Sample records for tangential velocity components

  1. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  2. Two-dimensional Cascade Investigation of the Maximum Exit Tangential Velocity Component and Other Flow Conditions at the Exit of Several Turbine Blade Designs at Supercritical Pressure Ratios

    NASA Technical Reports Server (NTRS)

    Hauser, Cavour H; Plohr, Henry W

    1951-01-01

    The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.

  3. The tangential velocity of M31: CLUES from constrained simulations

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Hoffman, Yehuda; Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Courtois, Hélène; Tully, R. Brent

    2016-07-01

    Determining the precise value of the tangential component of the velocity of M31 is a non-trivial astrophysical issue that relies on complicated modelling. This has recently lead to conflicting estimates, obtained by several groups that used different methodologies and assumptions. This Letter addresses the issue by computing a Bayesian posterior distribution function of this quantity, in order to measure the compatibility of those estimates with Λ cold dark matter (ΛCDM). This is achieved using an ensemble of Local Group (LG) look-alikes collected from a set of constrained simulations (CSs) of the local Universe, and a standard unconstrained ΛCDM. The latter allows us to build a control sample of LG-like pairs and to single out the influence of the environment in our results. We find that neither estimate is at odds with ΛCDM; however, whereas CSs favour higher values of vtan, the reverse is true for estimates based on LG samples gathered from unconstrained simulations, overlooking the environmental element.

  4. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  5. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.

    PubMed

    Hwang, Seonhong; Lin, Yen-Sheng; Hogaboom, Nathan S; Wang, Lin-Hwa; Koontz, Alicia M

    2017-08-28

    Wheelchair propulsion is a major cause of upper limb pain and injuries for manual wheelchair users with spinal cord injuries (SCIs). Few studies have investigated wheelchair turning biomechanics on natural ground surfaces. The purpose of this study was to investigate the relationship between tangential push force and linear velocity of the wheelchair during the turning portions of propulsion. Using an instrumented handrim, velocity and push force data were recorded for 25 subjects while they propel their own wheelchairs on a concrete floor along a figure-eight-shaped course at a maximum velocity. The braking force (1.03 N) of the inside wheel while turning was the largest of all other push forces (p<0.05). Larger changes in squared velocity while turning were significantly correlated with higher propulsive and braking forces used at the pre-turning, turning, and post-turning phases (p<0.05). Subjects with less change of velocity while turning needed less braking force to maneuver themselves successfully and safely around the turns. Considering the magnitude and direction of tangential force applied to the wheel, it seems that there are higher risks of injury and instability for upper limb joints when braking the inside wheel to turn. The results provide insight into wheelchair setup and mobility skills training for wheelchair users.

  6. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This is an old issue in computational fluid dynamics (CFD). What is the so-called contravariant velocity or contravariant velocity component? In the article, we review the basics of tensor analysis and give the contravariant velocity component a rigorous explanation. For a given coordinate system, there exist two uniquely determined sets of base vector systems - one is the covariant and another is the contravariant base vector system. The two base vector systems are reciprocal. The so-called contravariant velocity component is really the contravariant component of a velocity vector for a time-independent coordinate system, or the contravariant component of a relative velocity between fluid and coordinates, for a time-dependent coordinate system. The contravariant velocity components are not physical quantities of the velocity vector. Their magnitudes, dimensions, and associated directions are controlled by their corresponding covariant base vectors. Several 2-D (two-dimensional) linear examples and 2-D mass-conservation equation are used to illustrate the details of expressing a vector with respect to the covariant and contravariant base vector systems, respectively.

  7. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field

    NASA Astrophysics Data System (ADS)

    Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan

    2016-10-01

    In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.

  8. Multi-Velocity Component LDV

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A. (Inventor)

    1996-01-01

    A laser doppler velocimeter uses frequency shifting of a laser beam to provide signal information for each velocity component. A composite electrical signal generated by a light detector is digitized and a processor produces a discrete Fourier transform based on the digitized electrical signal. The transform includes two peak frequencies corresponding to the two velocity components.

  9. Formation of Singularities at the Interface of Liquid Dielectrics in a Horizontal Electric Field in the Presence of Tangential Velocity Discontinuity

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Kochurin, E. A.

    2018-03-01

    Nonlinear dynamics of the interface of dielectric liquids under the conditions of suppression of the Kelvin-Helmholz instability by a tangential electric field has been investigated. Two broad classes of exact analytical solutions to the equations of motion describing the evolution of spatially localized and periodic interface perturbations have been found. Both classes of solutions tend to the formation of strong singularities: interface discontinuities with formally infinite amplitudes. The discontinuity sign is determined by the sign of liquid velocity jump at the interface.

  10. Kalker's algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy

    NASA Astrophysics Data System (ADS)

    Piotrowski, J.

    2010-07-01

    This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.

  11. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-moa; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.

  12. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  13. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  14. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  15. Factors influencing perceived angular velocity.

    PubMed

    Kaiser, M K; Calderone, J B

    1991-11-01

    The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  16. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  17. Cylindrical Couette flow of a rarefied gas: Effect of a boundary condition on the inverted velocity profile.

    PubMed

    Kosuge, Shingo

    2015-07-01

    The cylindrical Couette flow of a rarefied gas between a rotating inner cylinder and a stationary outer cylinder is investigated under the following two kinds of kinetic boundary conditions. One is the modified Maxwell-type boundary condition proposed by Dadzie and Méolans [J. Math. Phys. 45, 1804 (2004)] and the other is the Cercignani-Lampis condition, both of which have separate accommodation coefficients associated with the molecular velocity component normal to the boundary and with the tangential component. An asymptotic analysis of the Boltzmann equation for small Knudsen numbers and a numerical analysis of the Bhatnagar-Gross-Krook model equation for a wide range of the Knudsen number are performed to clarify the effect of each accommodation coefficient as well as of the boundary condition itself on the behavior of the gas, especially on the flow-velocity profile. As a result, the velocity-slip and temperature-jump conditions corresponding to the above kinetic boundary conditions are derived, which are necessary for the fluid-dynamic description of the problem for small Knudsen numbers. The parameter range for the onset of the velocity inversion phenomenon, which is related mainly to the decrease in the tangential momentum accommodation, is also obtained.

  18. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  19. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Gonzalez, A.; Esquivel, A.; Raga, A. C.

    We present an analysis of H{alpha} spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scatteredmore » in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.« less

  20. Can the starpatch on Xi Bootis A be explained by using tangential flows?

    NASA Technical Reports Server (NTRS)

    Toner, Clifford G.; Labonte, Barry J.

    1991-01-01

    It is demonstrated that a modification of the starpatch model of Toner and Gray (1988), using tangential flows instead of an enhanced granulation velocity dispersion within the patch, is very successful at reproducing both the observed line asymmetry and the line broadening variations observed in the G8 dwarf Xi Boo A. Areal coverage of 10 percent + or - 3 percent of the visible disk, latitude 30 deg + or - 4 deg, mean brightness 0.85 + or - 0.05 relative to the 'quiet' photosphere, mean tangential flow velocities of 8.0 + or - 1.5 km/s, and dispersions about the mean of 8/0 + or - 2.0 km/s are inferred for the patch. A feature at a latitude of about 30 deg is inferred which covers about 10 percent of the visible disk and is 10-20 percent fainter than the rest of the photosphere. It is inferred that 70-80 percent of the patch is penumbra.

  1. Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

    NASA Astrophysics Data System (ADS)

    Kido, Hiroyuki; Nakahara, Masaya; Hashimoto, Jun; Barat, Dilmurat

    In order to clarify the turbulent burning velocity of multi-component fuel mixtures, both lean and rich two-component fuel mixtures, in which methane, propane and hydrogen were used as fuels, were prepared while maintaining the laminar burning velocity approximately constant. A distinct difference in the measured turbulent burning velocity at the same turbulence intensity is observed for two-component fuel mixtures having different addition rates of fuel, even the laminar burning velocities are approximately the same. The burning velocities of lean mixtures change almost constantly as the rate of addition changes, whereas the burning velocities of the rich mixtures show no such tendency. This trend can be explained qualitatively based on the mean local burning velocity, which is estimated by taking into account the preferential diffusion effect for each fuel component. In addition, a model of turbulent burning velocity proposed for single-component fuel mixtures may be applied to two-component fuel mixtures by considering the estimated mean local burning velocity of each fuel.

  2. The combustion of different air distribution of foursquare tangential circle boiler by numerical simulation

    NASA Astrophysics Data System (ADS)

    Guo, Yue; Du, Lei; Jiang, Long; Li, Qing; Zhao, Zhenning

    2017-01-01

    In this paper, the combustion and NOx emission characteristics of a 300 MW tangential boiler are simulated, we obtain the flue gas velocity field in the hearth, component concentration distribution of temperature field and combustion products, and the speed, temperature, concentration of oxygen and NOx emissions compared with the test results in the waisting air distribution conditions, found the simulation values coincide well with the test value, to verify the rationality of the model. At the same time, the flow field in the furnace, the combustion and the influence of NOx emission characteristics are simulated by different conditions, including compared with primary zone secondary waisting air distribution, uniform air distribution and pagodas go down air distribution, the results show that, waisting air distribution is useful to reduce NOx emissions.

  3. The Solar Neighborhood. XLII. Parallax Results from the CTIOPI 0.9 m Program—Identifying New Nearby Subdwarfs Using Tangential Velocities and Locations on the H–R Diagram

    NASA Astrophysics Data System (ADS)

    Jao, Wei-Chun; Henry, Todd J.; Winters, Jennifer G.; Subasavage, John P.; Riedel, Adric R.; Silverstein, Michele L.; Ianna, Philip A.

    2017-11-01

    Parallaxes, proper motions, and optical photometry are presented for 51 systems consisting of 37 cool subdwarf and 14 additional high proper motion systems. Thirty-seven systems have parallaxes reported for the first time, 15 of which have proper motions of at least 1″ yr‑1. The sample includes 22 newly identified cool subdwarfs within 100 pc, of which three are within 25 pc, and an additional five subdwarfs from 100 to 160 pc. Two systems—LSR 1610-0040 AB and LHS 440 AB—are close binaries exhibiting clear astrometric perturbations that will ultimately provide important masses for cool subdwarfs. We use the accurate parallaxes and proper motions provided here, combined with additional data from our program and others, to determine that effectively all nearby stars with tangential velocities greater than 200 km s‑1 are subdwarfs. We compare a sample of 167 confirmed cool subdwarfs to nearby main sequence dwarfs and Pleiades members on an observational Hertzsprung–Russell diagram using M V versus (V ‑ K s ) to map trends of age and metallicity. We find that subdwarfs are clearly separated for spectral types K5–M5, indicating that the low metallicities of subdwarfs set them apart in the H–R diagram for (V ‑ K s ) = 3–6. We then apply the tangential velocity cutoff and the subdwarf region of the H–R diagram to stars with parallaxes from Gaia Data Release 1 and the MEarth Project to identify a total of 29 new nearby subdwarf candidates that fall clearly below the main sequence.

  4. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  5. Demonstrating the Direction of Angular Velocity in Circular Motion

    ERIC Educational Resources Information Center

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  6. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  7. Nonlinear interaction of a fast magnetogasdynamic shock with a tangential discontinuity

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1973-01-01

    A basic problem, which is of considerable interest in geoastrophysical applications of magnetogasdynamics, is the nonlinear interaction of a fast shock (S sub f) with a tangential discontinuity (T). The problem is treated for an arbitrary S sub f interacting with an arbitrary T under the assumption that in the frame of reference in which S sub f and T are at rest, the flow is superfast on both sides of T, and that a steady flow develops. As a result of the nonlinear analysis a flow pattern is obtained consisting of the incident discontinuities S sub f 1 and T2 and a transmitted fast shock S sub f 3, the modified tangential discontinuity T4 and a reflected fast shock S sub f 5 or fast rarefaction wave R sub f 5. The results are discussed in terms of seven significant similarity parameters. In addition special cases like changes in magnetic field direction only, changes in desnity or velocity shear only etc. are discussed.

  8. Mean velocity and decay characteristics of the guidevane and stator blade wake of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Davino, R.

    1979-01-01

    Pure tone noise, blade row vibrations, and aerodynamic losses are phenomena which are influenced by stator and IGV (inlet guide vane) blade wake production, decay, and interaction in an axial-flow compressor. The objective of this investigation is to develop a better understanding of the nature of stator and IGV blade wakes that are influenced by the presence of centrifugal forces due to flow curvature. A single sensor hot wire probe was employed to determine the three mean velocity components of stator and IGV wakes of a single stage compressor. These wake profiles indicated a varying decay rate of the tangential and axial wake velocity components and a wake profile similarity. An analysis, which predicts this trend, has been developed. The radial velocities are found to be appreciable in both IGV and the stator wakes.

  9. Drag reduction and thrust generation by tangential surface motion in flow past a cylinder

    NASA Astrophysics Data System (ADS)

    Mao, Xuerui; Pearson, Emily

    2018-03-01

    Sensitivity of drag to tangential surface motion is calculated in flow past a circular cylinder in both two- and three-dimensional conditions at Reynolds number Re ≤ 1000 . The magnitude of the sensitivity maximises in the region slightly upstream of the separation points where the contour lines of spanwise vorticity are normal to the cylinder surface. A control to reduce drag can be obtained by (negatively) scaling the sensitivity. The high correlation of sensitivities of controlled and uncontrolled flow indicates that the scaled sensitivity is a good approximation of the nonlinear optimal control. It is validated through direct numerical simulations that the linear range of the steady control is much higher than the unsteady control, which synchronises the vortex shedding and induces lock-in effects. The steady control injects angular momentum into the separating boundary layer, stabilises the flow and increases the base pressure significantly. At Re=100 , when the maximum tangential motion reaches 50% of the free-stream velocity, the vortex shedding, boundary-layer separation and recirculation bubbles are eliminated and 32% of the drag is reduced. When the maximum tangential motion reaches 2.5 times of the free-stream velocity, thrust is generated and the power savings ratio, defined as the ratio of the reduced drag power to the control input power, reaches 19.6. The mechanism of drag reduction is attributed to the change of the radial gradient of spanwise vorticity (partial r \\hat{ζ } ) and the subsequent accelerated pressure recovery from the uncontrolled separation points to the rear stagnation point.

  10. Recovering Long-wavelength Velocity Models using Spectrogram Inversion with Single- and Multi-frequency Components

    NASA Astrophysics Data System (ADS)

    Ha, J.; Chung, W.; Shin, S.

    2015-12-01

    Many waveform inversion algorithms have been proposed in order to construct subsurface velocity structures from seismic data sets. These algorithms have suffered from computational burden, local minima problems, and the lack of low-frequency components. Computational efficiency can be improved by the application of back-propagation techniques and advances in computing hardware. In addition, waveform inversion algorithms, for obtaining long-wavelength velocity models, could avoid both the local minima problem and the effect of the lack of low-frequency components in seismic data. In this study, we proposed spectrogram inversion as a technique for recovering long-wavelength velocity models. In spectrogram inversion, decomposed frequency components from spectrograms of traces, in the observed and calculated data, are utilized to generate traces with reproduced low-frequency components. Moreover, since each decomposed component can reveal the different characteristics of a subsurface structure, several frequency components were utilized to analyze the velocity features in the subsurface. We performed the spectrogram inversion using a modified SEG/SEGE salt A-A' line. Numerical results demonstrate that spectrogram inversion could also recover the long-wavelength velocity features. However, inversion results varied according to the frequency components utilized. Based on the results of inversion using a decomposed single-frequency component, we noticed that robust inversion results are obtained when a dominant frequency component of the spectrogram was utilized. In addition, detailed information on recovered long-wavelength velocity models was obtained using a multi-frequency component combined with single-frequency components. Numerical examples indicate that various detailed analyses of long-wavelength velocity models can be carried out utilizing several frequency components.

  11. Slipping and tangential discontinuity instabilities in quasi-one-dimensional planar and cylindrical flows

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2017-09-01

    An analytical linear theory of instability of an electron beam with a nonuniform directional velocity (slipping instability) against perturbations with wavelengths exceeding the transverse beam size is offered. An analogy with hydrodynamic instabilities of tangential discontinuity of an incompressible liquid flow is drawn. The instability growth rates are calculated for particular cases and in a general form in planar and cylindrical geometries. The stabilizing effect of the external magnetic field is analyzed.

  12. The fall of the Northern Unicorn: tangential motions in the Galactic anticentre with SDSS and Gaia

    NASA Astrophysics Data System (ADS)

    de Boer, T. J. L.; Belokurov, V.; Koposov, S. E.

    2018-01-01

    We present the first detailed study of the behaviour of the stellar proper motion across the entire Galactic anticentre area visible in the Sloan Digital Sky Survey (SDSS) data. We use recalibrated SDSS astrometry in combination with positions from Gaia DR1 to provide tangential motion measurements with a systematic uncertainty <5 km s-1 for the Main Sequence stars at the distance of the Monoceros Ring. We demonstrate that Monoceros members rotate around the Galaxy with azimuthal speeds of ∼230 km s-1, only slightly lower than that of the Sun. Additionally, both vertical and azimuthal components of their motion are shown to vary considerably but gradually as a function of Galactic longitude and latitude. The stellar overdensity in the anti-centre region can be split into two components, the narrow, stream-like ACS and the smooth Ring. According to our analysis, these two structures show very similar but clearly distinct kinematic trends, which can be summarized as follows: the amplitude of the velocity variation in vϕ and vz in the ACS is higher compared to the Ring, whose velocity gradients appear to be flatter. Currently, no model available can explain the entirety of the data in this area of the sky. However, the new accurate kinematic map introduced here should provide strong constraints on the genesis of the Monoceros Ring and the associated substructure.

  13. A statistical study of magnetopause structures: Tangential versus rotational discontinuities

    NASA Astrophysics Data System (ADS)

    Chou, Y.-C.; Hau, L.-N.

    2012-08-01

    A statistical study of the structure of Earth's magnetopause is carried out by analyzing two-year AMPTE/IRM plasma and magnetic field data. The analyses are based on the minimum variance analysis (MVA), the deHoffmann-Teller (HT) frame analysis and the Walén relation. A total of 328 magnetopause crossings are identified and error estimates associated with MVA and HT frame analyses are performed for each case. In 142 out of 328 events both MVA and HT frame analyses yield high quality results which are classified as either tangential-discontinuity (TD) or rotational-discontinuity (RD) structures based only on the Walén relation: Events withSWA ≤ 0.4 (SWA ≥ 0.5) are classified as TD (RD), and rest (with 0.4 < SWA < 0.5) is classified as "uncertain," where SWA refers to the Walén slope. With this criterion, 84% of 142 events are TDs, 12% are RDs, and 4% are uncertain events. There are a large portion of TD events which exhibit a finite normal magnetic field component Bnbut have insignificant flow as compared to the Alfvén velocity in the HT frame. Two-dimensional Grad-Shafranov reconstruction of forty selected TD and RD events show that single or multiple X-line accompanied with magnetic islands are common feature of magnetopause current. A survey plot of the HT velocity associated with TD structures projected onto the magnetopause shows that the flow is diverted at the subsolar point and accelerated toward the dawn and dusk flanks.

  14. Conserved pattern of tangential neuronal migration during forebrain development.

    PubMed

    Métin, Christine; Alvarez, Chantal; Moudoux, David; Vitalis, Tania; Pieau, Claude; Molnár, Zoltán

    2007-08-01

    Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.

  15. Experimental validation of alternate integral-formulation method for predicting acoustic radiation based on particle velocity measurements.

    PubMed

    Ni, Zhi; Wu, Sean F

    2010-09-01

    This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.

  16. Computational analysis of forebody tangential slot blowing

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Agosta-Greenman, Roxana M.; Rizk, Yehia M.; Schiff, Lewis B.; Cummings, Russell M.

    1994-01-01

    An overview of the computational effort to analyze forebody tangential slot blowing is presented. Tangential slot blowing generates side force and yawing moment which may be used to control an aircraft flying at high-angle-of-attack. Two different geometries are used in the analysis: (1) The High Alpha Research Vehicle; and (2) a generic chined forebody. Computations using the isolated F/A-18 forebody are obtained at full-scale wind tunnel test conditions for direct comparison with available experimental data. The effects of over- and under-blowing on force and moment production are analyzed. Time-accurate solutions using the isolated forebody are obtained to study the force onset timelag of tangential slot blowing. Computations using the generic chined forebody are obtained at experimental wind tunnel conditions, and the results compared with available experimental data. This computational analysis compliments the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flow field about simple and complex geometries.

  17. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  18. 3-D Waveform Modeling of the 11 September 2001 World Trade Center Collapse Events in New York City

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Rhie, J.; Kim, W.

    2010-12-01

    The seismic signals from collapse of the twin towers of World Trade Center (WTC), NYC were well recorded by the seismographic stations in the northeastern United States. The building collapse can be represented by a vertical single force which does not generate tangential component seismic signals during the source process. The waveforms recorded by the Basking Ridge, NJ (BRNJ) station located due west of the WTC site show that the amplitude on tangential component is negligible and indicates that a vertical single force assumption is valid and the velocity structure is more or less homogeneous along the propagation path. However, 3-component seismograms recorded at Palisades, NY (PAL), which is located 33.8 km due north of the WTC site along the Hudson River (azimuth = 15.2°), show abnormal features. The amplitude on tangential component is larger than on vertical- or on radial-component. This observation may be attributable to the complex energy conversion between Rayleigh and Love waves due to the strong low velocity anomaly associated with unconsolidated sediments under the Hudson River. To test the effects of the low velocity anomaly on the enhanced amplitude in tangential component, we developed a 3D velocity model by considering local geology such as unconsolidated sediment layer, Palisades sill, Triassic sandstone, and crystalline basement and simulated waveforms at PAL. The preliminary synthetic results show that 3D velocity structure can significantly enhance the amplitude in tangential component but it is not as large as the observation. Although a more precise 3D model is required to better explain the observations, our results confirm that the low velocity layer under the Hudson River can enhance the amplitude in tangential component at PAL. This result suggests that a good understanding of the amplitude enhancements for specific event-site pairs may be important to evaluate seismic hazard of metropolitan New York City.

  19. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    NASA Astrophysics Data System (ADS)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  20. Bi-tangential hybrid IMRT for sparing the shoulder in whole breast irradiation.

    PubMed

    Farace, P; Deidda, M A; Iamundo de Cumis, I; Iamundo de Curtis, I; Deiana, E; Farigu, R; Lay, G; Porru, S

    2013-11-01

    A bi-tangential technique is proposed to reduce undesired doses to the shoulder produced by standard tangential irradiation. A total of 6 patients affected by shoulder pain and reduced functional capacity after whole-breast irradiation were retrospectively analysed. The standard tangential plan used for treatment was compared with (1) a single bi-tangential plan where, to spare the shoulder, the lateral open tangent was split into two half-beams at isocentre, with the superior portion rotated by 10-20° medially with respect to the standard lateral beam; (2) a double bi-tangential plan, where both the tangential open beams were split. The planning target volume (PTV) coverage and the dose to the portion of muscles and axilla included in the standard tangential beams were compared. PTV95 % of standard plan (91.9 ± 3.8) was not significantly different from single bi-tangential plan (91.8 ± 3.4); a small but significant (p < 0.01) decrease was observed with the double bi-tangential plan (90.1 ± 3.7). A marked dose reduction to the muscle was produced by the single bi-tangential plan around 30-40 Gy. The application of the double bi-tangential technique further reduced the volume receiving around 20 Gy, but did not markedly affect the higher doses. The dose to the axilla was reduced both in the single and the double bi-tangential plans. The single bi-tangential technique would have been able to reduce the dose to shoulder and axilla, without compromising target coverage. This simple technique is valuable for irradiation after axillary lymph node dissection or in patients without dissection due to negative or low-volume sentinel lymph node disease.

  1. Tangential Field Changes in the Great Flare of 1990 May 24.

    PubMed

    Cameron; Sammis

    1999-11-01

    We examine the great (solar) flare of 1990 May 24 that occurred in active region NOAA 6063. The Big Bear Solar Observatory videomagnetograph Stokes V and I images show a change in the longitudinal field before and after the flare. Since the flare occurred near the limb, the change reflects a rearrangement of the tangential components of the magnetic field. These observations lack the 180 degrees ambiguity that characterizes vector magnetograms.

  2. Properties of Tangential and Cyclic Polygons: An Application of Circulant Matrices

    ERIC Educational Resources Information Center

    Leung, Allen; Lopez-Real, Francis

    2003-01-01

    In this paper, the properties of tangential and cyclic polygons proposed by Lopez-Real are proved rigorously using the theory of circulant matrices. In particular, the concepts of slippable tangential polygons and conformable cyclic polygons are defined. It is shown that an n-sided tangential (or cyclic) polygon P[subscript n] with n even is…

  3. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  4. Simulation of a tangential soft x-ray imaging system.

    PubMed

    Battaglia, D J; Shafer, M W; Unterberg, E A; Bell, R E; Hillis, D L; LeBlanc, B P; Maingi, R; Sabbagh, S; Stratton, B C

    2010-10-01

    Tangentially viewing soft x-ray (SXR) cameras are capable of detecting nonaxisymmetric plasma structures in magnetically confined plasmas. They are particularly useful for studying stationary perturbations or phenomenon that occur on a timescale faster than the plasma rotation period. Tangential SXR camera diagnostics are planned for the DIII-D and NSTX tokamaks to elucidate the static edge magnetic structure during the application of 3D perturbations. To support the design of the proposed diagnostics, a synthetic diagnostic model was developed using the CHIANTI database to estimate the SXR emission. The model is shown to be in good agreement with the measurements from an existing tangential SXR camera diagnostic on NSTX.

  5. An alternative to FASTSIM for tangential solution of the wheel-rail contact

    NASA Astrophysics Data System (ADS)

    Sichani, Matin Sh.; Enblom, Roger; Berg, Mats

    2016-06-01

    In most rail vehicle dynamics simulation packages, tangential solution of the wheel-rail contact is gained by means of Kalker's FASTSIM algorithm. While 5-25% error is expected for creep force estimation, the errors of shear stress distribution, needed for wheel-rail damage analysis, may rise above 30% due to the parabolic traction bound. Therefore, a novel algorithm named FaStrip is proposed as an alternative to FASTSIM. It is based on the strip theory which extends the two-dimensional rolling contact solution to three-dimensional contacts. To form FaStrip, the original strip theory is amended to obtain accurate estimations for any contact ellipse size and it is combined by a numerical algorithm to handle spin. The comparison between the two algorithms shows that using FaStrip improves the accuracy of the estimated shear stress distribution and the creep force estimation in all studied cases. In combined lateral creepage and spin cases, for instance, the error in force estimation reduces from 18% to less than 2%. The estimation of the slip velocities in the slip zone, needed for wear analysis, is also studied. Since FaStrip is as fast as FASTSIM, it can be an alternative for tangential solution of the wheel-rail contact in simulation packages.

  6. Sound velocity in five-component air mixtures of various densities

    NASA Astrophysics Data System (ADS)

    Bogdanova, N. V.; Rydalevskaya, M. A.

    2018-05-01

    The local equilibrium flows of five-component air mixtures are considered. Gas dynamic equations are derived from the kinetic equations for aggregate values of collision invariants. It is shown that the traditional formula for sound velocity is true in air mixtures considered with the chemical reactions and the internal degrees of freedom. This formula connects the square of sound velocity with pressure and density. However, the adiabatic coefficient is not constant under existing conditions. The analytical expression for this coefficient is obtained. The examples of its calculation in air mixtures of various densities are presented.

  7. A tangentially viewing fast ion D-alpha diagnostic for NSTX.

    PubMed

    Bortolon, A; Heidbrink, W W; Podestà, M

    2010-10-01

    A second fast ion D-alpha (FIDA) installation is planned at NSTX to complement the present perpendicular viewing FIDA diagnostics. Following the present diagnostic scheme, the new diagnostic will consist of two instruments: a spectroscopic diagnostic that measures fast ion spectra and profiles at 16 radial points with 5-10 ms resolution and a system that uses a band pass filter and photomultiplier to measure changes in FIDA light with 50 kHz sampling rate. The new pair of FIDA instruments will view the heating beams tangentially. The viewing geometry minimizes spectral contamination by beam emission or edge sources of background emission. The improved velocity-space resolution will provide detailed information about neutral-beam current drive and about fast ion acceleration and transport by injected radio frequency waves and plasma instabilities.

  8. Tangential synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Esmaeili Monir, H.; Tadjfar, M.; Bakhtian, A.

    2014-02-01

    A numerical study of separation control has been made to investigate aerodynamic characteristics of a NACA23012 airfoil with a tangential synthetic jet. Simulations are carried out at the chord Reynolds number of Re=2.19×106. The present approach relies on solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. The turbulence model used in the present computation is the Spalart-Allmaras one-equation model. All computations are performed with a finite volume based code. Stall characteristics are significantly improved by controlling the formation of separation vortices in the flow. We placed the synthetic jet at the 12% chord, xj=0.12c, where we expected the separation to occur. Two distinct jet oscillating frequencies: Fj+=0.159 and Fj+=1 were considered. We studied the effect of blowing ratio, Vj/U∞, where it was varied from 0 to 5. The inclined angle of the synthetic jet was varied from αj=0° up to αj=83°. For the non-zero inclined angles, the local maximum in the aerodynamic performance, Cl/Cd, of 6.89 was found for the inclined angle of about 43°. In the present method, by means of creating a dent on the airfoil, linear momentum is transferred to the flow system in tangential direction to the airfoil surface. Thus the absolute maximum of 11.19 was found for the tangential synthetic jet at the inclined angle of the jet of 0°. The mechanisms involved for a tangential jet appear to behave linearly, as by multiplying the activation frequency of the jet by a factor produces the same multiplication factor in the resulting frequency in the flow. However, the mechanisms involved in the non-zero inclined angle cases behave nonlinearly when the activation frequency is multiplied.

  9. CFD analysis of temperature imbalance in superheater/reheater region of tangentially coal-fired boiler

    NASA Astrophysics Data System (ADS)

    Zainudin, A. F.; Hasini, H.; Fadhil, S. S. A.

    2017-10-01

    This paper presents a CFD analysis of the flow, velocity and temperature distribution in a 700 MW tangentially coal-fired boiler operating in Malaysia. The main objective of the analysis is to gain insights on the occurrences in the boiler so as to understand the inherent steam temperature imbalance problem. The results show that the root cause of the problem comes from the residual swirl in the horizontal pass. The deflection of the residual swirl due to the sudden reduction and expansion of the flow cross-sectional area causes velocity deviation between the left and right side of the boiler. This consequently results in flue gas temperature imbalance which has often caused tube leaks in the superheater/reheater region. Therefore, eliminating the residual swirl or restraining it from being diverted might help to alleviate the problem.

  10. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.

    PubMed

    Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J

    2016-05-01

    Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.

  11. Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood

    Treesearch

    Turker Dundar; Xiping Wang; Nusret As; Erkan Avci

    2016-01-01

    The objective of this study was to examine the potential of ultrasonic velocity as a rapid and nondestructive method to predict the dimensional stability of oak (Quercus petraea (Mattuschka) Lieblein) and chestnut (Castanea sativa Mill.) that are commonly used in flooring industry. Ultrasonic velocity, specific gravity, and radial, tangential and volumetric shrinkages...

  12. Development of multi-component explosive lenses for arbitrary phase velocity generation

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan

    2013-06-01

    The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.

  13. Measurement of seismometer orientation using the tangential P-wave receiver function based on harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Lim, Hobin; Kim, YoungHee; Song, Teh-Ru Alex; Shen, Xuzhang

    2018-03-01

    Accurate determination of the seismometer orientation is a prerequisite for seismic studies including, but not limited to seismic anisotropy. While borehole seismometers on land produce seismic waveform data somewhat free of human-induced noise, they might have a drawback of an uncertain orientation. This study calculates a harmonic decomposition of teleseismic receiver functions from the P and PP phases and determines the orientation of a seismometer by minimizing a constant term in a harmonic expansion of tangential receiver functions in backazimuth near and at 0 s. This method normalizes the effect of seismic sources and determines the orientation of a seismometer without having to assume for an isotropic medium. Compared to the method of minimizing the amplitudes of a mean of the tangential receiver functions near and at 0 s, the method yields more accurate orientations in cases where the backazimuthal coverage of earthquake sources (even in the case of ocean bottom seismometers) is uneven and incomplete. We apply this method to data from the Korean seismic network (52 broad-band velocity seismometers, 30 of which are borehole sensors) to estimate the sensor orientation in the period of 2005-2016. We also track temporal changes in the sensor orientation through the change in the polarity and the amplitude of the tangential receiver function. Six borehole stations are confirmed to experience a significant orientation change (10°-180°) over the period of 10 yr. We demonstrate the usefulness of our method by estimating the orientation of ocean bottom sensors, which are known to have high noise level during the relatively short deployment period.

  14. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine.

  15. Characterization of the velocity anisotropy of accreted globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Sills, A.; Miholics, M.

    2017-10-01

    Galactic globular clusters (GCs) are believed to have formed in situ in the Galaxy as well as in dwarf galaxies later accreted on to the Milky Way. However, to date, there is no unambiguous signature to distinguish accreted GCs. Using specifically designed N-body simulations of GCs evolving in a variety of time-dependent tidal fields (describing the potential of a dwarf galaxy-Milky Way merger), we analyse the effects imprinted on the internal kinematics of an accreted GC. In particular, we look at the evolution of the velocity anisotropy. Our simulations show that at early phases, the velocity anisotropy is determined by the tidal field of the dwarf galaxy and subsequently the clusters will adapt to the new tidal environment, losing any signature of their original environment in a few relaxation times. At 10 Gyr, GCs exhibit a variety of velocity anisotropy profiles, namely, isotropic velocity distribution in the inner regions and either isotropy or radial/tangential anisotropy in the intermediate and outer regions. Independent of an accreted origin, the velocity anisotropy primarily depends on the strength of the tidal field cumulatively experienced by a cluster. Tangentially anisotropic clusters correspond to systems that have experienced stronger tidal fields and are characterized by higher tidal filling factor, r50/rj ≳ 0.17, higher mass-loss ≳ 60 per cent and relaxation times trel ≲ 109 Gyr. Interestingly, we demonstrate that the presence of tidal tails can significantly contaminate the measurements of velocity anisotropy when a cluster is observed in projection. Our characterization of the velocity anisotropy profiles in different tidal environments provides a theoretical benchmark for the interpretation of the unprecedented amount of three-dimensional kinematic data progressively available for Galactic GCs.

  16. Large tangential electric fields in plasmas close to temperature screening

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; García-Regaña, J. M.; Parra, F. I.; Satake, S.; Alonso, J. A.; the LHD team

    2018-07-01

    Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.

  17. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  18. Tangential gunshot wound with MagSafe ammunition.

    PubMed

    Rapkiewicz, Amy V; Tamburri, Robert; Basoa, Mark E; Catanese, Charles A

    2005-09-01

    MagSafe ammunition is a type of unconventional prefragmented ammunition. A fatal tangential gunshot wound involving MagSafe ammunition is presented. The ammunition and wound characteristics are discussed.

  19. Analysis of Tangential Slot Blowing on F/A-18 Isolated Forebody

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Rizk, Yehia M.; Schiff, Lewis B.

    1995-01-01

    The generation of significant side forces and yawing moments on an F/A-18 fuselage through tangential slot blowing is analyzed using computational fluid dynamics. The effects of freestream Mach number, jet exit conditions, jet length, and jet location are studied. The effects of over- and underblowing on force and moment production are analyzed. Non-time-accurate solutions are obtained to determine the steady-state side forces, yawing moments, and surface pressure distributions generated by tangential slot blowing. Time-accurate solutions are obtained to study the force onset time lag of tangential slot blowing. Comparison with available experimental data from full-scale wind-tunnel and subscale wind-tunnel tests are made. This computational analysis complements the experimental results and provides a detailed understanding of the effects of tangential slot blowing on the flowfield about the isolated F/A-18 forebody. Additionally, it extends the slot-blowing database to transonic maneuvering Mach numbers.

  20. Contributions of the secondary jet to the maximum tangential velocity and to the collection efficiency of the fixed guide vane type axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru

    2015-11-01

    In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.

  1. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures

  2. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  3. Vibrotactile Compliance Feedback for Tangential Force Interaction.

    PubMed

    Heo, Seongkook; Lee, Geehyuk

    2017-01-01

    This paper presents a method to generate a haptic illusion of compliance using a vibrotactile actuator when a tangential force is applied to a rigid surface. The novel method builds on a conceptual compliance model where a physical object moves on a textured surface in response to a tangential force. The method plays vibration patterns simulating friction-induced vibrations as an applied tangential force changes. We built a prototype consisting of a two-dimensional tangential force sensor and a surface transducer to test the effectiveness of the model. Participants in user experiments with the prototype perceived the rigid surface of the prototype as a moving, rubber-like plate. The main findings of the experiments are: 1) the perceived stiffness of a simulated material can be controlled by controlling the force-playback transfer function, 2) its perceptual properties such as softness and pleasantness can be controlled by changing friction grain parameters, and 3) the use of the vibrotactile compliance feedback reduces participants' workload including physical demand and frustration while performing a force repetition task.

  4. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.

    1995-04-01

    formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. Anmore » analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.« less

  5. Three component laser anemometer measurements in an annular cascade of core turbine vanes with contoured end wall

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.; Seasholtz, Richard G.

    1988-01-01

    The three mean velocity components were measured in a full-scale annular turbine stator cascade with contoured hub end wall using a newly developed laser anemometer system. The anemometer consists of a standard fringe configuration using fluorescent seed particles to measure the axial and tangential components. The radial component is measured with a scanning confocal Fabry-Perot interferometer. These two configurations are combined in a single optical system that can operate simultaneously in a backscatter mode through a single optical access port. Experimental measurements were obtained both within and downstream of the stator vane row and compared with calculations from a three-dimensional inviscid computer program. In addition, detailed calibration procedures are described that were used, prior to the experiment, to accurately determine the laser beam probe volume location relative to the cascade hardware.

  6. Measurements of the wall-normal velocity component in very high Reynolds number pipe flow

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.

    2012-11-01

    Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  7. Forebody tangential blowing for control at high angles of attack

    NASA Technical Reports Server (NTRS)

    Kroo, I.; Rock, S.; Roberts, L.

