastic strain rate. 
 Combination of elastic strain rate ratio method with VTQ possesses the best diagnostic value and the highest diagnostic accuracy in the diagnosis of breast mass than that used alone.

  6. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    DOE PAGES

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; ...

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less

  7. Assessment of a miniature four-roll mill and a cross-slot microchannel for high-strain-rate stagnation point flows

    NASA Astrophysics Data System (ADS)

    Akbaridoust, Farzan; Philip, Jimmy; Marusic, Ivan

    2018-04-01

    Stagnation point flows have been widely used to study the deformation and break-up of objects in two-dimensional pure straining flows. Here, we report a systematic study of the characterisation of stagnation point flows in two devices, a miniature Taylor’s four-roll mill and a cross-slot microchannel. The aim of the study is to find the best platform suitable for investigating the effect of strain rate on the mechanical properties of waterborne microorganisms. Using micro-PIV, the velocity field and the strain rates in both devices were measured at different flow rates and compared with an ideal hyperbolic stagnation point flow. The cross-slot microchannel was found to be a better experimental device than the miniature four-roll mill for the purpose of confining micron-sized objects in a controlled stagnation point flow. This is mainly due to the difficulty of maintaining a fixed location for the stagnation point within one micron in the miniature four-roll mill and achieving high strain rates beyond 10 s-1 . However, with no moving parts, the cross-slot microchannel was found to maintain a steady flow, with the stagnation point varying less than one micron at a cross-junction of 400× 400~μm2 , and was able to reach uniform strain rates up to 140 s-1 .

  8. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

    PubMed Central

    Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım

    2009-01-01

    Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998

  9. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    PubMed

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  10. Deformation and spallation of a magnesium alloy under high strain rate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Lu, L.; Li, C.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less

  11. Environmental and High-Strain Rate effects on composites for engine applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1982-01-01

    The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.

  12. Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains

    PubMed Central

    van Oosterhout, Frank; Becker, Vanessa; Attayde, José Luiz; Lürling, Miquel

    2018-01-01

    In tropical and subtropical lakes, eutrophication often leads to nuisance blooms of Cylindrospermopsis raciborskii. In laboratory experiments, we tested the combined effects of flocculant polyaluminum chloride (PAC) and lanthanum-modified bentonite (LMB) on the sinking and growth rates of three C. raciborskii strains. We tested the hypothesis that the combination of PAC and LMB would (1) effectively sink C. raciborskii in a test tube experiment and (2) impair C. raciborskii growth, irrespective of the biomass of the inoculum (bloom) and the strain in the growth experiment. We tested the recommended (LMB1) and a three-times higher dose of LMB (LMB3). The combined addition of PAC and LMB enhanced the sedimentation of all C. raciborskii strains. Moreover, both the PAC and LMB doses decreased the phosphate concentration. PAC and LMB1 decreased the growth rate of all strains, but the efficacy depended on the biomass and strain. The combined addition of PAC and LMB3 inhibited the growth of all strains independently of the biomass and strain. We conclude that a low dose of PAC in combination with the recommended dose of LMB decreases C. raciborskii blooms and that the efficiency of the technique depends on the biomass of the bloom. A higher dose of LMB is needed to obtain a more efficient control of C. raciborskii blooms. PMID:29614118

  13. Effects of polyaluminum chloride and lanthanum-modified bentonite on the growth rates of three Cylindrospermopsis raciborskii strains.

    PubMed

    Araújo, Fabiana; van Oosterhout, Frank; Becker, Vanessa; Attayde, José Luiz; Lürling, Miquel

    2018-01-01

    In tropical and subtropical lakes, eutrophication often leads to nuisance blooms of Cylindrospermopsis raciborskii. In laboratory experiments, we tested the combined effects of flocculant polyaluminum chloride (PAC) and lanthanum-modified bentonite (LMB) on the sinking and growth rates of three C. raciborskii strains. We tested the hypothesis that the combination of PAC and LMB would (1) effectively sink C. raciborskii in a test tube experiment and (2) impair C. raciborskii growth, irrespective of the biomass of the inoculum (bloom) and the strain in the growth experiment. We tested the recommended (LMB1) and a three-times higher dose of LMB (LMB3). The combined addition of PAC and LMB enhanced the sedimentation of all C. raciborskii strains. Moreover, both the PAC and LMB doses decreased the phosphate concentration. PAC and LMB1 decreased the growth rate of all strains, but the efficacy depended on the biomass and strain. The combined addition of PAC and LMB3 inhibited the growth of all strains independently of the biomass and strain. We conclude that a low dose of PAC in combination with the recommended dose of LMB decreases C. raciborskii blooms and that the efficiency of the technique depends on the biomass of the bloom. A higher dose of LMB is needed to obtain a more efficient control of C. raciborskii blooms.

  14. A Combined Precipitation, Yield Stress, and Work Hardening Model for Al-Mg-Si Alloys Incorporating the Effects of Strain Rate and Temperature

    NASA Astrophysics Data System (ADS)

    Myhr, Ole Runar; Hopperstad, Odd Sture; Børvik, Tore

    2018-05-01

    In this study, a combined precipitation, yield strength, and work hardening model for Al-Mg-Si alloys known as NaMo has been further developed to include the effects of strain rate and temperature on the resulting stress-strain behavior. The extension of the model is based on a comprehensive experimental database, where thermomechanical data for three different Al-Mg-Si alloys are available. In the tests, the temperature was varied between 20 °C and 350 °C with strain rates ranging from 10-6 to 750 s-1 using ordinary tension tests for low strain rates and a split-Hopkinson tension bar system for high strain rates, respectively. This large span in temperatures and strain rates covers a broad range of industrial relevant problems from creep to impact loading. Based on the experimental data, a procedure for calibrating the different physical parameters of the model has been developed, starting with the simplest case of a stable precipitate structure and small plastic strains, from which basic kinetic data for obstacle limited dislocation glide were extracted. For larger strains, when work hardening becomes significant, the dynamic recovery was linked to the Zener-Hollomon parameter, again using a stable precipitate structure as a basis for calibration. Finally, the complex situation of concurrent work hardening and dynamic evolution of the precipitate structure was analyzed using a stepwise numerical solution algorithm where parameters representing the instantaneous state of the structure were used to calculate the corresponding instantaneous yield strength and work hardening rate. The model was demonstrated to exhibit a high degree of predictive power as documented by a good agreement between predictions and measurements, and it is deemed well suited for simulations of thermomechanical processing of Al-Mg-Si alloys where plastic deformation is carried out at various strain rates and temperatures.

  15. High-strain-rate deformation of granular silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J.; Meyers, M.A.; Nesterenko, V.F.

    1998-07-01

    Silicon carbide powders with three particle size distributions (average sizes of 0.4, 3 and 50 {micro}m) were subjected to strain-controlled, high-strain-rate deformation ({dot {var_epsilon}} {approx} 3 {times} 10{sup 4}/s) in a cylindrical geometry which imposed simultaneous compressive stresses. The experiments involved two explosive stages to (a) densify the powder and to (b) subject the densified granules to large deformation. The powder, with initial density of 33--59% of theoretical density, was densified to densities between 73 and 94% of theoretical density in the first stage. The densified powders were subjected to a global effective strain of {approx}{minus}0.27 in the second stage.more » Their response to be imposed constraints occurred through both homogeneous deformation (82--100%) and shear localization (0--18%), depending on the particle size. In the coarse powder (50 {micro}m), the shear localization process was primarily due to particle break-up (comminution) and rearrangement of the comminuted particles, through a similar mechanism to the bulk and prefractured SiC (Shih, C.J., Nesterenko, V.F. and Meyers, M.A., Journal of Applied Physics, 1998, 83, 4660). Comminution was observed in the medium powder (3 {micro}m), but was never seen in the fine powder (0.4 {micro}m). In medium and fine granular SiC, the shear localization at sufficiently high displacement (>150 {micro}m) leads to the formation of a thin layer (5--20 {micro}m) of well-bonded material. Calculated temperatures in the centers of the bands are up to 2300 C (using an assumed shear strength of 2 GPa and linear thermal softening), which explain the bonding. An analytical model is developed that correctly predicts break-up of large particles and plastic deformation of the smaller ones. It is based on the Griffith fracture criterion and Weibull distribution of strength, which quantitatively express the fact that the fracture is generated by flaws the size of which is limited by the

  16. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    PubMed Central

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  17. Finite Strain Behavior of Polyurea for a Wide Range of Strain Rates

    DTIC Science & Technology

    2010-02-01

    dimensional dynamic compressive behavior of EPDM rubber ," Journal of Engineering Materials and Technology, Transaction of the ASME, 125:294-301. [97] Song, B...and Chen, W. (2004) "Dynamic compressive behavior of EPDM rubber un- der nearly uniaxial strain conditions," Journal of Engineering Materials and... rubber elastic springs to describe the steep initial stiffness of virgin butadiene rubber under tensile and compressive loading at intermediate strain

  18. A contribution toward rational modeling of the pressure-strain-rate correlation

    NASA Technical Reports Server (NTRS)

    Lee, Moon Joo

    1990-01-01

    A novel method of obtaining an analytical expression of the 'linear part' of the pressure-strain-rate tensor in terms of the anisotropy tensor of the Reynolds stresses has been developed, where the coefficients of the seven independent tensor terms are functions of the invariants of the Reynolds-stress anisotropy. The coefficients are evaluated up to fourth order in the anisotropy of the Reynolds stresses to provide guidance for development of a turbulence model.

  19. The estimation of tissue loss during tangential hydrosurgical debridement.

    PubMed

    Matsumura, Hajime; Nozaki, Motohiro; Watanabe, Katsueki; Sakurai, Hiroyuki; Kawakami, Shigehiko; Nakazawa, Hiroaki; Matsumura, Izumi; Katahira, Jiro; Inokuchi, Sadaki; Ichioka, Shigeru; Ikeda, Hiroto; Mole, Trevor; Smith, Jennifer; Martin, Robin; Aikawa, Naoki

    2012-11-01

    The preservation of healthy tissue during surgical debridement is desirable as this may improve clinical outcomes. This study has estimated for the first time the amount of tissue lost during debridement using the VERSAJET system of tangential hydrosurgery. A multicenter, prospective case series was carried out on 47 patients with mixed wound types: 21 (45%) burns, 13 (28%) chronic wounds, and 13 (28%) acute wounds. Overall, 44 (94%) of 47 patients achieved appropriate debridement after a single debridement procedure as verified by an independent photographic assessment. The percentage of necrotic tissue reduced from a median of 50% to 0% (P < 0.001). Median wound area and depth increased by only 0.3 cm (6.8%) and 0.5 mm (25%), respectively. Notably, 43 (91%) of 47 wounds did not progress into a deeper compartment, indicating a high degree of tissue preservation.

  20. A numerical and experimental study of temperature effects on deformation behavior of carbon steels at high strain rates

    NASA Astrophysics Data System (ADS)

    Pouya, M.; Winter, S.; Fritsch, S.; F-X Wagner, M.

    2017-03-01

    Both in research and in the light of industrial applications, there is a growing interest in methods to characterize the mechanical behavior of materials at high strain rates. This is particularly true for steels (the most important structural materials), where often the strain rate-dependent material behavior also needs to be characterized in a wide temperature range. In this study, we use the Finite Element Method (FEM), first, to model the compressive deformation behavior of carbon steels under quasi-static loading conditions. The results are then compared to experimental data (for a simple C75 steel) at room temperature, and up to testing temperatures of 1000 °C. Second, an explicit FEM model that captures wave propagation phenomena during dynamic loading is developed to closely reflect the complex loading conditions in a Split-Hopkinson Pressure Bar (SHPB) - an experimental setup that allows loading of compression samples with strain rates up to 104 s-1 The dynamic simulations provide a useful basis for an accurate analysis of dynamically measured experimental data, which considers reflected elastic waves. By combining numerical and experimental investigations, we derive material parameters that capture the strain rate- and temperature-dependent behavior of the C75 steel from room temperature to 1000 °C, and from quasi-static to dynamic loading.

  1. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    DOE PAGES

    Scott, E. R.; Barchfeld, R.; Riemenschneider, P.; ...

    2016-08-09

    Here, the Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  2. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  3. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    PubMed

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  4. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  5. Effects of the Strain Rate and Temperature on the Microstructural Evolution of Twin-Rolled Cast Wrought AZ31B Alloys Sheets

    NASA Astrophysics Data System (ADS)

    Rodriguez, A. K.; Kridli, G.; Ayoub, G.; Zbib, H.

    2013-10-01

    This article investigates the effects of the strain rate and temperature on the microstructural evolution of twin-rolled cast wrought AZ31B sheets. This was achieved through static heating and through tensile test performed at strain rates from 10-4 to 10-1 s-1 and temperatures between room temperature (RT) and 300 °C. While brittle fracture with high stresses and limited elongation was observed at the RT, ductile behavior was obtained at higher temperatures with low strain rates. The strain rate sensitivity and activation energy calculations indicate that grain boundary diffusion and lattice diffusion are the two rate-controlling mechanisms at warm and high temperatures, respectively. An analysis of the evolution of the microstructure provided some indications of the most probable deformation mechanisms in the material: twinning operates at lower temperatures, and dynamic recrystallization dominates at higher temperatures. The static evolution of the microstructure was also studied, proving a gradual static grain growth of the AZ31B with annealing temperature and time.

  6. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  7. INVESTIGATION OF CONVENTIONAL MEMBRANE AND TANGENTIAL FLOW ULTRAFILTRATION ARTIFACTS AND THEIR APPLICATION TO THE CHARACTERIZATION OF FRESHWATER COLLOIDS

    EPA Science Inventory

    Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...

  8. On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian

    2017-04-01

    There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the

  9. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.

    2016-10-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.

  10. Engineering the Transformation Strain in LiMn y Fe 1–y PO 4 Olivines for Ultrahigh Rate Battery Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravnsbæk, Dorthe B.; Xiang, Kai; Xing, Wenting

    2016-04-13

    Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electro-chemical cycling, accompanied by significant transformation strains. Despite 30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMn yFe 1-yPO 4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of similar to 50more » nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries.« less

  11. A computer program for performance prediction of tripropellant rocket engines with tangential slot injection

    NASA Technical Reports Server (NTRS)

    Dang, Anthony; Nickerson, Gary R.

    1987-01-01

    For the development of a Heavy Lift Launch Vehicle (HLLV) several engines with different operating cycles and using LOX/Hydrocarbon propellants are presently being examined. Some concepts utilize hydrogen for thrust chamber wall cooling followed by a gas generator turbine drive cycle with subsequent dumping of H2/O2 combustion products into the nozzle downstream of the throat. In the Space Transportation Booster Engine (STBE) selection process the specific impulse will be one of the optimization criteria; however, the current performance prediction programs do not have the capability to include a third propellant in this process, nor to account for the effect of dumping the gas-generator product tangentially inside the nozzle. The purpose is to describe a computer program for accurately predicting the performance of such an engine. The code consists of two modules; one for the inviscid performance, and the other for the viscous loss. For the first module, the two-dimensional kinetics program (TDK) was modified to account for tripropellant chemistry, and for the effect of tangential slot injection. For the viscous loss, the Mass Addition Boundary Layer program (MABL) was modified to include the effects of the boundary layer-shear layer interaction, and tripropellant chemistry. Calculations were made for a real engine and compared with available data.

  12. A three-dimensional model of Tangential YORP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubov, O.; Scheeres, D. J.; Krugly, Yu. N., E-mail: golubov@astron.kharkov.ua

    2014-10-10

    Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroid's rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. To date, TYORP has been studied only in a simplified one-dimensional model, substituting stones with high long walls. This article for the first time considers TYORP in a realistic three-dimensional model, also including shadowing and self-illumination effects viamore » ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only five free parameters and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from the one-dimensional model, but is still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids and also as a basis for more sophisticated models of TYORP.« less

  13. SU-E-T-373: Evaluation and Reduction of Contralateral Skin /subcutaneous Dose for Tangential Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Carroll, S; Whitaker, M

    2015-06-15

    Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less

  14. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    NASA Astrophysics Data System (ADS)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  15. The dynamic properties behavior of high strength concrete under different strain rate

    NASA Astrophysics Data System (ADS)

    Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul

    2005-04-01

    This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.

  16. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain-rate

  17. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  18. Individualized Selection of Beam Angles and Treatment Isocenter in Tangential Breast Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl; Spadola, Sara; Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna

    Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differencesmore » in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or

  19. Modeling of High-Strain-Rate Deformation, Fracture, and Impact Behavior of Advanced Gas Turbine Engine Materials at Low and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Nathenson, David; Prakash, Vikas

    2003-01-01

    Gamma titanium aluminides have received considerable attention over the last decade. These alloys are known to have low density, good high temperature strength retention, and good oxidation and corrosion resistance. However, poor ductility and low fracture toughness have been the key limiting factors in the full utilization of these alloys. More recently, Gamma-met PX has been developed by GKSS, Germany. These alloys have been observed to have superior strengths at elevated temperatures and quasi-static deformation rates and good oxidation resistance at elevated temperatures when compared with other gamma titanium aluminides. The present paper discusses results of a study to understand dynamic response of gamma-met PX in uniaxial compression. The experiments were conducted by using a modified split Hopkinson pressure bar between room temperature and 900 C and strain rates of up to 3500 per second. The Gamma met PX alloy showed superior strength when compared to nickel based superalloys and other gamma titanium aluminides at all test temperatures. It also showed strain and strain-rate hardening at all levels of strain rates and temperatures and without yield anomaly up to 900 C. After approximately 600 C, thermal softening is observed at all strain rates with the rate of thermal softening increasing dramatically between 800 and 900 C. However, these flow stress levels are comparatively higher in Gamma met PX than those observed for other TiAl alloys.

  20. Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirras, G., E-mail: dirras@univ-paris13.fr; Ouarem, A.; Couque, H.

    2011-05-15

    Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardeningmore » effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.« less

  1. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less

  2. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was

  3. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE PAGES

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  4. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K. L.; Trim, M. W.; Francis, D. K.

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  5. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    PubMed

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  7. High strain rate behavior of a SiC particulate reinforced Al{sub 2}O{sub 3} ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, I.W.; Guden, M.

    The high strain rate deformation behavior of composite materials is important for several reasons. First, knowledge of the mechanical properties of composites at high strain rates is needed for designing with these materials in applications where sudden changes in loading rates are likely to occur. Second, knowledge of both the dynamic and quasi-static mechanical responses can be used to establish the constitutive equations which are necessary to increase the confidence limits of these materials, particularly if they are to be used in critical structural applications. Moreover, dynamic studies and the knowledge gained form them are essential for the further developmentmore » of new material systems for impact applications. In this study, the high strain rate compressive deformation behavior of a ceramic matrix composite (CMC) consisting of SiC particles and an Al{sub 2}O{sub 3} matrix was studied and compared with its quasi-static behavior. Microscopic observations were conducted to investigate the deformation and fracture mechanism of the composite.« less

  8. Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Huanran; Cai Canyuan; Chen Danian

    2012-07-01

    Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less

  9. Flight trajectories with maximum tangential thrust in a central Newtonian field

    NASA Astrophysics Data System (ADS)

    Azizov, A. G.; Korshunova, N. A.

    1983-07-01

    The paper examines the two-dimensional problem of determining the optimal trajectories of a point moving with a limited per-second mass consumption in a central Newtonian field. It is shown that one of the cases in which the variational equations in the Meier formulation can be integrated in quadratures is motion with maximum tangential thrust. Trajectories corresponding to this motion are determined. By way of application, attention is given to the problem of determining the thrust which assures maximum kinetic energy for the point at the moment t = t1, corresponding to the mass consumption M0 - M1, where M0 and M1 are, respectively, the initial and final mass.

  10. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine.

  11. Strain rate effects on fracture behavior of Austempered Ductile Irons

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico

    2017-06-01

    Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.

  12. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States

    NASA Astrophysics Data System (ADS)

    Kreemer, C.; Hammond, W. C.; Blewitt, G.; Holland, A. A.; Bennett, R. A.

    2012-04-01

    We present a model of crustal strain rates derived from GPS measurements of horizontal station velocities in the Pacific-North American plate boundary in the western United States. The model reflects a best estimate of present-day deformation from the San Andreas fault system in the west to the Basin and Range province in the east. Of the total 2,846 GPS velocities used in the model, 1,197 are derived by ourselves, and 1,649 are taken from (mostly) published results. The velocities derived by ourselves (the "UNR solution") are estimated from GPS position time-series of continuous and semi-continuous stations for which data are publicly available. We estimated ITRF2005 positions from 2002-2011.5 using JPL's GIPSY-OASIS II software with ambiguity resolution applied using our custom Ambizap software. Only stations with time-series that span at least 2.25 years are considered. We removed from the time-series continental-scale common-mode errors using a spatially-varying filtering technique. Velocity uncertainties (typically 0.1-0.3 mm/yr) assume that the time-series contain flicker plus white noise. We used a subset of stations on the stable parts of the Pacific and North American plates to estimate the Pacific-North American pole of rotation. This pole is applied as a boundary condition to the model and the North American - ITRF2005 pole is used to rotate our velocities into a North America fixed reference frame. We do not include parts of the time-series that show curvature due to post-seismic deformation after major earthquakes and we also exclude stations whose time-series display a significant unexplained non-linearity or that are near volcanic centers. Transient effects longer than the observation period (i.e., slow viscoelastic relaxation) are left in the data. We added to the UNR solution velocities from 12 other studies. The velocities are transformed onto the UNR solution's reference frame by estimating and applying a translation and rotation that minimizes

  13. Sealing glass-ceramics with near-linear thermal strain, part III: Stress modeling of strain and strain rate matched glass-ceramic to metal seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steve; Elisberg, Brenton; Calderone, James

    Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less

  14. Sealing glass-ceramics with near-linear thermal strain, part III: Stress modeling of strain and strain rate matched glass-ceramic to metal seals

    DOE PAGES

    Dai, Steve; Elisberg, Brenton; Calderone, James; ...