    1991-01-01

    A feasibility study to determine if the use of tangential leading edge blowing over the forebody could produce effective and practical control of the F-18 HARV aircraft at high angles of attack was conducted. A simplified model of the F-18 configuration using a vortex-lattice model was developed to obtain a better understanding of basic aerodynamic coupling effects and the influence of forebody circulation on lifting surface behavior. The effect of tangential blowing was estimated using existing wind tunnel data on normal forebody blowing and analytical studies of tangential blowing over conical forebodies. Incorporation of forebody blowing into the flight control system was investigated by adding this additional yaw control and sideforce generating actuator into the existing F-18 HARV simulation model. A control law was synthesized using LQG design methods that would schedule blowing rates as a function of vehicle sideslip, angle of attack, and roll and yaw rates.

  8. Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Kazuo

    2014-03-15

    We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only two velocity vector field components eliminating the condition on the third component completely. The proof consists of a new decomposition of the four nonlinear terms of the system and estimating a component of the magnetic vector field in terms of the same component of the velocity vector field. This result may be seen as a component reduction result of many previous works [C. He and Z. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations,” J. Differ. Equ. 213(2), 234–254 (2005); Y. Zhou,more » “Remarks on regularities for the 3D MHD equations,” Discrete Contin. Dyn. Syst. 12(5), 881–886 (2005)].« less

  9. Development of instrumentation for measurements of two components of velocity with a single sensing element

    NASA Astrophysics Data System (ADS)

    Byers, C. P.; Fu, M. K.; Fan, Y.; Hultmark, M.

    2018-02-01

    A novel method of obtaining two orthogonal velocity components with high spatial and temporal resolution is investigated. Both components are obtained utilizing a single sensing nanoribbon by combining the two independent operating modes of classic hot wire anemometry and the newly discovered elastic filament velocimetry (EFV). In contrast to hot wire anemometry, EFV measures fluid velocity through correlating the fluid forcing with the internal strain of the wire. In order to utilize both modes of operation, a system that switches between the two operating modes is built and characterized, and the theoretically predicted sensing response time in water is compared to experimental results. The sensing system is capable of switching between the two modes of operation at a frequency of 100 kHz with minimal attenuation with an uncompensated repetition rate up to 3 kHz or up to 10 kHz utilizing modest signal compensation. While further characterization of the sensor performance in air is needed, this methodology enables a technique for obtaining well-resolved yet cost-efficient directional measurements of flow velocities which, for example, can be used for distributed measurements of velocity or measurements of turbulent stresses with excellent spatial resolution.

  10. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less

  11. Dynamics of fingertip contact during the onset of tangential slip

    PubMed Central

    Delhaye, Benoit; Lefèvre, Philippe; Thonnard, Jean-Louis

    2014-01-01

    Through highly precise perceptual and sensorimotor activities, the human tactile system continuously acquires information about the environment. Mechanical interactions between the skin at the point of contact and a touched surface serve as the source of this tactile information. Using a dedicated custom robotic platform, we imaged skin deformation at the contact area between the finger and a flat surface during the onset of tangential sliding movements in four different directions (proximal, distal, radial and ulnar) and with varying normal force and tangential speeds. This simple tactile event evidenced complex mechanics. We observed a reduction of the contact area while increasing the tangential force and proposed to explain this phenomenon by nonlinear stiffening of the skin. The deformation's shape and amplitude were highly dependent on stimulation direction. We conclude that the complex, but highly patterned and reproducible, deformations measured in this study are a potential source of information for the central nervous system and that further mechanical measurement are needed to better understand tactile perceptual and motor performances. PMID:25253033

  12. Numerical analysis of tangential slot blowing on a generic chined forebody

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana M.

    1994-01-01

    A numerical study is performed to investigate the effects of tangential slot blowing on a generic chined forebody. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved to obtain the high-angle-of-attack viscous flow field about a generic chined forebody. Tangential slot blowing is investigated as a means of forebody flow control to generate side force and yawing moment on the forebody. The effects of jet mass flow ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results are compared with available wind tunnel experimental data. The solutions with and without blowing are also analyzed using helicity density contours, surface flow patterns, and off-surface instantaneous streamlines. The results of this analysis provide details of the flow field about the generic chined forebody, as well as show that tangential slot blowing can be used as a means of forebody flow control to generate side force and yawing moment.

  13. Cavitation control on a 2D hydrofoil through a continuous tangential injection of liquid: Experimental study

    NASA Astrophysics Data System (ADS)

    Timoshevskiy, M. V.; Zapryagaev, I. I.; Pervunin, K. S.; Markovich, D. M.

    2016-10-01

    In the paper, the possibility of active control of a cavitating flow over a 2D hydrofoil that replicates a scaled-down model of high-pressure hydroturbine guide vane (GV) was tested. The flow manipulation was implemented by a continuous tangential liquid injection at different flow rates through a spanwise slot in the foil surface. In experiments, the hydrofoil was placed in the test channel at the attack angle of 9°. Different cavitation conditions were reached by varying the cavitation number and injection velocity. In order to study time dynamics and spatial patterns of partial cavities, high-speed imaging was employed. A PIV method was used to measure the mean and fluctuating velocity fields over the hydrofoil. Hydroacoustic measurements were carried out by means of a pressure transducer to identify spectral characteristics of the cavitating flow. It was found that the present control technique is able to modify the partial cavity pattern (or even totally suppress cavitation) in case of stable sheet cavitation and change the amplitude of pressure pulsations at unsteady regimes. The injection technique makes it also possible to significantly influence the spatial distributions of the mean velocity and its turbulent fluctuations over the GV section for non-cavitating flow and sheet cavitation.

  14. Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon

    PubMed Central

    Liu, Yuan-Hsuan; Tsai, Jin-Wu; Chen, Jia-Long; Yang, Wan-Shan; Chang, Pei-Ching; Cheng, Pei-Lin; Turner, David L.; Yanagawa, Yuchio; Wang, Tsu-Wei; Yu, Jenn-Yah

    2017-01-01

    During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon. PMID:28276447

  15. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  16. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    NASA Astrophysics Data System (ADS)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  17. Design of tangential viewing phase contrast imaging for turbulence measurements in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, K., E-mail: ktanaka@nifs.ac.jp; Department of Advanced Energy Engineering, Kyushu University, Kasuga, Fukuoka 816-8580; Coda, S.

    2016-11-15

    A tangential viewing phase contrast imaging system is being designed for the JT-60SA tokamak to investigate microturbulence. In order to obtain localized information on the turbulence, a spatial-filtering technique is applied, based on magnetic shearing. The tangential viewing geometry enhances the radial localization. The probing laser beam is injected tangentially and traverses the entire plasma region including both low and high field sides. The spatial resolution for an Internal Transport Barrier discharge is estimated at 30%–70% of the minor radius at k = 5 cm{sup −1}, which is the typical expected wave number of ion scale turbulence such as ionmore » temperature gradient/trapped electron mode.« less

  18. Tangential System of Thomson Scattering for Tokamak T-15

    NASA Astrophysics Data System (ADS)

    Asadulin, G. M.; Bel'bas, I. S.; Gorshkov, A. V.

    2017-12-01

    Two systems of Thomson scattering diagnostics, with vertical and tangential probing, are used in the D-shaped plasma cross section in tokamak T-15. The tangential system allows measuring plasma temperature and density profiles along the major radius of the tokamak. This paper presents the tangential system project. The system is based on a Nd:YAG laser with wavelength of 1064 nm, pulse energy of 3 J, pulse duration of 10 ns, and repetition rate of 100 Hz. The chosen geometry allows collecting light from ten uniformly spaced points. Optimization of the registration system has been accomplished. The collected light will be transmitted through an optical fiber bundle with diameter of 3 mm and quartz fibers (numerical aperture is 0.22). Six-channel polychromators based on high-contrast interference filters have been chosen as spectral equipment. The radiation will be registered by avalanche photodiodes. The technique of electron temperature and density measurement is described, and estimation of its accuracy is carried out. The proposed system allows measuring the electron temperature with accuracy not worse than 10% within the range of 50 eV to 10 keV on the pinch edge over the internal contour, from 20 eV to 9 keV in the plasma central region, and from 2 eV to 400 eV on the pinch edge over the outer contour. The estimation is made for electron density of not less than 2.6 × 1013 cm-3.

  19. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  20. Numerically Stable Fluid-Structure Interactions Between Compressible Flow and Solid Structures

    DTIC Science & Technology

    2011-01-28

    normal component VrN = ~Vr · ~N and its tangential component ~ VrT = ~Vr − VrN ~N . In order to remain continuous with the effective velocity of the...the interface and thus we can use it directly, giving the final ghost cell velocity ~Vg = VgN ~N + ~ VrT . Once ghost cells are filled, explicit body

  1. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    PubMed

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Optimization of Tangential Mass Injection for Minimizing Flow Separation in a Scramjet Inlet

    DTIC Science & Technology

    1991-12-01

    34 Aerospace EnQineering, Vol. 11. No. 8, August 1991, p.23. 26. Heppenheimer , Thomas A . Lecture notes from Hypersonic Technologies seminar. University...AFIT/GAE/ENY,/9 lD-2 ( /~ AD-A243 868 "DTIC OPTIMIZATION OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SC.R-.MJET INLET THESIS...OF TANGENTIAL MASS INJECTION FOR MINIMIZING FLOW SEPARATION IN A SCRAMJET INLEr THESIS Presented to the Faculty of the School of E.ngineering of the

  3. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.

    PubMed

    Quintana-Urzainqui, Idoia; Rodríguez-Moldes, Isabel; Mazan, Sylvie; Candal, Eva

    2015-09-01

    Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the "rostral migratory stream" of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.

  4. The local stellar velocity distribution of the Galaxy. Galactic structure and potential

    NASA Astrophysics Data System (ADS)

    Bienaymé, O.

    1999-01-01

    The velocity distribution of neighbouring stars is deduced from the Hipparcos proper motions. We have used a classical Schwarzschild decomposition and also developed a dynamical model for quasi-exponential stellar discs. This model is a 3-D derivation of Shu's model in the framework of Stäckel potentials with three integrals of motion. We determine the solar motion relative to the local standard of rest (LSR) (U_sun=9.7+/-0.3kms , V_sun=5.2+/-1.0kms and W_sun=6.7+/-0.2kms ), the density and kinematic radial gradients, as well as the local slope of the velocity curve. We find out that the scale density length of the Galaxy is 1.8+/-0.2kpc . We measure a large kinematic scale length for blue (young) stars, R_{sigma_r }=17+/-4kpc , while for red stars (predominantly old) we find R_{sigma_r }=9.7+/-0.8kpc (or R_{sigma_r (2}=4.8+/-0.4kpc ) ). From the stellar disc dynamical model, we determine explicitly the link between the tangential-vertical velocity (v_theta , v_z) coupling and the local shape of the potential. Using a restricted sample of 3-D velocity data, we measure z_o, the focus of the spheroidal coordinate system defining the best fitted Stäckel potential. The parameter z_o is related to the tilt of the velocity ellipsoid and more fundamentally to the mass gradient in the galactic disc. This parameter is found to be 5.7+/-1.4kpc . This implies that the galactic potential is not extremely flat and that the dark matter component is not confined in the galactic plane. Based on data from the Hipparcos astrometry satellite.

  5. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.

    PubMed

    Barber, Melissa; Pierani, Alessandra

    2016-08-01

    Tangential migration is a mode of cell movement, which in the developing cerebral cortex, is defined by displacement parallel to the ventricular surface and orthogonal to the radial glial fibers. This mode of long-range migration is a strategy by which distinct neuronal classes generated from spatially and molecularly distinct origins can integrate to form appropriate neural circuits within the cortical plate. While it was previously believed that only GABAergic cortical interneurons migrate tangentially from their origins in the subpallial ganglionic eminences to integrate in the cortical plate, it is now known that transient populations of glutamatergic neurons also adopt this mode of migration. These include Cajal-Retzius cells (CRs), subplate neurons (SPs), and cortical plate transient neurons (CPTs), which have crucial roles in orchestrating the radial and tangential development of the embryonic cerebral cortex in a noncell-autonomous manner. While CRs have been extensively studied, it is only in the last decade that the molecular mechanisms governing their tangential migration have begun to be elucidated. To date, the mechanisms of SPs and CPTs tangential migration remain unknown. We therefore review the known signaling pathways, which regulate parameters of CRs migration including their motility, contact-redistribution and adhesion to the pial surface, and discuss this in the context of how CR migration may regulate their signaling activity in a spatial and temporal manner. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 847-881, 2016. © 2015 Wiley Periodicals, Inc.

  6. The quality assessment of radial and tangential neutron radiography beamlines of TRR

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Movafeghi, A.; Khalafi, H.; Kasesaz, Y.

    2017-07-01

    To achieve a quality neutron radiographic image in a relatively short exposure time, the neutron radiography beam must be of good quality and relatively high neutron flux. Characterization of a neutron radiography beam, such as determination of the image quality and the neutron flux, is vital for producing quality radiographic images and also provides a means to compare the quality of different neutron radiography facilities. This paper provides a characterization of the radial and tangential neutron radiography beamlines at the Tehran research reactor. This work includes determination of the facilities category according to the American Society for Testing and Materials (ASTM) standards, and also uses the gold foils to determine the neutron beam flux. The radial neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. The tangential beam is a Category IV neutron radiography facility. Gold foil activation experiments show that the measured neutron flux for radial beamline with length-to-diameter ratio (L/D) =150 is 6.1× 106 n cm-2 s-1 and for tangential beamline with (L/D)=115 is 2.4× 104 n cm-2 s-1.

  7. Velocity and Density Heterogeneities of the Tien-Shan Lithosphere

    NASA Astrophysics Data System (ADS)

    Sabitova, T. M.; Lesik, O. M.; Adamova, A. A.

    The Tien-Shan orogene is a region in which the earth's crust undergoes considerable thickening and tangential compression. Under these conditions the lithosphere heterogeneities (composi tion, rheological) create the prerequisites for the development of various phenomena of tectonic layering (lateral shearing, different deformation of layers). To study the distribution of velocity, density and other elastic parameters, the results from a seismic tomography study on P-wave as well as S-wave velocities were used. Using empirical as well as theoretical formulas on the relationship between velocity, density and silica content in rocks, their distribution in the Tien-Shan's lithosphere has been calculated. In addition, other elastic parameters, such as Young's modulus, shear modulus, Poisson's ratio and coefficient of general compressions have been determined. Zoning of different types of crust was carried out for the region investigated. The characteristics of the "crust-mantle" transition have been investi gated. Large blocks with different types of the earth's crust were distinguished. Layers with inverse values of velocity, density and shear and Young modulus are revealed in the Tien-Shan lithosphere. All of the above described features open new ways to solve geodynamics problems.

  8. Finite-Difference Modeling of Seismic Wave Scattering in 3D Heterogeneous Media: Generation of Tangential Motion from an Explosion Source

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Pitarka, A.; Mellors, R. J.

    2015-12-01

    Evan Hirakawa, Arben Pitarka, and Robert Mellors One challenging task in explosion seismology is development of physical models for explaining the generation of S-waves during underground explosions. Pitarka et al. (2015) used finite difference simulations of SPE-3 (part of Source Physics Experiment, SPE, an ongoing series of underground chemical explosions at the Nevada National Security Site) and found that while a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography are necessary to better match the data. Large-scale features in the velocity model used in the SPE simulations are well constrained, however, small-scale heterogeneity is poorly constrained. In our study we used a stochastic representation of small-scale variability in order to produce additional high-frequency scattering. Two methods for generating the distributions of random scatterers are tested. The first is done in the spatial domain by essentially smoothing a set of random numbers over an ellipsoidal volume using a Gaussian weighting function. The second method consists of filtering a set of random numbers in the wavenumber domain to obtain a set of heterogeneities with a desired statistical distribution (Frankel and Clayton, 1986). This method is capable of generating distributions with either Gaussian or von Karman autocorrelation functions. The key parameters that affect scattering are the correlation length, the standard deviation of velocity for the heterogeneities, and the Hurst exponent, which is only present in the von Karman media. Overall, we find that shorter correlation lengths as well as higher standard deviations result in increased tangential motion in the frequency band of interest (0 - 10 Hz). This occurs partially through S-wave refraction, but mostly by P-S and Rg-S waves conversions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

  9. Note: Device for obtaining volumetric, three-component velocity fields inside cylindrical cavities.

    PubMed

    Ramírez, G; Núñez, J; Hernández, G N; Hernández-Cruz, G; Ramos, E

    2015-11-01

    We describe a device designed and built to obtain the three-component, steady state velocity field in the whole volume occupied by a fluid in motion contained in a cavity with cylindrical walls. The prototype comprises a two-camera stereoscopic particle image velocimetry system mounted on a platform that rotates around the volume under analysis and a slip ring arrangement that transmits data from the rotating sensors to the data storage elements. Sample observations are presented for natural convection in a cylindrical container but other flows can be analyzed.

  10. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner

    2013-10-01

    A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.

  11. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  12. Detection of High Velocity Absorption Components in the He I Lines of Eta Carinae near the Time of Periastron

    NASA Technical Reports Server (NTRS)

    Richardson, Noel D.; St-Jean, Lucas; Gull, Theodore R.; Madura, Thomas; Hillier, D. John; Teodoro, Mairan; Moffat, Anthony; Corcoran, Michael; Damineli, Augusto

    2014-01-01

    We have obtained a total of 58 high spectral resolution (R90,000) spectra of the massive binary star eta Carinae since 2012 in an effort to continue our orbital and long-term echelle monitoring of this extreme binary (Richardson et al. 2010, AJ, 139, 1534) with the CHIRON spectrograph on the CTIO 1.5 m telescope (Tokovinin et al. 2013, PASP, 125, 1336) in the 45507500A region. We have increased our monitoring efforts and observation frequency as the periastron event of 2014 has approached. We note that there were multiple epochs this year where we observe unusual absorption components in the P Cygni troughs of the He I triplet lines. In particular, we note high velocity absorption components related to the following epochs for the following lines: He I 4713: HJD 2456754- 2456795 (velocity -450 to -560 kms) He I 5876: HJD 2456791- 2456819 (velocity -690 to -800 kms) He I 7065: HJD 2456791- 2456810 (velocity -665 to -730 kms) Figures: Note that red indicates a high-velocity component noted above. He I 4713: http:www.astro.umontreal.carichardson4713.png He I 5876: http:www.astro.umontreal.carichardson5876.png He I 7065: http:www.astro.umontreal.carichardson7065.png These absorptions are likely related to the wind-wind collision region and bow shock, as suggested by the high-velocity absorption observed by Groh et al. (2010, AA, 519, 9) in the He I 10830 Atransition. In these cases, we suspect that we look along an arm of the shock cone and that we will see a fast absorption change from the other collision region shortly after periastron. We suspect that this is related to the multiple-components of the He II 4686 line that was noted by Walter (ATel6334), and is confirmed in our data. Further, high spectral resolution data are highly encouraged,especially for resolving powers greater than 50,000.These observations were obtained with the CTIO 1.5 m telescope, operated by the SMARTS Consortium, and were obtained through both SMARTS and NOAO programs 2012A-0216,2012B-0194

  13. Comparison of histologic margin status in low-grade cutaneous and subcutaneous canine mast cell tumours examined by radial and tangential sections.

    PubMed

    Dores, C B; Milovancev, M; Russell, D S

    2018-03-01

    Radial sections are widely used to estimate adequacy of excision in canine cutaneous mast cell tumours (MCTs); however, this sectioning technique estimates only a small fraction of total margin circumference. This study aimed to compare histologic margin status in grade II/low grade MCTs sectioned using both radial and tangential sectioning techniques. A total of 43 circumferential margins were evaluated from 21 different tumours. Margins were first sectioned radially, followed by tangential sections. Tissues were examined by routine histopathology. Tangential margin status differed in 10 of 43 (23.3%) margins compared with their initial status on radial section. Of 39 margins, 9 (23.1%) categorized as histologic tumour-free margin (HTFM) >0 mm were positive on tangential sectioning. Tangential sections detected a significantly higher proportion of positive margins relative to radial sections (exact 2-tailed P-value = .0215). The HTFM was significantly longer in negative tangential margins than positive tangential margins (mean 10.1 vs 3.2 mm; P = .0008). A receiver operating characteristic curve comparing HTFM and tangentially negative margins found an area under the curve of 0.83 (95% confidence interval: 0.71-0.96). Although correct classification peaked at the sixth cut-point of HTFM ≥1 mm, radial sections still incorrectly classified 50% of margins as lacking tumour cells. Radial sections had 100% specificity for predicting negative tangential margins at a cut-point of 10.9 mm. These data indicate that for low grade MCTs, HTFMs >0 mm should not be considered completely excised, particularly when HTFM is <10.9 mm. This will inform future studies that use HTFM and overall excisional status as dependent variables in multivariable prognostic models. © 2017 John Wiley & Sons Ltd.

  14. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.

    PubMed

    Reillo, Isabel; de Juan Romero, Camino; García-Cabezas, Miguel Ángel; Borrell, Víctor

    2011-07-01

    The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.

  15. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  16. Measurement of angular velocity in the perception of rotation.

    PubMed

    Barraza, José F; Grzywacz, Norberto M

    2002-09-01

    Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.

  17. Determination of the swelling velocity of different wood species and tissues depending on the cutting direction on microtome section level

    NASA Astrophysics Data System (ADS)

    Stuckenberg, Peter; Wenderdel, Christoph; Zauer, Mario

    2018-06-01

    Swelling velocity in dependence on the anatomical cutting direction of yew [Taxus baccata L.] and boxwood [Buxus sempervirens L.] was determined at temperature of 20 °C and at relative humidity of 10% and 100%. The investigations, conducted on a microtome section level, showed a similar behaviour for specimens of both wood species. It was possible to determine that the swelling velocity for yew and boxwood increases in its anatomical cutting directions. The longitudinal direction showed the lowest value, the tangential direction, by distinction, the highest value. Furthermore, a significant influence of early wood and late wood content on the swelling velocity for yew was detected.

  18. Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components

    NASA Astrophysics Data System (ADS)

    Kuzmiak, Vladimir; Maradudin, Alexei A.

    1998-09-01

    We study the distribution of the electromagnetic field of the eigenmodes and corresponding group velocities associated with the photonic band structures of two-dimensional periodic systems consisting of an array of infinitely long parallel metallic rods whose intersections with a perpendicular plane form a simple square lattice. We consider both nondissipative and lossy metallic components characterized by a complex frequency-dependent dielectric function. Our analysis is based on the calculation of the complex photonic band structure obtained by using a modified plane-wave method that transforms the problem of solving Maxwell's equations into the problem of diagonalizing an equivalent non-Hermitian matrix. In order to investigate the nature and the symmetry properties of the eigenvectors, which significantly affect the optical properties of the photonic lattices, we evaluate the associated field distribution at the high symmetry points and along high symmetry directions in the two-dimensional first Brillouin zone of the periodic system. By considering both lossless and lossy metallic rods we study the effect of damping on the spatial distribution of the eigenvectors. Then we use the Hellmann-Feynman theorem and the eigenvectors and eigenfrequencies obtained from a photonic band-structure calculation based on a standard plane-wave approach applied to the nondissipative system to calculate the components of the group velocities associated with individual bands as functions of the wave vector in the first Brillouin zone. From the group velocity of each eigenmode the flow of energy is examined. The results obtained indicate a strong directional dependence of the group velocity, and confirm the experimental observation that a photonic crystal is a potentially efficient tool in controlling photon propagation.

  19. Modeling Bottom Sediment Erosion Process by Swirling the Flow by Tangential Supply of Oil in the Tank

    NASA Astrophysics Data System (ADS)

    Nekrasov, V. O.

    2016-10-01

    The article carries out a statistical data processing of quantitative and territorial division of oil tanks operating in Tyumen region, intended for reception, storage and distribution of commercial oil through trunk pipelines. It describes the working principle of the new device of erosion and prevention of oil bottom sediment formation with tangential supply of oil pumped into reservoir. The most significant similarity criteria can be emphasized in modeling rotational flows exerting significant influence on the structure of the circulating flow of oil in tank when operation of the device described. The dependence of the distribution of the linear velocity of a point on the surface along the radius at the circular motion of the oil in the tank is characterized, and on the basis of this dependence, a formula of general kinetic energy of rotational motion of oil and asphalt-resin-paraffin deposits total volume in the oil reservoir is given.

  20. Effects of Tangential Edge Constraints on the Postbuckling Behavior of Flat and Curved Panels Subjected to Thermal and Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Lin, W.; Librescu, L.; Nemeth, M. P.; Starnes, J. H. , Jr.

    1994-01-01

    A parametric study of the effects of tangential edge constraints on the postbuckling response of flat and shallow curved panels subjected to thermal and mechanical loads is presented. The mechanical loads investigated are uniform compressive edge loads and transverse lateral pressure. The temperature fields considered are associated with spatially nonuniform heating over the panels, and a linear through-the-thickness temperature gradient. The structural model is based on a higher-order transverse-shear-deformation theory of shallow shells that incorporates the effects of geometric nonlinearities, initial geometric imperfections, and tangential edge motion constraints. Results are presented for three-layer sandwich panels made from transversely isotropic materials. Simply supported panels are considered in which the tangential motion of the unloaded edges is either unrestrained, partially restrained, or fully restrained. These results focus on the effects of the tangential edge restraint on the postbuckling response. The results of this study indicate that tangentially restraining the edges of a curved panel can make the panel insensitive to initial geometric imperfections in some cases.

  1. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  2. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.

    PubMed

    Munir, Ahsan; Zhu, Zanzan; Wang, Jianlong; Zhou, Hong Susan

    2014-06-01

    A novel continuous switching/separation scheme of magnetic nanoparticles (MNPs) in a sub-microlitre fluid volume surrounded by neodymium permanent magnet is studied in this work using tangential microfluidic channels. Polydimethylsiloxane tangential microchannels are fabricated using a novel micromoulding technique that can be done without a clean room and at much lower cost and time. Negligible switching of MNPs is seen in the absence of magnetic field, whereas 90% of switching is observed in the presence of magnetic field. The flow rate of MNPs solution had dramatic impact on separation performance. An optimum value of the flow rate is found that resulted in providing effective MNP separation at much faster rate. Separation performance is also investigated for a mixture containing non-magnetic polystyrene particles and MNPs. It is found that MNPs preferentially moved from lower microchannel to upper microchannel resulting in efficient separation. The proof-of-concept experiments performed in this work demonstrates that microfluidic bioseparation can be efficiently achieved using functionalised MNPs, together with tangential microchannels, appropriate magnetic field strength and optimum flow rates. This work verifies that a simple low-cost magnetic switching scheme can be potentially of great utility for the separation and detection of biomolecules in microfluidic lab-on-a-chip systems.

  4. Is drop impact the same for both moving and inclined surfaces?

    NASA Astrophysics Data System (ADS)

    Buksh, Salman; Marengo, Marco; Amirfazli, Alidad; -Team

    2017-11-01

    Drop impact is an important phenomenon in a wide variety of applications. Researchers have largely examined drop impact onto a moving surface, and an inclined surface separately. Given that in both systems the impact phenomenon is influenced by tangential and normal velocity components, the question remains, if these two systems are essentially equivalent or gravity and boundary layer effects are such that the outcomes will be different. Experiments have been performed by varying liquid surface tension, viscosity and both normal and tangential velocities (0.3 to 2.9 m/s). The desired velocity components were achieved by changing the height where drop is released, the surface inclination angle for inclined system, and the horizontal velocity for the moving surface. To compare the systems, spreading was analyzed by measuring the width and length of the lamella at various time intervals; for splashing, top view images were compared to see the extent of splashing at initial stage. The data suggests that, for the given velocity, neither the boundary layer differences between the two systems nor the gravity play a role on spreading and splashing of the drop, as such one system can replace the other for future studies.

  5. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  6. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  7. Application of unsteady airfoil theory to rotary wings

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1981-01-01

    A clarification is presented on recent work concerning the application of unsteady airfoil theory to rotary wings. The application of this theory may be seen as consisting of four steps: (1) the selection of an appropriate unsteady airfoil theory; (2) the resolution of that velocity which is the resultant of aerodynamic and dynamic velocities at a point on the elastic axis into radial, tangential and perpendicular components, and the angular velocity of a blade section about the deformed axis; (3) the expression of lift and pitching moments in terms of the three components; and (4) the derivation of explicit expressions for the components in terms of flight velocity, induced flow, rotor rotational speed, blade motion variables, etc.

  8. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.

    PubMed

    Borrell, Víctor; Marín, Oscar

    2006-10-01

    Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.

  9. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  10. Flow friction of the turbulent coolant flow in cryogenic porous cables

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Yeroshenko, V. M.; Zaichik, L. I.; Yanovsky, L. S.

    1979-01-01

    Considered are cryogenic power transmission cables with porous cores. Calculations of the turbulent coolant flow with injection or suction through the porous wall are presented within the framework of a two-layer model. Universal velocity profiles were obtained for the viscous sublayer and flow core. Integrating the velocity profile, the law of flow friction in the pipe with injection has been derived for the case when there is a tangential injection velocity component. The effect of tangential velocity on the relative law of flow friction is analyzed. The applicability of the Prandtl model to the problem under study is discussed. It is shown that the error due to the acceptance of the model increases with the injection parameter and at lower Reynolds numbers; under these circumstances, the influence of convective terms in the turbulent energy equation on the mechanism of turbulent transport should be taken into account.

  11. Automated planning of tangential breast intensity-modulated radiotherapy using heuristic optimization.

    PubMed

    Purdie, Thomas G; Dinniwell, Robert E; Letourneau, Daniel; Hill, Christine; Sharpe, Michael B

    2011-10-01

    To present an automated technique for two-field tangential breast intensity-modulated radiotherapy (IMRT) treatment planning. A total of 158 planned patients with Stage 0, I, and II breast cancer treated using whole-breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are integrated into the existing clinical treatment planning system (Pinnacle(3)) and are designed to perform the manual volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically delineated whole-breast volume. The mean time to generate a complete treatment plan was 6 min, 50 s ± 1 min 12 s. For the automated plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87%) were deemed clinically improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equivalent to the clinical plans when scored for target coverage and lung and heart doses. We have developed robust and efficient automated tools for fully inversed planned tangential breast IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools will improve patient access to high-quality IMRT treatment by simplifying the planning process and will reduce the effort and cost of incorporating more advanced planning into clinical practice. Crown Copyright © 2011. Published by Elsevier Inc

  12. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroki; Matsuda, Yu; Niimi, Tomohide

    2017-07-01

    Gas-surface interaction is studied by the molecular dynamics method to investigate qualitatively characteristics of accommodation coefficients. A large number of trajectories of gas molecules colliding to and scattering from a surface are statistically analyzed to calculate the energy (thermal) accommodation coefficient (EAC) and the tangential momentum accommodation coefficient (TMAC). Considering experimental measurements of the accommodation coefficients, the incident velocities are stochastically sampled to represent a bulk condition. The accommodation coefficients for noble gases show qualitative coincidence with experimental values. To investigate characteristics of these accommodation coefficients in detail, the gas-surface interaction is parametrically studied by varying the molecular mass of gas, the gas-surface interaction strength, and the molecular size of gas, one by one. EAC increases with increasing every parameter, while TMAC increases with increasing the interaction strength, but decreases with increasing the molecular mass and the molecular size. Thus, contradictory results in experimentally measured TMAC for noble gases could result from the difference between the surface conditions employed in the measurements in the balance among the effective parameters of molecular mass, interaction strength, and molecular size, due to surface roughness and/or adsorbed molecules. The accommodation coefficients for a thermo-fluid dynamics field with a temperature difference between gas and surface and a bulk flow at the same time are also investigated.

  13. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1994-01-01

    Current and future fighter aircraft can maneuver in the high-angle-of-attack flight regime while flying at low subsonic and transonic freestream Mach numbers. However, at any flight speed, the ability of the vertical tails to generate yawing moment is limited in high-angle-of-attack flight. Thus, any system designed to provide the pilot with additional side force and yawing moment must work in both low subsonic and transonic flight. However, previous investigations of the effectiveness of forebody tangential slot blowing in generating the desired control forces and moments have been limited to the low subsonic freestream flow regime. In order to investigate the effectiveness of tangential slot blowing in transonic flight, a computational fluid dynamics analysis was carried out during the grant period. Computational solutions were obtained at three different freestream Mach numbers and at various jet mass flow ratios. All results were obtained using the isolated F/A-18 forebody grid geometry at 30.3 degrees angle of attack. One goal of the research was to determine the effect of freestream Mach number on the effectiveness of forebody tangential slot blowing in generating yawing moment. The second part of the research studied the force onset time lag associated with blowing. The time required for the yawing moment to reach a steady-state value from the onset of blowing may have an impact on the implementation of a pneumatic system on a flight vehicle.

  14. Shrouded inducer pump

    DOEpatents

    Meng, Sen Y.

    1989-01-01

    An improvement in a pump including a shrouded inducer, the improvement comprising first and second sealing means 32,36 which cooperate with a first vortex cell 38 and a series of secondary vortex cells 40 to remove any tangential velocity components from the recirculation flow.

  15. Shrouded inducer pump

    DOEpatents

    Meng, S.Y.

    1989-08-08

    An improvement in a pump is described including a shrouded inducer, the improvement comprising first and second sealing means which cooperate with a first vortex cell and a series of secondary vortex cells to remove any tangential velocity components from the recirculation flow. 3 figs.

  16. Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs

    Treesearch

    Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson

    1998-01-01

    Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...

  17. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  18. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert

    2011-11-01

    In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity

  19. Using relative velocity vectors to reveal axial rotation about the medial and lateral compartment of the knee.

    PubMed

    Anderst, William J; Tashman, Scott

    2010-03-22

    A new technique is presented that utilizes relative velocity vectors between articulating surfaces to characterize internal/external rotation of the tibio-femoral joint during dynamic loading. Precise tibio-femoral motion was determined by tracking the movement of implanted tantalum beads in high-speed biplane X-rays. Three-dimensional, subject-specific CT reconstructions of the femur and tibia, consisting of triangular mesh elements, were positioned in each analyzed frame. The minimum distance between subchondral bone surfaces was recorded for each mesh element comprising each bone surface, and the relative velocity between these opposing closest surface elements was determined in each frame. Internal/external rotation was visualized by superimposing tangential relative velocity vectors onto bone surfaces at each instant. Rotation about medial and lateral compartments was quantified by calculating the angle between these tangential relative vectors within each compartment. Results acquired from 68 test sessions involving 23 dogs indicated a consistent pattern of sequential rotation about the lateral condyle (approximately 60 ms after paw strike) followed by rotation about the medial condyle (approximately 100 ms after paw strike). These results imply that axial knee rotation follows a repeatable pattern within and among subjects. This pattern involves rotation about both the lateral and medial compartments. The technique described can be easily applied to study human knee internal/external rotation during a variety of activities. This information may be useful to define normal and pathologic conditions, to confirm post-surgical restoration of knee mechanics, and to design more realistic prosthetic devices. Furthermore, analysis of joint arthrokinematics, such as those described, may identify changes in joint mechanics associated with joint degeneration. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Do uniform tangential interfacial stresses enhance adhesion?

    NASA Astrophysics Data System (ADS)

    Menga, Nicola; Carbone, Giuseppe; Dini, Daniele

    2018-03-01

    We present theoretical arguments, based on linear elasticity and thermodynamics, to show that interfacial tangential stresses in sliding adhesive soft contacts may lead to a significant increase of the effective energy of adhesion. A sizable expansion of the contact area is predicted in conditions corresponding to such scenario. These results are easily explained and are valid under the assumptions that: (i) sliding at the interface does not lead to any loss of adhesive interaction and (ii) spatial fluctuations of frictional stresses can be considered negligible. Our results are seemingly supported by existing experiments, and show that frictional stresses may lead to an increase of the effective energy of adhesion depending on which conditions are established at the interface of contacting bodies in the presence of adhesive forces.

  1. Antecedent Avian Immunity Limits Tangential Transmission of West Nile Virus to Humans

    PubMed Central

    Kwan, Jennifer L.; Kluh, Susanne; Reisen, William K.

    2012-01-01

    Background West Nile virus (WNV) is a mosquito-borne flavivirus maintained and amplified among birds and tangentially transmitted to humans and horses which may develop terminal neuroinvasive disease. Outbreaks typically have a three-year pattern of silent introduction, rapid amplification and subsidence, followed by intermittent recrudescence. Our hypothesis that amplification to outbreak levels is contingent upon antecedent seroprevalence within maintenance host populations was tested by tracking WNV transmission in Los Angeles, California from 2003 through 2011. Methods Prevalence of antibodies against WNV was monitored weekly in House Finches and House Sparrows. Tangential or spillover transmission was measured by seroconversions in sentinel chickens and by the number of West Nile neuroinvasive disease (WNND) cases reported to the Los Angeles County Department of Public Health. Results Elevated seroprevalence in these avian populations was associated with the subsidence of outbreaks and in the antecedent dampening of amplification during succeeding years. Dilution of seroprevalence by recruitment resulted in the progressive loss of herd immunity following the 2004 outbreak, leading to recrudescence during 2008 and 2011. WNV appeared to be a significant cause of death in these avian species, because the survivorship of antibody positive birds significantly exceeded that of antibody negative birds. Cross-correlation analysis showed that seroprevalence was negatively correlated prior to the onset of human cases and then positively correlated, peaking at 4–6 weeks after the onset of tangential transmission. Antecedent seroprevalence during winter (Jan – Mar) was negatively correlated with the number of WNND cases during the succeeding summer (Jul–Sep). Conclusions Herd immunity levels within after hatching year avian maintenance host populations <10% during the antecedent late winter and spring period were followed on three occasions by outbreaks of WNND

  2. Normal Component of Induced Velocity for Entire Field of a Uniformly Loaded Lifting Rotor with Highly Swept Wake as Determined by Electromagnetic Analog

    NASA Technical Reports Server (NTRS)

    Castles, Walter, Jr.; Durham, Howard L., Jr.; Kevorkian, Jirair

    1959-01-01

    Values of the normal component of induced velocity throughout the entire field of a uniformly loaded r(rotor at high high speed are presented in the form of charts and tables. Many points were found by an electromagnetic analog, details of which are given. Comparisons of computed and analog values for the induced velocity indicate that the latter are sufficiently accurate for engineering purposes.