    2017-04-21

    Thermal mechanical stresses of glass-ceramic to stainless steel (GCtSS) seals are analyzed using finite element modeling over a temperature cycle from a set temperature (T set) 500°C to -55°C, and then back to 600°C. There are two glass-ceramics that have an identical coefficient of thermal expansion (CTE) at ~16 ppm/°C but have very different linearity of thermal strains, designated as near-linear NL16 and step-like SL16, and were formed from the same parent glass using different crystallization processes. Stress modeling reveals much higher plastic strain in the stainless steel using SL16 glass-ceramic when the GCtSS seal cools from T set. Uponmore » heating tensile stresses start to develop at the GC-SS interface before the temperature reaches T set. On the other hand, the much lower plastic deformation in stainless steel accumulated during cooling using NL16 glass-ceramic allows for radially compressive stress at the GC-SS interface to remain present when the seal is heated back to T set. Finally, the qualitative stress comparison suggests that with a better match of thermal strain rate to that of stainless steel, the NL16 glass-ceramic not only improves the hermeticity of the GCtSS seals, but would also improve the reliability of the seals exposed to high-temperature and/or high-pressure abnormal environments.« less

  15. Determination of the ductile-brittle transition temperature from the microplastic-strain rate

    NASA Astrophysics Data System (ADS)

    Andreev, A. K.; Solntsev, Yu. P.

    2008-04-01

    The possibility of the determination of the tendency of cast and deformed steels to brittle fracture using the temperature dependence of the small-plastic-strain rate is studied. The temperature corresponding to the maximum in this curve is found to indicate an abrupt decrease in the steel plasticity, which makes it possible to interpret it as the ductile-brittle transition temperature depending only on the structure of a material.

  16. Unified Hall-Petch description of nano-grain nickel hardness, flow stress and strain rate sensitivity measurements

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Balasubramanian, N.

    2017-08-01

    It is shown that: (i) nano-grain nickel flow stress and hardness data at ambient temperature follow a Hall-Petch (H-P) relation over a wide range of grain size; and (ii) accompanying flow stress and strain rate sensitivity measurements follow an analogous H-P relationship for the reciprocal "activation volume", (1/v*) = (1/A*b) where A* is activation area. Higher temperature flow stress measurements show a greater than expected reduction both in the H-P kɛ and in v*. The results are connected with smaller nano-grain size (< ˜20 nm) measurements exhibiting grain size weakening behavior that extends to larger grain size when tested at very low imposed strain rates.

  17. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate

    NASA Astrophysics Data System (ADS)

    Saeed-Akbari, A.; Mishra, A. K.; Mayer, J.; Bleck, W.

    2012-05-01

    The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.

  18. Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.

  19. The Effect of Ivermectin in Seven Strains of Aedes aegypti (Diptera: Culicidae) Including a Genetically Diverse Laboratory Strain and Three Permethrin Resistant Strains

    PubMed Central

    Deus, K. M.; Saavedra-rodriguez, K.; Butters, M. P.; Black, W. C.; Foy, B. D.

    2014-01-01

    Seven different strains of Aedes aegypti (L.), including a genetically diverse laboratory strain, three laboratory-selected permethrin-resistant strains, a standard reference strain, and two recently colonized strains were fed on human blood containing various concentrations of ivermectin. Ivermectin reduced adult survival, fecundity, and hatch rate of eggs laid by ivermectin-treated adults in all seven strains. The LC50 of ivermectin for adults and the concentration that prevented 50% of eggs from hatching was calculated for all strains. Considerable variation in adult survival after an ivermectin-bloodmeal occurred among strains, and all three permethrin-resistant strains were significantly less susceptible to ivermectin than the standard reference strain. The hatch rate after an ivermectin bloodmeal was less variable among strains, and only one of the permethrin-resistant strains differed significantly from the standard reference strain. Our studies suggest that ivermectin induces adult mortality and decreases the hatch rate of eggs through different mechanisms. A correlation analysis of log-transformed LC50 among strains suggests that permethrin and ivermectin cross-resistance may occur. PMID:22493855

  20. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  1. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with

  2. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  3. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  4. Complex strain fields

    NASA Astrophysics Data System (ADS)

    Bradshaw, P.

    Computational techniques for accounting for extra strain rates, abnormal distributions of delta-U/delta-y, fluctuating strain rates, and the effects of body forces in modeling shear flows are discussed. Consideration is given to simple shears where the extra strain rate does not affect turbulence, thin shear layers, moderately thin shear layers, and strongly distorted flows. Attention is given to formulations based on the exact transport equations for Reynolds stress as derived from the time-averaged Navier-Stokes equations. Extra strain rates arise from curvature, lateral divergence, and bulk compression, with Coriolis forces accounting for the first, intensification of the spanwise vorticity for the second, and compression or dilation of the shear layer producing the third. The curvature forces, e.g., buoyancy and Coriolis forces, are responsible for hurricanes and tornadoes.

  5. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  6. Tangential Flow Filtration of Hemoglobin

    PubMed Central

    Sun, Guoyong; Harris, David R.

    2009-01-01

    Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells (bRBCs and hRBCs, respectively) via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P50), and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (α) and beta (β) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the α and β globin chains agreed well with the calculated theoretical mass of the α-and β-globin chains. Taken together, our results demonstrate that HPLC grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers (HBOCs). PMID:19224583

  7. Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

    2013-12-01

    Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal

  8. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NASA Astrophysics Data System (ADS)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.

    2010-06-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  9. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  10. Application of high-speed photography to the study of high-strain-rate materials testing

    NASA Astrophysics Data System (ADS)

    Ruiz, D.; Harding, John; Noble, J. P.; Hillsdon, Graham K.

    1991-04-01

    There is a growing interest in material behaviour at strain rates greater than 104sec1, for instance in the design of aero-engine turbine blades. It is necessary therefore, to develop material testing techniques that give well-defined information on mechanical behaviour in this very high strain-rate regime. A number of techniques are available, including the expanding ring test1, a miniaturised compression Hopkinson bar technique using direct impact and the double-notch shear test3 which has been described by Nicholas4 as "one of the most promising for future studies in dynamic plasticity". However, although it is believed to be a good test for determining the flow stress at shear strain rates of 104sec and above, the design of specimen used makes an accurate determination of strain extremely difficult while, in the later stages of the test the deformation mode involves rotation as well as shear. If this technique is to be used, therefore, it is necessary to examine in detail the progressive deformation and state of stress within the specimen during the impact process. An attempt can then be made to assess how far the data obtained is a reliable measure of the specimen material response and the test can be calibrated. An extensive three stage analysis has been undertaken. In the first stage, reported in a previous paper5, the initial elastic behaviour was studied. Dynamic photoelastic experiments were used to support linear elastic numerical results derived by the finite element method. Good qualitative agreement was obtained between the photoelastic experiment and the numerical model and the principal source of error in the elastic region of the double-notch shear test was identified as the assumption that all deformation of the specimen is concentrated in the two shear zones. For the epoxy (photoelastic) specimen a calibration factor of 5.3 was determined. This factor represents the ratio between the defined (nominal) gauge length and the effective gauge length

  11. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  12. Planar Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Extinction

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Gokoglu, Suleyman; Rungaldier, Harald; Schultz, Donald

    1999-01-01

    An effectively strain-rate-free diffusion flame constitutes the most vigorous laminar combustion of initially unmixed reactive gases. Such a diffusion flame is characterized by a relatively long residence time and by a relatively large characteristic length scale. If such a flame were also planar, providing high symmetry, it would be particularly suitable for experimental and theoretical investigations of key combustion phenomena, such as multicomponent diffusion, chemical kinetics, and soot inception, growth, and oxidation. Unfortunately, a planar strain-rate-free diffusion flame is highly disrupted in earth-gravity (e.g., in a counterflow-diffusion-flame apparatus) because of the very rapid onset (approx. 100 ms) of gravity-induced instability. Accordingly, a specially dedicated apparatus was designed, fabricated, and initially checked out for the examination of a planar strain-rate-free diffusion flame in microgravity. Such a diffusion flame may be formed within a hollowed-out squat container (initially configured as 25 cm x 25 cm x 9 cm), with isothermal, noncatalytic, impervious walls. At test initiation, a thin metallic sheet (approx. 1 mm in thickness) that separates the internal volume into two equal portions, each of dimensions 25 cm x 25 cm x 4.5 cm, is withdrawn, by uniform translation (approx. 50 cm/s) in its own plane, through a tightly fitting slit in one side wall. Thereupon, diluted fuel vapor (initially confined to one half-volume of the container) gains access to diluted oxygen (initially with the same pressure, density, and temperature as the fuel, but initially confined to the other half-volume). After a brief delay (approx. 10 ms), to permit limited but sufficient-for-flammability diffusional interpenetration of fuel vapor and oxidizer, burning is initiated by discharge of a line igniter, located along that side wall from which the trailing edge of the separator withdraws. The ignition spawns a triple-flame propagation across the 25 cm x 25 cm

  13. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  14. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.

    PubMed

    Prabhu, Rajkumar; Whittington, Wilburn R; Patnaik, Sourav S; Mao, Yuxiong; Begonia, Mark T; Williams, Lakiesha N; Liao, Jun; Horstemeyer, M F

    2015-05-18

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec(-1). The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in

  15. Strain rate dependent hyperelastic stress-stretch behavior of a silica nanoparticle reinforced poly (ethylene glycol) diacrylate nanocomposite hydrogel.

    PubMed

    Zhan, Yuexing; Pan, Yihui; Chen, Bing; Lu, Jian; Zhong, Zheng; Niu, Xinrui

    2017-11-01

    Poly (ethylene glycol) diacrylate (PEGDA) derivatives are important biomedical materials. PEGDA based hydrogels have emerged as one of the popular regenerative orthopedic materials. This work aims to study the mechanical behavior of a PEGDA based silica nanoparticle (NP) reinforced nanocomposite (NC) hydrogel at physiological strain rates. The work combines materials fabrication, mechanical experiments, mathematical modeling and structural analysis. The strain rate dependent stress-stretch behaviors were observed, analyzed and quantified. Visco-hyperelasticity was identified as the deformation mechanism of the nano-silica/PEGDA NC hydrogel. NPs showed significant effect on both initial shear modulus and viscoelastic materials properties. A structure-based quasi-linear viscoelastic (QLV) model was constructed and capable to describe the visco-hyperelastic stress-stretch behavior of the NC hydrogel. A group of unified material parameters was extracted by the model from the stress-stretch curves obtained at different strain rates. Visco-hyperelastic behavior of NP/polymer interphase was not only identified but also quantified. The work could provide guidance to the structural design of next-generation NC hydrogel. Copyright © 2017. Published by Elsevier Ltd.

  16. Analysis of the Lankford coefficient evolution at different strain rates for AA6016-T4, DP800 and DC06

    NASA Astrophysics Data System (ADS)

    Lenzen, Matthias; Merklein, Marion

    2017-10-01

    In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.

  17. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  18. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  19. Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains

  20. Repeatability of strain magnitude and strain rate measurements in the periodontal ligament using fibre Bragg gratings: An ex vivo study in a swine model.

    PubMed

    Romanyk, Dan L; Guan, Raymond; Major, Paul W; Dennison, Christopher R

    2017-03-21

    Measurement of periodontal ligament (PDL) strain in an ex vivo or in vivo setting of a complete tooth-PDL-bone complex (TPBC) has yet to be achieved in the literature. The objective of this study was to investigate inter- and intra-TPBC PDL strain measurement using fibre Bragg grating (FBG) strain sensors. Second and third premolars from the left and the right side of four swine mandibles were removed to yield sixteen TPBC samples. Samples were secured in a miniature load-frame equipped with a digital actuator used to apply apical-directed displacement to the tooth. The same tooth on left and right sides of the mouth were exposed to the same loading condition over ten trials allowing for comparisons in a split-mouth study. Displacements of 0.2 and 0.3mm were considered along with displacement rates of 0.025, 0.05, and 0.1mm/s, yielding six loading combinations. Hypothesis testing between left and right teeth revealed FBGs did not always measure the same strain between left and right TPBCs. For all strain measures, the average coefficient of variation (CV) (all data collected) was 2.16 (range: 0.274-10.71). For repeated measures in single TPBCs, the minimum CV ranged from 0.037 to 0.449, and generally coincided with the time of maximum strain measured over the test duration. Based on the findings of this study, it is suggested that FBGs can provide repeatable ex vivo strain measures in the PDL of complete TPBCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Temporal variations in extension rate on the Lone Mountain fault and strain distribution in the eastern California shear zone-Walker Lane

    NASA Astrophysics Data System (ADS)

    Hoeft, J. S.; Frankel, K. L.

    2010-12-01

    The eastern California shear zone (ECSZ) and Walker Lane represent an evolving segment of the Pacific-North America plate boundary. Understanding temporal variations in strain accumulation and release along plate boundary structures is critical to assessing how deformation is accommodated throughout the lithosphere. Late Pleistocene displacement along the Lone Mountain fault suggests the Silver Peak-Lone Mountain (SPLM) extensional complex is an important structure in accommodating and transferring strain within the ECSZ and Walker Lane. Using geologic and geomorphic mapping, differential global positioning system surveys, and terrestrial cosmogenic nuclide (TCN) geochronology, we determined rates of extension across the Lone Mountain fault in western Nevada. The Lone Mountain fault displaces the northwestern Lone Mountain and Weepah Hills piedmonts and is the northeastern component of the SPLM extensional complex, a series of down-to-the-northwest normal faults. We mapped seven distinct alluvial fan deposits and dated three of the surfaces using 10Be TCN geochronology, yielding ages of 16.5 ± 1.2 ka, 92 ± 9 ka, and 137 ± 25 ka for the Q3b, Q2c, and Q2b deposits, respectively. The ages were combined with scarp profile measurements across the displaced fans to obtain minimum rates of extension; the Q2b and Q2c surfaces yield an extension rate between 0.1 ± 0.1 and 0.2 ± 01 mm/yr and the Q3b surface yields a rate of 0.2 ± 0.1 to 0.4 ± 0.1 mm/yr, depending on the dip of the fault. Active extension on the Lone Mountain fault suggests that it helps partition strain off of the major strike-slip faults in the northern ECSZ and transfers deformation to the east around the Mina Deflection and northward into the Walker Lane. Combining our results with estimates from other faults accommodating dextral shear in the northern ECSZ reveals an apparent discrepancy between short- and long-term rates of strain accumulation and release. If strain rates have remained constant

  2. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization

  3. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    NASA Astrophysics Data System (ADS)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong <001> + <111> dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  4. Contact problem on indentation of an elastic half-plane with an inhomogeneous coating by a flat punch in the presence of tangential stresses on a surface

    NASA Astrophysics Data System (ADS)

    Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.

    2018-05-01

    Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.

  5. Investigating Ta strength across multiple platforms, strain rates, and pressures

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas; Flicker, Dawn G.; Benage, John F.; Battaile, Corbett; Brown, Justin L.; Lane, J. Matthew D.; Lim, Hojun; Arsenlis, Thomas A.; Barton, Nathan R.; Park, Hye-Sook; Swift, Damian C.; Prisbrey, Shon T.; Austin, Ryan; McNabb, Dennis P.; Remington, Bruce A.; Prime, Michael B.; Gray, George T., III; Bronkhorst, Curt A.; Chen, Shuh-Rong; Luscher, D. J.; Scharff, Robert J.; Fensin, Sayu J.; Schraad, Mark W.; Dattelbaum, Dana M.; Brown, Staci L.

    2017-10-01

    Ta is a metal with high density and strength. We are collaborating to understand the behavior across an unprecedented range of conditions comparing strength data from Hopkinson bar, Taylor cylinder, guns, Z, Omega and the NIF using Ta from a single lot up to 380 GPa and strain rates of 107. Experiments are ongoing to give more overlap between the platforms and are being simulated with models to determine the importance of specific physical processes. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  6. Influence of primary α-phase volume fraction on the mechanical properties of Ti-6Al-4V alloy at different strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing

    2018-03-01

    Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.

  7. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  8. Strain rate and shear stress at the grain scale generated during near equilibrium antigorite dehydration

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.; Mainprice, David; Clément, Maxime

    2016-04-01

    Dehydration reactions are an outstanding case of mineral replacement reactions because they produce a significant transient fluid-filled porosity. Because fluids are present, these reactions occur by interface-coupled dissolution-precipitation. Under poorly drained conditions corresponding to foliated metamorphic rocks, they generate fluid pressure gradients that evolve in time and space eventually controlling fluid migration [1]. Despite the general agreement on this fact, we still lack of a precise knowledge of the complex coupling between the stresses generated during the reaction and the timescales for mineral growth and how they ultimate control the rate of fluid migration. Constraining these rates is challenge because the timescales of the feedback between fluid flow and mineral growth rates at near equilibrium are beyond the current experimental capabilities. For instance, numerical simulations suggest that the draining times of a dehydration front by compaction are in the order of 10-100 ky [1] difficult to translate into experimental strain rates. On the other hand, the natural record of dehydration reaction might potentially provide unique constrains on this feedback, but we need to identify microstructures related to compaction and quantify them. Features interpreted as due to compaction have been identified in a microstructural study [2] of the first stages of the antigorite dehydration at high-pressure conditions in Cerro del Almirez, Spain (ca. 1.6-1.9 GPa and 630-710 ° C). Compaction features can be mostly observed in the metamorphic enstatite in the form of (1) gradual crystallographic misorientation (up to 16°) of prismatic crystals due to buckling, (3) localized orthoenstatite(Pbca)/low clinoenstatite (P21/c) inversion (confirmed optically and by means of Electron Backscattered Diffraction) and (4) brittle fracturing of prismatic enstatite wrapped by plastically deformed chlorite. The coexistence of enstatite buckling and clinoenstatite lamellae

  9. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  10. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  11. Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Hussein, M.

    2018-06-01

    The influence of the mechanical property and morphology of different blend ratio of Butyl rubber (IIR)/high molecular weight polyethylene (PE) by temperature and strain rate are performed. Special attention has been considered to a ductile-brittle transition that is known to occur at around 60 °C. The idea is to explain the unexpected phenomenon of brittleness which directly related to all tensile mechanical properties such as the strength of blends, modulus of elasticity of filled and unfilled IIR-polyethylene blends. In particular, the initial Young's modulus, tensile strength and strain at failure exhibit similar dependency on strain rate and temperature. These quantities lowered and increased with an increment of temperature, whereas the increased with increasing of strain rate. Furthermore, the tensile strength and strain at failure decreases for all temperatures range with the increase of PE content in the blend, except Young's modulus in reverse. The strain rate sensitivity index parameter of the examined polymeric materials is consistent with the micro-mechanisms of deformation and the behavior was well described by an Eyring relationship leading to an activation volume of ∼1 nm3, except for the highest value of unfilled IIR ∼8.45 nm3.

  12. Effect of Strain Rates on the Compressive Response of Neck Rubber From Humanetics HIII 50th Percentile Male Dummy Under Different Loading Sequences

    DTIC Science & Technology

    2013-02-01

    diene monomer ( EPDM ) rubber under high-rate uniaxial compression using an SHPB (5). Additionally, Song and Chen used a strain energy-based function to...describe a one-dimensional constitutive relation to describe the high strain rate behavior of the EPDM rubber , which agreed with the experimental...intermediate rate to about 6 MPa at 500 s -1 . This behavior and rate dependence was similar to the EPDM rubber studied by Chen and Zhang (2), which

  13. Tangential symbols: using visual symbolization to teach pharmacological principles of drug addiction to international audiences.

    PubMed

    Giannini, A J

    1993-12-01

    Visual art was used to teach the biopsychiatric model of addiction to audiences in the Caribbean, Europe and Mideast. Art slides were tangentially linked to slides of pharmacological data. Stylistically dense art was processed by the intuitive right brain while spare notational pharmacological data was processed by the intellectual (rationalistic) left brain. Simultaneous presentation of these data enhanced attention and retention. This teaching paradigm was based on the nonliterate methods developed by Medieval architects and refined by Italian Renaissance philosopher, Marsilio Ficino.

  14. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1975-01-01

    An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  15. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  16. Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation

    NASA Astrophysics Data System (ADS)

    Liu, Yanyu; Mao, Pingli; Zhang, Feng; Liu, Zheng; Wang, Zhi

    2018-04-01

    In order to investigate the effect of temperature on the anisotropic behaviour of AZ31 magnesium alloy rolling sheet under high strain rate deformation, the Split Hopkinson Pressure Bar was used to analyse the dynamic mechanical properties of AZ31 magnesium alloy rolling sheet in three directions, rolling direction(RD), transverse direction (TD) and normal direction (ND). The texture of the rolling sheet was characterised by X-ray analysis and the microstructure prior and after high strain rate deformation was observed by optical microscope (OM). The results demonstrated that AZ31magnesium alloy rolling sheet has strong initial {0 0 0 2} texture, which resulted at the obvious anisotropy in high strain rate deformation at 20 °C. The anisotropy reflected in stress-strain curve, yield stress, peak stress and microstructure. The anisotropy became much weaker when the deformation temperature increased up to 250 °C. Continuing to increase the deformation temperature to 350 °C the anisotropy of AZ31 rolling sheet essentially disappeared. The decreasing tendency of anisotropy with increasing temperature was due to the fact that when the deformation temperature increased, the critical resolved shear stress (CRSS) for pyramidal 〈c + a〉 slip, which was the predominant slip mechanism for ND, decreased close to that of twinning, which was the predominant deformation mechanism for RD and TD. The deformation mechanism at different directions and temperatures and the Schmid factor (SF) at different directions were discussed in the present paper.