  3. Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components

    PubMed Central

    Mouti, Zakaria; Westwood, Keith; Kayvantash, Kambiz; Njuguna, James

    2010-01-01

    This paper concerns automotive parts located underneath the engine and in particular the engine oil pan. Classically made of stamped steel or cast aluminum, new developments have allowed the manufacture oil pans with polyamide 66 reinforced by 35% weight of short glass fiber. However, polyamides have some limitations and the most significant is their response to localized impact loading. The nature of the impact considered here is of a typical stone collected from the road and projected into the oil pan.  Low velocity impact investigations were carried out using a gas gun and drop weight tower.  The study shows that the design of the oil pan has a significant contribution in the shock absorption. In addition to the material properties, the geometry and the ribbing both cleverly combined, increase the impact resistance of the component significantly. Areas of oil pan design improvement have been identified and conclusions drawn.

  4. Manipulation of near-wall turbulence by surface slip and permeability

    NASA Astrophysics Data System (ADS)

    Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.

    2018-04-01

    We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.

  5. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains

    PubMed Central

    Miyazaki, Yuta; Song, Jae W.; Takahashi, Emi

    2016-01-01

    The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in

  6. Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope.

    PubMed

    Taddese, Addisu Z; Slawinski, Piotr R; Obstein, Keith L; Valdastri, Pietro

    2016-10-01

    In this paper, we demonstrate velocity-level closed-loop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician's teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system's ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend.

  7. Average current per vacuum-arc cathode spot and spot velocity in a magnetic field on a CuCr50/50 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zabello, K. K.; Poluyanova, I. N.; Yakovlev, V. V.; Shkol'nik, S. M.

    2017-11-01

    It has been shown that such cathode spot characteristics as the average current per spot and its dependence on tangential magnetic-field induction B t and the spot velocity and its dependence on B t for two CuCr50/50 specimens with very different structures (nanocomposite and "solid-state sintered" composite) almost coincide if the surface of contacts has been totally remelted before measurements with the use of moderate arc currents in the process of conditioning.

  8. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  9. Coding of Velocity Storage in the Vestibular Nuclei.

    PubMed

    Yakushin, Sergei B; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO

  10. Coding of Velocity Storage in the Vestibular Nuclei

    PubMed Central

    Yakushin, Sergei B.; Raphan, Theodore; Cohen, Bernard

    2017-01-01

    Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO

  11. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  12. A Scientific Analysis of Galaxy Tangential Speed of Revolution Curves III

    NASA Astrophysics Data System (ADS)

    Taff, Laurence

    2015-04-01

    I last reported on my preliminary analysis of 350 + spiral, lenticular, irregular, polar ring, ring, and dwarf elliptical galaxies' tangential speed of revolution curves [TSRCs; and not rotation (sic) curves]. I now know that the consensus opinion in the literature--for which I can find no geometrical, numerical, statistical, nor scientific testing in 2,500 + publications--that the TSRC, vB(r), in the central bulges of these galaxies, is a linear function of the radial distance from the minor axis of symmetry r--is false. For the majority (>98%) vB(r) is rarely well represented by vB(r) = ωB r (for which the unique material model is an homogeneous, oblate, spheroid). Discovered via a scientific analysis of the gravitational potential energy computed directly from the observational data, vB(r) is almost exactly given by vB2(r) = (ωB r)2(1 + η r2) with | η | < 10-2 and frequently orders of magnitude less. The corresponding mass model is the simplest generalization: a two component homoeoid. The set of possible periodic orbits, based on circular trigonometric functions, becomes a set of periodic orbits based on the Jacobian elliptic functions. Once again it is possible to prove that the mass-to-light ratio can neither be a constant nor follow the de Vaucouleurs R1/4 rule.

  13. Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration.

    PubMed

    Björnmalm, Mattias; Roozmand, Ali; Noi, Ka Fung; Guo, Junling; Cui, Jiwei; Richardson, Joseph J; Caruso, Frank

    2015-08-25

    Layer-by-layer (LbL) assembly on nano- and microparticles is of interest for a range of applications, including catalysis, optics, sensors, and drug delivery. One current limitation is the standard use of manual, centrifugation-based (pellet/resuspension) methods to perform the layering steps, which can make scalable, highly controllable, and automatable production difficult to achieve. Here, we develop a fully flow-based technique using tangential flow filtration (TFF) for LbL assembly on particles. We demonstrate that multilayered particles and capsules with different sizes (from micrometers to submicrometers in diameter) can be assembled on different templates (e.g., silica and calcium carbonate) using several polymers (e.g., poly(allylamine hydrochloride), poly(styrenesulfonate), and poly(diallyldimethylammonium chloride)). The full system only contains fluidic components routinely used (and automated) in industry, such as pumps, tanks, valves, and tubing in addition to the TFF filter modules. Using the TFF LbL system, we also demonstrate the centrifugation-free assembly, including core dissolution, of drug-loaded capsules. The well-controlled, integrated, and automatable nature of the TFF LbL system provides scientific, engineering, and practical processing benefits, making it valuable for research environments and potentially useful for translating LbL assembled particles into diverse applications.

  14. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  15. Roll-Yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  16. Roll-yaw control at high angle of attack by forebody tangential blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, N.; Rock, S. M.; Celik, Z. Z.; Roberts, L.

    1995-01-01

    The feasibility of using forebody tangential blowing to control the roll-yaw motion of a wind tunnel model is experimentally demonstrated. An unsteady model of the aerodynamics is developed based on the fundamental physics of the flow. Data from dynamic experiments is used to validate the aerodynamic model. A unique apparatus is designed and built that allows the wind tunnel model two degrees of freedom, roll and yaw. Dynamic experiments conducted at 45 degrees angle of attack reveal the system to be unstable. The natural motion is divergent. The aerodynamic model is incorporated into the equations of motion of the system and used for the design of closed loop control laws that make the system stable. These laws are proven through dynamic experiments in the wind tunnel using blowing as the only actuator. It is shown that asymmetric blowing is a highly non-linear effector that can be linearized by superimposing symmetric blowing. The effects of forebody tangential blowing and roll and yaw angles on the flow structure are determined through flow visualization experiments. The transient response of roll and yaw moments to a step input blowing are determined. Differences on the roll and yaw moment dependence on blowing are explained based on the physics of the phenomena.

  17. INTRINSIC CURVATURE: A MARKER OF MILLIMETER-SCALE TANGENTIAL CORTICO-CORTICAL CONNECTIVITY?

    PubMed Central

    RONAN, LISA; PIENAAR, RUDOLPH; WILLIAMS, GUY; BULLMORE, ED; CROW, TIM J.; ROBERTS, NEIL; JONES, PETER B.; SUCKLING, JOHN; FLETCHER, PAUL C.

    2012-01-01

    In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential connection lengths. We suggest that differential rates of surface expansion not only lead to intrinsic curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose that there follows a consequential change in the profile of neuronal connections: specifically an enhancement of the tendency towards proportionately more short connections. Thus, the degree of cortical intrinsic curvature may have implications for short-range connectivity. PMID:21956929

  18. Effect of pressure on tangential-injection film cooling in a combustor exhaust stream

    NASA Technical Reports Server (NTRS)

    Marek, C. J.

    1973-01-01

    A tangential-injection film cooled test section was placed in the exhaust stream of a high pressure combustor. Film cooling data were taken at pressure of 1, 10, and 20 atmospheres. The film cooling effectiveness was found to be independent of pressure. The data were correlated adequately by a turbulent-mixing film cooling correlation with a turbulent-mixing coefficient of 0.05 + or - 0.02.

  19. Phase velocity in 2D TTI media

    NASA Astrophysics Data System (ADS)

    Xuan, Yihua; He, Qiaodeng; Lin, Yan

    2007-03-01

    We derive an expression for phase velocity in 2D tilted transverse isotropy (TTI) media. Snapshots of phase velocity in TTI and transverse isotropy (TI) model media are simulated and analyzed using the derived expression. In addition, the x-component character differences between the modeled phase velocities of the two media models are compared and analyzed.

  20. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.

    2014-01-01

    Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…

  1. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  2. Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Torczynski, J. R.

    2011-03-01

    The ellipsoidal-statistical Bhatnagar-Gross-Krook (ES-BGK) kinetic model is investigated for steady gas-phase transport of heat, tangential momentum, and mass between parallel walls (i.e., Fourier, Couette, and Fickian flows). This investigation extends the original study of Cercignani and Tironi, who first applied the ES-BGK model to heat transport (i.e., Fourier flow) shortly after this model was proposed by Holway. The ES-BGK model is implemented in a molecular-gas-dynamics code so that results from this model can be compared directly to results from the full Boltzmann collision term, as computed by the same code with the direct simulation Monte Carlo (DSMC) algorithm of Bird. A gas of monatomic molecules is considered. These molecules collide in a pairwise fashion according to either the Maxwell or the hard-sphere interaction and reflect from the walls according to the Cercignani-Lampis-Lord model with unity accommodation coefficients. Simulations are performed at pressures from near-free-molecular to near-continuum. Unlike the BGK model, the ES-BGK model produces heat-flux and shear-stress values that both agree closely with the DSMC values at all pressures. However, for both interactions, the ES-BGK model produces molecular-velocity-distribution functions that are qualitatively similar to those determined for the Maxwell interaction from Chapman-Enskog theory for small wall temperature differences and moment-hierarchy theory for large wall temperature differences. Moreover, the ES-BGK model does not produce accurate values of the mass self-diffusion coefficient for either interaction. Nevertheless, given its reasonable accuracy for heat and tangential-momentum transport, its sound theoretical foundation (it obeys the H-theorem), and its available extension to polyatomic molecules, the ES-BGK model may be a useful method for simulating certain classes of single-species noncontinuum gas flows, as Cercignani suggested.

  3. High Resolution Digital Radar Imaging of Rotating Objects

    DTIC Science & Technology

    1980-06-01

    associated with it is called motion compensation. 1.2. Problem Description Consider a rigid body as shown in figure 1.1 rotating with its axis normal to the...vector of an arbitrary point B on the target referenced to the target reference point C as shown in Fig. 3.1.1. The entire rigid body is moving with...relationships. Since x is a vector on a rigid body , its tangential velocity (ixx-) is the only velocity component it has. Hence, Ad _T X. Also from

  4. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    PubMed

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  5. IN-SYNC. III. The Dynamical State of IC 348 - A Super-virial Velocity Dispersion and a Puzzling Sign of Convergence

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Foster, Jonathan B.; Meyer, Michael R.; Tan, Jonathan C.; Nidever, David L.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail

    2015-07-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2-6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s-1 (or 0.64 ± 0.08 km s-1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s-1 arcmin-1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial equilibrium after a recent

  6. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  7. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Phil; HMI Team

    2016-10-01

    The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We

  8. MFL Benchmark Problem 2: Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Etcheverry, J.; Pignotti, A.; Sánchez, G.; Stickar, P.

    2003-03-01

    This experiment involves the measurement of the magnetic flux leaked from a rotating seamless steel tube with two machined notches. The signal measured is the radial component of the leaked field at a fixed point in space, as a function of the notch position, for four values of the liftoff and two notches. As the pipe tangential velocity was varied between 0.23 and 0.62 m/s, the sole observed effect was that of increasing the signal by a value that grows linearly with the velocity and is independent of the notch angular position.

  9. The estimation of tissue loss during tangential hydrosurgical debridement.

    PubMed

    Matsumura, Hajime; Nozaki, Motohiro; Watanabe, Katsueki; Sakurai, Hiroyuki; Kawakami, Shigehiko; Nakazawa, Hiroaki; Matsumura, Izumi; Katahira, Jiro; Inokuchi, Sadaki; Ichioka, Shigeru; Ikeda, Hiroto; Mole, Trevor; Smith, Jennifer; Martin, Robin; Aikawa, Naoki

    2012-11-01

    The preservation of healthy tissue during surgical debridement is desirable as this may improve clinical outcomes. This study has estimated for the first time the amount of tissue lost during debridement using the VERSAJET system of tangential hydrosurgery. A multicenter, prospective case series was carried out on 47 patients with mixed wound types: 21 (45%) burns, 13 (28%) chronic wounds, and 13 (28%) acute wounds. Overall, 44 (94%) of 47 patients achieved appropriate debridement after a single debridement procedure as verified by an independent photographic assessment. The percentage of necrotic tissue reduced from a median of 50% to 0% (P < 0.001). Median wound area and depth increased by only 0.3 cm (6.8%) and 0.5 mm (25%), respectively. Notably, 43 (91%) of 47 wounds did not progress into a deeper compartment, indicating a high degree of tissue preservation.

  10. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    DOE PAGES

    Scott, E. R.; Barchfeld, R.; Riemenschneider, P.; ...

    2016-08-09

    Here, the Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  11. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    NASA Astrophysics Data System (ADS)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow

  12. Study of cross-spectra of velocity components and temperature series in a nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Maqueda, Gregorio; Sastre, Mariano; Viñas, Carmen; Viana, Samuel; Yagüe, Carlos

    2010-05-01

    The main characteristic of the Planetary Boundary Layer is the turbulent flow that can be understood as the motions of many superimposed eddies with different scales, which are very irregular and produce mixing among the atmospheric properties. Spectral analysis is a widely used statistical tool to know the size of eddies into the flow. The Turbulent Kinetic Energy is split in fractions for each scale of eddy by mean the power spectrum of the wind velocity components. Also, the fluctuation of the other variables as temperature, humidity, gases concentrations or material particles presents in the atmosphere can be divided according to the importance of different scales in a similar way than the wind. A Cross-spectrum between two time series is used in meteorology to know their correlation in frequency space. Specially, coespectrum, or real part of cross-spectrum, amplitud and coherence give us many information about the low or high correlation between two variables in a particular frecuency or scale (Stull, 1988). In this work we have investigated cross-spectra of velocity components and temperature measured along the summer 2009 at the CIBA, Research Centre for the Lower Atmosphere, located in Valladolid province (Spain), which is on a quite flat terrain (Cuxart et al., 2000; Viana et al., 2009). In these experimental dataset, among other instrumentation, two sonic anemometers (20 Hz, sampling rate) at 1.5 m and 10 m height are available. Cross-spectra between variables of the two levels, specially, wind vertical component and sonic temperature, under stable stratification are studied in order to improve the knowledge of the proprieties of the momentum and heat fluxes near the ground in the PBL. Nevertheless, power spectral of horizontal components of the wind, at both levels, have been also analysed. The spectra and cross-spectra were performed by mean the Blackman-Tukey method, widely utilised in the time series studies (Blackman & Tukey, 1958) and, where it is

  13. INVESTIGATION OF CONVENTIONAL MEMBRANE AND TANGENTIAL FLOW ULTRAFILTRATION ARTIFACTS AND THEIR APPLICATION TO THE CHARACTERIZATION OF FRESHWATER COLLOIDS

    EPA Science Inventory

    Artifacts associated with the fractionation of colloids in a freshwater sample were investigated for conventional membrane filtration (0.45 micron cutoff), and two tangential flow ultrafiltration cartridges (0.1 micron cutoff and 3000 MW cutoff). Membrane clogging during conventi...

  14. A computer program for performance prediction of tripropellant rocket engines with tangential slot injection

    NASA Technical Reports Server (NTRS)

    Dang, Anthony; Nickerson, Gary R.

    1987-01-01

    For the development of a Heavy Lift Launch Vehicle (HLLV) several engines with different operating cycles and using LOX/Hydrocarbon propellants are presently being examined. Some concepts utilize hydrogen for thrust chamber wall cooling followed by a gas generator turbine drive cycle with subsequent dumping of H2/O2 combustion products into the nozzle downstream of the throat. In the Space Transportation Booster Engine (STBE) selection process the specific impulse will be one of the optimization criteria; however, the current performance prediction programs do not have the capability to include a third propellant in this process, nor to account for the effect of dumping the gas-generator product tangentially inside the nozzle. The purpose is to describe a computer program for accurately predicting the performance of such an engine. The code consists of two modules; one for the inviscid performance, and the other for the viscous loss. For the first module, the two-dimensional kinetics program (TDK) was modified to account for tripropellant chemistry, and for the effect of tangential slot injection. For the viscous loss, the Mass Addition Boundary Layer program (MABL) was modified to include the effects of the boundary layer-shear layer interaction, and tripropellant chemistry. Calculations were made for a real engine and compared with available data.

  15. A three-dimensional model of Tangential YORP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubov, O.; Scheeres, D. J.; Krugly, Yu. N., E-mail: golubov@astron.kharkov.ua

    2014-10-10

    Tangential YORP, or TYORP, has recently been demonstrated to be an important factor in the evolution of an asteroid's rotation state. It is complementary to normal YORP, or NYORP, which used to be considered previously. While NYORP is produced by non-symmetry in the large-scale geometry of an asteroid, TYORP is due to heat conductivity in stones on the surface of the asteroid. To date, TYORP has been studied only in a simplified one-dimensional model, substituting stones with high long walls. This article for the first time considers TYORP in a realistic three-dimensional model, also including shadowing and self-illumination effects viamore » ray tracing. TYORP is simulated for spherical stones lying on regolith. The model includes only five free parameters and the dependence of the TYORP on each of them is studied. The TYORP torque appears to be smaller than previous estimates from the one-dimensional model, but is still comparable to the NYORP torques. These results can be used to estimate TYORP of different asteroids and also as a basis for more sophisticated models of TYORP.« less

  16. SU-E-T-373: Evaluation and Reduction of Contralateral Skin /subcutaneous Dose for Tangential Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Carroll, S; Whitaker, M

    2015-06-15

    Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less

  17. Estimation of Power Consumption in the Circular Sawing of Stone Based on Tangential Force Distribution

    NASA Astrophysics Data System (ADS)

    Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng

    2018-04-01

    Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.

  18. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  19. Individualized Selection of Beam Angles and Treatment Isocenter in Tangential Breast Intensity Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl; Spadola, Sara; Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna

    Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differencesmore » in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or

  20. Dense Velocity Field of Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.

    2017-12-01

    While the GNSS-based crustal deformation studies in Turkey date back to early 1990s, a homogenous velocity field utilizing all the available data is still missing. Regional studies employing different site distributions, observation plans, processing software and methodology not only create reference frame variations but also heterogeneous stochastic models. While the reference frame effect between different velocity fields could easily be removed by estimating a set of rotations, the homogenization of the stochastic models of the individual velocity fields requires a more detailed analysis. Using a rigorous Variance Component Estimation (VCE) methodology, we estimated the variance factors for each of the contributing velocity fields and combined them into a single homogenous velocity field covering whole Turkey. Results show that variance factors between velocity fields including the survey mode and continuous observations can vary a few orders of magnitude. In this study, we present the most complete velocity field in Turkey rigorously combined from 20 individual velocity fields including the 146 station CORS network and totally 1072 stations. In addition, three GPS campaigns were performed along the North Anatolian Fault and Aegean Region to fill the gap between existing velocity fields. The homogenously combined new velocity field is nearly complete in terms of geographic coverage, and will serve as the basis for further analyses such as the estimation of the deformation rates and the determination of the slip rates across main fault zones.

  1. Eulerian adaptive finite-difference method for high-velocity impact and penetration problems

    NASA Astrophysics Data System (ADS)

    Barton, P. T.; Deiterding, R.; Meiron, D.; Pullin, D.

    2013-05-01

    Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell's model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.

  2. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    PubMed

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  4. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  5. Boundary-layer effects in droplet splashing

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel

    2017-11-01

    A drop falling onto a solid substrate will disintegrate into smaller parts when its impact velocity exceeds the so called critical velocity for splashing. Under these circumstances, the very thin liquid sheet ejected tangentially to the solid after the drop touches the substrate, lifts off as a consequence of the aerodynamic forces exerted on it and finally breaks into smaller droplets, violently ejected radially outwards, provoking the splash. Here, the tangential deceleration experienced by the fluid entering the thin liquid sheet is investigated making use of boundary layer theory. The velocity component tangent to the solid, computed using potential flow theory provides the far field boundary condition as well as the pressure gradient for the boundary layer equations. The structure of the flow permits to find a self similar solution of the boundary layer equations. This solution is then used to calculate the boundary layer thickness at the root of the lamella as well as the shear stress at the wall. The splash model presented in, which is slightly modified to account for the results obtained from the boundary layer analysis, provides a very good agreement between the measurements and the predicted values of the critical velocity for the splash.

  6. Flight trajectories with maximum tangential thrust in a central Newtonian field

    NASA Astrophysics Data System (ADS)

    Azizov, A. G.; Korshunova, N. A.

    1983-07-01

    The paper examines the two-dimensional problem of determining the optimal trajectories of a point moving with a limited per-second mass consumption in a central Newtonian field. It is shown that one of the cases in which the variational equations in the Meier formulation can be integrated in quadratures is motion with maximum tangential thrust. Trajectories corresponding to this motion are determined. By way of application, attention is given to the problem of determining the thrust which assures maximum kinetic energy for the point at the moment t = t1, corresponding to the mass consumption M0 - M1, where M0 and M1 are, respectively, the initial and final mass.

  7. Spanwise loading distribution and wake velocity surveys of a semi-span wing

    NASA Technical Reports Server (NTRS)

    Felker, F. F., III; Piziali, R. A.; Gall, J. K.

    1982-01-01

    The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.

  8. Application of two-component phase Doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.

  9. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  10. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  11. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a

  12. Tangential Flow Filtration of Hemoglobin

    PubMed Central

    Sun, Guoyong; Harris, David R.

    2009-01-01

    Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells (bRBCs and hRBCs, respectively) via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P50), and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (α) and beta (β) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the α and β globin chains agreed well with the calculated theoretical mass of the α-and β-globin chains. Taken together, our results demonstrate that HPLC grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers (HBOCs). PMID:19224583

  13. Analysis of In-Flight Structural Failures of P-3C Wing Leading Edge Segments

    DTIC Science & Technology

    1992-06-01

    with published empirical data for tangential velocity and/or pressure coefficient distributions for the NACA 0012 and Eppler E64 airfoils before its use...tangential velocity distribution for the Eppler airfoil . No difference from the NACA 0012 Cp data could be identified. 5. Flight Regime Selection It was...37 1. P-3 Airfoil Section ...... ............ .. 37 2. Program Inputs and Outputs .. ........ .. 37 3. Program Operation

  14. Radial velocities of southern visual multiple stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less

  15. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    PubMed

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  16. Tornadoes and other atmospheric vortices

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.

    1976-01-01

    The growth of random vortices in an atmosphere with buoyant instability and vertical wind shear is studied along with the velocities in a single gravity-driven vortex; a frictionless adiabatic model which is supported by laboratory experiments is first considered. The effects of axial drag, heat transfer, and precipitation-induced downdrafts are then calculated. Heat transfer and axial drag tend to have stabilizing effects; they reduce the downdrafts of updrafts due to buoyancy. It is found that downdrafts or tornadic magnitude might occur in negatively-buoyant columns. The radial-inflow velocity required to maintain a given maximum tangential velocity in a tornado is determined by using a turbulent vortex model. Conditions under which radial-inflow velocities become sufficiently large to produce tangential velocities of tornadic magnitude are determined. The radial velocities in the outer regions, as well as the tangential velocities in the inner regions may be large enough to cause damage. The surface boundary layer, which is a region where large radial inflows can occur, is studied, and the thickness of the radial-inflow friction layer is estimated. A tornado model which involves a rotating parent cloud, as well as buoyancy and precipitation effects, is discussed.

  17. Velocity and scalar fields of turbulent premixed flame in stagnation flow

    NASA Astrophysics Data System (ADS)

    Cho, P.; Law, C. K.; Cheng, R. K.; Shepherd, I. G.

    1988-08-01

    Detailed experimental measurements of the scalar and velocity statistics of premixed methane/air flames stabilized by a stagnation plant are reported. Conditioned and unconditioned velocity of two components and the reaction progress variables are measured by using a two-component laser Doppler velocimetry techniques and Mie scattering techniques, respectively. Experimental conditions cover equivalence ratios of 0.9 and 1.0, incident turbulence intensities of 0.3 to 0.45 m/s, and global stretch rates of 100 to 150 sec sup minus 1. The experimental results are analyzed in the context of the Bray-Moss-Libby flamelet model of these flames. The results indicate that there is no turbulence production within the turbulent flame brush and the second and third order turbulent transport terms are reduced to functions of the difference between the conditioned mean velocity. The result of normalization of these relative velocities by the respective velocity increase across laminar flames suggest that the mean unconditioned velocity profiles are self-similar.

  18. Experiments in Aircraft Roll-Yaw Control using Forebody Tangential Blowing

    NASA Technical Reports Server (NTRS)

    Pedreiro, Nelson

    1997-01-01

    Advantages of flight at high angles of attack include increased maneuverability and lift capabilities. These are beneficial not only for fighter aircraft, but also for future supersonic and hypersonic transport aircraft during take-off and landing. At high angles of attack the aerodynamics of the vehicle are dominated by separation, vortex shedding and possibly vortex breakdown. These phenomena severely compromise the effectiveness of conventional control surfaces. As a result, controlled flight at high angles of attack is not feasible for current aircraft configurations. Alternate means to augment the control of the vehicle at these flight regimes are therefore necessary. The present work investigates the augmentation of an aircraft flight control system by the injection of a thin sheet of air tangentially to the forebody of the vehicle. This method, known as Forebody Tangential Blowing (FTB), has been proposed as an effective means of increasing the controllability of aircraft at high angles of attack. The idea is based on the fact that a small amount of air is sufficient to change the separation lines on the forebody. As a consequence, the strength and position of the vortices are altered causing a change on the aerodynamic loads. Although a very effective actuator, forebody tangential blowing is also highly non-linear which makes its use for aircraft control very difficult. In this work, the feasibility of using FTB to control the roll-yaw motion of a wind tunnel model was demonstrated both through simulations and experimentally. The wind tunnel model used in the experiments consists of a wing-body configuration incorporating a delta wing with 70-degree sweep angle and a cone-cylinder fuselage. The model is equipped with forebody slots through which blowing is applied. There are no movable control surfaces, therefore blowing is the only form of actuation. Experiments were conducted at a nominal angle of attack of 45 degrees. A unique apparatus that constrains

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkaev, N. V.; Siberian Federal University, Krasnoyarsk; Semenov, V. S.

    A new kind of magnetohydrodynamic instability and waves are analyzed for a current sheet in the presence of a small normal magnetic field component varying along the sheet. These waves and instability are related to the existence of two gradients of the tangential (B{sub {tau}}) and normal (B{sub n}) magnetic field components along the normal ({nabla}{sub n}B{sub {tau}}) and tangential ({nabla}{sub {tau}}B{sub n}) directions with respect to the current sheet. The current sheet can be stable or unstable if the multiplication of two magnetic gradients is positive or negative. In the stable region, the kinklike wave mode is interpreted asmore » so-called flapping waves observed in Earth's magnetotail current sheet. The kink wave group velocity estimated for the Earth's current sheet is of the order of a few tens of kilometers per second. This is in good agreement with the observations of the flapping motions of the magnetotail current sheet.« less

  20. Role of friction in vertically oscillated granular materials

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.

    2002-11-01

    We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.

  1. Contact problem on indentation of an elastic half-plane with an inhomogeneous coating by a flat punch in the presence of tangential stresses on a surface

    NASA Astrophysics Data System (ADS)

    Volkov, Sergei S.; Vasiliev, Andrey S.; Aizikovich, Sergei M.; Sadyrin, Evgeniy V.

    2018-05-01

    Indentation of an elastic half-space with functionally graded coating by a rigid flat punch is studied. The half-plane is additionally subjected to distributed tangential stresses. Tangential stresses are represented in a form of Fourier series. The problem is reduced to the solution of two dual integral equations over even and odd functions describing distribution of unknown normal contact stresses. The solutions of these dual integral equations are constructed by the bilateral asymptotic method. Approximated analytical expressions for contact normal stresses are provided.

  2. Mechanisms underlying the perceived angular velocity of a rigidly rotating object.

    PubMed

    Caplovitz, G P; Hsieh, P-J; Tse, P U

    2006-09-01

    The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.

  3. Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rahul; Verth, Gary; Erdélyi, Robertus

    2017-05-10

    Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity componentsmore » using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.« less

  4. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    USGS Publications Warehouse

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  5. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOEpatents

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  6. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand.

    PubMed

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-06-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands - after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and "heavy" topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force -"heavy" topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke.

  7. Modeling Oblique Impact Dynamics of Particle-Laden Nanodroplets

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Qin, Shiyi

    2016-11-01

    A fundamental understanding of the impact dynamics of nanoscopic droplets laden with nanoparticles has important implications for materials printing and thin film processing. Using many-body dissipative particle dynamics (MDPD), we model nanometer sized suspension droplets imping on dry solid substrate with oblique angles, and compare their behavior with pure liquid droplets. Equilibrated floating droplets containing two types of nanoparticles, namely fully-wetted hydrophilic particles and surface-active Janus particles, impact onto the solid surface with varying initial velocities and impact angles. The velocity components in the normal and tangential directions to the substrate defines normal and tangential Reynolds and Weber numbers, which are used to classify impact regimes. Droplets with nanoparticles dispersed in the bulk and covering the droplet surface (resembling liquid marbles) exhibit quite different behavior in the course of impact. We also reveal the influences of substrate wettability and its interaction with nanoparticles on the impact dynamics. In addition, the vapor film beneath an impinging droplet shows no significant effect on the impact dynamics in our MDPD simulations.

  8. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-02-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  9. Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    DeLeon, Rey; Sandusky, Micah; Senocak, Inanc

    2018-06-01

    We present an immersed-boundary method to simulate high-Reynolds-number turbulent flow over the complex terrain of Askervein and Bolund Hills under neutrally-stratified conditions. We reconstruct both the velocity and the eddy-viscosity fields in the terrain-normal direction to produce turbulent stresses as would be expected from the application of a surface-parametrization scheme based on Monin-Obukhov similarity theory. We find that it is essential to be consistent in the underlying assumptions for the velocity reconstruction and the eddy-viscosity relation to produce good results. To this end, we reconstruct the tangential component of the velocity field using a logarithmic velocity profile and adopt the mixing-length model in the near-surface turbulence model. We use a linear interpolation to reconstruct the normal component of the velocity to enforce the impermeability condition. Our approach works well for both the Askervein and Bolund Hills when the flow is attached to the surface, but shows slight disagreement in regions of flow recirculation, despite capturing the flow reversal.

  10. Do Disk Galaxies Have Different Central Velocity Dispersions At A Given Rotation Velocity?

    NASA Astrophysics Data System (ADS)

    Danilovich, Taissa; Jones, H.; Mould, J.; Taylor, E.; Tonini, C.; Webster, R.

    2011-05-01

    Hubble's classification of spiral galaxies was one dimensional. Actually it was 1.5 dimensional, as he distinguished barred spirals. Van den Bergh's was two dimensional: spirals had luminosity classes too. Other schemes are summarized at http://www.daviddarling.info/encyclopedia/G/galaxyclassification.html A more quantitative approach is to classify spiral galaxies by rotation velocity. Their central velocity dispersion (bulge) tends to be roughly one half of their rotation velocity (disk). There is a trend from σ/W = 0.8 to σ/W = 0.2 as one goes from W = 100 to 500 km/s, where W is twice the rotation velocity. But some fraction of spirals have a velocity dispersion up to a factor of two larger than that. In hierarchical galaxy formation models, the relative contributions of σ and W depend on the mass accretion history of the galaxy, which determines the mass distribution of the dynamical components such as disk, bulge and dark matter halo. The wide variety of histories that originate in the hierarchical mass assembly produce at any value of W a wide range of σ/W, that reaches high values in more bulge- dominated systems. In a sense the two classifiers were both right: spirals are mostly one dimensional, but σ/W (bulge to disk ratio) is often larger than average. Is this a signature of merger history?

  11. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications

  12. Velocity spectrum for the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Bastami, Morteza; Soghrat, M. R.

    2018-01-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  13. Tangential symbols: using visual symbolization to teach pharmacological principles of drug addiction to international audiences.

    PubMed

    Giannini, A J

    1993-12-01

    Visual art was used to teach the biopsychiatric model of addiction to audiences in the Caribbean, Europe and Mideast. Art slides were tangentially linked to slides of pharmacological data. Stylistically dense art was processed by the intuitive right brain while spare notational pharmacological data was processed by the intellectual (rationalistic) left brain. Simultaneous presentation of these data enhanced attention and retention. This teaching paradigm was based on the nonliterate methods developed by Medieval architects and refined by Italian Renaissance philosopher, Marsilio Ficino.

  14. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  15. Computational analysis of forebody tangential slot blowing on the high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Gee, Ken

    1995-01-01

    A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.

  16. Movement of heavy particles in tornadoes

    NASA Astrophysics Data System (ADS)

    Ingel, L. Kh.

    2017-07-01

    The horizontal movement of inertial particles in the intensive vortices, where the centrifugal force can be substantially higher than the gravity, is studied analytically. A similar problem was studied earlier for small (Stokes) particles at low Reynolds number, which allow one to be limited to the linear resistance law. It is shown that the previous results to a great extent can be extrapolated to the case of considerably heavier particles (e.g., water droplets with a diameter up to 1 mm at Reynolds numbers up to 103). The nonlinear nature of the resistance, i.e., its dependence on the particle velocity relative to the medium, should be taken into account for such particles. Some general laws are established for particle dynamics. In particular, their tangential velocity is close to the velocity of the medium, while the radial velocity is substantially lower (it is close on the order of magnitude to the geometric mean of the particle tangential velocity and the difference between the latter and the tangential velocity of the medium). The limits of applicability of the results are found, i.e., the restrictions to the size and mass/density of particles.

  17. The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade-Velázquez, Mercedes; Krongold, Yair; Elvis, Martin; Nicastro, Fabrizio; Brickhouse, Nancy; Binette, Luc; Mathur, Smita; Jiménez-Bailón, Elena

    2010-03-01

    We present an analysis of X-ray high-quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra-High Energy Transmission Grating Spectrometer and Low Energy Transmission Grating Spectrometer observations for a total exposure time of 800 ks. The continuum emission (between 0.2 keV and 8 keV) is well represented by a power law (Γ = 1.6) plus a blackbody component (kT = 0.1 keV). We find that the well-known X-ray warm absorber (WA) in this source consists of two different outflow velocity systems. One absorbing system has a velocity of -1110 ± 150 km s-1 and the other of -490 ± 150 km s-1. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high-velocity system consists of two components, one with a temperature of 2.7 ± 0.6 × 106 K, log U = 1.23, and another with a temperature of 5.8 ± 1.0 × 105 K, log U = 0.67. The high-velocity, high-ionization component produces absorption by charge states Fe XXI-XXIV, while the high-velocity, low-ionization component produces absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII. The low-velocity system also required two absorbing components, one with a temperature of 5.8 ± 0.8 × 105 K, log U = 0.67, producing absorption by Ne IX-X, Fe XVII-XX, and O VII-VIII, and the other with a lower temperature of 3.5 ± 0.35 × 104 K and a lower ionization of log U = -0.49, producing absorption by O VI-VII and the Fe VII-XII M-shell Unresolved Transitions Array. Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures (as suggested by a previous analysis) is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that

  18. Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Chernoff, David F.

    1998-09-01

    We use astrometric, distance, and spindown data on pulsars to (1) estimate three-dimensional velocity components, birth distances from the Galactic plane, and ages of individual objects; (2) determine the distribution of space velocities and the scale height of pulsar progenitors; (3) test spindown laws for pulsars; (4) test for correlations between space velocities and other pulsar parameters; and (5) place empirical requirements on mechanisms than can produce high-velocity neutron stars. Our approach incorporates measurement errors, uncertainties in distances, deceleration in the Galactic potential, and differential Galactic rotation. We focus on a sample of proper motion measurements of young (<10 Myr) pulsars whose trajectories may be accurately and simply modeled. This sample of 49 pulsars excludes millisecond pulsars and other objects that may have undergone accretion-driven spinup. We estimate velocity components and birth z distance on a case-by-case basis assuming that the actual age equals the conventional spindown age for a braking index n = 3, no torque decay, and birth periods much shorter than present-day periods. Every sample member could have originated within 0.3 kpc of the Galactic plane while still having reasonable present-day peculiar radial velocities. For the 49 object sample, the scale height of the progenitors is ~0.13 kpc, and the three-dimensional velocities are distributed in two components with characteristic speeds of 175+19-24 km s-1 and 700+300-132 km s-1, representing ~86% and ~14% of the population, respectively. The sample velocities are inconsistent with a single-component Gaussian model and are well described by a two-component Gaussian model but do not require models of additional complexity. From the best-fit distribution, we estimate that about 20% of the known pulsars will escape the Galaxy, assuming an escape speed of 500 km s-1. The best-fit, dual-component model, if augmented by an additional, low-velocity (<50 km s-1

  19. Anisotropic Velocities of Gas Hydrate-Bearing Sediments in Fractured Reservoirs

    USGS Publications Warehouse

    Lee, Myung W.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-01), one of the richest marine gas hydrate accumulations was discovered at drill site NGHP-01-10 in the Krishna-Godavari Basin, offshore of southeast India. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Gas hydrate saturations estimated from P- and S-wave velocities, assuming that gas hydrate-bearing sediments (GHBS) are isotropic, are much higher than those estimated from the pressure cores. To reconcile this difference, an anisotropic GHBS model is developed and applied to estimate gas hydrate saturations. Gas hydrate saturations estimated from the P-wave velocities, assuming high-angle fractures, agree well with saturations estimated from the cores. An anisotropic GHBS model assuming two-component laminated media - one component is fracture filled with 100-percent gas hydrate, and the other component is the isotropic water-saturated sediment - adequately predicts anisotropic velocities at the research site.

  20. GJ 3236 - radial velocity determination

    NASA Astrophysics Data System (ADS)

    Kára, J.; Wolf, M.; Zharikov, S.

    2018-04-01

    We present a new study of low-mass red-dwarf eclipsing binary GJ 3236 using spectroscopic data obtained by the 2.12-m telescope at the San Pedro Mártir Observatory. We resolved radial velocities of both components of the binary and improved determination of the physical parameters of the binary.

  1. Receiver function structure beneath a broad-band seismic station in south Sumatra

    NASA Astrophysics Data System (ADS)

    MacPherson, K. A.; Hidayat, D.; Goh, S.