  17. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1995-01-01

    A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.

  18. Along-strike variation in deformation style inferred from kinematic reconstruction and strain rate analysis: A case study of the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Kidane, Tesfaye

    2017-09-01

    In this paper we combine kinematic reconstruction and seismic strain rate analysis to understand the along-strike variation in strain accommodation in the Ethiopian Rift (ER) evolution. The reconstruction poles close the southern and central ER at 19 and 15 Myr, respectively whereas there is 34 ± 14 km overlap in the northern ER at 11 Myr. Using Kostrov summation, seismic strain rates of 6.81 ×10-9 yr-1 and 0.06 × 10-9 yr-1 are obtained for the south-central and northern ER, respectively. Comparison of the seismic and geodetic strain rates shows that seismic deformation dominates the south and central ER contrary to the northern ER that deforms aseismically. The results obtained indicate that Nubia/Somalia plate reconstructions together with information on the onset of rifting overestimate the kinematics of the northern ER. We argue that magmatic processes play significant role in accommodating the ∼ 2 Myr opening of the rift. Our findings agree well with previous geophysical and geological studies in the Ethiopian Rift.

  19. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials

    PubMed Central

    Prabhu, Rajkumar; Whittington, Wilburn R.; Patnaik, Sourav S.; Mao, Yuxiong; Begonia, Mark T.; Williams, Lakiesha N.; Liao, Jun; Horstemeyer, M. F.

    2015-01-01

    This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec-1. The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good

  20. Use of simulated experiments for material characterization of brittle materials subjected to high strain rate dynamic tension

    PubMed Central

    Saletti, Dominique

    2017-01-01

    Rapid progress in ultra-high-speed imaging has allowed material properties to be studied at high strain rates by applying full-field measurements and inverse identification methods. Nevertheless, the sensitivity of these techniques still requires a better understanding, since various extrinsic factors present during an actual experiment make it difficult to separate different sources of errors that can significantly affect the quality of the identified results. This study presents a methodology using simulated experiments to investigate the accuracy of the so-called spalling technique (used to study tensile properties of concrete subjected to high strain rates) by numerically simulating the entire identification process. The experimental technique uses the virtual fields method and the grid method. The methodology consists of reproducing the recording process of an ultra-high-speed camera by generating sequences of synthetically deformed images of a sample surface, which are then analysed using the standard tools. The investigation of the uncertainty of the identified parameters, such as Young's modulus along with the stress–strain constitutive response, is addressed by introducing the most significant user-dependent parameters (i.e. acquisition speed, camera dynamic range, grid sampling, blurring), proving that the used technique can be an effective tool for error investigation. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956505

  1. Effects of Temperature and Strain Rate on Tensile Deformation Behavior of 9Cr-0.5Mo-1.8W-VNb Ferritic Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Weng, Xiaoxiang; Jiang, Yong; Gong, Jianming

    2017-09-01

    A series of uniaxial tensile tests were carried out at different strain rate and different temperatures to investigate the effects of temperature and strain rate on tensile deformation behavior of P92 steel. In the temperature range of 30-700 °C, the variations of flow stress, average work-hardening rate, tensile strength and ductility with temperature all show three temperature regimes. At intermediate temperature, the material exhibited the serrated flow behavior, the peak in flow stress, the maximum in average work-hardening rate, and the abnormal variations in tensile strength and ductility indicates the occurrence of DSA, whereas the sharp decrease in flow stress, average work-hardening rate as well as strength values, and the remarkable increase in ductility values with increasing temperature from 450 to 700 °C imply that dynamic recovery plays a dominant role in this regime. Additionally, for the temperature ranging from 550 to 650 °C, a significant decrease in flow stress values is observed with decreasing in strain rate. This phenomenon suggests the strain rate has a strong influence on flow stress. Based on the experimental results above, an Arrhenius-type constitutive equation is proposed to predict the flow stress.

  2. The tangential velocity of M31: CLUES from constrained simulations

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Courtois, Hélène; Tully, R. Brent

    2016-07-01

    Determining the precise value of the tangential component of the velocity of M31 is a non-trivial astrophysical issue that relies on complicated modelling. This has recently lead to conflicting estimates, obtained by several groups that used different methodologies and assumptions. This Letter addresses the issue by computing a Bayesian posterior distribution function of this quantity, in order to measure the compatibility of those estimates with Λ cold dark matter (ΛCDM). This is achieved using an ensemble of Local Group (LG) look-alikes collected from a set of constrained simulations (CSs) of the local Universe, and a standard unconstrained ΛCDM. The latter allows us to build a control sample of LG-like pairs and to single out the influence of the environment in our results. We find that neither estimate is at odds with ΛCDM; however, whereas CSs favour higher values of vtan, the reverse is true for estimates based on LG samples gathered from unconstrained simulations, overlooking the environmental element.

  3. Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

    PubMed

    Tinterri, Andrea; Deck, Marie; Keita, Maryama; Mailhes, Caroline; Rubin, Anna Noren; Kessaris, Nicoletta; Lokmane, Ludmilla; Bielle, Franck; Garel, Sonia

    2018-02-15

    In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. © 2017 Wiley Periodicals, Inc.

  4. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-07-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  5. Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak

    2018-03-01

    A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.

  6. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound.

    PubMed

    Wan, Jinjin; He, Fangli; Zhao, Yongfeng; Zhang, Hongmei; Zhou, Xiaodong; Wan, Mingxi

    2014-03-01

    The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future. Copyright © 2014 World Federation for Ultrasound in

  7. Shock structures at ultrahigh strain rates: what can they tell us about material behavior on very fast time scales?

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan

    2013-06-01

    In recent years, techniques based on table-top laser systems have shown promise for investigating dynamic material behavior at high rates of both compressive and tensile strain. Common to these techniques is a laser pulse that is used in some manner to rapidly deliver energy to the sample; while the energy itself is often comparatively very small, the intensity can be made high by tightly focusing the pump light. In this way pressures or stresses can be obtained that are sufficiently large to have relevance to a wide range of basic and applied fields. Also, when combined with established ultrafast diagnostics these experiments provide very high time resolution which is particularly desirable when studying, for example shock waves, in which the time for the material to pass from undisturbed to fully compressed (the ``rise time'') can be extremely short (order 10 ps or less) even at fairly small peak stresses. Since much of the most interesting physics comes into play during this process it is important to be able to adequately resolve the shock rise. In this context I will discuss our measurements on aluminum and iron thin films and compare the results with known behavior observed at lower strain rates. Specifically, for aluminum, I will compare our assumed steady wave data at strain rates of up to 1010 s-1 to literature data up to ~107 s-1 and show that the well-known fourth power scaling relation of strain rate to shock stress is maintained even at these very high strain rates. For iron, I will show how we have used our nonsteady data (up to ~109 s-1) to infer a number of important properties of the alpha to epsilon polymorphic transition: 1. The transition can occur on the tens of ps time scale at sufficiently high strain rates and corresponding very large deviatoric stresses, and 2, most of the material appears to transform at a substantially higher stress than the nominal value usually inferred from shock wave experiments of about 13 GPa. This work was

  8. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  9. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  10. Oxygen uptake rate in alginate producer (algU+) and nonproducer (algU-) strains of Azotobacter vinelandii under nitrogen-fixation conditions.

    PubMed

    Castillo, T; López, I; Flores, C; Segura, D; García, A; Galindo, E; Peña, C

    2018-07-01

    The sigma E (AlgU) in Azotobacter vinelandii has been shown to control the expression of cydR gene, a repressor of genes of the alternative respiratory chain, and alginate has been considered a barrier for oxygen diffusion. Therefore, the aim of the present study was to compare the respiratory activity of an alginate nonproducing strain, lacking the sigma factor E (algU-), and polymer-producing strains (algU+) of A. vinelandii under diazotrophic conditions at different aeration conditions. Our results reveal that under diazotrophic and high aeration conditions, A. vinelandii strain OP (algU-) had a specific oxygen consumption rate higher (30 and 54%) than those observed in the OP algU+-complemented strain, named OPAlgU+, and the ATCC 9046 respectively. However, the specific growth rate and biomass yields (based on oxygen and sucrose) were lower for OP cultivations as compared to the algU+ strains. These differences were partially explained by an increase in 1·5-fold of cydA relative expression in the OP strain, as compared to that obtained in the isogenic OPAlgU+ strain. Overall, our results confirm the important role of algU gene on the regulation of respiratory metabolism under diazotrophic growth when A. vinelandii is exposed to high aeration. This study highlights the role of AlgU to control respiration of A. vinelandii when exposed to diazotrophy. © 2018 The Society for Applied Microbiology.

  11. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert; Mukasyan, Alexander; Son, Steven

    2011-06-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 at%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones occur in shear bands formed during the impact event.

  12. Microstructural effects on ignition sensitivity in Ni/Al systems subjected to high strain rate impacts

    NASA Astrophysics Data System (ADS)

    Reeves, Robert V.; Mukasyan, Alexander S.; Son, Steven

    2012-03-01

    The effect of microstructural refinement on the sensitivity of the Ni/Al (1:1 mol%) system to ignition via high strain rate impacts is investigated. The tested microstructures include compacts of irregularly convoluted lamellar structures with nanometric features created through high-energy ball milling (HEBM) of micron size Ni/Al powders and compacts of nanometric Ni and Al powders. The test materials were subjected to high strain rate impacts through Asay shear experiments powered by a light gas gun. Muzzle velocities up to 1.1 km/s were used. It was found that the nanometric powder exhibited a greater sensitivity to ignition via impact than the HEBM material, despite greater thermal sensitivity of the HEBM. A previously unseen fast reaction mode where the reaction front traveled at the speed of the input stress wave was also observed in the nanometric mixtures at high muzzle energies. This fast mode is considered to be a mechanically induced thermal explosion mode dependent on the magnitude of the traveling stress wave, rather than a self-propagating detonation, since its propagation rate decreases rapidly across the sample. A similar mode is not exhibited by HEBM samples, although local, nonpropagating reaction zones shear bands formed during the impact event are observed.

  13. Assessment of the effect of off-pump coronary artery bypass (OPCAB) surgery on right ventricle function using strain and strain rate imaging.