    2010-12-01

    We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver

  2. Tangential migration of corridor guidepost neurons contributes to anxiety circuits.

    PubMed

    Tinterri, Andrea; Deck, Marie; Keita, Maryama; Mailhes, Caroline; Rubin, Anna Noren; Kessaris, Nicoletta; Lokmane, Ludmilla; Bielle, Franck; Garel, Sonia

    2018-02-15

    In mammals, thalamic axons are guided internally toward their neocortical target by corridor (Co) neurons that act as axonal guideposts. The existence of Co-like neurons in non-mammalian species, in which thalamic axons do not grow internally, raised the possibility that Co cells might have an ancestral role. Here, we investigated the contribution of corridor (Co) cells to mature brain circuits using a combination of genetic fate-mapping and assays in mice. We unexpectedly found that Co neurons contribute to striatal-like projection neurons in the central extended amygdala. In particular, Co-like neurons participate in specific nuclei of the bed nucleus of the stria terminalis, which plays essential roles in anxiety circuits. Our study shows that Co neurons possess an evolutionary conserved role in anxiety circuits independently from an acquired guidepost function. It furthermore highlights that neurons can have multiple sequential functions during brain wiring and supports a general role of tangential migration in the building of subpallial circuits. © 2017 Wiley Periodicals, Inc.

  3. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  4. Component restraint system

    DOEpatents

    Blake, John C.

    1983-05-24

    An object restraint system is provided with a collar for gripping the object and a plurality of struts attached to the collar and to anchor means by universal-type joints, the struts being arranged in tangential relation about the collar.

  5. Computational Investigation of Tangential Slot Blowing on a Generic Chined Forebody

    NASA Technical Reports Server (NTRS)

    Agosta-Greenman, Roxana M.; Gee, Ken; Cummings, Russell M.; Schiff, Lewis B.

    1995-01-01

    The effect of tangential slot blowing on the flowfield about a generic chined forebody at high angles of attack is investigated numerically using solutions of the thin-layer, Reynolds-averaged, Navier-Stokes equations. The effects of jet mass now ratios, angle of attack, and blowing slot location in the axial and circumferential directions are studied. The computed results compare well with available wind-tunnel experimental data. Computational results show that for a given mass now rate, the yawing moments generated by slot blowing increase as the body angle of attack increases. It is observed that greater changes in the yawing moments are produced by a slot located closest to the lip of the nose. Also, computational solutions show that inboard blowing across the top surface is more effective at generating yawing moments than blowing outboard from the bottom surface.

  6. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  7. Beyond plate tectonics - Looking at plate deformation with space geodesy

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas H.; Minster, J. Bernard

    1988-01-01

    The requirements that must be met by space-geodetic systems in order to constrain the horizontal secular motions associated with the geological deformation of the earth's surface are explored. It is suggested that in order to improve existing plate-motion models, the tangential components of relative velocities on interplate baselines must be resolved to an accuracy of less than 3 mm/yr. Results indicate that measuring the velocities between crustal blocks to + or - 5 mm/yr on 100-km to 1000-km scales can produce geologically significant constraints on the integrated deformation rates across continental plate-boundary zones such as the western United States.

  8. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  9. Radial velocities of K-M dwarfs and local stellar kinematics

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartašiūtė, S.; Boyle, R. P.; Deveikis, V.; Raudeliūnas, S.; Upgren, A. R.

    2016-12-01

    Aims: The goal of this paper is to present complete radial-velocity data for the spectroscopically selected McCormick sample of nearby K-M dwarfs and, based on these and supplementary data, to determine the space-velocity distributions of late-type stars in the solar neighborhood. Methods: We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. Combining radial-velocity data with Hipparcos/Tycho-2 astrometry we calculated the space-velocity components and parameters of the galactic orbits in a three-component model potential for the stars in the sample, that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. Results: We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability, along with the catalog of U,V,W velocities and Galactic orbital parameters for a total of 1088 K-M stars which are used in the present kinematic analysis. Of these, 146 stars were identified as possible candidate members of the known nearby kinematic groups and suspected subgroups. The distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction ( 3%) of stars with the thick disk kinematics. The kinematic structure gives evidence that the bulk of K-M type stars in the immediate solar vicinity represents a dynamically relaxed stellar population. The star MCC 869 is found to be on a retrograde Galactic orbit (V = -262 km s-1) of low inclination (4°) and can be a member of stellar stream of some dissolved structure. The Sun's velocity with respect to the Local

  10. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  11. A statistical investigation of the single-point pdf of velocity and vorticity based on direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Mortazavi, M.; Kollmann, W.; Squires, K.

    1987-01-01

    Vorticity plays a fundamental role in turbulent flows. The dynamics of vorticity in turbulent flows and the effect on single-point closure models were investigated. The approach was to use direct numerical simulations of turbulent flows to investigate the pdf of velocity and vorticity. The preliminary study of homogeneous shear flow has shown that the expectation of the fluctuating pressure gradient, conditioned with a velocity component, is linear in the velocity component, and that the coefficient is independent of velocity and vorticity. In addition, the work shows that the expectation of the pressure gradient, conditioned with a vorticity component, is essentially zero.

  12. Viscous-Inviscid Interactions over Transonic Tangentially Blown Airfoils.

    DTIC Science & Technology

    1982-04-01

    analysis, computational fluid dynamics, asymptotic analysis. 20. RSTRACT fContinue on reverse side if neceseery and Identify by block number) A viscous...development of boundary layer and wall jet velocity profiles over airfoil. Profiles for upper surface shown in upper part of figure; lower surface values in...lower part of figure .......................... 33 6. Streanwise development of velocity profiles in wake for M = 0.75, a = 1, CJ = 0.055

  13. Signals embedded in the radial velocity noise. Periodic variations in the τ Ceti velocities

    NASA Astrophysics Data System (ADS)

    Tuomi, M.; Jones, H. R. A.; Jenkins, J. S.; Tinney, C. G.; Butler, R. P.; Vogt, S. S.; Barnes, J. R.; Wittenmyer, R. A.; O'Toole, S.; Horner, J.; Bailey, J.; Carter, B. D.; Wright, D. J.; Salter, G. S.; Pinfield, D.

    2013-03-01

    Context. The abilities of radial velocity exoplanet surveys to detect the lowest-mass extra-solar planets are currently limited by a combination of instrument precision, lack of data, and "jitter". Jitter is a general term for any unknown features in the noise, and reflects a lack of detailed knowledge of stellar physics (asteroseismology, starspots, magnetic cycles, granulation, and other stellar surface phenomena), as well as the possible underestimation of instrument noise. Aims: We study an extensive set of radial velocities for the star HD 10700 (τ Ceti) to determine the properties of the jitter arising from stellar surface inhomogeneities, activity, and telescope-instrument systems, and perform a comprehensive search for planetary signals in the radial velocities. Methods: We performed Bayesian comparisons of statistical models describing the radial velocity data to quantify the number of significant signals and the magnitude and properties of the excess noise in the data. We reached our goal by adding artificial signals to the "flat" radial velocity data of HD 10700 and by seeing which one of our statistical noise models receives the greatest posterior probabilities while still being able to extract the artificial signals correctly from the data. We utilised various noise components to assess properties of the noise in the data and analyse the HARPS, AAPS, and HIRES data for HD 10700 to quantify these properties and search for previously unknown low-amplitude Keplerian signals. Results: According to our analyses, moving average components with an exponential decay with a timescale from a few hours to few days, and Gaussian white noise explains the jitter the best for all three data sets. Fitting the corresponding noise parameters results in significant improvements of the statistical models and enables the detection of very weak signals with amplitudes below 1 m s-1 level in our numerical experiments. We detect significant periodicities that have no

  14. The Velocity Distribution of Isolated Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for

  15. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  16. Seismic Wave Propagation from Underground Chemical Explosions: Sensitivity to Velocity and Thickness of a Weathered Layer

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ezzedine, S. M.

    2017-12-01

    Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada

  17. Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma

    NASA Astrophysics Data System (ADS)

    Shagayda, Andrey; Tarasov, Alexey

    2017-10-01

    The electron velocity distribution function in the low-pressure discharges with the crossed electric and magnetic fields, which occur in magnetrons, plasma accelerators, and Hall thrusters with a closed electron drift, is not Maxwellian. A deviation from equilibrium is caused by a large electron mean free path relative to the Larmor radius and the size of the discharge channel. In this study, we derived in the relaxation approximation the analytical expression of the electron velocity distribution function in a weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence of the electron density and temperature gradients in the direction of the electric field. The solution was obtained in the stationary approximation far from boundary surfaces, when diffusion and mobility are determined by the classical effective collision frequency of electrons with ions and atoms. The moments of the distribution function including the average velocity, the stress tensor, and the heat flux were calculated and compared with the classical hydrodynamic expressions. It was shown that a kinetic correction to the drift velocity stems from a contribution of the off-diagonal component of the stress tensor. This correction becomes essential if the drift velocity in the crossed electric and magnetic fields would be comparable to the thermal velocity of electrons. The electron temperature has three different components at a nonzero effective collision frequency and two different components in the limit when the collision frequency tends to zero. It is shown that, in the presence of ionization collisions, the components of the heat flux have additives that are not related to the temperature gradient, and arise because of the electron drift.

  18. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  19. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry.

    PubMed

    Thompson, Michael W; Atchley, Anthony A

    2005-04-01

    Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes. The axial component of fluid velocity is measured along the resonator axis, across the diameter, and as a function of acoustic amplitude. The velocity signals are postprocessed using the Fourier averaging method [Sonnenberger et al., Exp. Fluids 28, 217-224 (2000)]. Equations are derived for determining the uncertainties in the resultant Fourier coefficients. The time-averaged velocity-signal components are seen to be contaminated by significant errors due to the LDA/BSA system. In order to avoid these errors, the Lagrangian streaming velocities are determined using the time-harmonic signal components and the arrival times of the velocity samples. The observed Lagrangian streaming velocities are consistent with Rott's theory [N. Rott, Z. Angew. Math. Phys. 25, 417-421 (1974)], indicating that the dependence of viscosity on temperature is important. The onset of streaming is observed to occur within approximately 5 s after switching on the acoustic field.

  20. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    salt dome at slightly shallower depth ˜0.35-0.65 km, with preferred isotropic volume-increase MT solutions. We find that GFs computed using the 3D velocity model generally result in better fits to the data than GFs computed using 1D velocity models, especially for the smaller amplitude tangential and vertical components, and result in better resolution of event locations. The dominant seismicity during 24-30 July 2012 is characterized by steady occurrence of seismic events with similar locations and MT solutions at a near-characteristic inter-event time. The steady activity is sometimes interrupted by tremor-like sequences of multiple events in rapid succession, followed by quiet periods of little of no seismic activity, in turn followed by the resumption of seismicity with a reduced seismic moment-release rate. The dominant volume-increase MT solutions and the steady features of the seismicity indicate a crack-valve-type source mechanism possibly driven by pressurized natural gas.

  1. Purification of Hemoglobin by Tangential Flow Filtration with Diafiltration

    PubMed Central

    Elmer, Jacob; Harris, David R.; Sun, Guoyong; Palmer, Andre F.

    2009-01-01

    A recent study by Palmer et al. (2009) demonstrated that tangential flow filtration (TFF) can be used to produce HPLC-grade bovine and human hemoglobin (Hb). In this current study, we assessed the quality of bovine Hb (bHb) purified by introducing a 10 L batch-mode diafiltration step to the previously mentioned TFF Hb purification process. bHb was purified from bovine red blood cells (RBCs) by filtering clarified RBC lysate through 50 nm (stage I) & 500 kDa (stage II) hollow fiber (HF) membranes. The filtrate was then passed through a 100 kDa (stage III) HF membrane with or without an additional 10 L diafiltration step to potentially remove additional small molecular weight impurities. Protein assays, SDS-PAGE, and LC-MS of the purified bHb (stage III retentate) reveal that addition of a diafiltration step has no effect on bHb purity or yield; however, it does increase the methemoglobin level and oxygen affinity of purified bHb. Therefore, we conclude that no additional benefit is gained from diafiltration at stage III and a three-stage TFF process is sufficient to produce HPLC-grade bHb. PMID:19621471

  2. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE PAGES

    Peterson, B. J.; Sano, R.; Reinke, M. L.; ...

    2016-08-03

    The InfraRed imaging Video Bolometer measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 μm Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm 2 for a time resolutionmore » of 33 (20) ms. Synthetic images derived from SOLPS data using the IRVB geometry show peak signal levels ranging from ~0.8 - ~80 (~0.36 - ~26) mW/cm 2.« less

  3. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  4. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  5. A double-gaussian, percentile-based method for estimating maximum blood flow velocity.

    PubMed

    Marzban, Caren; Illian, Paul R; Morison, David; Mourad, Pierre D

    2013-11-01

    Transcranial Doppler sonography allows for the estimation of blood flow velocity, whose maximum value, especially at systole, is often of clinical interest. Given that observed values of flow velocity are subject to noise, a useful notion of "maximum" requires a criterion for separating the signal from the noise. All commonly used criteria produce a point estimate (ie, a single value) of maximum flow velocity at any time and therefore convey no information on the distribution or uncertainty of flow velocity. This limitation has clinical consequences especially for patients in vasospasm, whose largest flow velocities can be difficult to measure. Therefore, a method for estimating flow velocity and its uncertainty is desirable. A gaussian mixture model is used to separate the noise from the signal distribution. The time series of a given percentile of the latter, then, provides a flow velocity envelope. This means of estimating the flow velocity envelope naturally allows for displaying several percentiles (e.g., 95th and 99th), thereby conveying uncertainty in the highest flow velocity. Such envelopes were computed for 59 patients and were shown to provide reasonable and useful estimates of the largest flow velocities compared to a standard algorithm. Moreover, we found that the commonly used envelope was generally consistent with the 90th percentile of the signal distribution derived via the gaussian mixture model. Separating the observed distribution of flow velocity into a noise component and a signal component, using a double-gaussian mixture model, allows for the percentiles of the latter to provide meaningful measures of the largest flow velocities and their uncertainty.

  6. A compositional origin to ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Brown, Samuel P.; Thorne, Michael S.; Miyagi, Lowell; Rost, Sebastian

    2015-02-01

    We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential travel times and amplitudes of the postcursor arrival ScSP and the precursor arrival SPcP relative to ScP. We compare our measurements to a database of 340,000 synthetic seismograms finding that these data are best fit by a ULVZ model with an S wave velocity reduction of 24%, a P wave velocity reduction of 23%, a thickness of 8.5 km, and a density increase of 6%. This 1:1 VS:VP velocity decrease is commensurate with a ULVZ compositional origin and is most consistent with highly iron enriched ferropericlase.

  7. Power of performance of the thumb adductor muscles: effect of laterality and gender.

    PubMed

    Gutnik, Boris; Nash, Derek; Ricacho, Norberto; Hudson, Grant; Skirius, Jonas

    2006-01-01

    The aim of this work was to originally measure mechanical power output of the thumb adductor muscles during fast adduction of the thumb in the horizontal plane. This information will contribute to biomechanical guidelines to help clinicians, sport medicine and rehabilitation specialists in the objective functional evaluation of abnormalities of thumb adductors. Participants performed 20 fast adductions in response to audio signals. Maximum and average angular velocity and angular acceleration were measured. Tangential components of these parameters were then derived. The force of adduction was obtained from the tangential acceleration and the mass of the rotational system. The power was then calculated as the product of the force of adduction and average tangential velocity during the acceleration phase of adduction. All young and untrained males and females were strictly right handed. There was no significant difference in power between dominant and nondominant muscles for either males or females, but males developed significantly more power than females. Because adduction was performed at maximal speed, these data may be explained by the influence of parallel and series elastic elements in the muscle, as well as by influence of fast twitch fibers. Power may be used as a clinical index of the effectiveness of muscle contraction. The similarity of power outputs from dominant and nondominant thumb adductor muscles of right-handers can suggest a classical Bernstein approach. This theoretical approach purports that peripheral factors can distort central commands projected to dominant and nondominant extremities.

  8. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training.

    PubMed

    González-Badillo, Juan José; Rodríguez-Rosell, David; Sánchez-Medina, Luis; Gorostiaga, Esteban M; Pareja-Blanco, Fernando

    2014-01-01

    The purpose of this study was to compare the effect on strength gains of two isoinertial resistance training (RT) programmes that only differed in actual concentric velocity: maximal (MaxV) vs. half-maximal (HalfV) velocity. Twenty participants were assigned to a MaxV (n = 9) or HalfV (n = 11) group and trained 3 times per week during 6 weeks using the bench press (BP). Repetition velocity was controlled using a linear velocity transducer. A complementary study (n = 10) aimed to analyse whether the acute metabolic (blood lactate and ammonia) and mechanical response (velocity loss) was different between the MaxV and HalfV protocols used. Both groups improved strength performance from pre- to post-training, but MaxV resulted in significantly greater gains than HalfV in all variables analysed: one-repetition maximum (1RM) strength (18.2 vs. 9.7%), velocity developed against all (20.8 vs. 10.0%), light (11.5 vs. 4.5%) and heavy (36.2 vs. 17.3%) loads common to pre- and post-tests. Light and heavy loads were identified with those moved faster or slower than 0.80 m · s(-1) (∼ 60% 1RM in BP). Lactate tended to be significantly higher for MaxV vs. HalfV, with no differences observed for ammonia which was within resting values. Both groups obtained the greatest improvements at the training velocities (≤ 0.80 m · s(-1)). Movement velocity can be considered a fundamental component of RT intensity, since, for a given %1RM, the velocity at which loads are lifted largely determines the resulting training effect. BP strength gains can be maximised when repetitions are performed at maximal intended velocity.

  9. Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland

    2018-04-01

    We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity

  10. Formation of turbulence around flow singularities

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1983-01-01

    The formation of turbulence around singular points of a flow such as stagnation points, tangential jumps of velocity, are analyzed. It is proved that turbulence is inevitably generated by the rear stagnation point, but cannot be generated by the nose stagnation point of a streamlined body. Special attention is paid to an evolution of turbulence induced by a tangential jump of velocity. A qualitative analysis of a turbulent flow between two rotating concentric cylinders and around a streamlined cylinder is given.

  11. Coordination pattern of baseball pitching among young pitchers of various ages and velocity levels.

    PubMed

    Chen, Hsiu-Hui; Liu, Chiang; Yang, Wen-Wen

    2016-09-01

    This study compared the whole-body movement coordination of pitching among 72 baseball players of various ages and velocity levels. Participants were classified as senior, junior, and little according to their age, with each group comprising 24 players. The velocity levels of the high-velocity (the top eight) and low-velocity (the lowest eight) groups were classified according to their pitching velocity. During pitching, the coordinates of 15 markers attached to the major joints of the whole-body movement system were collected for analysis. Sixteen kinematic parameters were calculated to compare the groups and velocity levels. Principal component analysis (PCA) was conducted to quantify the coordination pattern of pitching movement. The results were as follows: (1) five position and two velocity parameters significantly differed among the age groups, and two position and one velocity parameters significantly differed between the high- and low-velocity groups. (2) The coordination patterns of pitching movement could be described using three components, of which the eigenvalues and contents varied according to age and velocity level. In conclusion, the senior and junior players showed greater elbow angular velocity, whereas the little players exhibited a wider shoulder angle only at the beginning of pitching. The players with high velocity exhibited higher trunk and shoulder rotation velocity. The variations among groups found using PCA and kinematics parameter analyses were consistent.

  12. Photon number dependent group velocity in vacuum induced transparency

    NASA Astrophysics Data System (ADS)

    Lauk, Nikolai; Fleischhauer, Michael

    2015-05-01

    Vacuum induced transparency (VIT) is an effect which occurs in an ensemble of three level atoms in a Λ configuration that interact with two quantized fields. Coupling of one transition to a cavity mode induces transparency for the second field on the otherwise opaque transition similar to the well known EIT effect. In the strong coupling regime even an empty cavity leads to transparency, in contrast to EIT where the presence of a strong control field is required. This transparency is accompanied by a reduction of the group velocity for the propagating field. However, unlike in EIT the group velocity in VIT depends on the number of incoming photons, i.e. different photon number components propagate with different velocities. Here we investigate the possibility of using this effect to spatially separate different photon number components of an initially coherent pulse. We present the results of our calculations and discuss a possible experimental realization.

  13. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25velocity is greatly influenced by the mass-asymmetry as well as by the different rapidity regions. In addition to this, transverse component of angular velocity behaves differently for participant and spectators too.

  14. Empirical velocity profiles for galactic rotation curves

    NASA Astrophysics Data System (ADS)

    López Fune, E.

    2018-04-01

    A unified parametrization of the circular velocity, which accurately fits 850 galaxy rotation curves without needing in advance the knowledge of the luminous matter components, nor a fixed dark matter halo model, is proposed. A notable feature is that the associated gravitational potential increases with the distance from the galaxy centre, giving rise to a length-scale indicating a finite size of a galaxy, and after, the Keplerian fall-off of the parametrized circular velocity is recovered according to Newtonian gravity, making possible the estimation of the total mass enclosed by the galaxy.

  15. Butterfly velocities for holographic theories of general spacetimes

    DOE PAGES

    Nomura, Yasunori; Salzetta, Nico

    2017-10-01

    The butterfly velocity characterizes the spread of correlations in a quantum system. Recent work has provided a method of calculating the butterfly velocity of a class of boundary operators using holographic duality. Utilizing this and a presumed extension of the canonical holographic correspondence of AdS/CFT, we investigate the butterfly velocities of operators with bulk duals living in general spacetimes. We analyze some ubiquitous issues in calculating butterfly velocities using the bulk effective theory, and then extend the previously proposed method to include operators in entanglement shadows. Here in this paper, we explicitly compute butterfly velocities for bulk local operators inmore » the holographic theory of flat Friedmann-Robertson-Walker spacetimes and find a universal scaling behavior for the spread of operators in the boundary theory, independent of dimension and fluid components. This result may suggest that a Lifshitz field theory with z = 4 is the appropriate holographic dual for these spacetimes.« less

  16. River velocities from sequential multispectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.

    2013-06-01

    We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.

  17. Correlations between Angular Velocities in Selected Joints and Velocity of Table Tennis Racket during Topspin Forehand and Backhand

    PubMed Central

    Bańkosz, Ziemowit; Winiarski, Sławomir

    2018-01-01

    The aim of this study was to determine the correlations between angular velocities in individual joints and racket velocity for different topspin forehand and backhand strokes in table tennis. Ten elite female table tennis players participated, presenting different kinds of topspin forehands and backhands – after a no-spin ball (FH1, BH1), after a backspin ball (FH2, BH2) and “heavy” topspin (FH3, BH3). Range of motion was measured with the BTS Smart-E (BTS Bioengineering, Milan, Italy) motion analysis system with a specially developed marker placement protocol for the upper body parts and an acoustic sensor attached to the racket to identify ball-racket contact. In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint correlated with racket velocity. Racket velocity was correlated with angular velocities (hip extension on the playing side; hip flexion on the opposite side; ankle flexion) in the case of a topspin forehand performed with maximal force –”heavy” topspin (FH3). In backhand strokes the velocities of arm abduction and shoulder girdle rotation towards the playing side correlated with racket velocity. The angular velocity of internal arm rotation and adduction in shoulder joint may be important components of a coordinated stroke, whilst angular velocity can substantially affect the racket speed when one is changing the type of stroke. Key points The aim of this study was to calculate correlations between racket velocity and the angular velocities of individual joints and for variants of topspin forehand and backhand strokes in table tennis. A novel model was used to estimate range of motion (specially developed placement protocol for upper body markers and identification of a ball-racket contact using an acoustic sensor attached to the racket). In forehand strokes angular velocities of internal arm rotation and adduction in shoulder joint were correlated with racket velocity. Correlations between racket

  18. Curvature and tangential deflection of discrete arcs: a theory based on the commutator of scatter matrix pairs and its application to vertex detection in planar shape data.

    PubMed

    Anderson, I M; Bezdek, J C

    1984-01-01

    This paper introduces a new theory for the tangential deflection and curvature of plane discrete curves. Our theory applies to discrete data in either rectangular boundary coordinate or chain coded formats: its rationale is drawn from the statistical and geometric properties associated with the eigenvalue-eigenvector structure of sample covariance matrices. Specifically, we prove that the nonzero entry of the commutator of a piar of scatter matrices constructed from discrete arcs is related to the angle between their eigenspaces. And further, we show that this entry is-in certain limiting cases-also proportional to the analytical curvature of the plane curve from which the discrete data are drawn. These results lend a sound theoretical basis to the notions of discrete curvature and tangential deflection; and moreover, they provide a means for computationally efficient implementation of algorithms which use these ideas in various image processing contexts. As a concrete example, we develop the commutator vertex detection (CVD) algorithm, which identifies the location of vertices in shape data based on excessive cummulative tangential deflection; and we compare its performance to several well established corner detectors that utilize the alternative strategy of finding (approximate) curvature extrema.

  19. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  20. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall andmore » not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.« less

  1. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K.; SOKENDAI

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a timemore » resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.« less

  2. Kinematic principles of primate rotational vestibulo-ocular reflex. I. Spatial organization of fast phase velocity axes

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    The spatial organization of fast phase velocity vectors of the vestibulo-ocular reflex (VOR) was studied in rhesus monkeys during yaw rotations about an earth-horizontal axis that changed continuously the orientation of the head relative to gravity ("barbecue spit" rotation). In addition to a velocity component parallel to the rotation axis, fast phases also exhibited a velocity component that invariably was oriented along the momentary direction of gravity. As the head rotated through supine and prone positions, torsional components of fast phase velocity axes became prominent. Similarly, as the head rotated through left and right ear-down positions, fast phase velocity axes exhibited prominent vertical components. The larger the speed of head rotation the greater the magnitude of this fast phase component, which was collinear with gravity. The main sequence properties of VOR fast phases were independent of head position. However, peak amplitude as well as peak velocity of fast phases were both modulated as a function of head orientation, exhibiting a minimum in prone position. The results suggest that the fast phases of vestibulo-ocular reflexes not only redirect gaze and reposition the eye in the direction of head motion but also reorient the eye with respect to earth-vertical when the head moves relative to gravity. As further elaborated in the companion paper, the underlying mechanism could be described as a dynamic, gravity-dependent modulation of the coordinates of ocular rotations relative to the head.

  3. Visualization of flow by vector analysis of multidirectional cine MR velocity mapping.

    PubMed

    Mohiaddin, R H; Yang, G Z; Kilner, P J

    1994-01-01

    We describe a noninvasive method for visualization of flow and demonstrate its application in a flow phantom and in the great vessels of healthy volunteers and patients with aortic and pulmonary arterial disease. The technique uses multidirectional MR velocity mapping acquired in selected planes. Maps of orthogonal velocity components were then processed into a graphic form immediately recognizable as flow. Cine MR velocity maps of orthogonal velocity components in selected planes were acquired in a flow phantom, 10 healthy volunteers, and 13 patients with dilated great vessels. Velocities were presented by multiple computer-generated streaks whose orientation, length, and movement corresponded to velocity vectors in the chosen plane. The velocity vector maps allowed visualization of complex patterns of primary and secondary flow in the thoracic aorta and pulmonary arteries. The technique revealed coherent, helical forward blood movements in the normal thoracic aorta during midsystole and a reverse flow during early diastole. Abnormal flow patterns with secondary vortices were seen in patients with dilated arteries. The potential of MR velocity vector mapping for in vitro and in vivo visualization of flow patterns is demonstrated. Although this study was limited to two-directional flow in a single anatomical plane, the method provides information that might advance our understanding of the human vascular system in health and disease. Further developments to reduce the acquisition time and the handling and presenting of three-directional velocity data are required to enhance the capability of this method.

  4. The Elusive Third Component

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2004-01-01

    The historical development of techniques for measuring three velocity components using laser velocimetry is presented. The techniques are described and their relative merits presented. Many of the approaches currently in use based on the fringe laser velocimeter have yielded inaccurate measurements of turbulence intensity in the on-axis component. A possible explanation for these inaccuracies is presented along with simulation results.

  5. Observations of velocity shear driven plasma turbulence

    NASA Technical Reports Server (NTRS)

    Kintner, P. M., Jr.

    1976-01-01

    Electrostatic and magnetic turbulence observations from HAWKEYE-1 during the low altitude portion of its elliptical orbit over the Southern Hemisphere are presented. The magnetic turbulence is confined near the auroral zone and is similar to that seen at higher altitudes by HEOS-2 in the polar cusp. The electrostatic turbulence is composed of a background component with a power spectral index of 1.89 + or - .26 and an intense component with a power spectral index of 2.80 + or - .34. The intense electrostatic turbulence and the magnetic turbulence correlate with velocity shears in the convective plasma flow. Since velocity shear instabilities are most unstable to wave vectors perpendicular to the magnetic field, the shear correlated turbulence is anticipated to be two dimensional in character and to have a power spectral index of 3 which agrees with that observed in the intense electrostatic turbulence.

  6. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    PubMed Central

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  7. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    PubMed

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. VizieR Online Data Catalog: Radial velocities of K-M dwarfs (Sperauskas+, 2016)

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartasiute, S.; Boyle, R. P.; Deveikis, V.; Raudeliunas, S.; Upgren, A. R.

    2016-09-01

    We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability. Of these, 776 stars are from the MCC sample and 173 stars are K-M dwarfs from the CNS4. The catalog consists of two parts: Table 2 lists the mean radial velocities, and Table 2a contains individual measurements. Our radial velocities agree with the best published standard stars to within 0.7km/s in precision. Combining these and supplementary radial-velocity data with Hipparcos/Tycho-2 astrometry (Table 4 summarizes input observational data) we calculated the space velocity components and parameters of the galactic orbits in a three-component model potential by Johnston K.V. et al. (1995ApJ...451..598J) for a total of 1088 K-M dwarfs (Table 5), that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. We identified 146 stars as possible candidate members of the classical moving groups and known or suspected subgroups (Table 7). We show that the distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane for nearby K-M dwarfs are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (3%) of stars with the thick disk kinematics. (7 data files).

  9. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  10. Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Silberman, L.; Dekel, A.; Eldar, A.; Zehavi, I.

    2001-08-01

    We allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities and obtain ~35% lower values for the cosmological density parameter Ωm and for the amplitude of mass density fluctuations σ8Ω0.6m. This result is obtained under the assumption that the power spectrum in the linear regime is of the flat ΛCDM model (h=0.65, n=1, COBE normalized) with only Ωm as a free parameter. Since the likelihood is driven by the nonlinear regime, we ``break'' the power spectrum at kb~0.2 (h-1 Mpc)-1 and fit a power law at k>kb. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors and a linear relation between velocity and density. Tests using mock catalogs that properly simulate nonlinear effects demonstrate that this procedure results in a reduced bias and a better fit. We find for the Mark III and SFI data Ωm=0.32+/-0.06 and 0.37+/-0.09, respectively, with σ8Ω0.6m=0.49+/-0.06 and 0.63+/-0.08, in agreement with constraints from other data. The quoted 90% errors include distance errors and cosmic variance, for fixed values of the other parameters. The improvement in the likelihood due to the nonlinear correction is very significant for Mark III and moderately significant for SFI. When allowing deviations from ΛCDM, we find an indication for a wiggle in the power spectrum: an excess near k~0.05 (h-1 Mpc)-1 and a deficiency at k~0.1 (h-1 Mpc)-1, or a ``cold flow.'' This may be related to the wiggle seen in the power spectrum from redshift surveys and the second peak in the cosmic microwave background (CMB) anisotropy. A χ2 test applied to modes of a principal component analysis (PCA) shows that the nonlinear procedure improves the goodness of fit and reduces a spatial gradient that was of concern in the purely linear analysis. The PCA allows us to address spatial features of the data and to evaluate and fine-tune the theoretical and error models

  11. Improved ALE mesh velocities for complex flows

    DOE PAGES

    Bakosi, Jozsef; Waltz, Jacob I.; Morgan, Nathaniel Ray

    2017-05-31

    A key choice in the development of arbitrary Lagrangian-Eulerian solution algorithms is how to move the computational mesh. The most common approaches are smoothing and relaxation techniques, or to compute a mesh velocity field that produces smooth mesh displacements. We present a method in which the mesh velocity is specified by the irrotational component of the fluid velocity as computed from a Helmholtz decomposition, and excess compression of mesh cells is treated through a noniterative, local spring-force model. This approach allows distinct and separate control over rotational and translational modes. In conclusion, the utility of the new mesh motion algorithmmore » is demonstrated on a number of 3D test problems, including problems that involve both shocks and significant amounts of vorticity.« less

  12. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  13. A study of electric field components in shallow water and water half-space models in seabed logging

    NASA Astrophysics Data System (ADS)

    Rostami, Amir; Soleimani, Hassan; Yahya, Noorhana; Nyamasvisva, Tadiwa Elisha; Rauf, Muhammad

    2016-11-01

    Seabed logging (SBL) is an electromagnetic (EM) method to detect hydrocarbon (HC) laid beneath the seafloor, which is a development of marine controlled source electromagnetic (CSEM) method. CSEM is a method to show resistivity log of geological layers, transmitting ultra-low frequency EM wave. In SBL a net of receivers, placed on the seafloor, detect reflected and refracted EM wave by layers with different resistivity. Contrast of electrical resistivity of layers impacts on amplitude and phase of the EM wave response. The most indispensable concern in SBL is to detect guided wave via high resistive layer under the seafloor that can be an HC reservoir. Guided wave by HC creates a remarkable difference in received signal when HC reservoir does not exist. While the major contribution of received EM wave in large offset, especially in shallow water environment, is airwave, which is refracted by sea surface due to extremely high resistivity of atmosphere, airwave can affect received guided wave, dramatically. Our objective for this work is to compare HC delineation of tangential and normal components of electric field in shallow water area, using finite element method simulation. Will be reported that, in shallow water environment, minor contribution of air wave in normal component of E field (Ey) versus its major contribution in the tangential component (Ex), causes a considerable contrast on HC delineation of Ey for deeply buried reservoirs (more than 3000 m), while Ex is unable to show different contrasts of received data for with and without HC media at the same condition.

  14. Rayleigh-wave phase-velocity maps and three-dimensional shear velocity structure of the western US from local non-plane surface wave tomography

    USGS Publications Warehouse

    Pollitz, F.F.; Snoke, J. Arthur

    2010-01-01

    We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the first step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by defining a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local fits to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images confirm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat flow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high

  15. VITRECTOMY FOR INTERMEDIATE AGE-RELATED MACULAR DEGENERATION ASSOCIATED WITH TANGENTIAL VITREOMACULAR TRACTION: A CLINICOPATHOLOGIC CORRELATION.

    PubMed

    Ziada, Jean; Hagenau, Felix; Compera, Denise; Wolf, Armin; Scheler, Renate; Schaumberger, Markus M; Priglinger, Siegfried G; Schumann, Ricarda G

    2018-03-01

    To describe the morphologic characteristics of the vitreomacular interface in intermediate age-related macular degeneration associated with tangential traction due to premacular membrane formation and to correlate with optical coherence tomography (OCT) findings and clinical data. Premacular membrane specimens were removed sequentially with the internal limiting membrane from 27 eyes of 26 patients with intermediate age-related macular degeneration during standard vitrectomy. Specimens were processed for immunocytochemical staining of epiretinal cells and extracellular matrix components. Ultrastructural analysis was performed using transmission electron microscopy. Spectral domain optical coherence tomography images and patient charts were evaluated in retrospect. Immunocytochemistry revealed hyalocytes and myofibroblasts as predominant cell types. Ultrastructural analysis demonstrated evidence of vitreoschisis in all eyes. Myofibroblasts with contractile properties were observed to span between folds of the internal limiting membrane and vitreous cortex collagen. Retinal pigment epithelial cells or inflammatory cells were not detected. Mean visual acuity (Snellen) showed significant improvement from 20/72 ± 20/36 to 20/41 ± 20/32 (P < 0.001) after a mean follow-up period of 19 months (median, 17 months). During this period, none of the eyes required anti-vascular endothelial growth factor therapy. Fibrocellular premacular proliferation in intermediate age-related macular degeneration predominantly consists of vitreous collagen, hyalocytes, and myofibroblasts with contractile properties. Vitreoschisis and vitreous-derived cells appear to play an important role in traction formation of this subgroup of eyes. In patients with intermediate age-related macular degeneration and contractile premacular membrane, release of traction by vitrectomy with internal limiting membrane peeling results in significantly functional and anatomical improvement.

  16. Hot Film Velocity Measurements Downstream of a Swept Backward-Facing Step

    DTIC Science & Technology

    1990-08-01

    WR ~4’ nol w of tdl. O64" $l"uwe. suite 424 i lV~lZdO . 00 to effice at UAqeww0fl" S4 aud ’mpeom t, 0edUOM ’l~c 004 S~ a lleq~k Dc 2010). I. AGENCY USE ...Velocity measurements were made using a single component hot film anemometer. Results from this study indicate the following: the flow in the recirculation...velocity component parallel to the step face retains a finite magnitude. Coles’ law of the wall and wake was used to corralate the data from this study. The

  17. MEMS based Doppler velocity measurement system

    NASA Astrophysics Data System (ADS)

    Shin, Minchul

    The design, fabrication, modeling and characterization of a capacitive micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar array are described. Continuous wave operation in a narrowband was chosen in order to maximize range, as it allows for better rejection of broadband noise. The sensor array has a 160-185 kHz resonant frequency to achieve a 10 degree beamwidth. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, characterization of the cMUT sensor with a variety of testing procedures is provided. Laser Doppler vibrometry (LDV), beampattern, reflection, and velocity testing characterize the performance of the sensors. The sensor is capable of measuring the velocity of a moving specular reflector with a resolution of 5 cm/s, an update rate of 0.016 second, and a range of 1.5 m.

  18. Scramjet fuel injector design parameters and considerations: Development of a two-dimensional tangential fuel injector with constant pressure at the flame

    NASA Technical Reports Server (NTRS)

    Agnone, A. M.

    1972-01-01

    The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.

  19. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, S., E-mail: nishimura.shin@lhd.nifs.ac.jp; Nakamura, Y.; Nishioka, K.

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiringmore » flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.« less

  20. Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons

    NASA Astrophysics Data System (ADS)

    Wang, Tianju; Zhong, Zhong; Wang, Ju

    2018-05-01

    Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.

  1. The kinematic component of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Chodorowski, Michał J.

    2011-05-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.

  2. LDV survey of cavitation and resonance effect on the precessing vortex rope dynamics in the draft tube of Francis turbines

    NASA Astrophysics Data System (ADS)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2016-11-01

    The large-scale penetration of the electrical grid by intermittent renewable energy sources requires a continuous operating range extension of hydropower plants. This causes the formation of unfavourable flow patterns in the draft tube of turbines and pump-turbines. At partial load operation, a precessing cavitation vortex rope is formed at the Francis turbine runner outlet, acting as an excitation source for the hydraulic system. In case of resonance, the resulting high-amplitude pressure pulsations can put at risk the stability of the machine and of the electrical grid to which it is connected. It is therefore crucial to understand and accurately simulate the underlying physical mechanisms in such conditions. However, the exact impact of cavitation and hydro-acoustic resonance on the flow velocity fluctuations in the draft tube remains to be established. The flow discharge pulsations expected to occur in the draft tube in resonance conditions have for instance never been verified experimentally. In this study, two-component Laser Doppler Velocimetry is used to investigate the axial and tangential velocity fluctuations at the runner outlet of a reduced scale physical model of a Francis turbine. The investigation is performed for a discharge equal to 64 % of the nominal value and three different pressure levels in the draft tube, including resonance and cavitation-free conditions. Based on the convective pressure fluctuations induced by the vortex precession, the periodical velocity fluctuations over one typical precession period are recovered by phase averaging. The impact of cavitation and hydro-acoustic resonance on both axial and tangential velocity fluctuations in terms of amplitude and phase shift is highlighted for the first time. It is shown that the occurrence of resonance does not have significant effects on the draft tube velocity fields, suggesting that the synchronous axial velocity fluctuations are surprisingly negligible compared to the velocity

  3. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hip joint kinetics in the table tennis topspin forehand: relationship to racket velocity.

    PubMed

    Iino, Yoichi

    2018-04-01

    The purpose of this study was to determine hip joint kinetics during a table tennis topspin forehand, and to investigate the relationship between the relevant kinematic and kinetic variables and the racket horizontal and vertical velocities at ball impact. Eighteen male advanced table tennis players hit cross-court topspin forehands against backspin balls. The hip joint torque and force components around the pelvis coordinate system were determined using inverse dynamics. Furthermore, the work done on the pelvis by these components was also determined. The peak pelvis axial rotation velocity and the work done by the playing side hip pelvis axial rotation torque were positively related to the racket horizontal velocity at impact. The sum of the work done on the pelvis by the backward tilt torques and the upward joint forces was positively related to the racket vertical velocity at impact. The results suggest that the playing side hip pelvis axial rotation torque exertion is important for acquiring a high racket horizontal velocity at impact. The pelvis backward tilt torques and upward joint forces at both hip joints collectively contribute to the generation of the racket vertical velocity, and the mechanism for acquiring the vertical velocity may vary among players.

  5. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  6. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  7. Sessile multidroplets and salt droplets under high tangential electric fields

    PubMed Central

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  8. A Velocity Distribution Model for Steady State Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1996-01-01

    Consider a box that is filled with an ideal gas and that is aligned along Cartesian coordinates (x, y, z) having until length in the 'y' direction and unspecified length in the 'x' and 'z' directions. Heat is applied uniformly over the 'hot' end of the box (y = 1) and is removed uniformly over the 'cold' end (y = O) at a constant rate such that the ends of the box are maintained at temperatures T(sub 0) at y = O and T(sub 1) at y = 1. Let U, V, and W denote the respective velocity components of a molecule inside the box selected at some random time and at some location (x, y, z). If T(sub 0) = T(sub 1), then U, Y, and W are mutually independent and Gaussian, each with mean zero and variance RT(sub 0), where R is the gas constant. When T(sub 0) does not equal T(sub 1) the velocity components are not independent and are not Gaussian. Our objective is to characterize the joint distribution of the velocity components U, Y, and W as a function of y, and, in particular, to characterize the distribution of V given y. It is hoped that this research will lead to an increased physical understanding of the nature of turbulence.

  9. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  10. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  11. Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests

    NASA Technical Reports Server (NTRS)

    Kourous, Helen E.; Seacholtz, Richard G.

    1995-01-01

    A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).

  12. Indirect assessment of bulk strain soliton velocity in opaque solids

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Beltukov, Y. M.; Petrov, N. V.; Samsonov, A. M.; Semenova, I. V.

    2018-03-01

    This paper presents a methodology allowing for determination of strain soliton velocity in opaque solid materials. The methodology is based on the analysis of soliton evolution in a layer of a transparent material adhesively bonded to the layer of a material under study. It is shown that the resulting soliton velocity in the complex waveguide equals to the arithmetic mean of soliton velocities in the two component materials. The suggested methodology is best suited for analysis of materials with relatively close elastic parameters and can be applied in research of nonlinear wave processes in opaque composites on the basis of transparent matrices.

  13. Tangential blowing for control of strong normal shock - Boundary layer interactions on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.; Sanders, B. W.

    1982-01-01

    The use of tangential blowing from a row of holes in an aft facing step is found to provide good control of the ramp boundary layer, normal shock interaction on a fixed geometry inlet over a wide range of inlet mass flow ratios. Ramp Mach numbers of 1.36 and 1.96 are investigated. The blowing geometry is found to have a significant effect on system performance at the highest Mach number. The use of high-temperature air in the blowing system, however, has only a slight effect on performance. The required blowing rates are significantly high for the most severe test conditions. In addition, the required blowing coefficient is found to be proportional to the normal shock pressure rise.

  14. Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Clendaniel, Richard A.; Lasker, David M.; Minor, Lloyd B.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20-150 degrees /s) and 10 Hz (peak velocities: 20 and 100 degrees /s) was measured pre- and postadaptation. Adaptation was induced over 4 h with x0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.

  15. VizieR Online Data Catalog: Radial velocities of 1 Gem (Lane+, 2014)

    NASA Astrophysics Data System (ADS)

    Lane, B. F.; Muterspaugh, M. W.; Griffin, R. F.; Scarfe, C. D.; Fekel, F. C.; Williamson, M. H.; Eaton, J. A.; Shao, M.; Colavita, M. M.; Konacki, M.

    2016-05-01

    Extensive radial-velocity measurements of the 1 Gem system have been obtained in four separate campaigns spanning 40yr, including data from eight different instruments. Between 1969 and 2009 R.F.G. acquired a total of 128 observations of 1 Gem using the original radial-velocity spectrometer at Cambridge; a second-generation, computerized instrument at Palomar; the CORAVEL spectrometer at Haute Provence Observatory (OHP), and most recently, the Cambridge CORAVEL. The "Cambridge CORAVEL" operates at the Coude focus of the 36inch reflector on the home site of the Cambridge Observatories, Madingley Road, Cambridge, England. The Cambridge and Palomar data are referred to as data set A, while the OHP data are labeled set B. The data for components A and Ba are provided in Table1. A series of observations of 1 Gem has been obtained by C.D.S. with the Dominion Astrophysical Observatory (DAO) radial-velocity spectrometer. Observations were begun early in 1980 and continued until the end of 2003. The DAO velocities of components A and Ba are listed in Table2. The total number of acceptable velocities from DAO radial-velocity scanner observations is 123 of the primary star and 107 of the brighter component of the close pair. The third component was not detectable in the DAO traces. We identify the DAO observations as data set C. >From 1983 through 2009 F.C.F. obtained observations at the Kitt Peak National Observatory (KPNO) with the 0.9m coude feed telescope, coude spectrograph, and several different CCD detectors. All of the spectrograms were acquired with a Texas Instruments (TI) CCD except for five that were obtained in 1983 with an RCA CCD and a single observation in 2008 September with a Tektronix CCD. All those observations were centered near 6430Å and had typical signal-to-noise ratios of about 250. The numerous TI CCD spectra have a wavelength range of just 84Å and a resolution of 0.21Å. The 86 velocities of component A and 80 of component Ba are listed in Table3

  16. Slip control design of electric vehicle using indirect Dahlin Adaptive Pid

    NASA Astrophysics Data System (ADS)

    Fauzi, I. R.; Koko, F.; Kirom, M. R.

    2016-11-01

    In this paper the problem to be solved is to build a slip control on a wheel that may occur in an electric car wheel. Slip is the difference in vehicle velocity and wheel tangential velocity and to be enlarged when the torque given growing. Slip can be reduced by controlling the torque of the wheel so that the wheel tangential speed does not exceed the vehicle speed. The experiment in this paper is a simulation using MATLAB Simulink and using Adaptive control. The response adaptive PID control more quickly 1.5 s than PID control and can controlled wheel tangential speed close to the vehicle velocity on a dry asphalt, wet asphalt, snow and ice surface sequent at time 2s, 4s, 10s, and 50s. The maximum acceleration of the vehicle (V) on the surface of the dry asphalt, wet asphalt, snow, and ice surface sequent at 8.9 m/s2, 6.2 m/s2, 2.75 m/s2, and 0.34 m/s2.

  17. Communication: Time- and space-sliced velocity map electron imaging

    NASA Astrophysics Data System (ADS)

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-01

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  18. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    NASA Astrophysics Data System (ADS)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  19. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  20. Prediction of S-wave velocity using complete ensemble empirical mode decomposition and neural networks

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Hachay, Olga; Zaourar, Naima

    2017-04-01

    One of the key elements in hydrocarbon reservoirs characterization is the S-wave velocity (Vs). Since the traditional estimating methods often fail to accurately predict this physical parameter, a new approach that takes into account its non-stationary and non-linear properties is needed. In this view, a prediction model based on complete ensemble empirical mode decomposition (CEEMD) and a multiple layer perceptron artificial neural network (MLP ANN) is suggested to compute Vs from P-wave velocity (Vp). Using a fine-to-coarse reconstruction algorithm based on CEEMD, the Vp log data is decomposed into a high frequency (HF) component, a low frequency (LF) component and a trend component. Then, different combinations of these components are used as inputs of the MLP ANN algorithm for estimating Vs log. Applications on well logs taken from different geological settings illustrate that the predicted Vs values using MLP ANN with the combinations of HF, LF and trend in inputs are more accurate than those obtained with the traditional estimating methods. Keywords: S-wave velocity, CEEMD, multilayer perceptron neural networks.

  1. Full waveform inversion using a decomposed single frequency component from a spectrogram

    NASA Astrophysics Data System (ADS)

    Ha, Jiho; Kim, Seongpil; Koo, Namhyung; Kim, Young-Ju; Woo, Nam-Sub; Han, Sang-Mok; Chung, Wookeen; Shin, Sungryul; Shin, Changsoo; Lee, Jaejoon

    2018-06-01

    Although many full waveform inversion methods have been developed to construct velocity models of subsurface, various approaches have been presented to obtain an inversion result with long-wavelength features even though seismic data lacking low-frequency components were used. In this study, a new full waveform inversion algorithm was proposed to recover a long-wavelength velocity model that reflects the inherent characteristics of each frequency component of seismic data using a single-frequency component decomposed from the spectrogram. We utilized the wavelet transform method to obtain the spectrogram, and the decomposed signal from the spectrogram was used as transformed data. The Gauss-Newton method with the diagonal elements of an approximate Hessian matrix was used to update the model parameters at each iteration. Based on the results of time-frequency analysis in the spectrogram, numerical tests with some decomposed frequency components were performed using a modified SEG/EAGE salt dome (A-A‧) line to demonstrate the feasibility of the proposed inversion algorithm. This demonstrated that a reasonable inverted velocity model with long-wavelength structures can be obtained using a single frequency component. It was also confirmed that when strong noise occurs in part of the frequency band, it is feasible to obtain a long-wavelength velocity model from the noise data with a frequency component that is less affected by the noise. Finally, it was confirmed that the results obtained from the spectrogram inversion can be used as an initial velocity model in conventional inversion methods.

  2. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    NASA Astrophysics Data System (ADS)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  3. Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah R.; Valluri, Monica; Hattori, Kohei; Debattista, Victor P.; Bell, Eric F.; Stinson, Greg; Christensen, Charlotte R.; Brooks, Alyson; Quinn, Thomas R.; Governato, Fabio

    2018-02-01

    The velocity anisotropy parameter, β, is a measure of the kinematic state of orbits in the stellar halo, which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for β as a function of radius from three suites of simulations, including accretion-only and cosmological hydrodynamic simulations. We find that the two types of simulations are consistent and predict strong radial anisotropy (< β > ∼ 0.7) for Galactocentric radii greater than 10 kpc. Previous observations of β for the MW’s stellar halo claim a detection of an isotropic or tangential “dip” at r ∼ 20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of “dips” in β. We find that dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z ∼ 1 can result in a present-day low (isotropic to tangential) value of β over a broad range of radii and angles. While all of these mechanisms are plausible drivers for the β dip observed in the MW, each mechanism in the simulations has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of β(r) is required for measuring the mass of the MW halo, we note that significant transient dips in β could cause an overestimate of the halo’s mass when using spherical Jeans equation modeling.

  4. A new GNSS velocity field for Fennoscandia and comparison to GIA models (Invited)

    NASA Astrophysics Data System (ADS)

    Kierulf, H. P.; Simpson, M. J.; Steffen, H.; Lidberg, M.

    2013-12-01

    In Fennoscandia, the process of Glacial Isostatic Adjustment (GIA) causes ongoing crustal deformation. The vertical and horizontal movements of the Earth can be measured to a high degree of precision using Global Navigation Satellite System (GNSS). The GNSS network in Fennoscandia has gradually been established since the early 1990s and today contains a dense network well suited for geophysical studies and especially GIA. We will present new velocity estimates for the Fennoscandian and North-European GNSS network using the processing package GAMIT/GLOBK. GNSS measurements have proved to be a good tool to constrain and validate GIA models. However, reference frame uncertainties, plate tectonics as well as intra-plate deformations might decontaminate the results. Different ITRFs have had large discrepancies, especially in the TZ-component, which have made the geophysical interpretation of GNSS results difficult. In GIA areas the uncertainties in the TZ component almost directly affect the height component which makes constraining of GIA models less reliable. Plate tectonics introduces large horizontal velocities which are hard to distinguish from horizontal GIA-induced velocities. We will present a new approach where our GNSS velocity field is directly realized in a GIA frame. With this approach, the effect of systematic errors in the reference frames and 'biasing' signal from the plate tectonics will be reduced to a minimum for our GIA results. Moreover, we are able to provide consistent GIA-free plate velocities for the Eurasian plate.

  5. Tangential Bicortical Locked Fixation Improves Stability in Vancouver B1 Periprosthetic Femur Fractures: A Biomechanical Study.

    PubMed

    Lewis, Gregory S; Caroom, Cyrus T; Wee, Hwabok; Jurgensmeier, Darin; Rothermel, Shane D; Bramer, Michelle A; Reid, John Spence

    2015-10-01

    The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared with unicortical screws. This biomechanical study compares the stability of 2 of these newer constructs to previous methods. Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either (1) cerclage cables, (2) locked unicortical screws, (3) a composite of locked screws and cables, or tangentially directed bicortical locking screws using either (4) a stainless steel locking compression plate system with a Locking Attachment Plate (Synthes) or (5) a titanium alloy Non-Contact Bridging system (Zimmer). Specimens were tested to failure in either axial or torsional quasistatic loading modes (n = 3) after 20 moderate load preconditioning cycles. Stiffness, maximum force, and failure mechanism were determined. Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other 3 constructs in torsional loading (P < 0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. Proximal fixation stability is likely improved with the use of bicortical locking screws as compared with traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures.

  6. Tangential Bicortical Locked Fixation Improves Stability in Vancouver B1 Periprosthetic Femur Fractures: A Biomechanical Study

    PubMed Central

    Lewis, Gregory S.; Caroom, Cyrus T.; Wee, Hwabok; Jurgensmeier, Darin; Rothermel, Shane D.; Bramer, Michelle A.; Reid, J. Spence

    2015-01-01

    Objectives The biomechanical difficulty in fixation of a Vancouver B1 periprosthetic fracture is purchase of the proximal femoral segment in the presence of the hip stem. Several newer technologies provide the ability to place bicortical locking screws tangential to the hip stem with much longer lengths of screw purchase compared to unicortical screws. This biomechanical study compares the stability of two of these newer constructs to previous methods. Methods Thirty composite synthetic femurs were prepared with cemented hip stems. The distal femur segment was osteotomized, and plates were fixed proximally with either: (1) cerclage cables; (2) locked unicortical screws; (3) a composite of locked screws and cables; or tangentially directed bicortical locking screws using either (4) a stainless steel LCP system with a Locking Attachment Plate (Synthes), or (5) a titanium alloy NCB system (Zimmer). Specimens were tested to failure in either axial or torsional quasi-static loading modes (n = 3) after 20 moderate load pre-conditioning cycles. Stiffness, maximum force, and failure mechanism were determined. Results Bicortical constructs resisted higher (by an average of at least 27%) maximum forces than the other three constructs in torsional loading (p<0.05). Cables constructs exhibited lower maximum force than all other constructs, in both axial and torsional loading. The bicortical titanium construct was stiffer than the bicortical stainless steel construct in axial loading. Conclusions Proximal fixation stability is likely improved with the use of bicortical locking screws as compared to traditional unicortical screws and cable techniques. In this study with a limited sample size, we found the addition of cerclage cables to unicortical screws may not offer much improvement in biomechanical stability of unstable B1 fractures. PMID:26053467

  7. Tangential flow ultrafiltration for detection of white spot syndrome virus (WSSV) in shrimp pond water.

    PubMed

    Alavandi, S V; Ananda Bharathi, R; Satheesh Kumar, S; Dineshkumar, N; Saravanakumar, C; Joseph Sahaya Rajan, J

    2015-06-15

    Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The vertical structure of tangential winds in tropical cyclones: Observations, theory, and numerical simulations

    NASA Astrophysics Data System (ADS)

    Stern, Daniel P.

    The vertical structure of the tangential wind field in tropical cyclones is investigated through observations, theory, and numerical simulations. First, a dataset of Doppler radar wind swaths obtained from NOAA/AOML/HRD is used to create azimuthal mean tangential wind fields for 7 storms on 17 different days. Three conventional wisdoms of vertical structure are reexamined: the outward slope of the Radius of Maximum Winds (RMW) decreases with increasing intensity, the slope increases with the size of the RMW, and the RMW is a surface of constant absolute angular momentum (M). The slopes of the RMW and of M surfaces are objectively determined. The slopes are found to increase linearly with the size of the low-level RMW, and to be independent of the intensity of the storm. While the RMW is approximately an M surface, M systematically decreases with height along the RMW. The steady-state analytical theory of Emanuel (1986) is shown to make specific predictions regarding the vertical structure of tropical cyclones. It is found that in this model, the slope of the RMW is a linear function of its size and is independent of intensity, and that the RMW is almost exactly an M surface. A simple time-dependent model which is governed by the same assumptions as the analytical theory yields the same results. Idealized hurricane simulations are conducted using the Weather Research and Forecasting (WRF) model. The assumptions of Emanuel's theory, slantwise moist neutrality and thermal wind balance, are both found to be violated. Nevertheless, the vertical structure of the wind field itself is generally well predicted by the theory. The percentage rate at which the winds decay with height is found to be nearly independent of both size and intensity, in agreement with observations and theory. Deviations from this decay profile are shown to be due to gradient wind imbalance. The slope of the RMW increases linearly with its size, but is systematically too large compared to

  9. Interface equation and viscosity contrast in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casademunt, J.; Jasnow, D.; Hernandez-Machado, A.

    1992-05-20

    In this paper, the authors derive an integro-differential equation for the evolution of the interface separating two immiscible viscous fluids in a Hele-Shaw cell with a channel geometry, for arbitrary viscosity contrast. The authors' equation differs from a previous one obtained by a vortex-sheet formulation of the problem, in that the normal component of the interface velocity is formally decoupled from the gauge-dependent tangential part. The result is thus a closed integral equation for the normal velocity. The authors briefly comment on the advantages of such a formulation and implement an alternative computational algorithm based on it. Preliminary numerical resultsmore » confirm a highly inefficient finger competition in the zero viscosity contrast limit.« less

  10. Modelling the Velocity Field in a Regular Grid in the Area of Poland on the Basis of the Velocities of European Permanent Stations

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Kłos, Anna; Grzempowski, Piotr; Kontny, Bernard

    2014-06-01

    The paper presents the results of testing the various methods of permanent stations' velocity residua interpolation in a regular grid, which constitutes a continuous model of the velocity field in the territory of Poland. Three packages of software were used in the research from the point of view of interpolation: GMT ( The Generic Mapping Tools), Surfer and ArcGIS. The following methods were tested in the softwares: the Nearest Neighbor, Triangulation (TIN), Spline Interpolation, Surface, Inverse Distance to a Power, Minimum Curvature and Kriging. The presented research used the absolute velocities' values expressed in the ITRF2005 reference frame and the intraplate velocities related to the NUVEL model of over 300 permanent reference stations of the EPN and ASG-EUPOS networks covering the area of Europe. Interpolation for the area of Poland was done using data from the whole area of Europe to make the results at the borders of the interpolation area reliable. As a result of this research, an optimum method of such data interpolation was developed. All the mentioned methods were tested for being local or global, for the possibility to compute errors of the interpolated values, for explicitness and fidelity of the interpolation functions or the smoothing mode. In the authors' opinion, the best data interpolation method is Kriging with the linear semivariogram model run in the Surfer programme because it allows for the computation of errors in the interpolated values and it is a global method (it distorts the results in the least way). Alternately, it is acceptable to use the Minimum Curvature method. Empirical analysis of the interpolation results obtained by means of the two methods showed that the results are identical. The tests were conducted using the intraplate velocities of the European sites. Statistics in the form of computing the minimum, maximum and mean values of the interpolated North and East components of the velocity residuum were prepared for all

  11. Velocity-resolved [Ne III] from X-ray irradiated Sz 102 microjets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chun-Fan; Shang, Hsien; Walter, Frederick M.

    2014-05-10

    Neon emission lines are good indicators of high-excitation regions close to a young stellar system because of their high ionization potentials and large critical densities. We have discovered [Ne III] λ3869 emission from the microjets of Sz 102, a low-mass young star in Lupus III. Spectroastrometric analyses of two-dimensional [Ne III] spectra obtained from archival high-dispersion (R ≈ 33, 000) Very Large Telescope/UVES data suggest that the emission consists of two velocity components spatially separated by ∼0.''3, or a projected distance of ∼60 AU. The stronger redshifted component is centered at ∼ + 21 km s{sup –1} with a linemore » width of ∼140 km s{sup –1}, and the weaker blueshifted component at ∼ – 90 km s{sup –1} with a line width of ∼190 km s{sup –1}. The two components trace velocity centroids of the known microjets and show large line widths that extend across the systemic velocity, suggesting their potential origins in wide-angle winds that may eventually collimate into jets. Optical line ratios indicate that the microjets are hot (T ≲ 1.6 × 10{sup 4} K) and ionized (n{sub e} ≳ 5.7 × 10{sup 4} cm{sup –3}). The blueshifted component has ∼13% higher temperature and ∼46% higher electron density than the redshifted counterpart, forming a system of an asymmetric pair of jets. The detection of the [Ne III] λ3869 line with the distinct velocity profile suggests that the emission originates in flows that may have been strongly ionized by deeply embedded hard X-ray sources, most likely generated by magnetic processes. The discovery of [Ne III] λ3869 emission along with other optical forbidden lines from Sz 102 supports the picture of wide-angle winds surrounding magnetic loops in the close vicinity of the young star. Future high-sensitivity X-ray imaging and high angular-resolution optical spectroscopy may help confirm the picture proposed.« less

  12. Experimental investigation on the effects of swirling flow on augmentor performance

    NASA Astrophysics Data System (ADS)

    Tan, Haoyuan; Huang, Xianjian

    1991-06-01

    This paper describes an investigation on the effect of centrifugal force distributions on swirl augmentor performance. The experiments were conducted on the flow drag, temperature-distribution efficiency in the swirl augmentor model with different tangential velocity profiles. Four tangential velocity distributions considered are the Rankine vortex, forced vortex, free vortex, and the constant-angle vortex. The results show that the flow drag of the Rankine vortex swirler is the smallest one, and, in a swirl augmentor where flame is stabilized by using centrifugal force, the combustion efficiency can reach 90 percent or over, though the swirl number is low (S = 0.25).

  13. Structure Optimization of a Grain Impact Piezoelectric Sensor and Its Application for Monitoring Separation Losses on Tangential-Axial Combine Harvesters

    PubMed Central

    Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang

    2015-01-01

    Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice. PMID:25594592

  14. Structure optimization of a grain impact piezoelectric sensor and its application for monitoring separation losses on tangential-axial combine harvesters.

    PubMed

    Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang

    2015-01-14

    Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice.

  15. Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection.

    PubMed

    Nagy, Peter B; Simonetti, Francesco; Instanes, Geir

    2014-09-01

    Recent improvements in tomographic reconstruction techniques generated a renewed interest in short-range ultrasonic guided wave inspection for real-time monitoring of internal corrosion and erosion in pipes and other plate-like structures. Emerging evidence suggests that in most cases the fundamental asymmetric A0 mode holds a distinct advantage over the earlier market leader fundamental symmetric S0 mode. Most existing A0 mode inspections operate at relatively low inspection frequencies where the mode is highly dispersive therefore very sensitive to variations in wall thickness. This paper examines the potential advantages of increasing the inspection frequency to the so-called constant group velocity (CGV) point where the group velocity remains essentially constant over a wide range of wall thickness variation, but the phase velocity is still dispersive enough to allow accurate wall thickness assessment from phase angle measurements. This paper shows that in the CGV region the crucial issue of temperature correction becomes especially simple, which is particularly beneficial when higher-order helical modes are also exploited for tomography. One disadvantage of working at such relatively high inspection frequency is that, as the slower A0 mode becomes faster and less dispersive, the competing faster S0 mode becomes slower and more dispersive. At higher inspection frequencies these modes cannot be separated any longer based on their vibration polarization only, which is mostly tangential for the S0 mode while mostly normal for the A0 at low frequencies, as the two modes become more similar as the frequency increases. Therefore, we propose a novel method for suppressing the unwanted S0 mode based on the Poisson effect of the material by optimizing the angle of inclination of the equivalent transduction force of the Electromagnetic Acoustic Transducers (EMATs) used for generation and detection purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  17. Airborne microwave radar measurements of surface velocity in a tidally-driven inlet

    NASA Astrophysics Data System (ADS)

    Farquharson, G.; Thomson, J. M.

    2012-12-01

    A miniaturized dual-beam along-track interferometric (ATI) synthetic aperture radar (SAR), capable of measuring two components of surface velocity at high resolution, was operated during the 2012 Rivers and Inlets Experiment (RIVET) at the New River Inlet in North Carolina. The inlet is predominantly tidally-driven, with little upstream river discharge. Surface velocities in the inlet and nearshore region were measured during ebb and flood tides during a variety of wind and offshore wave conditions. The radar-derived surface velocities range from around ±2~m~s1 during times of maximum flow. We compare these radar-derived surface velocities with surface velocities measured with drifters. The accuracy of the radar-derived velocities is investigated, especially in areas of large velocity gradients where along-track interferometric SAR can show significant differences with surface velocity. The goal of this research is to characterize errors in along-track interferometric SAR velocity so that ATI SAR measurements can be coupled with data assimilative modeling with the goal of developing the capability to adequately constrain nearshore models using remote sensing measurements.

  18. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  19. The effect of the charge exchange source on the velocity and 'temperature' distributions and their anisotropies in the earth's exosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Rohrbaugh, R. P.; Tinsley, B. A.

    1981-01-01

    The velocity distribution of atomic hydrogen in the earth's exosphere is calculated as a function of altitude and direction taking into account both the classic exobase source and the higher-altitude plasmaspheric charge exchange source. Calculations are performed on the basis of a Monte Carlo technique in which random ballistic trajectories of individual atoms are traced through a three-dimensional grid of audit zones, at which relative concentrations and momentum or energy fluxes are obtained. In the case of the classical exobase source alone, the slope of the velocity distribution is constant only for the upward radial velocity component and increases dramatically with altitude for the incoming radial and transverse velocity components, resulting in a temperature decrease. The charge exchange source, which produces the satellite hydrogen component and the hot ballistic and escape components of the exosphere, is found to enhance the wings of the velocity distributions, however this effect is not sufficient to overcome the temperature decreases at altitudes above one earth radius. The resulting global model of the hydrogen exosphere may be used as a realistic basis for radiative transfer calculations.

  20. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic

  1. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowal, Grzegorz; Lazarian, A., E-mail: kowal@astro.wisc.ed, E-mail: lazarian@astro.wisc.ed

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field referencemore » frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.« less

  2. St 2-22 - Another Symbiotic Star with High-Velocity Bipolar Jets

    NASA Astrophysics Data System (ADS)

    Tomov, T.; Zamanov, R.; Gałan, C.; Pietrukowicz, P.

    2017-09-01

    We report the detection of high-velocity components in the wings of Hα emission line in spectra of symbiotic binary star St 2-22 obtained in 2005. This finding encouraged us to start the present investigation in order to show that this poorly-studied object is a jet-producing system. We have used high-resolution optical and low-resolution near-infrared spectra, as well as available optical and infrared photometry, to evaluate some physical parameters of the St 2-22 components and characteristics of the jets. We confirm that St 2-22 is a S-type symbiotic star. Our results demonstrate that an unnoticed outburst, similar to those in classical symbiotic systems, occurred in the first half of 2005. During the outburst, collimated bipolar jets were ejected by the hot component of St 2-22 with an average velocity of about 1700 km/s.

  3. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  4. Velocity ratio and its application to predicting velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2003-01-01

    The velocity ratio of water-saturated sediment derived from the Biot-Gassmann theory depends mainly on the Biot coefficient?a property of dry rock?for consolidated sediments with porosity less than the critical porosity. With this theory, the shear moduli of dry sediments are the same as the shear moduli of water-saturated sediments. Because the velocity ratio depends on the Biot coefficient explicitly, Biot-Gassmann theory accurately predicts velocity ratios with respect to differential pressure for a given porosity. However, because the velocity ratio is weakly related to porosity, it is not appropriate to investigate the velocity ratio with respect to porosity (f). A new formulation based on the assumption that the velocity ratio is a function of (1?f)n yields a velocity ratio that depends on porosity, but not on the Biot coefficient explicitly. Unlike the Biot-Gassmann theory, the shear moduli of water-saturated sediments depend not only on the Biot coefficient but also on the pore fluid. This nonclassical behavior of the shear modulus of water-saturated sediment is speculated to be an effect of interaction between fluid and the solid matrix, resulting in softening or hardening of the rock frame and an effect of velocity dispersion owing to local fluid flow. The exponent n controls the degree of softening/hardening of the formation. Based on laboratory data measured near 1 MHz, this theory is extended to include the effect of differential pressure on the velocity ratio by making n a function of differential pressure and consolidation. However, the velocity dispersion and anisotropy are not included in the formulation.

  5. Near Surface Seismic Hazard Characterization in the Presence of High Velocity Contrasts

    NASA Astrophysics Data System (ADS)

    Gribler, G.; Mikesell, D.; Liberty, L. M.

    2017-12-01

    We present new multicomponent surface wave processing techniques that provide accurate characterization of near-surface conditions in the presence of large lateral or vertical shear wave velocity boundaries. A common problem with vertical component Rayleigh wave analysis in the presence of high contrast subsurface conditions is Rayleigh wave propagation mode misidentification due to an overlap of frequency-phase velocity domain dispersion, leading to an overestimate of shear wave velocities. By using the vertical and horizontal inline component signals, we isolate retrograde and prograde particle motions to separate fundamental and higher mode signals, leading to more accurate and confident dispersion curve picks and shear wave velocity estimates. Shallow, high impedance scenarios, such as the case with shallow bedrock, are poorly constrained when using surface wave dispersion information alone. By using a joint inversion of dispersion and horizontal-to-vertical (H/V) curves within active source frequency ranges (down to 3 Hz), we can accurately estimate the depth to high impedance boundaries, a significant improvement compared to the estimates based on dispersion information alone. We compare our approach to body wave results that show comparable estimates of bedrock topography. For lateral velocity contrasts, we observe horizontal polarization of Rayleigh waves identified by an increase in amplitude and broadening of the horizontal spectra with little variation in the vertical component spectra. The horizontal spectra offer a means to identify and map near surface faults where there is no topographic or clear body wave expression. With these new multicomponent active source seismic data processing and inversion techniques, we better constrain a variety of near surface conditions critical to the estimation of local site response and seismic hazards.

  6. Helicity within the vortex filament model.

    PubMed

    Hänninen, R; Hietala, N; Salman, H

    2016-11-24

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments.

  7. Helicity within the vortex filament model

    PubMed Central

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-01-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments. PMID:27883029

  8. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid.

    PubMed

    Story, Anna; Jaworski, Zdzisław

    2017-01-01

    Results of numerical simulations of momentum transfer for a highly shear-thinning fluid (0.2% Carbopol) in a stirred tank equipped with a Prochem Maxflo T type impeller are presented. The simulation results were validated using LDA data and both tangential and axial force measurements in the laminar and early transitional flow range. A good agreement between the predicted and experimental results of the local fluid velocity components was found. From the predicted and experimental values of both tangential and axial forces, the power number, Po , and thrust number, Th , were also calculated. Values of the absolute relative deviations were below 4.0 and 10.5%, respectively, for Po and Th , which confirms a satisfactory agreement with experiments. An intensive mixing zone, known as cavern, was observed near the impeller. In this zone, the local values of fluid velocity, strain rate, Metzner-Otto coefficient, shear stress and intensity of energy dissipation were all characterized by strong variability. Based on the results of experimental study a new model using non-dimensional impeller force number was proposed to predict the cavern diameter. Comparative numerical simulations were also carried out for a Newtonian fluid (water) and their results were similarly well verified using LDA measurements, as well as experimental power number values.

  9. Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water.

    PubMed

    Gibson, Kristen E; Schwab, Kellogg J

    2011-01-01

    Tangential-flow ultrafiltration was optimized for the recovery of Escherichia coli, Enterococcus faecalis, Clostridium perfringens spores, bacteriophages MS2 and PRD1, murine norovirus, and poliovirus seeded into 100-liter surface water (SW) and drinking water (DW) samples. SW and DW collected from two drinking water treatment plants were then evaluated for human enteric viruses.

  10. On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities

    NASA Astrophysics Data System (ADS)

    Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.

    The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.

  11. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  12. Stellar Velocity Dispersion and Anisotropy of the Milky Way Inner Halo

    NASA Astrophysics Data System (ADS)

    King, Charles, III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2015-11-01

    We measure the three components of velocity dispersion, σR, σθ, σϕ, for stars within 6 < R < 30 kpc of the Milky Way using a new radial velocity sample from the MMT telescope. We combine our measurements with previously published data so that we can more finely sample the stellar halo. We use a maximum likelihood statistical method for estimating mean velocities, dispersions, and covariances assuming only that velocities are normally distributed. The alignment of the velocity ellipsoid is consistent with a spherically symmetric gravitational potential. From the spherical Jeans equation, the mass of the Milky Way is M≤ft(R≤slant 12 {kpc}\\right)=1.3× {10}11 {M}⊙ with an uncertainty of 40%. We also find a region of discontinuity, 15 ≲ R ≲ 25 kpc, where the estimated velocity dispersions and anisotropies diverge from their anticipated values, confirming the break observed by others. We argue that this break in anisotropy is physically explained by coherent stellar velocity structure in the halo, such as the Sgr stream. To significantly improve our understanding of halo kinematics will require combining radial velocities with future Gaia proper motions.

  13. Cdk5 Phosphorylation of ErbB4 is Required for Tangential Migration of Cortical Interneurons

    PubMed Central

    Rakić, Sonja; Kanatani, Shigeaki; Hunt, David; Faux, Clare; Cariboni, Anna; Chiara, Francesca; Khan, Shabana; Wansbury, Olivia; Howard, Beatrice; Nakajima, Kazunori; Nikolić, Margareta; Parnavelas, John G.

    2015-01-01

    Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and molecular biological techniques, we report that the signaling molecule cyclin-dependent kinase 5 (Cdk5), and its activator p35, control the tangential migration of interneurons toward and within the cerebral cortex by modulating the critical neurodevelopmental signaling pathway, ErbB4/phosphatidylinositol 3-kinase, that has been repeatedly linked to schizophrenia. This finding identifies Cdk5 as a crucial signaling factor in cortical interneuron development in mammals. PMID:24142862

  14. Remote determination of the velocity index and mean streamwise velocity profiles

    NASA Astrophysics Data System (ADS)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  15. Mean velocities and Reynolds stresses in a juncture flow

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L.

    1982-01-01

    Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.

  16. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    NASA Astrophysics Data System (ADS)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  17. Global view of the E region irregularity and convection velocities in the high-latitude Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2017-02-01

    Occurrence of the E region plasma irregularities is investigated using two Super Dual Auroral Radar Network (SuperDARN) South Pole (SPS) and Zhongshan (ZHO) radars that sample the same magnetic latitude deep within the high-latitude plasma convection pattern but from two opposite directions. It is shown that the SPS and ZHO velocity distributions and their variations with the magnetic local time are different, with each distribution being asymmetric; i.e., a particular velocity polarity is predominant. This asymmetry in the E region velocity distribution is associated with the bump-on-tail of the distribution near the nominal ion acoustic speed Cs that is most likely due to the Farley-Buneman instability (FBI) echoes or an inflection point of the distribution below nominal Cs that is most likely due to the gradient drift instability echoes. In contrast, the distribution of the convection velocity component was found to be symmetric, i.e., with no bump-on-tail or an inflection point, but with a bias (i.e., uniform shift) toward a particular polarity. It is demonstrated that the asymmetry in the convection pattern between the eastward and westward zonal components is unexpectedly strong, with the westward zonal component being predominant, especially at lower latitudes, while also exhibiting a strong interplanetary magnetic field By dependence. The observations are consistent with the notion that the asymmetry in the E region velocity distribution is highly sensitive to the bias in the convection component caused by the zonal convection component asymmetry and that the bump-on-tail or inflection point features may also depend on the irregularity height and the presence of strong density gradients modifying the FBI threshold value.