    PubMed

    Khani, Mohammad; Hosseintash, Mahsa; Foroughi, Mahnoosh; Naderian, Mohammadreza; Khaheshi, Isa

    2016-04-01

    Right ventricle function significantly decreases after coronary artery bypass surgery; as one of the likely causes, such a condition is attributed to the use of cardiopulmonary pump (CPB). Because nowadays there is a tendency toward increasing use of off-pump coronary artery bypass (OPCAB) surgery, this study was conducted to evaluate the right ventricle function after this type of surgery using strain and strain rate imaging (SRI) echocardiography. This study was conducted on 30 patients, candidate for elective OPCAB surgery, between 2011 and 2012. Standard echocardiography was performed before the surgery and the right ventricle function was examined using strain and SRI echocardiography. Then patient underwent surgery, 6 days and 3 months after surgery they underwent echocardiography again and the results obtained from the three stages were compared with each other. Participants included 30 patients (23 males and 7 females) with a mean age of 66±11 years. Compared to the prior of the surgery, 6 days and 3 months after the surgery there was a significant decrease in tricuspid annular plane systolic excursion (TAPSE), tissue Doppler imaging (TDI) at the lateral annulus of tricuspid valve, and strain and SRI of right ventricle. However, the values obtained 3 months after surgery were significantly higher than those obtained after 6 days. In other words, the right ventricle function 6 days after the surgery had dropped, however some of the values recovered 3 months after the surgery. The findings of this study are consistent with other studies in this field and showed that after coronary artery surgery a decline occurs in right ventricular function. However, more detailed quantitative strain and SRI parameters which were measured in our study showed that at the early days after the OPCAB surgery there is a decline in the right ventricle function which is relatively reversible at longer intervals (3 months after surgery).

  14. Stress Orientations and Strain Rates in the Upper Plate of a `Locked' subduction zone, at southernmost North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Evanzia, D. A. D.; Lamb, S. H.; Savage, M. K.

    2017-12-01

    The southern North Island, New Zealand is located at the southern Hikurangi Margin, where the Pacific Plate is obliquely subducting westward underneath the Australian Plate. The orientations of the principle stresses in the overriding plate are determined from microseismic focal mechanisms detected and located using the temporary SAHKE and permanent GeoNet seismic array operating during 2009-2010. The microseismic earthquakes are located with the NonLinLoc method, using a New Zealand specific 3D velocity model; only those earthquakes located above the modelled subduction plate interface are used. Strain rate parameters calculations are calculated using cGPS velocities from 56 stations located from the central North Island to the northernmost South Island, New Zealand. In the region west of the Tararua-range-bounding Wairarapa fault (the Western region), the orientations of stresses indicate a normal regime (S1: vertical; S2 & S3: horizontal), with SHmax trending ENE. In the Central Basin region (east of the Wairarapa fault) the orientations of the stresses indicate a reverse regime (S3: vertical; S1 & S2: horizontal), with SHmax orientated NW. The low seismicity rates in the Eastern region make the results unreliable. There is a distinct difference between the strain rate and vorticity on either side the Wairarapa fault. Strain rate and vorticity rates increase west and decreased east of the Wairarapa; this correlates well with the pattern of observed seismicity. The southern North Island is predominately contracting, except for a region on the West coast, where some expansion is occurs. This pattern of expansion in the West and contraction in the center of the study area, calculated from cGPS, is similar the stress inversion results calculated from focal mechanisms. These similarities suggest that the present stress and strain rates are collinear, as occurs in isotropic media.

  15. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Strain rate dependence in the nanoindentation-induced deformation of Mg-Al intermetallic compounds produced by packed powder diffusion coating

    NASA Astrophysics Data System (ADS)

    Chang, Haiwei; Lu, Mingyuan; Zhang, Mingxing; Atrens, Andrej; Huang, Han

    2015-09-01

    Nanoindentation was performed on τ-Mg32(Al, Zn)49 and β-Mg17Al12 intermetallic coatings and on a AZ91E Mg alloy substrate using loading rates of 0.03 to 30 mNs-1. Pop-in phenomenon was observed during loading in the two intermetallic coatings and in the substrate. Both the magnitude of the pop-ins and the time interval between two consecutive pop-ins increased with increasing loads. The phenomenon was attributed to plastic instability, which is known as the Portevin-Le Châtelier effect. The morphologies of the indent impressions at different strain rates on the t phase, the β phase and the substrate were also investigated using atomic force microscopy. Pile-up occurred in the τ and β phases and was found independent of the strain rate; no obvious pile-up occurred on the AZ91E substrate. The AZ91E substrate exhibited creep rates greater than those of the intermetallic phases, and all of the creep rates increased with the loading rate.

  17. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  18. High strain rate characterization of soft materials: past, present and possible futures

    NASA Astrophysics Data System (ADS)

    Siviour, Clive

    2015-06-01

    The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.

  19. Purification of Hemoglobin by Tangential Flow Filtration with Diafiltration

    PubMed Central

    Elmer, Jacob; Harris, David R.; Sun, Guoyong; Palmer, Andre F.

    2009-01-01

    A recent study by Palmer et al. (2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC-grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch-mode diafiltration step to the previously mentioned TFF Hb purification process. bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) & 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS-PAGE, and LC-MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three-stage TFF process is sufficient to produce HPLC-grade bHb. PMID:19621471

  20. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  1. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE PAGES

    Peterson, B. J.; Sano, R.; Reinke, M. L.; ...

    2016-08-03

    The InfraRed imaging Video Bolometer measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 μm Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm 2 for a time resolutionmore » of 33 (20) ms. Synthetic images derived from SOLPS data using the IRVB geometry show peak signal levels ranging from ~0.8 - ~80 (~0.36 - ~26) mW/cm 2.« less

  2. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  3. Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis.

    PubMed

    Tinh, N T N; Linh, N D; Wood, T K; Dierckens, K; Sorgeloos, P; Bossier, P

    2007-07-01

    To evaluate the effect of Vibrio harveyi strains on the growth rate of the gnotobiotically cultured rotifer Brachionus plicatilis, and to establish whether quorum sensing is involved in the observed phenomena. Gnotobiotic B. plicatilis sensu strictu, obtained by hatching glutaraldehyde-treated amictic eggs, were used as test organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants derived from the V. harveyi BB120 strain. Brominated furanone [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone] as a quorum sensing inhibitor was tested in Brachionus challenge tests. Some V. harveyi strains, such as strain BB120, had a significantly negative effect on the Brachionus growth rate. In the challenge test with MM77, an isogenic strain of BB120 in which the two autoinducers (HAI-1 and AI-2) are both inactivated, no negative effect was observed. The effect of single mutants was the same as that observed in the BB120 strain. This indicates that both systems are responsible for the growth-retarding (GR) effect of the BB120 strain towards Brachionus. Moreover, the addition of an exogenous source of HAI-1 or AI-2 could restore the GR effect in the HAI-1 and AI-2 nonproducing mutant MM77. The addition of brominated furanone at a concentration of 2.5 mg l(-1) could neutralize the GR effect of some strains such as BB120 and VH-014. Two quorum sensing systems in V. harveyi strain BB120 (namely HAI-1 and AI-2-mediated) are necessary for its GR effect on B. plicatilis. With some other V. harveyi strains, however, growth inhibition towards Brachionus does not seem to be related to quorum sensing. Interference with the quorum sensing system might help to counteract the GR effect of some V. harveyi strains on Brachionus. However, further studies are needed to demonstrate the positive effect of halogenated furanone in nongnotobiotic Brachionus cultures and eventually, in other segments of the aquaculture industry.

  4. Orogen-scale along-strike continuity in quartz recrystallization microstructures adjacent to the Main Central Thrust: implications for deformation temperatures, strain rates and flow stresses

    NASA Astrophysics Data System (ADS)

    Law, Richard

    2015-04-01

    Traced for ~ 1500 km along the foreland edge of the Himalaya from NW India to Bhutan published reports indicate a remarkable along-strike continuity of quartz recrystallization microstructures in the footwall and hanging wall to the Main Central Thrust (MCT). Recrystallization in Lesser Himalayan Series (LHS) rocks in the footwall to the MCT is dominated by grain boundary bulging (BLG) microstructures, while recrystallization in Greater Himalayan Series (GHS) rocks in the hanging wall is dominated by grain boundary migration microstructures that traced structurally upwards transition in to the anatectic core of the GHS. In foreland-positioned high-strain rocks adjacent to the MCT recrystallization is dominated by subgrain rotation (SGR) with transitional BLG-SGR and SGR-GBM microstructures being recorded at structural distances of up to a few hundred meters below and above the MCT, respectively. Correlation with available information on temperatures of metamorphism indicated by mineral phase equilibria and RSCM data suggests that recrystallization in the structural zones dominated by BLG, SGR and GBM occurred at temperatures of ~ 350-450, 450-550 and 550- > 650 °C, respectively. It should be kept in mind, however, that these temperatures are likely to be 'close-to-peak' temperatures of metamorphism, whereas penetrative shearing and recrystallization may have continued during cooling. The dominance of SGR along the more foreland-positioned exposures of the MCT intuitively suggests that shearing occurred under a relatively restricted range of deformation temperatures and strain rates. Plotting the 'close-to-peak' 450-500 °C temperatures of metamorphism indicated for SGR-dominated rocks located at up to a few hundred meters below/above the MCT on the quartz recrystallization map developed by Stipp et al. (2002) indicates 'ball-park' strain rates of ~ 10-13 to 10-10 sec-1. However, only strain rates slower than 10-12 sec-1 on the MCT are likely to be compatible with

  5. Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis

    2015-09-01

    The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.

  6. Human Lumbar Spine Creep during Cyclic and Static Flexion: Creep Rate, Biomechanics, and Facet Joint Capsule Strain

    PubMed Central

    Little, Jesse S.; Khalsa, Partap S.

    2005-01-01

    There is a high incidence of low back pain (LBP) associated with occupations requiring sustained and/or repetitive lumbar flexion (SLF and RLF, respectively), which cause creep of the viscoelastic tissues. The purpose of this study was to determine the effect of creep on lumbar biomechanics and facet joint capsule (FJC) strain. Specimens were flexed for 10 cycles, to a maximum 10 Nm moment at L5-S1, before, immediately after, and 20 min after a 20-min sustained flexion at the same moment magnitude. The creep rates of SLF and RLF were also measured during each phase and compared to the creep rate predicted by the moment relaxation rate function of the lumbar spine. Both SLF and RLF resulted in significantly increased intervertebral motion, as well as significantly increased FJC strains at the L3-4 to L5-S1 joint levels. These parameters remained increased after the 20-min recovery. Creep during SLF occurred significantly faster than creep during RLF. The moment relaxation rate function was able to accurately predict the creep rate of the lumbar spine at the single moment tested. The data suggest that SLF and RLF result in immediate and residual laxity of the joint and stretch of the FJC, which could increase the potential for LBP. PMID:15868730

  7. The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon Flat Observatory, California

    USGS Publications Warehouse

    Gomberg, Joan S.; Agnew, Duncan Carr

    1996-01-01

    The dynamic strains associated with seismic waves may play a significant role in earthquake triggering, hydrological and magmatic changes, earthquake damage, and ground failure. We determine how accurately dynamic strains may be estimated from seismometer data and elastic-wave theory by comparing such estimated strains with strains measured on a three-component long-base strainmeter system at Pin??on Flat, California. We quantify the uncertainties and errors through cross-spectral analysis of data from three regional earthquakes (the M0 = 4 ?? 1017 N-m St. George, Utah; M0 = 4 ?? 1017 N-m Little Skull Mountain, Nevada; and M0 = 1 ?? 1019 N-m Northridge, California, events at distances of 470, 345, and 206 km, respectively). Our analysis indicates that in most cases the phase of the estimated strain matches that of the observed strain quite well (to within the uncertainties, which are about ?? 0.1 to ?? 0.2 cycles). However, the amplitudes are often systematically off, at levels exceeding the uncertainties (about 20%); in one case, the predicted strain amplitudes are nearly twice those observed. We also observe significant ?????? strains (?? = tangential direction), which should be zero theoretically; in the worst case, the rms ?????? strain exceeds the other nonzero components. These nonzero ?????? strains cannot be caused by deviations of the surface-wave propagation paths from the expected azimuth or by departures from the plane-wave approximation. We believe that distortion of the strain field by topography or material heterogeneities give rise to these complexities.

  8. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  9. Curvature and tangential deflection of discrete arcs: a theory based on the commutator of scatter matrix pairs and its application to vertex detection in planar shape data.

    PubMed

    Anderson, I M; Bezdek, J C

    1984-01-01

    This paper introduces a new theory for the tangential deflection and curvature of plane discrete curves. Our theory applies to discrete data in either rectangular boundary coordinate or chain coded formats: its rationale is drawn from the statistical and geometric properties associated with the eigenvalue-eigenvector structure of sample covariance matrices. Specifically, we prove that the nonzero entry of the commutator of a piar of scatter matrices constructed from discrete arcs is related to the angle between their eigenspaces. And further, we show that this entry is-in certain limiting cases-also proportional to the analytical curvature of the plane curve from which the discrete data are drawn. These results lend a sound theoretical basis to the notions of discrete curvature and tangential deflection; and moreover, they provide a means for computationally efficient implementation of algorithms which use these ideas in various image processing contexts. As a concrete example, we develop the commutator vertex detection (CVD) algorithm, which identifies the location of vertices in shape data based on excessive cummulative tangential deflection; and we compare its performance to several well established corner detectors that utilize the alternative strategy of finding (approximate) curvature extrema.

  10. Strain Rate Dependent Deformation and Strength Modeling of a Polymer Matrix Composite Utilizing a Micromechanics Approach. Degree awarded by Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1999-01-01

    Potential gas turbine applications will expose polymer matrix composites to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under extreme conditions. Specifically, analytical methods designed for these applications must have the capability of properly capturing the strain rate sensitivities and nonlinearities that are present in the material response. The Ramaswamy-Stouffer constitutive equations, originally developed to analyze the viscoplastic deformation of metals, have been modified to simulate the nonlinear deformation response of ductile, crystalline polymers. The constitutive model is characterized and correlated for two representative ductile polymers. Fiberite 977-2 and PEEK, and the computed results correlate well with experimental values. The polymer constitutive equations are implemented in a mechanics of materials based composite micromechanics model to predict the nonlinear, rate dependent deformation response of a composite ply. Uniform stress and uniform strain assumptions are applied to compute the effective stresses of a composite unit cell from the applied strains. The micromechanics equations are successfully verified for two polymer matrix composites. IM7/977-2 and AS4/PEEK. The ultimate strength of a composite ply is predicted with the Hashin failure criteria that were implemented in the composite micromechanics model. The failure stresses of the two composite material systems are accurately predicted for a variety of fiber orientations and strain rates. The composite deformation model is implemented in LS-DYNA, a commercially available transient dynamic explicit finite element code. The matrix constitutive equations are converted into an incremental form, and the model is implemented into LS-DYNA through the use of a user defined material subroutine. The deformation response of a bulk polymer and a polymer matrix composite are predicted by finite element analyses. The results

  11. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  12. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall andmore » not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.« less

  13. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K.; SOKENDAI

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a timemore » resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.« less

  14. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    PubMed Central

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  15. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    PubMed

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.

    PubMed

    Hwang, Seonhong; Lin, Yen-Sheng; Hogaboom, Nathan S; Wang, Lin-Hwa; Koontz, Alicia M

    2017-08-28

    Wheelchair propulsion is a major cause of upper limb pain and injuries for manual wheelchair users with spinal cord injuries (SCIs). Few studies have investigated wheelchair turning biomechanics on natural ground surfaces. The purpose of this study was to investigate the relationship between tangential push force and linear velocity of the wheelchair during the turning portions of propulsion. Using an instrumented handrim, velocity and push force data were recorded for 25 subjects while they propel their own wheelchairs on a concrete floor along a figure-eight-shaped course at a maximum velocity. The braking force (1.03 N) of the inside wheel while turning was the largest of all other push forces (p<0.05). Larger changes in squared velocity while turning were significantly correlated with higher propulsive and braking forces used at the pre-turning, turning, and post-turning phases (p<0.05). Subjects with less change of velocity while turning needed less braking force to maneuver themselves successfully and safely around the turns. Considering the magnitude and direction of tangential force applied to the wheel, it seems that there are higher risks of injury and instability for upper limb joints when braking the inside wheel to turn. The results provide insight into wheelchair setup and mobility skills training for wheelchair users.

  17. Effects that different types of sports have on the hearts of children and adolescents and the value of two-dimensional strain-strain-rate echocardiography.

    PubMed

    Binnetoğlu, Fatih Köksal; Babaoğlu, Kadir; Altun, Gürkan; Kayabey, Özlem

    2014-01-01

    Whether the hypertrophy found in the hearts of athletes is physiologic or a risk factor for the progression of pathologic hypertrophy remains controversial. The diastolic and systolic functions of athletes with left ventricular (LV) hypertrophy usually are normal when measured by conventional methods. More precise assessment of global and regional myocardial function may be possible using a newly developed two-dimensional (2D) strain echocardiographic method. This study evaluated the effects that different types of sports have on the hearts of children and adolescents and compared the results of 2D strain and strain-rate echocardiographic techniques with conventional methods. Athletes from clubs for five different sports (basketball, swimming, football, wrestling, and tennis) who had practiced regularly at least 3 h per week during at least the previous 2 years were included in the study. The control group consisted of sedentary children and adolescents with no known cardiac or systemic diseases (n = 25). The athletes were grouped according to the type of exercise: dynamic (football, tennis), static (wrestling), or static and dynamic (basketball, swimming). Shortening fraction and ejection fraction values were within normal limits for the athletes in all the sports disciplines. Across all 140 athletes, LV geometry was normal in 58 athletes (41.4 %), whereas 22 athletes (15.7 %) had concentric remodeling, 20 (14.3 %) had concentric hypertrophy, and 40 (28.6 %) had eccentric hypertrophy. Global LV longitudinal strain values obtained from the average of apical four-, two-, and three-chamber global strain values were significantly lower for the basketball players than for all the other groups (p < 0.001).

  18. Interatrial septum pacing decreases atrial dyssynchrony on strain rate imaging compared with right atrial appendage pacing.

    PubMed

    Yasuoka, Yoshinori; Abe, Haruhiko; Umekawa, Seiko; Katsuki, Keiko; Tanaka, Norio; Araki, Ryo; Imanaka, Takahiro; Matsutera, Ryo; Morisawa, Daisuke; Kitada, Hirokazu; Hattori, Susumu; Noda, Yoshiki; Adachi, Hidenori; Sasaki, Tatsuya; Miyatake, Kunio

    2011-03-01

    Interatrial septum pacing (IAS-P) decreases atrial conduction delay compared with right atrial appendage pacing (RAA-P). We evaluate the atrial contraction with strain rate of tissue Doppler imaging (TDI) during sinus activation or with IAS-P or RAA-P. Fifty-two patients with permanent pacemaker for sinus node disease were enrolled in the study. Twenty-three subjects were with IAS-P and 29 with RAA-P. The time from end-diastole to peak end-diastolic strain rate was measured and corrected with RR interval on electrocardiogram. It was defined as the time from end-diastole to peak end-diastolic strain rate (TSRc), and the balance between maximum and minimum TSRc at three sites (ΔTSRc) was compared during sinus activation and with pacing rhythm in each group. There were no significant differences observed in general characteristics and standard echocardiographic parameters except the duration of pacing P wave between the two groups. The duration was significantly shorter in the IAS-P group compared with the RAA-P group (95 ± 34 vs 138 ± 41; P = 0.001). TSRc was significantly different between sinus activation and pacing rhythm (36.3 ± 35.7 vs 61.6 ± 36.3; P = 0.003) in the RAA-P group, whereas no significant differences were observed in the IAS-P group (25.4 ± 12.1 vs 27.7 ± 14.7; NS). During the follow-up (mean 2.4 ± 0.7 years), the incidence of paroxysmal atrial fibrillation (AF) conversion to permanent AF was not significantly different between the two groups. IAS-P decreased the contraction delay on atrial TDI compared to RAA-P; however, it did not contribute to the reduction of AF incidence in the present study. ©2010, The Authors. Journal compilation ©2010 Wiley Periodicals, Inc.

  19. Demonstration test of burner liner strain measurements using resistance strain gages

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  20. Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes

    NASA Astrophysics Data System (ADS)

    Jeng, Yeau-Ren; Tsai, Ping-Chi; Fang, Te-Hua

    2005-02-01

    This paper adopts the Tersoff-Brenner many-body potential function to perform molecular dynamics simulations of the tensile and fatigue behaviors of hypothetical silicon-based tubular nanostructures at various temperatures, strain rates, and vacancy percentages. The tensile test results indicate that with a predicted Young’s modulus of approximately 60GPa , silicon nanotubes (SiNTs) are significantly less stiff than conventional carbon nanotubes. It is observed that the presence of hydrogen has a significant influence on the tensile strength of SiNTs . Additionally, the present results indicate that the tensile strength clearly decreases with increasing temperature and with decreasing strain rate. Moreover, it is shown that the majority of the mechanical properties considered in the present study decrease with an increasing vacancy percentage. Regarding the fatigue tests, this study uses a standard theoretical model to derive curves of amplitude stress versus number of cycles for the current nanotubes. The results demonstrate that the fatigue limit of SiNTs increases with a decreasing vacancy percentage and with increasing temperature.