  18. Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.; Mumma, Michael J.; Kostiuk, Theodor; Deming, Drake; Espenak, Fred; Zipoy, David

    1991-01-01

    NASA's IR Telescope Facility and the McMath Solar Telescope have yielded absolute wind velocities in the Venus thermosphere for December 1985 to March 1987 with sufficient spatial resolution for circulation model discrimination. A qualitative analysis of beam-integrated winds indicates subsolar-to-antisolar circulation in the lower thermosphere; horizontal wind velocity was derived from a two-parameter model wind field of subsolar-antisolar and zonal components. A unique model fit common to all observing periods possessed 120 m/sec subsolar-antisolar and 25 m/sec zonal retrograde components, consistent with the Bougher et al. (1986, 1988) hydrodynamical models for 110 km.

  19. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  20. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.

  1. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  2. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  3. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    NASA Astrophysics Data System (ADS)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  4. ON INTERMITTENT TURBULENCE HEATING OF THE SOLAR WIND: DIFFERENCES BETWEEN TANGENTIAL AND ROTATIONAL DISCONTINUITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xin; Tu Chuanyi; He Jiansen

    The intermittent structures in solar wind turbulence, studied by using measurements from the WIND spacecraft, are identified as being mostly rotational discontinuities (RDs) and rarely tangential discontinuities (TDs) based on the technique described by Smith. Only TD-associated current sheets (TCSs) are found to be accompanied with strong local heating of the solar wind plasma. Statistical results show that the TCSs have a distinct tendency to be associated with local enhancements of the proton temperature, density, and plasma beta, and a local decrease of magnetic field magnitude. Conversely, for RDs, our statistical results do not reveal convincing heating effects. These resultsmore » confirm the notion that dissipation of solar wind turbulence can take place in intermittent or locally isolated small-scale regions which correspond to TCSs. The possibility of heating associated with RDs is discussed.« less

  5. On relative velocity in very young asteroid families

    NASA Astrophysics Data System (ADS)

    Rosaev, A.; Plávalová, E.

    2018-04-01

    Asteroid families are groups of minor planets that have a common origin in catastrophic breakup events. The very young compact asteroid clusters are a natural laboratory in which to study impact processes and the dynamics of asteroid orbits. In the first part of the paper, we define the term very young asteroid families (VYF), that is to say, younger than 1.6 Myrs, and explain why we have defined this group as being separate from young families (younger than 100 Myr), due to specific characteristics, in particularly, non-gravitational forces which have a very small effect (which could be negligible) on their dynamics and the role of the initial conditions in VYFs as being more significant. Due to these facts, the way we study VYFs may be different relative to young families. For the most part, the calculation of VYFs' normal component of relative velocity using backward numerical integration, exhibited a clear, deep minimum, which was close to the breakup epoch. The age estimations found while employing this method were in excellent agreement with the established age estimations used by other authors. We confirmed our results with the established age estimation of the Hobson family (365 ± 67 kyrs). Concerning the Emilkowalsky family, we confirmed the results of Nesvorný and Vokrouhlický (2006) (220 ± 30 kyrs), obtaining a far clearer result using the relative velocity method rather than single-orbital element convergence. The case of the Datura family is more complex to study, mainly due to its 9:16 resonance with Mars. We have exemplified that the z-component of relative velocity may prove to be a powerful and useful criterion for VYF age estimations. The studied value of relative velocity may contain information about the ejection velocity. As an additional outcome of this paper, we have introduced two new members of two different VYFs; one new member of the Emilkowalsky family and one of the Hobson family.

  6. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D.

    PubMed

    Lasnier, C J; Allen, S L; Ellis, R E; Fenstermacher, M E; McLean, A G; Meyer, W H; Morris, K; Seppala, L G; Crabtree, K; Van Zeeland, M A

    2014-11-01

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  7. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    DOE PAGES

    Lasnier, Charles J.; Allen, Steve L.; Ellis, Ronald E.; ...

    2014-08-26

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in divertedmore » and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. As a result, demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.« less

  8. Velocity-jump instabilities in Hele-Shaw flow of associating polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlad, D.H.; Ignes-Mullol, J.; Maher, J.V.

    We study fracturelike flow instabilities that arise when water is injected into a Hele-Shaw cell filled with aqueous solutions of associating polymers. We explore various polymer architectures, molecular weights, and solution concentrations. Simultaneous measurements of the finger tip velocity and of the pressure at the injection point allow us to describe the dynamics of the finger in terms of the {open_quotes}finger mobility,{close_quotes} which relates the velocity to the pressure gradient. The flow discontinuities, characterized by jumps in the finger tip velocity, which are observed in experiments with some of the polymer solutions, can be modeled by using a nonmonotonic dependencemore » between a characteristic shear stress and the shear rate at the tip of the finger. A simple model, which is based on a viscosity function containing both a Newtonian and a non-Newtonian component, and which predicts nonmonotonic regions when the non-Newtonian component of the viscosity dominates, is shown to agree with the experimental data. {copyright} {ital 1999} {ital The American Physical Society}« less

  9. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  10. Rayleigh Scattering Diagnostic for Measurement of Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2002-01-01

    A new molecular Rayleigh scattering based flow diagnostic is used for the first time to measure the power spectrum of gas density and radial velocity component in the plumes of high speed jets. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. The PC based data acquisition system is capable of simultaneous sampling of velocity and density at rates to 100 kHz and data record lengths to 10 million. Velocity and density power spectra and velocity-density cross spectra are presented for a subsonic jet, an underexpanded screeching jet, and for Mach 1.4 and Mach 1.8 supersonic jets. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition.

  11. Structure of the bulge of the galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Demichev, V. A.

    2017-09-01

    The superfine structure of the bulge of the galaxy NGC 4258 has been investigated in H2O maser emission at the epochs on February 4, 2013, and November 29, 2013. The peak intensities of the spectral components reached F ≈ 5 Jy. The emission of the component at v = 476 km s-1 dominated at the beginning of this period; the second component at v = 487 km s-1 was observed at the end of the period. The structure is a chain of compact components up to 200 µas or 7mpc in extent. The velocity of the local standard of rest is v LSR = 482 km s-1. Two bright compact components with a separation between them Δ ρ ≈ 35 µas or 1.3 mpc and a pair of components spaced 13 µas apart, whose brightness reaches 30% of the peak value corresponding to a brightness temperature T b ≈ 1018 K, are located at the center. The sizes of the components are 2-3 µas. A splitting and a shift of the two pairs of components relative to each other by 8 µas or 0.3 mpc in the 45° direction are observed at the end of the period. The velocity gradient of the structure is dV/dρ = 224 km s-1 mas-1, suggesting a solid-body rotation with a period T ≈ 760 years. The compact components correspond to the tangential directions of the arm. Two parallel chains of components corresponding to the tangential directions of the walls of the bipolar outflow carrying away an excess angular momentum are ejected from the central part of the bulge, two sources. The outflow is oriented at an angle X ≈ 15° relative to the disk axis. The brightness of the outflow fragments does not exceed 1.5% of the peak value. The ejection of material from the central part in the northward direction at a level up to 0.2%, T b ≈ 1015 K, is observed at the epoch on February 4, 2013, at v = 478 km s-1. The core structure suggests a double system: parallel disks-vortices spaced 0.25 mpc apart.

  12. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  13. SU-F-T-422: Detection of Optimal Tangential Partial Arc Span for VMAT Planning in IntactLeft-Breast Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, U; Sarkar, B; Munshi, A

    Purpose: This study was designed to investigate an appropriate arc span for intact partial Left breast irradiation by VMAT planning. Methods: Four cases of carcinoma left intact breast was chosen randomly for this study. Both medial tangential and left-lateral tangential arc (G20°, G25°, G30°, G35°, G40°) were used having the same length and bilaterally symmetric. For each patient base plan was generated for 30° arc and rest of other arc plans were generated by keeping all plan parameters same, only arc span were changed. All patient plans were generated on treatment planning system Monaco (V 5.00.02) for 50 Gy dosemore » in 25 fractions. PTV contours were clipped 3 mm from skin (patient). All plans were normalized in such a way that 95 % of prescription dose would cover 96 % of PTV volume. Results: Mean MU for 20°, 25°, 30°, 35° and 40° were 509 ± 18.8, 529.1 ± 20.2, 544.4 ± 20.8, 579.1 ±51.8, 607.2 ± 40.2 similarly mean hot spot (volume covered by 105% of prescription dose) were 2.9 ± 1.2, 3.7 ± 3.0, 1.5 ± 1.7, 1.3±0.6, 0.4 ± 0.4, mean contralateral breast dose (cGy) were 180.4 ± 242.3, 71.5 ± 52.7, 76.2 ± 58.8, 85.9 ± 70.5, 90.7 ± 70.1, mean heart dose (cGy) were 285.8 ± 87.2, 221.2 ± 62.8, 274.5 ± 95.5, 234.8 ± 73.8, 263.2 ± 81.6, V20 for ipsilateral lung were 15.4 ± 5.3, 14.3 ± 3.6, 15.3 ± 2.9, 14.2 ± 3.9, 14.7 ± 3.2 and V5 for ipsilateral lung were 33.9 ± 8.2, 31.0 ± 3.5, 42.6 ±15.6, 36.4 ± 12.9, 37.0 ± 7.5. Conclusion: The study concluded that appropriate arc span used for tangential intact breast treatment was optimally 30° because larger arc span were giving lower isodose spill in ipsilateral lung and smaller arc were giving heterogeneous dose distribution in PTV.« less

  14. Simulation of Dose to Surrounding Normal Structures in Tangential Breast Radiotherapy Due to Setup Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakar, Ramachandran; Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi; Department of Radiology, All India Institute of Medical Sciences, New Delhi

    Setup error plays a significant role in the final treatment outcome in radiotherapy. The effect of setup error on the planning target volume (PTV) and surrounding critical structures has been studied and the maximum allowed tolerance in setup error with minimal complications to the surrounding critical structure and acceptable tumor control probability is determined. Twelve patients were selected for this study after breast conservation surgery, wherein 8 patients were right-sided and 4 were left-sided breast. Tangential fields were placed on the 3-dimensional-computed tomography (3D-CT) dataset by isocentric technique and the dose to the PTV, ipsilateral lung (IL), contralateral lung (CLL),more » contralateral breast (CLB), heart, and liver were then computed from dose-volume histograms (DVHs). The planning isocenter was shifted for 3 and 10 mm in all 3 directions (X, Y, Z) to simulate the setup error encountered during treatment. Dosimetric studies were performed for each patient for PTV according to ICRU 50 guidelines: mean doses to PTV, IL, CLL, heart, CLB, liver, and percentage of lung volume that received a dose of 20 Gy or more (V20); percentage of heart volume that received a dose of 30 Gy or more (V30); and volume of liver that received a dose of 50 Gy or more (V50) were calculated for all of the above-mentioned isocenter shifts and compared to the results with zero isocenter shift. Simulation of different isocenter shifts in all 3 directions showed that the isocentric shifts along the posterior direction had a very significant effect on the dose to the heart, IL, CLL, and CLB, which was followed by the lateral direction. The setup error in isocenter should be strictly kept below 3 mm. The study shows that isocenter verification in the case of tangential fields should be performed to reduce future complications to adjacent normal tissues.« less

  15. Design of tangential multi-energy SXR cameras for tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Yamazaki, H.; Delgado-Aparicio, L. F.; Pablant, N.; Hill, K.; Bitter, M.; Takase, Y.; Ono, M.; Stratton, B.

    2017-10-01

    A new synthetic diagnostic capability has been built to study the response of tangential multi-energy soft x-ray pin-hole cameras for arbitrary plasma densities (ne , D), temperature (Te) and ion concentrations (nZ). For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy soft xray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (e.g. Te, nZ and ΔZeff). These systems are designed to sample the continuum- and line-emission from low- to high-Z impurities (e.g. C, O, Al, Si, Ar, Ca, Fe, Ni and Mo) in multiple energy-ranges. These x-ray cameras will be installed in the MST-RFP, as well as NSTX-U and DIII-D tokamaks, measuring the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected for the new systems will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed for the case of NSTX-U.

  16. Is the Milky Way still breathing? RAVE-Gaia streaming motions

    NASA Astrophysics Data System (ADS)

    Carrillo, I.; Minchev, I.; Kordopatis, G.; Steinmetz, M.; Binney, J.; Anders, F.; Bienaymé, O.; Bland-Hawthorn, J.; Famaey, B.; Freeman, K. C.; Gilmore, G.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Just, A.; Kunder, A.; McMillan, P.; Monari, G.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Sharma, S.; Siebert, A.; Watson, F.; Wojno, J.; Wyse, R. F. G.; Zwitter, T.

    2018-04-01

    We use data from the Radial Velocity Experiment (RAVE) and the Tycho-Gaia astrometric solution (TGAS) catalogue to compute the velocity fields yielded by the radial (VR), azimuthal (Vϕ),and vertical (Vz) components of associated Galactocentric velocity. We search in particular for variation in all three velocity components with distance above and below the disc mid-plane, as well as how each component of Vz (line-of-sight and tangential velocity projections) modifies the obtained vertical structure. To study the dependence of velocity on proper motion and distance, we use two main samples: a RAVE sample including proper motions from the Tycho-2, PPMXL, and UCAC4 catalogues, and a RAVE-TGAS sample with inferred distances and proper motions from the TGAS and UCAC5 catalogues. In both samples, we identify asymmetries in VR and Vz. Below the plane, we find the largest radial gradient to be ∂VR/∂R = -7.01 ± 0.61 km s-1 kpc-1, in agreement with recent studies. Above the plane, we find a similar gradient with ∂VR/∂R = -9.42 ± 1.77 km s-1 kpc-1. By comparing our results with previous studies, we find that the structure in Vz is strongly dependent on the adopted proper motions. Using the Galaxia Milky Way model, we demonstrate that distance uncertainties can create artificial wave-like patterns. In contrast to previous suggestions of a breathing mode seen in RAVE data, our results support a combination of bending and breathing modes, likely generated by a combination of external or internal and external mechanisms.

  17. Velocity and stress distributions of deep seismic zone under Izu-Bonin, Japan

    NASA Astrophysics Data System (ADS)

    Jiang, Guoming; Zhang, Guibin; Jia, Zhengyuan

    2017-04-01

    Deep earthquakes can provide the deep information of the Earth directly. We have collected the waveform data from 77 deep earthquakes with depth greater than 300 km under Izu-Bonin in Japan. To obtain the velocity structures of P- and S-wave, we have inversed the double-differences of travel times from deep event-pairs. These velocity anomalies can further yield the Poisson's ratio and the porosity. Our results show that the average P-wave velocity anomaly is lower 6%, however the S-wave anomaly is higher 2% than the iasp91 model. The corresponding Poisson's ratio and porosity anomaly are -24% and -4%, respectively, which suggest that the possibility of water in the deep seismic zone is very few and the porosity might be richer. To obtain the stress distribution, we have used the ISOLA method to analyse the non-double-couple components of moment tensors of 77 deep earthquakes. The focal mechanism results show that almost half of all earthquakes have larger double-couple (DC) components, but others have clear isotropic (ISO) or compensated linear vector dipole (CLVD) components. The non-double-couple components (ISO and CLVD) seem to represent the volume around a deep earthquake changes as it occurs, which could be explained the metastable olivine phase transition. All results indicate that the metastable olivine wedge (MOW) might exist in the Pacific slab under the Izu-Bonin region and the deep earthquakes might be induced by the phase change of metastable olivine.

  18. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath. II. Towards a first principles theory

    NASA Astrophysics Data System (ADS)

    Auluck, S. K. H.

    2017-11-01

    fraction of current flowing in the hydrodynamic shock, specific volume, pressure, and fluid velocity of the hydrodynamic shock region, the tangential, normal, and azimuthal components of velocity in the magnetized plasma, the density of the magnetized plasma, the normal and tangential components of the magnetic field, and the tangential, normal, and azimuthal components of the electric field. This explains the occurrence of azimuthally streaming high energy deuterons experimentally observed by Frascati and Stuttgart. The expression derived for the azimuthal component of vector potential can serve as the basis for a proposed experimental test of the theory.

  19. Flow structure generated by perpendicular blade-vortex interaction and implications for helicopter noise prediction. Volume 1: Measurements

    NASA Technical Reports Server (NTRS)

    Wittmer, Kenneth S.; Devenport, William J.

    1996-01-01

    The perpendicular interaction of a streamwise vortex with an infinite span helicopter blade was modeled experimentally in incompressible flow. Three-component velocity and turbulence measurements were made using a sub-miniature four sensor hot-wire probe. Vortex core parameters (radius, peak tangential velocity, circulation, and centerline axial velocity deficit) were determined as functions of blade-vortex separation, streamwise position, blade angle of attack, vortex strength, and vortex size. The downstream development of the flow shows that the interaction of the vortex with the blade wake is the primary cause of the changes in the core parameters. The blade sheds negative vorticity into its wake as a result of the induced angle of attack generated by the passing vortex. Instability in the vortex core due to its interaction with this negative vorticity region appears to be the catalyst for the magnification of the size and intensity of the turbulent flowfield downstream of the interaction. In general, the core radius increases while peak tangential velocity decreases with the effect being greater for smaller separations. These effects are largely independent of blade angle of attack; and if these parameters are normalized on their undisturbed values, then the effects of the vortex strength appear much weaker. Two theoretical models were developed to aid in extending the results to other flow conditions. An empirical model was developed for core parameter prediction which has some rudimentary physical basis, implying usefulness beyond a simple curve fit. An inviscid flow model was also created to estimate the vorticity shed by the interaction blade, and to predict the early stages of its incorporation into the interacting vortex.

  20. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  1. Transient Electromagnetic Wave Propagation in a Plasma Waveguide

    DTIC Science & Technology

    2011-10-24

    dielectric. The calculation of the propagation characteristics is based upon tangential continuity of the electric and magnetic field components...filament as a time-dependent resistance , we have determined the electron density, the kinetic parameters for electron attachment and recombination, and...wall conductivity simplifies the imposition of the boundary conditions. The tangential component of the electric field and the normal component of the

  2. Using a constraint on the parallel velocity when determining electric fields with EISCAT

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).

  3. Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate

    NASA Astrophysics Data System (ADS)

    Liang, Xinfeng; Spall, Michael; Wunsch, Carl

    2017-10-01

    Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.

  4. Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.

    2011-01-01

    In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.

  5. On the dark matter as a geometric effect in f (R) gravity

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    2016-11-01

    A mysterious type of matter is supposed to exist because the observed rotational velocity curves of particles moving around the galactic center and the expected rotational velocity curves do not match. This type of matter is called dark matter. There are also a number of proposals in the modified gravity which are alternatives to the dark matter. In this contrast, in 2008, Christian G. Böhmer, Tiberiu Harko and Francisco S.N. Lobo presented an interesting idea in Böhmer et al. (Astropart Phys 29(6):386-392, 2008) where they showed that a f (R) gravity model could actually explain dark matter to be a geometric effect only. They solved the gravitational field equations in vacuum using generic f (R) gravity model for constant velocity regions (i.e. dark matter regions around the galaxy). They found that the resulting modifications in the Einstein Hilbert Lagrangian is of the form R^{1+m}, where m=V_{tg}^2/c^2; V_{tg} being the tangential velocity of the test particle moving around the galaxy in the dark matter regions and c being the speed of light. From observations it is known that m≈ O(10^{-6}) (Böhmer et al. 2008; Salucci et al. in Mon Not R Astron Soc 378(1):41-47, 2007; Persic et al. in Mon Not R Astron Soc 281:27-47, 1996; Borriello and Salucci in Mon Not R Astron Soc 323(2):285-292, 2001). In this article, we perform two things (1) We show that the form of f (R) they claimed is not correct. In doing the calculations, we found that when the radial component of the metric for constant velocity regions is a constant then the exact solutions for f (R) obtained is of the form of R^{1-α } which corresponds to a negative correction rather than positive claimed by the authors of Böhmer et al. (2008), where α is the function of m. (2) We also show that we can not have an analytic solution of f(R) for all values of tangential velocity including the observed value of tangential velocity 200-300 km/s (Salucci et al. 2007; Persic et al. 1996; Borriello and Salucci

  6. Environmental surveillance of viruses by tangential flow filtration and metagenomic reconstruction.

    PubMed

    Furtak, Vyacheslav; Roivainen, Merja; Mirochnichenko, Olga; Zagorodnyaya, Tatiana; Laassri, Majid; Zaidi, Sohail Z; Rehman, Lubna; Alam, Muhammad M; Chizhikov, Vladimir; Chumakov, Konstantin

    2016-04-14

    An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses.

  7. Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

    NASA Astrophysics Data System (ADS)

    Sutyrin Georgi, G.

    2004-07-01

    A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.

  8. Improving Tropical Cyclone Intensity Forecasting with Theoretically-Based Statistical

    DTIC Science & Technology

    2013-01-03

    solely by diabatic heating. The sense of the circulation is counterclockwise for the dashed lines and clockwise for the solid lines. The four panels...indicates the region of diabatic heating. Colored contours indicate  , the vertical pressure velocity, which is related to w by  = −gw, with...equation (GTE) and determine the associated tangential wind tendency for a variety of initial tangential wind profiles and annular rings of diabatic

  9. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  10. Photon Doppler velocimetry measurements of transverse surface velocities

    NASA Astrophysics Data System (ADS)

    Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.

    2018-06-01

    The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.

  11. Proposal for the measuring molecular velocity vector with single-pulse coherent Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1983-01-01

    Methods for simultaneous measurements of more than one flow velocity component using coherent Raman spectroscopy are proposed. It is demonstrated that using a kilowatt broad-band probe pulse (3-30 GHz) along with a megawatt narrow-band pump pulse (approximately 100 MHz), coherent Raman signal resulting from a single laser pulse is sufficient to produce a high-resolution Raman spectrum for a velocity measurement.

  12. Marine traffic model based on cellular automaton: Considering the change of the ship's velocity under the influence of the weather and sea

    NASA Astrophysics Data System (ADS)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-10-01

    It was found that the ships' velocity change, which is impacted by the weather and sea, e.g., wind, sea wave, sea current, tide, etc., is significant and must be considered in the marine traffic model. Therefore, a new marine traffic model based on cellular automaton (CA) was proposed in this paper. The characteristics of the ship's velocity change are taken into account in the model. First, the acceleration of a ship was divided into two components: regular component and random component. Second, the mathematical functions and statistical distribution parameters of the two components were confirmed by spectral analysis, curve fitting and auto-correlation analysis methods. Third, by combining the two components, the acceleration was regenerated in the update rules for ships' movement. To test the performance of the model, the ship traffic flows in the Dover Strait, the Changshan Channel and the Qiongzhou Strait were studied and simulated. The results show that the characteristics of ships' velocities in the simulations are consistent with the measured data by Automatic Identification System (AIS). Although the characteristics of the traffic flow in different areas are different, the velocities of ships can be simulated correctly. It proves that the velocities of ships under the influence of weather and sea can be simulated successfully using the proposed model.

  13. Velocity-Vorticity Correlation Structure in Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pei, J.; She, Z. S.; Hussain, F.

    2011-09-01

    We present a new definition of statistical structure — velocity-vorticity correlation structure (VVCS) — based on amplitude distributions of the tensor field of normalized velocity-vorticity correlation (uiωj), and show that it displays the geometry of the statistical structure relevant to a given reference point, and it effectively captures coherent motions in inhomogeneous shear flows. The variation of the extracted objects moving with the reference point yr+ then presents a full picture of statistical structures for the flow, which goes beyond the traditional view of searching for reference-independent structures. Application to turbulent channel flow simulation data at Reτ = 180 demonstrates that the VVCS successfully captures, qualitatively and quantitatively, the near-wall streaks, the streamwise vortices [1,2], and their extensions up to yr+ = 110 with variations of their length and inclination angle. More interestingly, the VVCS associated with the streamwise velocity component (particularly (uωx ( and (uωz) displays topological change at four distances from the wall (with transitions at yr+≈20,40,60,110), giving rise to a geometrical interpretation of the multi-layer structure of wall-bounded turbulence. Specifically, we find that the VVCS of (uωz( bifurcates at yr+ = 40 with one attached to the wall and the other near the reference location. The VVCS of (uωx) is blob-like in the center region, quite different from a pair of elongated and inclined objects near the wall. The propagation speeds of the velocity components in the near-wall region, y+ ≤ 10, is found to be characterized by the same stream-wise correlation structures of (uωx) and (uωz), whose core is located at y+≈20. As a result, the convection of the velocity fluctuations always reveal the constant propagation speeds in the near-wall region. The coherent motions parallel to the wall plays an important role in determining the propagation of the velocity fluctuations. This study

  14. Local pulse wave velocity estimated from small vibrations measured ultrasonically at multiple points on the arterial wall

    NASA Astrophysics Data System (ADS)

    Ito, Mika; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    Pulse wave velocity (PWV) is used as a diagnostic criterion for arteriosclerosis, a major cause of heart disease and cerebrovascular disease. However, there are several problems with conventional PWV measurement techniques. One is that a pulse wave is assumed to only have an incident component propagating at a constant speed from the heart to the femoral artery, and another is that PWV is only determined from a characteristic time such as the rise time of the blood pressure waveform. In this study, we noninvasively measured the velocity waveform of small vibrations at multiple points on the carotid arterial wall using ultrasound. Local PWV was determined by analyzing the phase component of the velocity waveform by the least squares method. This method allowed measurement of the time change of the PWV at approximately the arrival time of the pulse wave, which discriminates the period when the reflected component is not contaminated.

  15. Experimental investigation of tangential blowing for control of the strong shock boundary layer interaction on inlet ramps

    NASA Technical Reports Server (NTRS)

    Schwendemann, M. F.

    1981-01-01

    A 0.165-scale isolated inlet model was tested in the NASA Lewis Research Center 8-ft by 6-ft Supersonic Wind Tunnel. Ramp boundary layer control was provided by tangential blowing from a row of holes in an aft-facing step set into the ramp surface. Testing was performed at Mach numbers from 1.36 to 1.96 using both cold and heated air in the blowing system. Stable inlet flow was achieved at all Mach numbers. Blowing hole geometry was found to be significant at 1.96M. Blowing air temperature was found to have only a small effect on system performance. High blowing levels were required at the most severe test conditions.

  16. Flurbiprofen Axetil Enhances Analgesic Effects of Sufentanil and Attenuates Postoperative Emergence Agitation and Systemic Proinflammation in Patients Undergoing Tangential Excision Surgery

    PubMed Central

    Geng, Wujun; Hong, Wandong; Wang, Junlu; Dai, Qinxue; Mo, Yunchang; Shi, Kejian; Sun, Jiehao; Qin, Jinling; Li, Mei; Tang, Hongli

    2015-01-01

    Objective. Our present study tested whether flurbiprofen axetil could reduce perioperative sufentanil consumption and provide postoperative analgesia with decrease in emergency agitation and systemic proinflammatory cytokines release. Methods. Ninety patients undergoing tangential excision surgery were randomly assigned to three groups: (1) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by patient-controlled analgesia (PCA) pump, (2) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 100 mg flurbiprofen axetil by PCA pump, and (3) 10 mL placebo and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by PCA pump. Results. Preoperative administration of flurbiprofen axetil decreased postoperative tramadol consumption and the visual analog scale at 4, 6, 12, and 24 h after surgery, which were further decreased by postoperative administration of flurbiprofen axetil. Furthermore, flurbiprofen axetil attenuated emergency agitation score and Ramsay score at 0, 5, and 10 min after extubation and reduced the TNF-α and interleukin- (IL-) 6 levels at 24 and 48 h after the operation. Conclusion. Flurbiprofen axetil enhances analgesic effects of sufentanil and attenuates emergence agitation and systemic proinflammation in patients undergoing tangential excision surgery. PMID:26273138

  17. Flurbiprofen Axetil Enhances Analgesic Effects of Sufentanil and Attenuates Postoperative Emergence Agitation and Systemic Proinflammation in Patients Undergoing Tangential Excision Surgery.

    PubMed

    Geng, Wujun; Hong, Wandong; Wang, Junlu; Dai, Qinxue; Mo, Yunchang; Shi, Kejian; Sun, Jiehao; Qin, Jinling; Li, Mei; Tang, Hongli

    2015-01-01

    Our present study tested whether flurbiprofen axetil could reduce perioperative sufentanil consumption and provide postoperative analgesia with decrease in emergency agitation and systemic proinflammatory cytokines release. Ninety patients undergoing tangential excision surgery were randomly assigned to three groups: (1) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by patient-controlled analgesia (PCA) pump, (2) preoperative dose of 100 mg flurbiprofen axetil and a postoperative dose of 2 μg/kg sufentanil and 100 mg flurbiprofen axetil by PCA pump, and (3) 10 mL placebo and a postoperative dose of 2 μg/kg sufentanil and 10 mL placebo by PCA pump. Preoperative administration of flurbiprofen axetil decreased postoperative tramadol consumption and the visual analog scale at 4, 6, 12, and 24 h after surgery, which were further decreased by postoperative administration of flurbiprofen axetil. Furthermore, flurbiprofen axetil attenuated emergency agitation score and Ramsay score at 0, 5, and 10 min after extubation and reduced the TNF-α and interleukin- (IL-) 6 levels at 24 and 48 h after the operation. Flurbiprofen axetil enhances analgesic effects of sufentanil and attenuates emergence agitation and systemic proinflammation in patients undergoing tangential excision surgery.

  18. Robust, automatic GPS station velocities and velocity time series

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Kreemer, C.; Hammond, W. C.

    2014-12-01

    Automation in GPS coordinate time series analysis makes results more objective and reproducible, but not necessarily as robust as the human eye to detect problems. Moreover, it is not a realistic option to manually scan our current load of >20,000 time series per day. This motivates us to find an automatic way to estimate station velocities that is robust to outliers, discontinuities, seasonality, and noise characteristics (e.g., heteroscedasticity). Here we present a non-parametric method based on the Theil-Sen estimator, defined as the median of velocities vij=(xj-xi)/(tj-ti) computed between all pairs (i, j). Theil-Sen estimators produce statistically identical solutions to ordinary least squares for normally distributed data, but they can tolerate up to 29% of data being problematic. To mitigate seasonality, our proposed estimator only uses pairs approximately separated by an integer number of years (N-δt)<(tj-ti )<(N+δt), where δt is chosen to be small enough to capture seasonality, yet large enough to reduce random error. We fix N=1 to maximally protect against discontinuities. In addition to estimating an overall velocity, we also use these pairs to estimate velocity time series. To test our methods, we process real data sets that have already been used with velocities published in the NA12 reference frame. Accuracy can be tested by the scatter of horizontal velocities in the North American plate interior, which is known to be stable to ~0.3 mm/yr. This presents new opportunities for time series interpretation. For example, the pattern of velocity variations at the interannual scale can help separate tectonic from hydrological processes. Without any step detection, velocity estimates prove to be robust for stations affected by the Mw7.2 2010 El Mayor-Cucapah earthquake, and velocity time series show a clear change after the earthquake, without any of the usual parametric constraints, such as relaxation of postseismic velocities to their preseismic values.

  19. Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.

    PubMed

    Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo

    2017-08-01

    The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highly Efficient Large-Scale Lentiviral Vector Concentration by Tandem Tangential Flow Filtration

    PubMed Central

    Cooper, Aaron R.; Patel, Sanjeet; Senadheera, Shantha; Plath, Kathrin; Kohn, Donald B.; Hollis, Roger P.

    2014-01-01

    Large-scale lentiviral vector (LV) concentration can be inefficient and time consuming, often involving multiple rounds of filtration and centrifugation. This report describes a simpler method using two tangential flow filtration (TFF) steps to concentrate liter-scale volumes of LV supernatant, achieving in excess of 2000-fold concentration in less than 3 hours with very high recovery (>97%). Large volumes of LV supernatant can be produced easily through the use of multi-layer flasks, each having 1720 cm2 surface area and producing ~560 mL of supernatant per flask. Combining the use of such flasks and TFF greatly simplifies large-scale production of LV. As a demonstration, the method is used to produce a very high titer LV (>1010 TU/mL) and transduce primary human CD34+ hematopoietic stem/progenitor cells at high final vector concentrations with no overt toxicity. A complex LV (STEMCCA) for induced pluripotent stem cell generation is also concentrated from low initial titer and used to transduce and reprogram primary human fibroblasts with no overt toxicity. Additionally, a generalized and simple multiplexed real- time PCR assay is described for lentiviral vector titer and copy number determination. PMID:21784103

  1. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  2. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  3. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.

    PubMed

    Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-06-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.

  4. Linear FMCW Laser Radar for Precision Range and Vector Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockhard, George; Rubio, Manuel

    2008-01-01

    An all fiber linear frequency modulated continuous wave (FMCW) coherent laser radar system is under development with a goal to aide NASA s new Space Exploration initiative for manned and robotic missions to the Moon and Mars. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed. Linear FMCW lidar has the capability of high-resolution range measurements, and when configured into a multi-channel receiver system it has the capability of obtaining high precision horizontal and vertical velocity measurements. Precision range and vector velocity data are beneficial to navigating planetary landing pods to the preselected site and achieving autonomous, safe soft-landing. The all-fiber coherent laser radar has several important advantages over more conventional pulsed laser altimeters or range finders. One of the advantages of the coherent laser radar is its ability to measure directly the platform velocity by extracting the Doppler shift generated from the motion, as opposed to time of flight range finders where terrain features such as hills, cliffs, or slopes add error to the velocity measurement. Doppler measurements are about two orders of magnitude more accurate than the velocity estimates obtained by pulsed laser altimeters. In addition, most of the components of the device are efficient and reliable commercial off-the-shelf fiber optic telecommunication components. This paper discusses the design and performance of a second-generation brassboard system under development at NASA Langley Research Center as part of the Autonomous Landing and Hazard Avoidance (ALHAT) project.

  5. Nature and origin of upper crustal seismic velocity fluctuations and associated scaling properties: Combined stochastic analyses of KTB velocity and lithology logs

    USGS Publications Warehouse

    Goff, J.A.; Holliger, K.

    1999-01-01

    The main borehole of the German Continental Deep Drilling Program (KTB) extends over 9000 m into a crystalline upper crust consisting primarily of interlayered gneiss and metabasite. We present a joint analysis of the velocity and lithology logs in an effort to extract the lithology component of the velocity log. Covariance analysis of lithology log, approximated as a binary series, indicates that it may originate from the superposition of two Brownian stochastic processes (fractal dimension 1.5) with characteristic scales of ???2800 m and ???150 m, respectively. Covariance analysis of the velocity fluctuations provides evidence for the superposition of four stochastic process with distinct characteristic scales. The largest two scales are identical to those derived from the lithology, confirming that these scales of velocity heterogeneity are caused by lithology variations. The third characteristic scale, ???20 m, also a Brownian process, is probably related to fracturing based on correlation with the resistivity log. The superposition of these three Brownian processes closely mimics the commonly observed 1/k decay (fractal dimension 2.0) of the velocity power spectrum. The smallest scale process (characteristic scale ???1.7 m) requires a low fractal dimension, ???1.0, and accounts for ???60% of the total rms velocity variation. A comparison of successive logs from 6900-7140 m depth indicates that such variations are not repeatable and thus probably do not represent true velocity variations in the crust. The results of this study resolve disparity between the differing published estimates of seismic heterogeneity based on the KTB sonic logs, and bridge the gap between estimates of crustal heterogeneity from geologic maps and borehole logs. Copyright 1999 by the American Geophysical Union.

  6. Ratchet flow of thin liquid films induced by a two-frequency tangential forcing

    NASA Astrophysics Data System (ADS)

    Sterman-Cohen, Elad; Bestehorn, Michael; Oron, Alexander

    2018-02-01

    A possibility of saturating Rayleigh-Taylor instability in a thin liquid film on the underside of a substrate in the gravity field by harmonic vibration of the substrate was recently investigated [E. Sterman-Cohen, M. Bestehorn, and A. Oron, Phys. Fluids 29, 052105 (2017); Erratum, Phys. Fluids 29, 109901 (2017)]. In the present work, we investigate the feasibility of creating a directional flow of the fluid in a film in the Rayleigh-Taylor configuration and controlling its flow rate by applying a two-frequency tangential forcing to the substrate. It is shown that in this situation, a ratchet flow develops, and the dependence of its flow rate on the vibration frequency, amplitude, its periodicity, and asymmetry level is investigated for water and silicone-oil films. A cause for the emergence of symmetry-breaking and an ensuing flow in a preferred direction is discussed. Some aspects of a ratchet flow in a liquid film placed on top of the substrate are discussed as well. A comparison with the case of a neglected fluid inertia is made, and the differences are explained.

  7. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  8. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi

    2005-06-17

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-formingmore » units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10{sup 10} pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5.« less

  9. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from

  10. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    NASA Astrophysics Data System (ADS)

    Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.

    2016-04-01

    Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  11. The statistical properties of sea ice velocity fields

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2016-12-01

    Thorndike and Colony (1982) showed that more than 70% of the variance of the ice motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of ice motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea ice velocity fields based on the observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to ice motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea ice driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea ice, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea ice motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).

  12. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.

    2013-11-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m{sup –2} which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is amore » lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.« less

  13. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  14. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  15. Scout fourth stage attitude and velocity control (AVC) system feasibility study

    NASA Technical Reports Server (NTRS)

    Byars, L. B.

    1975-01-01

    The feasibility of incorporating a guidance system in the Scout fourth stage to achieve a significant improvement in expected payload delivery accuracy is studied. The technical investigations included the determination of the AVC equipment performance requirements, establishment of qualification and acceptance test levels, generation of layouts illustrating design approaches for the upper D and payload transition sections to incorporate the hardware, and the preparation of a vendor bid package. Correction concepts, utilizing inertial velocity and attitude, were identified and evaluated. Fourth stage attitude adjustments as determined from inertial velocity variation through the first three stages and a final velocity correction based upon the measured in-plane component errors at injection were employed. Results show radical reductions in apogee-perigee deviations.

  16. Radiography by selective detection of scatter field velocity components

    NASA Technical Reports Server (NTRS)

    Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Shedlock, Daniel (Inventor)

    2007-01-01

    A reconfigurable collimated radiation detector, system and related method includes at least one collimated radiation detector. The detector has an adjustable collimator assembly including at least one feature, such as a fin, optically coupled thereto. Adjustments to the adjustable collimator selects particular directions of travel of scattered radiation emitted from an irradiated object which reach the detector. The collimated detector is preferably a collimated detector array, where the collimators are independently adjustable. The independent motion capability provides the capability to focus the image by selection of the desired scatter field components. When an array of reconfigurable collimated detectors is provided, separate image data can be obtained from each of the detectors and the respective images cross-correlated and combined to form an enhanced image.