  1. Influence of strain rate on the structure/property behavior of the alpha-2 alloy Ti-24.5Al-10.5Nb-1.5Mo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, G.T. III; Hong, Sun Ig; Marquardt, B.J.

    Preliminary dislocation g{center_dot}b analysis revealed that following room temperature deformation at low strain rate the majority of the dislocations are a-dislocations lying on basal planes, 2nd order pyramidal (a/2 + c) slip on [1211], and 1st order pyramidal a-slip on [1011]. Increasing the rate of deformation at room temperature to 6000 s{sup {minus}1} is seen to result in increased a-slip on prism planes and a decreased amount of basal slip. At high-strain-rates and elevated temperatures the substructure was seen to be generally similar to that observed following high-rate deformation at room temperature except for an increased amount of basal slipmore » and a somewhat higher incidence of 2nd order pyramidal slip. The defect generation and the rate sensitivity of Ti-24.5Al-10.5Nb-1.5Mo are discussed as a function of strain rate and temperature and contrasted to that observed in conventional titanium alloys and TiAl.« less

  2. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  3. Automatic Strain-Rate Controller,

    DTIC Science & Technology

    1976-12-01

    D—AO37 9~e2 ROME AIR DEVELOPMENT CENTER GRIFFISS AFB N 1’ FIG 13/ 6AUTOMATIC STRAIN—RATE CONTROLLER, (U) DEC 76 R L HUNTSINGER. J A ADAMSK I...goes to zero. CONTROLLER, Leeds and Northrup Series 80 CAT with proportional band , rate , reset, and approach controls . Input from deviation output...8) through ( 16) . (8) Move the set-point slowl y up to 3 or 4. (9) If the recorder po inter hunts , adjust the func t ion controls on tine Ser

  4. Texture studies of hot compressed near alpha titanium alloy (IMI 834) at 1000°C with different strain rates

    NASA Astrophysics Data System (ADS)

    Kodli, B. K.; Saxena, K. K.; Dey, S. R.; Pancholi, V.; Bhattacharjee, A.

    2015-04-01

    IMI 834 Titanium alloy is a near alpha (hcp) titanium alloy used for high temperature applications with the service temperature up to 600°C. Generally, this alloy is widely used in gas turbine engine applications such as low pressure compressor discs. For these applications, good fatigue and creep properties are required, which have been noticed better in a bimodal microstructure, containing 15-20% volume fraction of primary alpha grains (αp) and remaining bcc beta (β) grains transformed secondary alpha laths (αs). The bimodal microstructure is achieved during processing of IMI 834 in the high temperature α+β region. The major issue of bimodal IMI 834 during utilization is its poor dwell fatigue life time caused by textured macrozones. Textured macrozone is the spatial accumulation of similar oriented grains in the microstructure generated during hot processing in the high temperature α+β region. Textured macrozone can be mitigated by controlling the hot deformation with certain strain rate under stable plastic conditions having β grains undergoing dynamic recrystallization. Hence, a comprehensive study is required to understand the deformation behavior of α and β grains at different strain rates in that region. Hot compression tests up to 5°% strain of the samples are performed with five different strain rates i.e. 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1 at 1000°C using Gleeble 3800. The resultant bimodal microstructure and the texture studies of primary alpha grains (αp) and secondary alpha laths (αs) are carried out using scanning electron microscopy (SEM)-electron back scattered diffraction (EBSD) method.

  5. Step width alters iliotibial band strain during running.

    PubMed

    Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R

    2012-11-01

    This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p < 0.001, p = 0.040). ITB strain was significantly (p < 0.001) greater in the narrow condition than the preferred and wide conditions and it was greater in the preferred condition than the wide condition. ITB strain rate was significantly greater in the narrow condition than the wide condition (p = 0.020). Polynomial contrasts revealed a linear increase in both ITB strain and strain rate with decreasing step width. We conclude that relatively small decreases in step width can substantially increase ITB strain as well as strain rates. Increasing step width during running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.

  6. Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study

    NASA Astrophysics Data System (ADS)

    Timoshevskiy, M. V.; Zapryagaev, I. I.; Pervunin, K. S.; Markovich, D. M.

    2016-10-01

    In the paper, the possibility of active control of a cavitating flow over a 2D hydrofoil that replicates a scaled-down model of high-pressure hydroturbine guide vane (GV) was tested. The flow manipulation was implemented by a continuous tangential liquid injection at different flow rates through a spanwise slot in the foil surface. In experiments, the hydrofoil was placed in the test channel at the attack angle of 9°. Different cavitation conditions were reached by varying the cavitation number and injection velocity. In order to study time dynamics and spatial patterns of partial cavities, high-speed imaging was employed. A PIV method was used to measure the mean and fluctuating velocity fields over the hydrofoil. Hydroacoustic measurements were carried out by means of a pressure transducer to identify spectral characteristics of the cavitating flow. It was found that the present control technique is able to modify the partial cavity pattern (or even totally suppress cavitation) in case of stable sheet cavitation and change the amplitude of pressure pulsations at unsteady regimes. The injection technique makes it also possible to significantly influence the spatial distributions of the mean velocity and its turbulent fluctuations over the GV section for non-cavitating flow and sheet cavitation.

  7. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    NASA Astrophysics Data System (ADS)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  8. Understanding High Rate Behavior Through Low Rate Analog

    DTIC Science & Technology

    2014-04-28

    uni- axial compression over all rates tested at 20 °C; (b) True yield stress as a function of strain rate...of temperature. (a) (b) Figure 11. Representative behaviour of PPVC-2. (a) True stress-true strain response in uni- axial compression over all...pages 33 of 78 (a) (b) Figure 15. Representative behaviour of PPVC-6. (a) True stress-true strain response in uni- axial compression

  9. Scramjet fuel injector design parameters and considerations: Development of a two-dimensional tangential fuel injector with constant pressure at the flame

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.

    1972-01-01

    The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.

  10. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, S., E-mail: nishimura.shin@lhd.nifs.ac.jp; Nakamura, Y.; Nishioka, K.

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiringmore » flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.« less

  11. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Information and communication technology demands at work: the association with job strain, effort-reward imbalance and self-rated health in different socio-economic strata.

    PubMed

    Stadin, Magdalena; Nordin, Maria; Broström, Anders; Magnusson Hanson, Linda L; Westerlund, Hugo; Fransson, Eleonor I

    2016-10-01

    The use of information and communication technology (ICT) is common in modern working life. ICT demands may give rise to experience of work-related stress. Knowledge about ICT demands in relation to other types of work-related stress and to self-rated health is limited. Consequently, the aim of this study was to examine the association between ICT demands and two types of work-related stress [job strain and effort-reward imbalance (ERI)] and to evaluate the association between these work-related stress measures and self-rated health, in general and in different SES strata. This study is based on cross-sectional data from the Swedish Longitudinal Occupational Survey of Health collected in 2014, from 14,873 gainfully employed people. ICT demands, job strain, ERI and self-rated health were analysed as the main measures. Sex, age, SES, lifestyle factors and BMI were used as covariates. ICT demands correlated significantly with the dimensions of the job strain and ERI models, especially with the demands (r = 0.42; p < 0.01) and effort (r = 0.51; p < 0.01) dimensions. ICT demands were associated with suboptimal self-rated health, also after adjustment for age, sex, SES, lifestyle and BMI (OR 1.49 [95 % CI 1.36-1.63]), but job strain (OR 1.93 [95 % CI 1.74-2.14) and ERI (OR 2.15 [95 % CI 1.95-2.35]) showed somewhat stronger associations with suboptimal self-rated health. ICT demands are common among people with intermediate and high SES and associated with job strain, ERI and suboptimal self-rated health. ICT demands should thus be acknowledged as a potential stressor of work-related stress in modern working life.

  13. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California

    USGS Publications Warehouse

    Zeng, Yuehua; Shen, Zheng-Kang

    2016-01-01

    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019

  14. Strain energy release rate analysis of delamination in a tapered laminate subjected to tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1990-01-01

    A tapered composite laminate subjected to tension load was analyzed using the finite-element method. The glass/epoxy laminate has a (+ or - 45)sub 3 group of plies dropped in three distinct steps, each 20 ply-thicknesses apart, thus forming a taper angle of 5.71 degrees. Steep gradients of interlaminar normal and shear stress on a potential delamination interface suggest the existence of stress singularities at the points of material and geometric discontinuities created by the internal plydrops. The delamination was assumed to initiate at the thin end of the taper on a -45/+45 interface and the delamination growth was simulated in both directions, i.e., along the taper and into the thin region. The strain-energy-release rate for a delamination growing into the thin laminate consisted predominantly of mode I (opening) component. For a delamination growing along the tapered region, the strain-energy-release rate was initially all mode I, but the proportion of mode I decreased with increase in delamination size until eventually total G was all mode II. The total G for both delamination tips increased with increase in delamination size, indicating that a delamination initiating at the end of the taper will grow unstably along the taper and into the thin laminate simultaneously.

  15. Sessile multidroplets and salt droplets under high tangential electric fields

    PubMed Central

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  16. 1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.

    1989-01-01

    An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.

  17. In vivo human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: 'longitudinal' strain rate markedly underestimates apical contribution.

    PubMed

    Stöhr, Eric J; Stembridge, Mike; Esformes, Joseph I

    2015-04-20

    What is the central question of this study? Regulation of cardiac function is typically achieved by changes in heart rate (HR) and cardiac shortening velocity (strain rate; SR), but their interdependence in vivo remains poorly understood. What is the main finding and its importance? Using resistance exercise to increase heart rate and arterial resistance physiologically in humans and measuring regional cardiac SR (at the base and apex), we found that HR and SR were not strictly coupled because SR at the base and apex responded differently, despite the same HR. Importantly, our data show that the region-averaged 'longitudinal' SR, which is currently popular in the clinical setting, markedly underestimates the contribution of the apex. The fundamental importance of cardiac shortening and lengthening velocity (i.e. strain rate; SR) has been demonstrated in vitro. Currently, the interdependence between in vivo SR and HR is poorly understood because studies have typically assessed region-averaged 'longitudinal' strain rate, which is likely to underestimate the apical contribution, and have used non-physiological interventions that may also have been influenced by multicollinearity caused by concomitant reductions in arterial resistance. Resistance exercise acutely raises HR, blood pressure and arterial resistance and transiently disassociates these cardiovascular factors following exercise. Therefore, we measured SR, HR, blood pressure and arterial resistance in nine healthy men (aged 20 ± 1 years) immediately before, during and after double-leg-press exercise at 30 and 60% of maximal strength. Resistance exercise caused a disproportionate SR response at the left ventricular base and apex (interaction effect, P < 0.05). Consequently, associations between HR and regional peak SR were inconsistent and mostly very weak (r(2)  = 0.0004-0.24). Likewise, the areas under the curve for systolic and diastolic SR and their relationship with systolic and diastolic duration

  18. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  19. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    PubMed

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  20. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.