  17. Auditory velocity discrimination in the horizontal plane at very high velocities.

    PubMed

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. On impact by a hard cone on elasto-viscoplastic material, leading to the generation of a conical crack

    NASA Astrophysics Data System (ADS)

    Verveiko, N. D.; Shashkin, A. I.; Krupenko, S. E.

    2018-03-01

    The destruction of solid physical objects is a complex process in which mechanical, chemical, thermobaric and other matter transformations take place. Under mechanical destruction is understood the violation of the integrity of the object due to the occurrence of cracks. High-speed impact of a solid body on deformable materials is accompanied by the spread of cracks and is of a wave nature. This article presents an analysis of the dynamic stress-strain state in an elastoviscoplastic (EVP) material near the leading edge of a moving crack, approximated by a zone of continuous deformation. An analysis of the distribution of the intensity of tangential stresses and plastic deformations that occur behind the front of the longitudinal and shear head waves of a spherical shape generated by the impact of the vertex of the solid cone is carried out on the model EVP of the medium by the ray method. It is shown that the presence of a maximum of the jump of the tangential velocity component on the shear wave leads to a development with time of a jump in the displacements of the tangents to the front of the shear wave. This can be interpreted as the moment of initiation of the head part of a crack running along with the front of the elastic wave with the velocity of shear waves.

  19. Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Shu Ting; Fan Yuwei

    2013-01-28

    Time-and-space resolved comparison of the expansion velocities of plasmas in the planar diode with cathodes made of carbon velvet and polymer velvet has been performed. The diode was powered by a 200 kV, 110 ns pulse, and the peak current density was nearly 477 A/cm{sup 2}. A four-channel high speed framing camera (HSFC) was used to observe the formation and subsequent movement of the cathode plasmas. More accurate and valuable information about the two-dimensional (radial and axial) velocity components of the cathode plasmas was also acquired by utilizing the digital image processing methods. Additionally, the perveance model based on themore » Child-Langmuir law was used to calculate the expansion velocities of the diode plasmas from voltage and current profiles. Results from the two diagnostics were compared. Comparing the average values of the radial and axial velocity components indicated that the former was much larger than the latter during the initial period of the current. It was also found that the radial velocity of the carbon velvet cathode (190 cm/{mu}s) was much larger than that (90 cm/{mu}s) of the polymer velvet cathode. Moreover, the average values of both the radial and axial velocity components of the carbon velvet cathode were typically in the range of 2.5 {+-} 1.5 cm/{mu}s, which were smaller than that of the polymer velvet cathode during the current flattop. These results, together with the comparison of calculated values from the perveance model, indicated that the diode with carbon velvet cathode was more robust as compared with the polymer velvet cathode for the same electron current densities.« less

  20. Shallow Subsurface Velocity Structure using the Ambient Noise for the Garhwal and Kumaon Himalaya.

    NASA Astrophysics Data System (ADS)

    LAL, S.; Joshi, A.; S.; P.

    2017-12-01

    Abstract: In this paper effort has been made to obtain one dimensional subsurface velocity structure using H/V spectral ratio method Nakamura (1989). The complete study shows that ambient noises are reflective of structural properties of underlying strata. Data has been obtained at stations from foothills of Himalaya up to higher Himalaya along road using strong motion accelerograph in the Garhwal and Kumaon Himalaya along the two transects lines. Noise data has been processed using the seismosignal software. The ratio between the Fourier amplitude spectra of the horizontal components to the vertical component of the ambient noise had been used to consider the site effects of the concerned site. The relation given by Lermo and Chavez-Garcia (1993) between the thickness of layer and average S- wave velocity of the sedimentary layer has been utilized to obtain sub surface velocity model. To fit the synthetic H/V curve with the observed H/V curve, technique given by Castellaro and Mulargia (2009) is used in the present study. This model is improved via forward modelling to give final one dimensional velocity structure at a particular station. Velocity structures obtained at all stations are used to obtain continuous velocity models for concerned area using Kringing interpolation, which is correlated with the geology and tectonic of region. Keywords: Ambient noise, H/V spectral ratio, Site characterization, Accelerograph, Velocity ReferencesNakamura Y (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR RTRI 30(1):25-30. Castellaro S, Mulargia F (2009). The effect of velocity inversions on H/V. PAGEOPH 166:567-592. Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station Bulletin Seismological Society of America, 83, 1574-1594.

  1. A tale of two velocities: Threading versus slicing

    NASA Astrophysics Data System (ADS)

    Gharechahi, Razieh; Nouri-Zonoz, Mohammad; Tavanfar, Alireza

    One of the important quantities in cosmology and astrophysics is the 3-velocity of an object. Specifically, when the gravitational fields are strong, one should require the employment of general relativity both in its definition and measurement. Looking into the literature for GR-based definitions of 3-velocity, one usually finds different ad hoc definitions applied according to the case under consideration. Here, we introduce and analyze systematically the two principal definitions of 3-velocity assigned to a test particle following the timelike trajectories in stationary spacetimes. These definitions are based on the 1 + 3 (threading) and 3 + 1 (slicing) spacetime decomposition formalisms and defined relative to two different sets of observers. After showing that Synge’s definition of spatial distance and 3-velocity is equivalent to those defined in the 1 + 3 (threading) formalism, we exemplify the differences between these two definitions by calculating them for particles in circular orbits in axially symmetric stationary spacetimes. Illustrating its geometric nature, the relative linear velocity between the corresponding observers is obtained in terms of the spacetime metric components. Circular particle orbits in the Kerr spacetime, as the prototype and the most well known of stationary spacetimes, are examined with respect to these definitions to highlight their observer-dependent nature. We also examine the Kerr-NUT spacetime in which the NUT parameter, contributing to the off-diagonal terms in the metric, is mainly interpreted not as a rotation parameter but as a gravitomagnetic monopole charge. Finally, in a specific astrophysical setup which includes rotating black holes, it is shown how the local velocity of an orbiting star could be related to its spectral line shifts measured by distant observers.

  2. Dynamics of Liquid-Filled Projectiles

    DTIC Science & Technology

    1976-04-01

    1 Estimate of Shape of the Free Surface of the Liquid in a Liquid-Pilled Projectile During Acceleration 6 CHAPTER II. ANGULAR ACCELERATION OF THE...LIQUID IN A LIQUID-FILLED PROJECTILE DURING FLIGHT 13 Liquid "Spinup" in Configuration A 13 Angular Acceleration of the Liquid in Con... Angular Acceleration. 13 2.2 Tangential Velocity of Liquid Versus Radial Position at Several Values of Time (Liquid Configuration A) 21 2.3 Tangential

  3. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  4. Seismic velocity estimation from time migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Maria Kourkina

    2007-01-01

    This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of themore » Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable

  5. Light-cone velocities after a global quench in a noninteracting model

    NASA Astrophysics Data System (ADS)

    Najafi, K.; Rajabpour, M. A.; Viti, J.

    2018-05-01

    We study the light-cone velocity for global quenches in the noninteracting XY chain starting from a class of initial states that are eigenstates of the local z component of the spin. We point out how translation invariance of the initial state can affect the maximal speed at which correlations spread. As a consequence the light-cone velocity can be state dependent also for noninteracting systems: a new effect of which we provide clear numerical evidence and analytic predictions. Analogous considerations, based on numerical results, are drawn for the evolution of the entanglement entropy.

  6. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  7. Effect of Boundary Conditions on Numerically Simulated Tornado-like Vortices.

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    1987-02-01

    The boundary conditions for Rotunno's numerical model which simulates tornado-like vortices are examined. In particular, the lateral boundary condition for tangential velocity and the upper boundary condition for radial and tangential velocities are considered to determine if they have any significant impact on vortex development.The choice of the lateral boundary condition did not appear to have any real effect on the development of the vortex over the range of swirl ratios studied (0.87-2.61).The upper boundary conditions attempt to simulate both the presence and absence of the flow-straightening baffle. The boundary condition corresponding to the baffle in place produced a distinct boundary layer in the u and v field and very strong upflow and downflow within the vortex core. When this condition is removed, there is both radial and tangential motion throughout the domain and a reduction of the vertical velocity. At small swirl ratio (S = 0.87) this boundary condition has a profound impact on the narrow vortex, producing changes in the pressure field that intensifies the vortex. At higher swirl ratio the vortex is apparently broad enough to better adjust to the changes of the upper boundary condition and, thus, experiences little change in the development of the vortex.

  8. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    NASA Astrophysics Data System (ADS)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  9. Velocities of Auroral Coherent Echoes At 12 and 144 Mhz

    NASA Astrophysics Data System (ADS)

    Koustov, A. V.; Danskin, D. W.; Makarevitch, R. A.; Uspensky, M. V.; Janhunen, P.; Nishitani, N.; Nozawa, N.; Lester, M.; Milan, S.

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at 144 MHz and 12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5 providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider one event when STARE radar echoes are detected t the same ranges as CUTLASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and elec- tron density behavior at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS- CAT measurements) while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUTLASS velocities agree well with the convection component along the CUTLASS radar beam while STARE velocities are sometimes smaller by a factor of 2-3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on range. Plasma physics of E- and F-region irregularities is dis- cussed in attempt to explain inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  10. Heart deformation analysis: measuring regional myocardial velocity with MR imaging.

    PubMed

    Lin, Kai; Collins, Jeremy D; Chowdhary, Varun; Markl, Michael; Carr, James C

    2016-07-01

    The aim of the present study was to test the hypothesis that heart deformation analysis (HDA) may serve as an alternative for the quantification of regional myocardial velocity. Nineteen healthy volunteers (14 male and 5 female) without documented cardiovascular diseases were recruited following the approval of the institutional review board (IRB). For each participant, cine images (at base, mid and apex levels of the left ventricle [LV]) and tissue phase mapping (TPM, at same short-axis slices of the LV) were acquired within a single magnetic resonance (MR) scan. Regional myocardial velocities in radial and circumferential directions acquired with HDA (Vrr and Vcc) and TPM (Vr and VФ) were measured during the cardiac cycle. HDA required shorter processing time compared to TPM (2.3 ± 1.1 min/case vs. 9.5 ± 3.7 min/case, p < 0.001). Moderate to good correlations between velocity components measured with HDA and TPM could be found on multiple myocardial segments (r = 0.460-0.774) and slices (r = 0.409-0.814) with statistical significance (p < 0.05). However, significant biases of velocity measures at regional myocardial areas between HDA and TPM were also noticed. By providing comparable velocity measures as TPM does, HDA may serve as an alternative for measuring regional myocardial velocity with a faster image processing procedure.

  11. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  12. The stellar wind velocity function for red supergiants determined in eclipsing binaries

    NASA Technical Reports Server (NTRS)

    Ahmad, Imad A.; Stencel, Robert E.

    1988-01-01

    The potential for direct measurement of the acceleration of stellar winds from the supergiant component of Zeta Aurigae-type binary stars is discussed. The aberration angle of the interaction shock cone centered on the hot star provides a measure of the velocity of the cool star wind at the orbit of the secondary. This is confirmed by direct observations of stellar wind (P Cygni) line profile variations. This velocity is generally smaller than the final (terminal) velocity of the wind, deduced from the P Cygni line profiles. The contrast between these results and previously published supergiant wind models is discussed. The implication on the physics of energy source dissipation predicted in the theoretical models is considered.

  13. Vertical Motion Characteristics of Tropical Cyclones Determined with Airborne Doppler Radial Velocities.

    NASA Astrophysics Data System (ADS)

    Black, Micheal L.; Burpee, Robert W.; Marks, Frank D., Jr.

    1996-07-01

    drafts are lognormally distributed. In each of the regions, updrafts outnumber downdrafts by at least a factor of 2 and updrafts are wider and stronger than downdrafts. Updrafts in the eyewall slope radially outward with height and are significantly correlated over larger radial and vertical extents than in the other three regions. If the downwind (tangential) slope with height of updrafts varies little among the regions, updrafts capable of transporting air with relatively large moist static energy from the boundary layer to the upper troposphere are primarily in the eyewall region. Downdrafts affect a smaller vertical and horizontal area than updrafts and have no apparent radial slope.The total upward or downward mass flux is defined as the flux produced by all of the upward or downward Doppler vertical velocities. The maximum upward mass flux in all but the `other' region is near 1-km altitude, an indication that boundary-layer convergence is efficient in producing upward motion. Above the sea surface, the downward mass flux decreases with altitude. At every altitude, the total net mass flux is upward, except for the lower troposphere in the stratiform region where it is downward. Doppler-derived up- and downdrafts are a subset of the vertical velocity field that occupy small fractions of the total area, yet they contribute a substantial fraction to the total mass flux. In the eyewall and rainband regions, for example, the Doppler updrafts cover less than 30% of the area but are responsible for >75% and >50% to the total upward mass flux, respectively. The Doppler downdrafts typically encompass less than 10% of the area yet provide 50% of the total downward mass flux in the eyewall and 20% of the total downward flux in the rainband, stratiform, and `other' regions.

  14. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  15. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  16. Relative seismic velocity variations correlate with deformation at Kīlauea volcano.

    PubMed

    Donaldson, Clare; Caudron, Corentin; Green, Robert G; Thelen, Weston A; White, Robert S

    2017-06-01

    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression-hence closing cracks and producing faster velocities-and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool.

  17. On the extraction of pressure fields from PIV velocity measurements in turbines

    NASA Astrophysics Data System (ADS)

    Villegas, Arturo; Diez, Fancisco J.

    2012-11-01

    In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.

  18. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  19. High-velocity gas toward the LMC resides in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Richter, P.; de Boer, K. S.; Werner, K.; Rauch, T.

    2015-12-01

    Aims: To explore the origin of high-velocity gas in the direction of the Large Magellanic Cloud, (LMC) we analyze absorption lines in the ultraviolet spectrum of a Galactic halo star that is located in front of the LMC at d = 9.2+4.1-7.2 kpc distance. Methods: We study the velocity-component structure of low and intermediate metal ions (C ii, Si ii, Si iii) in the spectrum of RX J0439.8-6809, as obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and measure equivalent widths and column densities for these ions. We supplement our COS data with a Far-Ultraviolet Spectroscopic Explorer (FUSE) spectrum of the nearby LMC star Sk -69 59 and with H i 21 cm data from the Leiden-Argentina-Bonn (LAB) survey. Results: Metal absorption toward RX J0439.8-6809 is unambiguously detected in three different velocity components near vLSR = 0, + 60, and + 150 km s-1. The presence of absorption proves that all three gas components are situated in front of the star, thus located in the disk and inner halo of the Milky Way. For the high-velocity cloud (HVC) at vLSR = + 150 km s-1, we derive an oxygen abundance of [O/H] =-0.63 (~0.2 solar) from the neighboring Sk -69 59 sight line, in accordance with previous abundance measurements for this HVC. From the observed kinematics we infer that the HVC hardly participates in the Galactic rotation. Conclusions: Our study shows that the HVC toward the LMC represents a Milky Way halo cloud that traces low column density gas with relatively low metallicity. We rule out scenarios in which the HVC represents material close to the LMC that stems from a LMC outflow.

  20. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum

    NASA Astrophysics Data System (ADS)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  1. Near-Fault Ground Motion Velocity Pulses Input and Its Non-Stationary Characteristics from 2015 Gorkha Nepal Mw7.8 Earthquake KATNP Station

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wen, Zengping; Wang, Fang

    2017-04-01

    Using near-fault strong motions from Nepal Mw7.8 earthquake at KATNP station in the city center of Kathmandu, velocity-pulse and non-stationary characteristics of the strong motions are shown, and the reason and potential effect on earthquake damage for intense non-stationary characteristics of near fault velocity-pulse strong motions are mainly studied. The observed strong ground motions of main shock were collected from KATNP station located in 76 kilometers south-east away from epicenter along with forward direction of the rupture fault at an inter-montane basin of the Himalaya. Large velocity pulse show the period of velocity pulse reach up to 6.6s and peak ground velocity of the pulse ground motion is 120 cm/s. Compared with the median spectral acceleration value of NGA prediction equation, significant long-period amplification effect due to velocity pulse is detected at period more than 3.2s. Wavelet analysis shows that the two horizontal component of ground motion is intensely concentration of energy in a short time range of 25-38s and period range of 4-8s. The maximum wavelet-coefficient of horizontal component is 2455, which is about four time of vertical component of strong ground motion. On the perspective of this study, large velocity pulses are identified from two orthogonal components using wavelet method. Intense non-stationary characteristics amplitude and frequency content are mainly caused by site conditions and fault rupture mechanism, which will help to understand the damage evaluation and serve local seismic design.

  2. 3-component time-dependent crustal deformation in Southern California from Sentinel-1 and GPS

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2017-12-01

    We combine data from the Sentinel-1 InSAR mission collected between 2014-2017 with continuous GPS measurements to calculate the three components of the interseismic surface velocity field in Southern California at the resolution of InSAR data ( 100 m). We use overlapping InSAR tracks with two different look geometries (descending tracks 71, 173, and 144, and ascending tracks 64 and 166) to obtain the 3 orthogonal components of surface motion. Because of the under-determined nature of the problem, we use the local azimuth of the horizontal velocity vector as an additional constraint. The spatially variable azimuths of the horizontal velocity are obtained by interpolating data from the continuous GPS network. We estimate both secular velocities and displacement time series. The latter are obtained by combining InSAR time series from different lines of sight with time-dependent azimuths computed using continuous GPS time series at every InSAR epoch. We use the CANDIS method [Tymofyeyeva and Fialko, 2015], a technique based on iterative common point stacking, to correct the InSAR data for tropospheric and ionospheric artifacts when calculating secular velocities and time series, and to isolate low-amplitude deformation signals in our study region. The obtained horizontal (East and North) components of secular velocity exhibit long-wavelength patterns consistent with strain accumulation on major faults of the Pacific-North America plate boundary. The vertical component of velocity reveals a number of localized uplift and subsidence anomalies, most likely related to hydrologic effects and anthropogenic activity. In particular, in the Los Angeles basin we observe localized uplift of about 10-15mm/yr near Anaheim, Long Beach, and Redondo Beach, as well as areas of rapid subsidence near Irvine and Santa Monica, which are likely caused by the injection of water in the oil fields, and the pumping and recharge cycles of the aquifers in the basin.

  3. Cohesive zone length of metagabbro at supershear rupture velocity

    NASA Astrophysics Data System (ADS)

    Fukuyama, Eiichi; Xu, Shiqing; Yamashita, Futoshi; Mizoguchi, Kazuo

    2016-10-01

    We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m × 0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than √{2} times the shear wave velocity. This feature is consistent with the theoretical prediction.

  4. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    NASA Astrophysics Data System (ADS)

    Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.

    2018-01-01

    Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).

  5. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape

  6. Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies

    NASA Astrophysics Data System (ADS)

    Chen, Yanpei; Mei, Yifeng; Wang, Wei

    2017-03-01

    The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.

  7. Upscaling anomalous reactive kinetics (A+B-->C) from pore scale Lagrangian velocity analysis

    NASA Astrophysics Data System (ADS)

    De Anna, P.; Tartakovsky, A. M.; Le Borgne, T.; Dentz, M.

    2011-12-01

    Natural flow fields in porous media display a complex spatio-temporal organization due to heterogeneous geological structures at different scales. This multiscale disorder implies anomalous dispersion, mixing and reaction kinetics (Berkowitz et al. RG 2006, Tartakovsky PRE 2010). Here, we focus on the upscaling of anomalous kinetics arising from pore scale, non Gaussian and correlated, velocity distributions. We consider reactive front simulations, where a component A displaces a component B that saturates initially the porous domain. The reactive component C is produced at the dispersive front located at interface between the A and B domains. The simulations are performed with the SPH method. As the mixing zone grows, the total mass of C produced increases with time. The scaling of this evolution with time is different from that which would be obtained from the homogeneous advection dispersion reaction equation. This anomalous kinetics property is related to spatial structure of the reactive mixture, and its evolution with time under the combined action of advective and diffusive processes. We discuss the different scaling regimes arising depending on the dominant process that governs mixing. In order to upscale these processes, we analyze the Lagrangian velocity properties, which are characterized by the non Gaussian distributions and long range temporal correlation. The main origin of these properties is the existence of very low velocity regions where solute particles can remain trapped for a long time. Another source of strong correlation is the channeling of flow in localized high velocity regions, which created finger-like structures in the concentration field. We show the spatial Markovian, and temporal non Markovian, nature of the Lagrangian velocity field. Therefore, an upscaled model can be defined as a correlated Continuous Time Random Walk (Le Borgne et al. PRL 2008). A key feature of this model is the definition of a transition probability density for

  8. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  9. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary

    NASA Astrophysics Data System (ADS)

    Burmasheva, N. V.; Prosviryakov, E. Yu.

    2017-12-01

    A new exact analytical solution of a system of thermal convection equations in the Boussinesq approximation describing layered flows in an incompressible viscous fluid is obtained. A fluid flow in an infinite layer is considered. Convection in the fluid is induced by tangential stresses specified on the upper non-deformable boundary. At the fixed lower boundary, the no-slip condition is satisfied. Temperature corrections are given on the both boundaries of the fluid layer. The possibility of physical field stratification is investigated.

  10. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  11. Ovarian fluid of receptive females enhances sperm velocity

    NASA Astrophysics Data System (ADS)

    Gasparini, Clelia; Andreatta, Gabriele; Pilastro, Andrea

    2012-05-01

    The females of several internal fertilizers are able to store sperm for a long time, reducing the risk of sperm limitation. However, it also means that males can attempt to mate outside females' receptive period, potentially increasing the level of sperm competition and exacerbating sexual conflict over mating. The guppy ( Poecilia reticulata), an internally fertilizing fish, is a model system of such competition and conflict. Female guppies accept courtship and mate consensually only during receptive periods of the ovarian cycle but receive approximately one (mostly forced) mating attempt per minute both during and outside their sexually receptive phase. In addition, females can store viable sperm for months. We expected that guppy females would disfavour sperm received during their unreceptive period, possibly by modulating the quality and/or quantity of the components present in the ovarian fluid (OF) over the breeding cycle. Ovarian fluid has been shown to affect sperm velocity, a determinant of sperm competition success in this and other fishes. We found that in vitro sperm velocity is slower in OF collected from unreceptive females than in OF from receptive females. Visual stimulation with a potential partner prior to collection did not significantly affect in vitro sperm velocity. These results suggest that sperm received by unreceptive females may be disfavoured as sperm velocity likely affects the migration process and the number of sperm that reach storage sites.

  12. The stability of the boundary layer compressible gas with heat and mass transfer from the surface

    NASA Astrophysics Data System (ADS)

    Gaponov, S. A.; Terekhova, N. M.

    2016-10-01

    This work continues the research on modeling of the flow regime control in the compressible boundary layer. The effect of the distributed heat and mass transfer on the stability characteristics of the supersonic boundary layer at Mach number M = 5.35 is considered. The main attention is paid to modeling of acoustic disturbances both in conditions of a normal injection, when only the component of the average velocity V is nonzero, and the injection of other direction, including tangential one, when only the component U is nonzero at the wall. It is assumed that the effect of an injection of a homogeneous gas of the different temperature is similar to blowing of the gas of a different density, namely, blowing of the cold gas simulates blowing of the heavy gas and vice versa. Therefore in the present work this modeling is achieved by the change of a temperature factor (heating or cooling of the walls). There are the variant when the so-called locking regime when the velocity perturbations on the porous surface can be taken as zero.

  13. The Coincident Coherence of Extreme Doppler Velocity Events with p-mode Patches in the Solar Photosphere.

    NASA Astrophysics Data System (ADS)

    McClure, Rachel Lee

    2018-06-01

    Observations of the solar photosphere show many spatially compact Doppler velocity events with short life spans and extreme values. In the IMaX spectropolarimetric inversion data of the first flight of the SUNRISE balloon in 2009 these striking flashes in the intergranule lanes and complementary outstanding values in the centers of granules have line of sight Doppler velocity values in excess of 4 sigma from the mean. We conclude that values outside 4 sigma are a result from the superposition of the granulation flows and the p-modes.To determine how granulation and p-modes contribute to these outstanding Doppler events, I separate the two components using the Fast Fourier Transform. I produce the power spectrum of the spatial wave frequencies and their corresponding frequency in time for each image, and create a k-omega filter to separate the two components. Using the filtered data, test the hypothesis that extreme events occur because of strict superposition between the p-mode Doppler velocities and the granular velocities. I compare event counts from the observational data to those produced by random superposition of the two flow components and find that the observational event counts are consistent with the model event counts in the limit of small number statistics. Poisson count probabilities of event numbers observed are consistent with expected model count probability distributions.

  14. Design of tangential multi-energy soft x-ray camera for NSTX-U

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, Phillip

    2016-10-01

    For tokamaks and future facilities to operate safely in a high-pressure long-pulse discharge, it is imperative to address key issues associated with impurity sources, core transport and high-Z impurity accumulation. Multi-energy SXR imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ and ΔZeff). A new tangential multi-energy soft x-ray pin-hole camera is being design to sample the continuum- and line-emission from low-, medium- and high-Z impurities. This new x-ray diagnostic will be installed on an equatorial midplane port of NSTX-U tokamak and will measure the radial structure of the photon emissivity with a radial resolution below 1 cm at a 500 Hz frame rate and a photon-energy resolution of 500 eV. The layout and response expected of the new system will be shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation is also addressed. This effort is designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate a non-inductive operation at reduced collisionality, long energy-confinement-times and a transition to a divertor solution with metal walls.

  15. Cosmic velocity-gravity relation in redshift space

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain

    2007-02-01

    We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.

  16. Multi-Component, Multi-Point Interferometric Rayleigh/Mie Doppler Velocimeter

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Lee, Joseph W.; Bivolaru, Daniel

    2012-01-01

    An interferometric Rayleigh scattering system was developed to enable the measurement of multiple, orthogonal velocity components at several points within very-high-speed or high-temperature flows. The velocity of a gaseous flow can be optically measured by sending laser light into the gas flow, and then measuring the scattered light signal that is returned from matter within the flow. Scattering can arise from either gas molecules within the flow itself, known as Rayleigh scattering, or from particles within the flow, known as Mie scattering. Measuring Mie scattering is the basis of all commercial laser Doppler and particle imaging velocimetry systems, but particle seeding is problematic when measuring high-speed and high-temperature flows. The velocimeter is designed to measure the Doppler shift from only Rayleigh scattering, and does not require, but can also measure, particles within the flow. The system combines a direct-view, large-optic interferometric setup that calculates the Doppler shift from fringe patterns collected with a digital camera, and a subsystem to capture and re-circulate scattered light to maximize signal density. By measuring two orthogonal components of the velocity at multiple positions in the flow volume, the accuracy and usefulness of the flow measurement increase significantly over single or nonorthogonal component approaches.

  17. Wake Vortex Tangential Velocity Adaptive Spectral (TVAS) algorithm for pulsed Lidar systems.

    DOT National Transportation Integrated Search

    2011-06-20

    In 2008 the FAA tasked the Volpe Center with the development of a government owned processing package capable of performing wake detection, characterization and tracking. : The current paper presents the background, progress, and capabilities to date...

  18. A Neural Circuit for Angular Velocity Computation

    PubMed Central

    Snider, Samuel B.; Yuste, Rafael; Packer, Adam M.

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob. PMID:21228902

  19. A neural circuit for angular velocity computation.

    PubMed

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  20. Tide-related seismic velocity changes across the English Channel

    NASA Astrophysics Data System (ADS)

    de Ridder, S.; Valova, V.; Curtis, A.

    2016-12-01

    Temporal changes in the seismic velocities in the Earth's subsurface are known to occur due to a range of phenomena including seasonal variations, magmatic activity, nonlinear healing after strong ground motion, and glacial loading and unloading. Our goal is to extend observations of small velocity changes towards shorter timescales. Earth tides caused by the gravitational attraction between the Earth and the Moon might affect seismic properties. If tidal velocity variations can be recovered from long range cross-correlations, and can also be coupled to stress-strain induced variations in the elastic properties, that would pave the way for systematic imaging of rheological properties of the upper crust. With this long-term goal, we studied data recorded between January 2010 and December 2015 by four broad-band instruments from the British Geological Survey network. One station is located in Cornwall, two in Devon, and one across the English Channel on the island of Jersey. Continuous seismic recordings of the vertical components of particle velocity were divided into one hour intervals, bandpass filtered between 0.02 and 0.11 Hz, spectrally whitened, and cross-correlated between station pairs. The resulting cross-correlations were stacked into bins corresponding to the average water levels observed at nearby ports resulting in cross-correlation traces as a function of water level, for each station pair. To detect temporal changes, a multi-window time-shift analysis is applied to these inter-station traces. We find a stretch factor that best translates one trace into another: this stretch is indicative of changes in average seismic velocities between the pair of tidal phases. We detected systematic seismic velocity variations as a function of water level. We find that increasing water level coincided with decreasing seismic velocities. Separating the data according to up- and down-going tidal tracts reveals that the observed velocity changes exhibit a time

  1. Detiding Tsunami Currents to Validate Velocities in Numerical Simulation Codes using Observations Near Hawaii from the 2011 Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Adams, L. M.; LeVeque, R. J.

    2015-12-01

    The ability to measure, predict, and compute tsunami flow velocities is ofimportance in risk assessment and hazard mitigation. Until recently, fewdirect measurements of tsunami velocities existed to compare with modelresults. During the 11 March 2001 Tohoku Tsunami, 328 current meters werewere in place around the Hawaiian Islands, USA, that captured time seriesof water velocity in 18 locations, in both harbors and deep channels, ata series of depths. Arcos and LeVeque[1] compared these records againstnumerical simulations performed using the GeoClaw numerical tsunami modelwhich is based on the depth-averaged shallow water equations. They confirmedthat GeoClaw can accurately predict velocities at nearshore locations, andthat tsunami current velocity is more spatially variable than wave formor height and potentially more sensitive for model validation.We present a new approach to detiding this sensitive current data. Thisapproach can be used separately on data at each depth of a current gauge.When averaged across depths, the Geoclaw results in [1] are validated. Withoutaveraging, the results should be useful to researchers wishing to validate their3D codes. These results can be downloaded from the project website below.The approach decomposes the pre-tsunami component of the data into three parts:a tidal component, a fast component (noise), and a slow component (not matchedby the harmonic analysis). Each part is extended to the time when the tsunamiis present and subtracted from the current data then to give the ''tsunami current''that can be compared with 2D or 3D codes that do not model currents in thepre-tsunami regime. [1] "Validating Velocities in the GeoClaw Tsunami Model using Observations NearHawaii from the 2001 Tohoku Tsunami"M.E.M. Arcos and Randall J. LeVequearXiv:1410.2884v1 [physics.geo-py], 10 Oct. 2014.project website: http://faculty.washington.edu/lma3/research.html

  2. Plasmon modes supported by left-handed material slab waveguide with conducting interfaces

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.

    2018-07-01

    Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.

  3. The Multiple-component Binary Hyad, vA 351 - a Progress Report

    NASA Astrophysics Data System (ADS)

    Benedict, George Fritz; Franz, Otto G.; Wasserman, Lawrence H.

    2017-06-01

    We extend results first announced by Franz et al. (1998) in the abstract, http://adsabs.harvard.edu/abs/1998AAS...19310207F ,that identified vA 351 = H346 in the Hyades as a multiple star system containing a white dwarf. With HST/FGS fringe tracking and scanning, spanning four years, we establish a parallax, relative orbit, and mass fraction for the A-B components, with a period, P~5.47y. With ground-based radial velocities from the McDonald Observatory Struve 2.1m telescope and Sandiford Spectrograph, spanning 14 years, we find that component B consists of BC, two M dwarf stars orbiting with a very short period (P(BC)~0.75 days), having a mass ratio C/B~0.94. We confirm that the total mass of the system can only be reconciled with the distance and component photometry by including a fainter, higher mass component, proposed to be a ~0.8Msun white dwarf. Thus, the quadruple system consists of three M dwarfs (A,B,C) and one white dwarf (D). The M dwarf masses and absolute magnitudes are consistent with the Benedict et al. (2016, http://adsabs.harvard.edu/abs/2016AJ....152..141B) lower Main Sequence Mass-Luminosity Relation. The radial velocity signal has so far yielded a signature only for the short-period BC orbital motion. Velocities from H-α and He I emission lines confirm the BC period from absorption lines, with similar (He I) and higher (H-α) velocity amplitudes.

  4. SU-F-T-414: Mathematical Formulation of Gantry Starting Angle for Right Medial Tangential Arc in Left Intact Partial Breast Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, U; Sarkar, B; Kaur, H

    Purpose: To choose appropriate gantry starting angle for partial left breast irradiation using volumetric modulated arc therapy (VMAT). Methods: A random patient of left breast carcinoma was selected for this study. The slice which was selected for this mathematical formulation was having maximum breast thickness and maximum medial and lateral tangential distance. After this appropriate isocenter was chosen on that CT slice. The distances between various points were measured by the measuring tool in Monaco 5.00.04. Using the various trigonometric equations, a final equation was derived which shows the relationship between Gantry start angle, isocenter Location and tissue thickness. Results:more » The final equation for gantry start for right medial tangential arc is given asStarting angle = 270°+tan^(−1)(sin(θ)/(x-1/x-2 +cosθ))The above equation was tested for 10 cases and it was found to be appropriate for all the cases. Conclusion: Gantry starting angle for partial arc irradiation depends upon Breast thickness, Distance between Medial and lateral tangent and isocenter location.« less

  5. Rayleigh Wave Phase Velocities in Alaska from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Pepin, K. S.; Li, A.; Yao, Y.

    2016-12-01

    We have analyzed ambient noise data recorded at 136 broadband stations from the USArray Transportable Array and other permanent seismic networks in Alaska and westernmost Canada. Daily cross-correlations are obtained using vertical component seismograms and are stacked to form a single trace for each station pair. Rayleigh wave signals are extracted from the stacked traces and are used to calculate phase velocities in the Alaska region. Preliminary phase velocity maps show similar trends to those from previous studies, but also yield new anomalies given the wider geographical range provided by the Transportable Array. At short periods (6-12s), a high velocity anomaly is observed directly northeast of the Fairweather-Queen Charlotte fault, and a high velocity trend appears in the eastern Yukon terrane between the Denali and Tintina fault, probably reflecting mafic igneous crustal rocks. Significantly slow anomalies are present at the Prince William Sound, Cook Inlet, and the basins in southwestern and central Alaska, indicating sediment effects. The slow anomalies gradually shift to southeastern and south-central Alaska with increasing period (up to 40s), corresponding to the Wrangell volcano belt and the volcano arc near Cook Inlet. A broad high-velocity zone is also observed in central Alaska to the north of the Denali fault at long periods (30-40s). The Yakutat terrane is characterized as a high-velocity anomaly from period 14s to 25s but not imaged at longer periods due to poor resolution.

  6. Relative seismic velocity variations correlate with deformation at Kīlauea volcano

    PubMed Central

    Donaldson, Clare; Caudron, Corentin; Green, Robert G.; Thelen, Weston A.; White, Robert S.

    2017-01-01

    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression—hence closing cracks and producing faster velocities—and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool. PMID:28782009

  7. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    PubMed

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (<25 years, r(2) = 0.043; 25-44 years, r(2) = 0.103; 45-64 years, r(2) = 0.079; 65-84 years, r(2) = 0.044; ≥ 85 years, r(2) = 0.022; P < 0.0001 for all). A significant (P < 0.0001) negative but always weaker correlation between pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P < 0.0001). With multiple stepwise regression analysis, left ventricular ejection time and dP/dt remained the only determinant of pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  8. Velocity diagrams

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.; Stewart, W. L.

    1972-01-01

    The selection and design of velocity diagrams for axial flow turbines are considered. Application is treated in two parts which includes: (1) mean-section diagrams, and (2) radial variation of diagrams. In the first part, the velocity diagrams occurring at the mean section are assumed to represent the average conditions encountered by the turbine. The different types of diagrams, their relation to stage efficiency, and their selection when staging is required are discussed. In the second part, it is shown that in certain cases the mean-section diagrams may or may not represent the average flow conditions for the entire blade span. In the case of relatively low hub- to tip-radius ratios, substantial variations in the velocity diagrams are encountered. The radial variations in flow conditions and their effect on the velocity diagrams are considered.

  9. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    NASA Astrophysics Data System (ADS)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  10. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  11. Performance Evaluation of the ONR Axial Waterjet 2 (AxWJ-2)

    DTIC Science & Technology

    2009-12-01

    regions of the blade wakes and near the wall. Pump curves In order to estimate the uncertainty on the measured pump performance, it was first necessary to...velocity well outside the hub wake , but the tangential velocity magnitude and the axial velocity wake deficit are overpredicted near the hub. The...of these plots consists of a grid of 55 * 1024 points. In all three plots, the low-velocity regions six blade wakes are clearly visible, as are the

  12. Near-surface shear-wave velocity measurements in unlithified sediment

    USGS Publications Warehouse

    Richards, B.T.; Steeples, D.; Miller, R.; Ivanov, J.; Peterie, S.; Sloan, S.D.; McKenna, J.R.

    2011-01-01

    S-wave velocity can be directly correlated to material stiffness and lithology making it a valuable physical property that has found uses in construction, engineering, and environmental projects. This study compares different methods for measuring S-wave velocities, investigating and identifying the differences among the methods' results, and prioritizing the different methods for optimal S-wave use at the U. S. Army's Yuma Proving Grounds YPG. Multichannel Analysis of Surface Waves MASW and S-wave tomography were used to generate S-wave velocity profiles. Each method has advantages and disadvantages. A strong signal-to-noise ratio at the study site gives the MASW method promising resolution. S-wave first arrivals are picked on impulsive sledgehammer data which were then used for the tomography process. Three-component downhole seismic data were collected in-line with a locking geophone, providing ground truth to compare the data and to draw conclusions about the validity of each data set. Results from these S-wave measurement techniques are compared with borehole seismic data and with lithology data from continuous samples to help ascertain the accuracy, and therefore applicability, of each method. This study helps to select the best methods for obtaining S-wave velocities for media much like those found in unconsolidated sediments at YPG. ?? 2011 Society of Exploration Geophysicists.

  13. Decoupling structural and environmental determinants of sap velocity

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Dragoni, D.

    2007-12-01

    Characterization of transpiration based on the water use of individual tress has the advantage of preserving vital information on the plant-environment functional links and flux partitioning between species and landscape areas. Whole-tree transpiration has been estimated by means of sap velocity probes, which offer the dual advantages of practicality and repeatability. However, the assumptions underlying the technique require careful verification in order to determine total sap flow from point-based estimates of sap velocity. Our work presents a novel theoretical framework for the study of individual tree sap flow that incorporates both spatial and temporal variability in sap velocities. The instantaneous sap velocity at any point in the radial profile of xylem tissue is defined as the product of two components: (1) a time-invariant sap velocity distribution linked to the species- specific anatomical and structural properties of the conducting xylem, and (2) a time-varying term linked to the dynamics of the atmospheric water demand and available soil moisture. The separation of structural and temporal variation in sap velocity observations provides a direct mechanism for investigating how sap flow is governed by variation in environmental conditions as well as a means for comparing characteristic rates of plant water use among individuals of varying size. Most critically, this approach allows for a consistent and physically meaningful method for extrapolating point observations of sap velocity across the entire depth of conducting xylem. Experimental evidence supports our theoretical framework in the case of a population of sugar maples in a mixed deciduous forest, where observations were taken from a wide range of tree sizes, under varying soil water availability and atmospheric transpiration demand. We have also applied our approach to a small homogeneous sample of dwarf apple trees in a managed orchard, with favorable results. While these results require further

  14. Multifractal Analysis of Velocity Vector Fields and a Continuous In-Scale Cascade Model

    NASA Astrophysics Data System (ADS)

    Fitton, G.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    the order of 1.5 for all three components. Given we have only the horizontal wind components over a grid for the Germany dataset the comparable probability distributions of horizontal and vertical velocity increments shows the field is isotropic. The Germany dataset allows us to compare the spatial velocity increments with that of the temporal. We briefly mentioned above that the winds in Corsica were subject to vertical forcing effects over large scales. This means the velocity field scaled as 11/5 i.e. Bolgiano-Obukhov instead of Kolmogorov's. To test this we were required to invoke Taylor's frozen turbulence hypothesis since the data was a one point measurement. Having vertical and horizontal velocity increments means we can further justify the claims of an 11/5 scaling law for vertical shears of the velocity and test the validity of the Taylor's hypothesis. We used the results to first simulate the velocity components using continuous in-scale cascades and then discuss the reconstruction of the full vector fields.

  15. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1985-01-01

    A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  16. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  17. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  18. Wave Velocities in Hydrocarbons and Hydrocarbon Saturated - Applications to Eor Monitoring.

    NASA Astrophysics Data System (ADS)

    Wang, Zhijing

    In order to effectively utilize many new seismic technologies and interpret the results, acoustic properties of both reservoir fluids and rocks must be well understood. It is the main purpose of this dissertation to investigate acoustic wave velocities in different hydrocarbons and hydrocarbon saturated rocks under various reservoir conditions. The investigation consists of six laboratory experiments, followed by a series of theoretical and application analyses. All the experiments involve acoustic velocity measurements in hydrocarbons and rocks with different hydrocarbons, using the ultrasonic pulse-transmission methods, at elevated temperatures and pressures. In the experiments, wave velocities are measured versus both temperature and pressure in 50 hydrocarbons. The relations among the acoustic velocity, temperature, pressure, API gravity, and the molecular weight of the hydrocarbons are studied, and empirical equations are established which allow one to calculate the acoustic velocities in hydrocarbons with known API gravities. Wave velocities in hydrocarbon mixtures are related to the composition and the velocities in the components. The experimental results are also analyzed in terms of various existing theories and models of the liquid state. Wave velocities are also measured in various rocks saturated with different hydrocarbons. The compressional wave velocities in rocks saturated with pure hydrocarbons increase with increasing the carbon number of the hydrocarbons. They decrease markedly in all the heavy hydrocarbon saturated rocks as temperature increases. Such velocity decreases set the petrophysical basis for in-situ seismic monitoring thermal enhanced oil recovery processes. The effects of carbon dioxide flooding and different pore fluids on wave velocities in rocks are also investigated. It is highly possible that there exist reflections of seismic waves at the light-heavy oil saturation interfaces in-situ. It is also possible to use seismic methods

  19. Synthetic Seismogram Calculations for Two-Dimensional Velocity Models.

    DTIC Science & Technology

    1983-05-20

    vertical and radial component displacements. The seismograms have been convolved with a seismograph response function corresponding to a short period...phase velocity is a measure of the degree of numerical dispersion present in the calculation for a variety of grid spacings. The value of 1/G of 0.1...method is an approximate technique and is some what restricted in its application, its efficiency and accuracy make it suitable for routine modeling of

  20. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    NASA Astrophysics Data System (ADS)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  1. Short-period surface-wave phase velocities across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Ekström, G.

    2017-09-01

    Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.

  2. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  3. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected

    NASA Astrophysics Data System (ADS)

    Wouchuk, J. G.; Sano, T.

    2015-02-01

    The Richtmyer-Meshkov instability (RMI) develops when a shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure-entropy-vorticity fields generated by the rippled wave fronts are responsible for the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluids density ratio, and compressibilities. It was speculated in the past about the possibility of getting a zero value for the asymptotic normal velocity, a phenomenon that was called "freeze-out" [G. Fraley, Phys. Fluids 29, 376 (1986), 10.1063/1.865722; K. Mikaelian, Phys. Fluids 6, 356 (1994), 10.1063/1.868091, A. L. Velikovich et al., Phys. Plasmas 8, 592 (2001), 10.1063/1.1335829]. In a previous paper, freeze-out was studied for the case when a shock is reflected at the contact surface [J. G. Wouchuk and K. Nishihara, Phys. Rev. E 70, 026305 (2004), 10.1103/PhysRevE.70.026305]. In this work the freeze-out of the RMI is studied for the case in which a rarefaction is reflected back. Two different regimes are found: nearly equal preshock densities at the interface at any shock intensity, and very large density difference for strong shocks. The contour curves that relate shock Mach number and preshock density ratio are obtained in both regimes for fluids with equal and different compressibilities. An analysis of the temporal evolution of different cases of freeze-out is shown. It is seen that the freeze-out is the result of the interaction between the unstable interface and the rippled wave fronts. As a general and qualitative criterion to look for freeze-out situations, it is seen that a necessary condition for freeze-out is the same orientation for the tangential velocities generated at each side of the contact

  4. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training.

    PubMed

    Morin, Jean-Benoît; Samozino, Pierre

    2016-03-01

    Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (eg, jumps) and sprint movements. These are major physical components of performance in many sports, and the methods the authors developed and validated are based on data that are now rather simple to obtain in field conditions (eg, body mass, jump height, sprint times, or velocity). The promising aspect of these approaches is that they allow for more individualized and accurate evaluation, monitoring, and training practices, the success of which is highly dependent on the correct collection, generation, and interpretation of athletes' mechanical outputs. The authors therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity-profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, the authors first detail how vertical profiling can be used to manage ballistic push-off performance, with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Furthermore, they discuss these same concepts with regard to horizontal profiling in the management of sprinting performance. These sections are illustrated by typical examples from the authors' practice. Finally, they provide a practical and operational synthesis and outline future challenges that will help further develop these approaches.

  5. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.

    PubMed

    Park, H M; Kim, T W

    2009-01-21

    Electrokinetic flows through hydrophobic microchannels experience velocity slip at the microchannel wall, which affects volumetric flow rate and solute retention time. The usual method of predicting the volumetric flow rate and velocity profile for hydrophobic microchannels is to solve the Navier-Stokes equation and the Poisson-Boltzmann equation for the electric potential with the boundary condition of velocity slip expressed by the Navier slip coefficient, which is computationally demanding and defies analytic solutions. In the present investigation, we have devised a simple method of predicting the velocity profiles and volumetric flow rates of electrokinetic flows by extending the concept of the Helmholtz-Smoluchowski velocity to microchannels with Navier slip. The extended Helmholtz-Smoluchowski velocity is simple to use and yields accurate results as compared to the exact solutions. Employing the extended Helmholtz-Smoluchowski velocity, the analytical expressions for volumetric flow rate and velocity profile for electrokinetic flows through rectangular microchannels with Navier slip have been obtained at high values of zeta potential. The range of validity of the extended Helmholtz-Smoluchowski velocity is also investigated.

  6. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For

  7. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  8. Velocity Measurement in a Dual-Mode Supersonic Combustor using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Goyne, C. P.; McDaniel, J. C.; Krauss, R. H.; Day, S. W.; Reubush, D. E. (Technical Monitor); McClinton, C. R. (Technical Monitor); Reubush, D. E.

    2001-01-01

    Temporally and spatially-resolved, two-component measurements of velocity in a supersonic hydrogen-air combustor are reported. The combustor had a single unswept ramp fuel injector and operated with an inlet Mach number of 2 and a flow total temperature approaching 1200 K. The experiment simulated the mixing and combustion processes of a dual-mode scramjet operating at a flight Mach number near 5. The velocity measurements were obtained by seeding the fuel with alumina particles and performing Particle Image Velocimetry on the mixing and combustion wake of the ramp injector. To assess the effects of combustion on the fuel air-mixing process, the distribution of time-averaged velocity and relative turbulence intensity was determined for the cases of fuel-air mixing and fuel-air reacting. Relative to the mixing case, the near field core velocity of the reacting fuel jet had a slower streamwise decay. In the far field, downstream of 4 to 6 ramp heights from the ramp base, the heat release of combustion resulted in decreased flow velocity and increased turbulence levels. The reacting measurements were also compared with a computational fluid dynamics solution of the flow field. Numerically predicted velocity magnitudes were higher than that measured and the jet penetration was lower.

  9. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  10. Velocity and pressure characteristics of a model SSME high pressure fuel turbopump

    NASA Technical Reports Server (NTRS)

    Tse, D. G-N.; Sabnis, J. S.; Mcdonald, H.

    1991-01-01

    Under the present effort an experiment rig has been constructed, an instrumentation package developed and a series of mean and rms velocity and pressure measurements made in a turbopump which modelled the first stage of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump. The rig was designed so as to allow initial experiments with a single configuration consisting of a bell-mouth inlet, a flight impeller, a vaneless diffuser and a volute. Allowance was made for components such as inlet guide vanes, exit guide vanes, downstream pumps, etc. to be added in future experiments. This flexibility will provide a clear baseline set of experiments and allow evaluation in later experiments of the effect of adding specific components upon the pump performance properties. The rotational speed of the impeller was varied between 4260 and 7680 rpm which covered the range of scaled SSME rotation speeds when due allowance is made for the differing stagnation temperature, model to full scale. The results at the inlet obtained with rotational speeds of 4260, 6084 and 7680 rpm showed that the axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk velocity at the exit of the turbopump near the center of the inlet, but it decreased rapidly with increasing radius at all three speeds. Reverse flow occurred at a radius greater than 0.9 R for all three speeds and the maximum negative velocity reduced from 1.3 of the bulk velocity at the exit of the turbopump at 4260 rpm to 0.35 at 7680 rpm, suggesting that operating at a speed closer to the design condition of 8700 rpm improved the inlet characteristics. The reverse flow caused positive prerotation at the impeller inlet which was negligibly small near the center but reached 0.7 of the impeller speed at the outer annulus. The results in the diffuser and the volute obtained at 7680 rpm show that the hub and shroud walls of the diffuser were characterized by regions of transient reverse flow with

  11. Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II

    NASA Technical Reports Server (NTRS)

    Turner, T. N.

    1983-01-01

    A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.

  12. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  13. Exact solutions for layered thermocapillary convection of a viscous incompressible fluid with specified stresses on the bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu.; Spevak, L. F.

    2017-12-01

    A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.

  14. Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.

    2006-01-01

    A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.

  15. Signal velocity and group velocity for an optical pulse propagating through a GaAs cavity.

    PubMed

    Centini, Marco; Bloemer, Mark; Myneni, Krishna; Scalora, Michael; Sibilia, Concita; Bertolotti, Mario; D'Aguanno, Giuseppe

    2003-07-01

    We present measurements of the signal and group velocities for chirped optical pulses propagating through a GaAs cavity. The signal velocity is based on a specified signal-to-noise ratio at the detector. Under our experimental conditions, the chirp substantially modifies the group velocity of the pulse, but leaves the signal velocity unaltered. At unity transmittance, the velocities are equal. In general, when the transmittance is less than unity, the group velocity is faster than the signal velocity. While the group velocity can be negative, the signal velocity is always less than c/n, where c is the speed of light in vacuum and n is the refractive index of GaAs. To our knowledge, this is the first measurement of both the group velocity and the signal velocity in any system.

  16. Aging in freely evolving granular gas with impact velocity dependent coefficient of restitution

    NASA Astrophysics Data System (ADS)

    Kumari, Shikha; Ahmad, Syed Rashid

    2018-05-01

    The evolution of granular system is governed by the concept of coefficient of restitution that gives a relationship between normal component of relative velocities before and after collision. Most of the studies consider a simplified collision model where particles interact through coefficient of restitution which is a constant while in reality, the coefficient of restitution must be a variable that depends on the impact velocity of colliding particles. In this work, we have considered the aging in the velocity autocorrelation function, A(τw, τ) for a granular gas of realistic particles interacting through coefficient of restitution that is depending on impact velocity. Molecular dynamics simulation is used to study granular gas that is evolving freely in absence of any external force. From the simulation results, we observe that A(τw, τ) depends explicitly on waiting time τw and collision time τ. Initially, the function decays exponentially but as the waiting time increases the decay of function becomes slow due to correlations that emerge in velocity field.

  17. A transverse oscillation approach for estimation of three-dimensional velocity vectors, part I: concept and simulation study.

    PubMed

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2014-10-01

    A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of v(x) and v(y) depends on the flow angle ß and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v(z). The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.

  18. Parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping

    NASA Astrophysics Data System (ADS)

    Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav

    2017-05-01

    Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.

  19. STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe

    2015-10-10

    In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertialmore » range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.« less

  20. Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Koziol, Conrad P.; Arnold, Neil

    2018-03-01

    Surface runoff at the margin of the Greenland Ice Sheet (GrIS) drains to the ice-sheet bed, leading to enhanced summer ice flow. Ice velocities show a pattern of early summer acceleration followed by mid-summer deceleration due to evolution of the subglacial hydrology system in response to meltwater forcing. Modelling the integrated hydrological-ice dynamics system to reproduce measured velocities at the ice margin remains a key challenge for validating the present understanding of the system and constraining the impact of increasing surface runoff rates on dynamic ice mass loss from the GrIS. Here we show that a multi-component model incorporating supraglacial, subglacial, and ice dynamic components applied to a land-terminating catchment in western Greenland produces modelled velocities which are in reasonable agreement with those observed in GPS records for three melt seasons of varying melt intensities. This provides numerical support for the hypothesis that the subglacial system develops analogously to alpine glaciers and supports recent model formulations capturing the transition between distributed and channelized states. The model shows the growth of efficient conduit-based drainage up-glacier from the ice sheet margin, which develops more extensively, and further inland, as melt intensity increases. This suggests current trends of decadal-timescale slowdown of ice velocities in the ablation zone may continue in the near future. The model results also show a strong scaling between average summer velocities and melt season intensity, particularly in the upper ablation area. Assuming winter velocities are not impacted by channelization, our model suggests an upper bound of a 25 % increase in annual surface velocities as surface melt increases to 4 × present levels.

  1. Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-12-01

    The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal tides exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal tides. The spring-neap cycle and energy of the semidiurnal internal tide propagate at the group velocity. Long-range propagation of M2 and S2 internal tides in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal tide fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.

  2. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

    NASA Astrophysics Data System (ADS)

    Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming

    2016-08-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.

  3. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but

  4. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size

  5. Determination of velocity correction factors for real-time air velocity monitoring in underground mines.

    PubMed

    Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-12-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.

  6. Determination of velocity correction factors for real-time air velocity monitoring in underground mines

    PubMed Central

    Yuan, Liming; Thomas, Rick; Iannacchione, Anthony

    2017-01-01

    When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495

  7. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  8. A high-dispersion molecular gas component in nearby galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H Imore » surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.« less

  9. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    NASA Astrophysics Data System (ADS)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  10. Modeling non-Fickian dispersion by use of the velocity PDF on the pore scale

    NASA Astrophysics Data System (ADS)

    Kooshapur, Sheema; Manhart, Michael

    2015-04-01

    For obtaining a description of reactive flows in porous media, apart from the geometrical complications of resolving the velocities and scalar values, one has to deal with the additional reactive term in the transport equation. An accurate description of the interface of the reacting fluids - which is strongly influenced by dispersion- is essential for resolving this term. In REV-based simulations the reactive term needs to be modeled taking sub-REV fluctuations and possibly non-Fickian dispersion into account. Non-Fickian dispersion has been observed in strongly heterogeneous domains and in early phases of transport. A fully resolved solution of the Navier-Stokes and transport equations which yields a detailed description of the flow properties, dispersion, interfaces of fluids, etc. however, is not practical for domains containing more than a few thousand grains, due to the huge computational effort required. Through Probability Density Function (PDF) based methods, the velocity distribution in the pore space can facilitate the understanding and modelling of non-Fickian dispersion [1,2]. Our aim is to model the transition between non-Fickian and Fickian dispersion in a random sphere pack within the framework of a PDF based transport model proposed by Meyer and Tchelepi [1,3]. They proposed a stochastic transport model where velocity components of tracer particles are represented by a continuous Markovian stochastic process. In addition to [3], we consider the effects of pore scale diffusion and formulate a different stochastic equation for the increments in velocity space from first principles. To assess the terms in this equation, we performed Direct Numerical Simulations (DNS) for solving the Navier-Stokes equation on a random sphere pack. We extracted the PDFs and statistical moments (up to the 4th moment) of the stream-wise velocity, u, and first and second order velocity derivatives both independent and conditioned on velocity. By using this data and

  11. Jet Stability and the Generation of Superluminal and Stationary Components

    NASA Technical Reports Server (NTRS)

    Agudo, Ivan; Gomez, Jose-Luis; Marti, Jose-Maria; Ibanez, Jose-Maria; Marscher, Alan P.; Alberdi, Antonio; Aloy, Miguel-Angel; Hardee, Philip E.

    2001-01-01

    We present a numerical simulation of the response of an expanding relativistic jet to the ejection of a superluminal component. The simulation has been performed with a relativistic time-dependent hydrodynamical code from which simulated radio maps are computed by integrating the transfer equations for synchrotron radiation. The interaction of the superluminal component with the underlying jet results in the formation of multiple conical shocks behind the main perturbation. These trailing components can be easily distinguished because they appear to be released from the primary superluminal component instead of being ejected from the core. Their oblique nature should also result in distinct polarization properties. Those appearing closer to the core show small apparent motions and a very slow secular decrease in brightness and could be identified as stationary components. Those appearing farther downstream are weaker and can reach superluminal apparent motions. The existence of these trailing components indicates that not all observed components necessarily represent major perturbations at the jet inlet; rather, multiple emission components can be generated by a single disturbance in the jet. While the superluminal component associated with the primary perturbation exhibits a rather stable pattern speed, trailing components have velocities that increase with distance from the core but move at less than the jet speed. The trailing components exhibit motion and structure consistent with the triggering of pinch modes by the superluminal component. The increase in velocity of the trailing components is an indirect consequence of the acceleration of the expanding fluid, which is assumed to be relativistically hot; if observed, such accelerations would therefore favor an electron-positron (as opposed to proton rest mass) dominated jet.

  12. Kinetic theory for identical, frictional, nearly elastic disks

    NASA Astrophysics Data System (ADS)

    Yoon, David K.; Jenkins, James T.

    2005-08-01

    We develop kinetic theory for slightly frictional and nearly elastic disks. The tangential interaction is modeled by two parameters: a Coulomb friction coefficient and a tangential restitution coefficient. Assuming Maxwellian velocity distribution functions for both translational and rotational velocities, we derive exact expressions for the rates of dissipation of translational and rotational fluctuation energies per unit area. Setting the rotational dissipation rate to zero, as in a steady, homogeneous shearing flow, we find the ratio of the rotational temperature to the translational. In the case of small friction, this is used to determine an effective coefficient of normal restitution. In this way, the effects of small friction can be incorporated into the theory, thereby dispensing with the need to separately consider the complete balances for the momentum and the energy of the rotational motion.

  13. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.

  14. Laminar boundary layer near the rotating end wall of a confined vortex

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. J.; Levy, E. K.

    1982-06-01

    The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.

  15. Nonautonomous dark soliton solutions in two-component Bose—Einstein condensates with a linear time-dependent potential

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yan; Wang, Shuang-Jin; Li, Zai-Dong

    2014-06-01

    We report the analytical nonautonomous soliton solutions (NSSs) for two-component Bose—Einstein condensates with the presence of a time-dependent potential. These solutions show that the time-dependent potential can affect the velocity of NSS. The velocity shows the characteristic of both increasing and oscillation with time. A detailed analysis for the asymptotic behavior of NSSs demonstrates that the collision of two NSSs of each component is elastic.

  16. Magnetic field and radial velocities of the star Chi Draconis A

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Cheol; Gadelshin, D.; Han, Inwoo; Kang, Dong-Il; Kim, Kang-Min; Valyavin, G.; Galazutdinov, G.; Jeong, Gwanghui; Beskrovnaya, N.; Burlakova, T.; Grauzhanina, A.; Ikhsanov, N. R.; Kholtygin, A. F.; Valeev, A.; Bychkov, V.; Park, Myeong-Gu

    2018-01-01

    We present high-resolution spectropolarimetric observations of the spectroscopic binary χ Dra. Spectral lines in the spectrum of the main component χ Dra A show variable Zeeman displacement, which confirms earlier suggestions about the presence of a weak magnetic field on the surface of this star. Within about 2 yr of time base of our observations, the longitudinal component BL of the magnetic field exhibits variation from -11.5 ± 2.5 to +11.1 ± 2.1 G with a period of about 23 d. Considering the rotational velocity of χ Dra A in the literature and that newly measured in this work, this variability may be explained by the stellar rotation under the assumption that the magnetic field is globally stable. Our new measurements of the radial velocities (RV) in high-resolution I-spectra of χ Dra A refined the orbital parameters and reveal persistent deviations of RVs from the orbital curve. We suspect that these deviations may be due to the influence of local magnetically generated spots, pulsations, or a Jupiter-size planet orbiting the system.

  17. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.

    PubMed

    Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng

    2012-04-01

    As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.

  18. A classification scheme for turbulent flows based on their joint velocity-intermittency structure

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Nishimura, K.; Peinke, J.

    2011-12-01

    Kolmogorov's classic theory for turbulence assumed an independence between velocity increments and the value for the velocity itself. However, this assumption is questionable, particularly in complex geophysical flows. Here we propose a framework for studying velocity-intermittency coupling that is similar in essence to the popular quadrant analysis method for studying near-wall flows. However, we study the dominant (longitudinal) velocity component along with a measure of the roughness of the signal, given mathematically by its series of Hölder exponents. Thus, we permit a possible dependence between velocity and intermittency. We compare boundary layer data obtained in a wind tunnel to turbulent jets and wake flows. These flow classes all have distinct velocity-intermittency characteristics, which cause them to be readily distinguished using our technique. Our method is much simpler and quicker to apply than approaches that condition the velocity increment statistics at some scale, r, on the increment statistics at a neighbouring, larger spatial scale, r+Δ, and the velocity itself. Classification of environmental flows is then possible based on their similarities to the idealised flow classes and we demonstrate this using laboratory data for flow in a parallel-channel confluence where the region of flow recirculation in the lee of the step is discriminated as a flow class distinct from boundary layer, jet and wake flows. Hence, using our method, it is possible to assign a flow classification to complex geophysical, turbulent flows depending upon which idealised flow class they most resemble.

  19. Relative Seismic Velocity Variations Correlate with Deformation at Kīlauea Volcano.

    NASA Astrophysics Data System (ADS)

    Donaldson, C.; Caudron, C.; Green, R. G.; White, R. S.

    2016-12-01

    Passive interferometry using ambient seismic noise is an appealing monitoring tool at volcanoes. The continuous nature of seismic noise provides better temporal resolution than earthquake interferometry and ambient noise may be sensitive to changes at depths that do not deform the volcano surface. Despite this, to our knowledge, no studies have yet comprehensively compared deformation and velocity at a volcano over a significant length of time. We use a volcanic tremor source (approximately 0.3 - 1.0 Hz) at Kīlauea volcano as a source for interferometry to measure relative velocity changes with time. The tremor source that dominates the cross correlations is located under the Halema'uma'u caldera at Kīlauea summit. By cross-correlating the vertical component of day-long seismic records between 200 pairs of stations, we extract coherent and temporally consistent coda wave signals with time lags of up to 70 seconds. Our resulting time series of relative velocity shows a remarkable correlation with the tilt record measured at Kīlauea summit. Kīlauea summit is continually inflating and deflating as the level of the lava lake rises and falls. During these deflation-inflation (DI) events the tilt increases (inflation), as the velocity increases, on the scale of days to weeks. In contrast, we also detect a longer-term velocity decrease between 2011-2015 as the volcano slowly inflates. We suggest that variations in velocity result from opening and closing cracks and pores due to changes in magma pressurization. Early modeling results indicate that pressurizing magma reservoirs at different depths can result in opposite changes in compression/extension at the surface. The consistent correlation of relative velocity and deformation in this study provides an opportunity to better understand the mechanism causing velocity changes, which currently limits the scope of passive interferometry as a monitoring tool.

  20. Phenol and Benzoate Metabolism by Pseudomonas putida: Regulation of Tangential Pathways

    PubMed Central

    Feist, Carol F.; Hegeman, G. D.

    1969-01-01

    Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the β-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to β-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself. PMID:5354952

  1. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|velocities are equal to the component of the electron drift velocity. We found (b) that if the data points are averages over 100 m/s intervals (bins) of l-o-s electron velocities and 10 deg intervals (bins) of flow angles, then the largest STARE Doppler velocities always reside inside the bin with the largest flow angle. In the flow angle bin 80° the STARE Doppler velocity is larger than its driver term, i.e. the EISCAT l-o-s electron drift velocity component, |VirrN,F|>|VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and

  2. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This research focuses on the kinematics and evolution of the hot phase of the interstellar medium in the Galaxy. The plan was to measure the UV spectra of all hot stars observed with IUE, in order to identify and measure the main component and any high velocity components to the interstellar lines. Collection of data from higher resolution instruments on HST has been proposed for some of the interesting lines of sight. IUE spectra of 240 stars up to 8 kpc in 2 quadrants of the galactic plane have been examined to (1) estimate the total column density per kpc as a function of direction and distance, and (2) to obtain a lower limit to the number of high velocity components to the interstellar lines, thus giving an approximation of the number of conductive interfaces encountered per line of sight. By determining an approximation to the number of components per unit distance we aim to derive statistics on interfaces between hot and cold gas in the Galaxy. We find that 20% of the stars in this sample show at least one high velocity component in the C IV interstellar line. Two successful FUSE programs address this research and collected data for several of the lines of sight identified as locations of hot, expanding gas with the IUE data. One FUSE program is complete for the Vela SNR region. Data from another FUSE program to investigate the Cygnus superbubble region are being analyzed.

  3. Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2003-01-01

    A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work.

  4. Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data

    NASA Astrophysics Data System (ADS)

    Graeber, Frank M.; Asch, Günter

    1999-09-01

    The PISCO'94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) seismological network of 31 digital broad band and short-period three-component seismometers was deployed in northern Chile between the Coastal Cordillera and the Western Cordillera. More than 5300 local seismic events were observed in a 100 day period. A subset of high-quality P and S arrival time data was used to invert simultaneously for hypocenters and velocity structure. Additional data from two other networks in the region could be included. The velocity models show a number of prominent anomalies, outlining an extremely thickened crust (about 70 km) beneath the forearc region, an anomalous crustal structure beneath the recent magmatic arc (Western Cordillera) characterized by very low velocities, and a high-velocity slab. A region of an increased Vp/Vs ratio has been found directly above the Wadati-Benioff zone, which might be caused by hydration processes. A zone of lower than average velocities and a high Vp/Vs ratio might correspond to the asthenospheric wedge. The upper edge of the Wadati-Benioff zone is sharply defined by intermediate depth hypocenters, while evidence for a double seismic zone can hardly be seen. Crustal events between the Precordillera and the Western Cordillera have been observed for the first time and are mainly located in the vicinity of the Salar de Atacama down to depths of about 40 km.

  5. Intermittency in small-scale turbulence: a velocity gradient approach

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; Johnson, Perry

    2017-11-01

    Intermittency of small-scale motions is an ubiquitous facet of turbulent flows, and predicting this phenomenon based on reduced models derived from first principles remains an important open problem. Here, a multiple-time scale stochastic model is introduced for the Lagrangian evolution of the full velocity gradient tensor in fluid turbulence at arbitrarily high Reynolds numbers. This low-dimensional model differs fundamentally from prior shell models and other empirically-motivated models of intermittency because the nonlinear gradient self-stretching and rotation A2 term vital to the energy cascade and intermittency development is represented exactly from the Navier-Stokes equations. With only one adjustable parameter needed to determine the model's effective Reynolds number, numerical solutions of the resulting set of stochastic differential equations show that the model predicts anomalous scaling for moments of the velocity gradient components and negative derivative skewness. It also predicts signature topological features of the velocity gradient tensor such as vorticity alignment trends with the eigen-directions of the strain-rate. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.

  6. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.

    PubMed

    Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda

    2017-12-04

    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.

  7. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain

    PubMed Central

    Yang, Yu-Ting; Yu, Jia-Ray; Tai, Yilin

    2017-01-01

    Throughout life, stem cells in the ventricular–subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts’ morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase–RhoA–interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. PMID:29089377

  8. Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array

    NASA Astrophysics Data System (ADS)

    Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.

    2015-12-01

    The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.

  9. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  10. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  11. Acoustic equations of state for simple lattice Boltzmann velocity sets.

    PubMed

    Viggen, Erlend Magnus

    2014-07-01

    The lattice Boltzmann (LB) method typically uses an isothermal equation of state. This is not sufficient to simulate a number of acoustic phenomena where the equation of state cannot be approximated as linear and constant. However, it is possible to implement variable equations of state by altering the LB equilibrium distribution. For simple velocity sets with velocity components ξ(iα)∈(-1,0,1) for all i, these equilibria necessarily cause error terms in the momentum equation. These error terms are shown to be either correctable or negligible at the cost of further weakening the compressibility. For the D1Q3 velocity set, such an equilibrium distribution is found and shown to be unique. Its sound propagation properties are found for both forced and free waves, with some generality beyond D1Q3. Finally, this equilibrium distribution is applied to a nonlinear acoustics simulation where both mechanisms of nonlinearity are simulated with good results. This represents an improvement on previous such simulations and proves that the compressibility of the method is still sufficiently strong even for nonlinear acoustics.

  12. Numerical study on static component generation from the primary Lamb waves propagating in a plate with nonlinearity

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei

    2018-04-01

    Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity

  13. The detection of high-velocity outflows from M8E-IR

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Allen, Mark; Beer, Reinhard; Dekany, Richard; Huntress, Wesley

    1988-01-01

    A high-resolution (0.059/cm) M band (4.6 micron) spectrum of the embedded young stellar object M8E-IR is presented and discussed. The spectrum shows strong absorption to large blueshifts in the rotational lines of the fundamental vibrational band, v = 1-0, of CO. The absorption is interpreted as being due to gas near to, and flowing from, the central object. The outflowing gas is warm (95-330 K) and consists of discrete velocity components with the very high velocities of 90, 130, 150, and 160 km/s. On the basis of a simple model, it is estimated that the observed outflows are less than 100 yr old.

  14. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  15. Shear velocity structure of central Eurasia from inversion of surface wave velocities

    NASA Astrophysics Data System (ADS)

    Villaseñor, A.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Engdahl, E. R.; Spakman, W.; Trampert, J.

    2001-04-01

    We present a shear velocity model of the crust and upper mantle beneath central Eurasia by simultaneous inversion of broadband group and phase velocity maps of fundamental-mode Love and Rayleigh waves. The model is parameterized in terms of velocity depth profiles on a discrete 2°×2° grid. The model is isotropic for the crust and for the upper mantle below 220 km but, to fit simultaneously long period Love and Rayleigh waves, the model is transversely isotropic in the uppermost mantle, from the Moho discontinuity to 220 km depth. We have used newly available a priori models for the crust and sedimentary cover as starting models for the inversion. Therefore, the crustal part of the estimated model shows good correlation with known surface features such as sedimentary basins and mountain ranges. The velocity anomalies in the upper mantle are related to differences between tectonic and stable regions. Old, stable regions such as the East European, Siberian, and Indian cratons are characterized by high upper-mantle shear velocities. Other large high velocity anomalies occur beneath the Persian Gulf and the Tarim block. Slow shear velocity anomalies are related to regions of current extension (Red Sea and Andaman ridges) and are also found beneath the Tibetan and Turkish-Iranian Plateaus, structures originated by continent-continent collision. A large low velocity anomaly beneath western Mongolia corresponds to the location of a hypothesized mantle plume. A clear low velocity zone in vSH between Moho and 220 km exists across most of Eurasia, but is absent for vSV. The character and magnitude of anisotropy in the model is on average similar to PREM, with the most prominent anisotropic region occurring beneath the Tibetan Plateau.

  16. Phonon group velocity and thermal conduction in superlattices

    NASA Astrophysics Data System (ADS)

    Tamura, Shin-Ichiro; Tanaka, Yukihiro; Maris, Humphrey J.

    1999-07-01

    With the use of a face-centered cubic model of lattice dynamics we calculate the group velocity of acoustic phonons in the growth direction of periodic superlattices. Comparing with the case of bulk solids, this component of the phonon group velocity is reduced due to the flattening of the dispersion curves associated with Brillouin-zone folding. The results are used to estimate semiquantitatively the effects on the lattice thermal conductivity in Si/Ge and GaAs/AlAs superlattices. For a Si/Ge superlattice an order of magnitude reduction is predicted in the ratio of superlattice thermal conductivity to phonon relaxation time [consistent with the results of P. Hyldgaard and G. D. Mahan, Phys. Rev. B 56, 10 754 (1997)]. For a GaAs/AlAs superlattice the corresponding reduction is rather small, i.e., a factor of 2-3. These effects are larger for the superlattices with larger unit period, contrary to the recent measurements of thermal conductivity in superlattices.

  17. Group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the eastern Indian craton

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2017-02-01

    In the past three years, a semi-permanent network of fifteen 3-component broadband seismographs has become operational in the eastern Indian shield region occupying the Archean (∼2.5-3.6 Ga) Singhbhum-Odisha craton (SOC) and the Proterozoic (∼1.0-2.5 Ga) Chotanagpur Granitic Gneissic terrane (CGGT). The reliable and accurate broadband data for the recent 2015 Nepal earthquake sequence from 10 broadband stations of this network enabled us to estimate the group velocity dispersion characteristics and one-dimensional regional shear velocity structure of the region. First, we measure fundamental mode Rayleigh- and Love-wave group velocity dispersion curves in the period range of 7-70 s and then invert these curves to estimate the crustal and upper mantle structure below the eastern Indian craton (EIC). We observe that group velocities of Rayleigh and Love waves in SOC are relatively high in comparison to those of CGGT. This could be attributed to a relatively mafic-rich crust-mantle structure in SOC resulting from two episodes of magmatism associated with the 1.6 Ga Dalma and ∼117 Ma Rajmahal volcanisms. The best model for the EIC from the present study is found to be a two-layered crust, with a 14-km thick upper-crust (UC) of average shear velocity (Vs) of 3.0 km/s and a 26-km thick lower-crust (LC) of average Vs of 3.6 km/s. The present study detects a sharp drop in Vs (∼-2 to 3%) at 120-260 km depths, underlying the EIC, representing the probable seismic lithosphere-asthenosphere boundary (LAB) at 120 km depth. Such sharp fall in Vs below the LAB indicates a partially molten layer. Further, a geothermal gradient extrapolated from the surface heat flow shows that such a gradient would intercept the wet basalt solidus at 88-103 km depths, suggesting a 88-103 km thick thermal lithosphere below the EIC. This could also signal the presence of small amounts of partial melts. Thus, this 2-3% drop in Vs could be attributed to the presence of partial melts in the

  18. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  19. Investigation of spiral blood flow in a model of arterial stenosis.

    PubMed

    Paul, Manosh C; Larman, Arkaitz

    2009-11-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system [Stonebridge PA, Brophy CM. Spiral laminar flow in arteries? Lancet 1991; 338: 1360-1]. We investigate the effects of the spiral blood flow in a model of three-dimensional arterial stenosis with a 75% cross-sectional area reduction at the centre by means of computational fluid dynamics (CFD) techniques. The standard k-omega model is employed for simulation of the blood flow for the Reynolds number of 500 and 1000. We find that for Re=500 the spiral component of the blood flow increases both the total pressure and velocity of the blood, and some significant differences are found between the wall shear stresses of the spiral and non-spiral induced flow downstream of the stenosis. The turbulent kinetic energy is reduced by the spiral flow as it induces the rotational stabilities in the forward flow. For Re=1000 the tangential component of the blood velocity is most influenced by the spiral speed, but the effect of the spiral flow on the centreline turbulent kinetic energy and shear stress is mild. The results of the effects of the spiral flow are discussed in the paper along with the relevant pathological issues.

  20. Numerical Investigation of the Formation of a Convective Column and a Fire Tornado by Forest Fires

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Matvienko, O. V.

    2014-09-01

    Computational modeling of the formation of a convective column by forest fires has been carried out. It has been established that in the case of an unstable atmosphere stratification the basic factor influencing the thermal column formation is the intensification of the processes of turbulent mixing and that at a stable atmosphere stratification a more significant factor determining the convective column formation is the action of the buoyancy force. It has been shown that a swirling flow in the convective column is formed due to the appearance of a tangential velocity component as a consequence of the local circulation arising against the background of large-scale motion owing to the thermal and orographic inhomogeneities of the underlying surface.