Sample records for tank core samples

  1. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical

  2. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/271999 During Sludge Core Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VISWANATH, R.S.

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371, Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA{trademark} canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples weremore » radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2.« less

  3. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  4. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  5. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review.

  6. Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1993-07-16

    This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.

  7. Tank 241-AP-105, cores 208, 209 and 210, analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L.

    1997-10-24

    This document is the final laboratory report for Tank 241-AP-105. Push mode core segments were removed from Risers 24 and 28 between July 2, 1997, and July 14, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-AP-105 Push Mode Core Sampling and Analysis Plan (TSAP) (Hu, 1997) and Tank Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995). None of the subsamples submitted for total alpha activity (AT), differential scanning calorimetry (DSC) analysis, or total organic carbon (TOC) analysis exceeded the notification limits as stated in TSAP and DQO. The statisticalmore » results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group, and are not considered in this report. Appearance and Sample Handling Two cores, each consisting of four segments, were expected from Tank 241-AP-105. Three cores were sampled, and complete cores were not obtained. TSAP states core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank. This requirement was not met for all cores. Attachment 1 illustrates subsamples generated in the laboratory for analysis and identifies their sources. This reference also relates tank farm identification numbers to their corresponding 222-S Laboratory sample numbers.« less

  8. Tank 241-T-204, core 188 analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L.

    TANK 241-T-204, CORE 188, ANALYTICAL RESULTS FOR THE FINAL REPORT. This document is the final laboratory report for Tank 241 -T-204. Push mode core segments were removed from Riser 3 between March 27, 1997, and April 11, 1997. Segments were received and extruded at 222-8 Laboratory. Analyses were performed in accordance with Tank 241-T-204 Push Mode Core Sampling and analysis Plan (TRAP) (Winkleman, 1997), Letter of instruction for Core Sample Analysis of Tanks 241-T-201, 241- T-202, 241-T-203, and 241-T-204 (LAY) (Bell, 1997), and Safety Screening Data Qual@ Objective (DO) ODukelow, et al., 1995). None of the subsamples submitted for totalmore » alpha activity (AT) or differential scanning calorimetry (DC) analyses exceeded the notification limits stated in DO. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group and are not considered in this report.« less

  9. Reanalysis of Plutonium and Americium-241 in the Tank 19F Closure Grab and Core Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swingle, R.F.

    2003-02-11

    Tank 19F is scheduled to be closed by March 2004. To close this tank, a characterization of the waste remaining in the tank was required to confirm the inventory of various species for input into groundwater transport models. This characterization has been developed by a combination of process knowledge, visual observation and sample analysis. The characterization samples were obtained by High Level Waste Division (HLWD) personnel and characterized by SRTC personnel.

  10. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  11. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LECHELT, J.A.

    2000-10-17

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System,more » Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.« less

  12. Chemical Characterization of an Envelope A Sample from Hanford Tank 241-AN-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.S.

    2000-08-23

    A whole tank composite sample from Hanford waste tank 241-AN-103 was received at the Savannah River Technology Center (SRTC) and chemically characterized. Prior to characterization the sample was diluted to {approximately}5 M sodium concentration. The filtered supernatant liquid, the total dried solids of the diluted sample, and the washed insoluble solids obtained from filtration of the diluted sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results where more than one method of determination wasmore » employed and for species present in low concentrations. A direct comparison to previous analyses of material from tank 241-AN-103 was not possible due to unavailability of data for diluted samples of tank 241-AN-103 whole tank composites. However, the analytical data for other types of samples from 241-AN-103 we re mathematically diluted and compare reasonably with the current results. Although the segments of the core samples used to prepare the sample received at SRTC were combined in an attempt to produce a whole tank composite, determination of how well the results of the current analysis represent the actual composition of the Hanford waste tank 241-AN-103 remains problematic due to the small sample size and the large size of the non-homogenized waste tank.« less

  13. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  14. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  15. Core Stage Inter-Tank Umbilical (CSITU) Lift at ML

    NASA Image and Video Library

    2017-10-11

    A heavy-lift crane and rigging are used to lift the Core Stage Inter-tank Umbilical (CSITU) up to about the 140-foot level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The CSITU is moved into place for a fit check of the attachment hardware. The umbilical will then be lowered down and installed permanently on the ML at a later date. The CSITU is a swing-arm umbilical that will connect to the Space Launch System core stage inter-tank. It will provide conditioned air, pressurized gases and power and data connection to the core stage. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.

  16. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P.; Kaplan, D.

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd valuesmore » from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen

  17. Results of Hg speciation testing on tank 39 and 1Q16 tank 50 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-03-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The seventeenth shipment of samples was designated to include two Tank 39 samples and the 1Q16 Tank 50 Quarterly WAC sample. The surface Tank 39 sample was pulled at 262.1” from the tank bottom, and the depth Tank 39 sample was pulled at 95” from the tank bottom. The 1Q16 Tank 50 WAC sample was drawn from the 1-L variable depth sample received bymore » SRNL.« less

  18. PCB Analysis Plan for Tank Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    2001-03-22

    This analysis plan specifies laboratory analysis, quality assurance/quality control (QA/QC), and data reporting requirements for analyzing polychlorinated biphenyls (PCB) concentrations in archive samples. Tank waste archive samples that are planned for PCB analysis are identified in Nguyen 2001. The tanks and samples are summarized in Table 1-1. The analytical data will be used to establish a PCB baseline inventory in Hanford tanks.

  19. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  20. Sample Results From Tank 48H Samples HTF-48-14-158, -159, -169, and -170

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.; Hang, T.

    2015-04-28

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 48H in support of determining the cause for the unusually high dose rates at the sampling points for this tank. A set of two samples was taken from the quiescent tank, and two additional samples were taken after the contents of the tank were mixed. The results of the analyses of all the samples show that the contents of the tank have changed very little since the analysis of the previous sample in 2012. The solids are almost exclusively composed of tetraphenylborate (TPB) salts, and there is no indication of accelerationmore » in the TPB decomposition. The filtrate composition shows a moderate increase in salt concentration and density, which is attributable to the addition of NaOH for the purposes of corrosion control. An older modeling simulation of the TPB degradation was updated, and the supernate results from a 2012 sample were run in the model. This result was compared to the results from the 2014 recent sample results reported in this document. The model indicates there is no change in the TPB degradation from 2012 to 2014. SRNL measured the buoyancy of the TPB solids in Tank 48H simulant solutions. It was determined that a solution of density 1.279 g/mL (~6.5M sodium) was capable of indefinitely suspending the TPB solids evenly throughout the solution. A solution of density 1.296 g/mL (~7M sodium) caused a significant fraction of the solids to float on the solution surface. As the experiments could not include the effect of additional buoyancy elements such as benzene or hydrogen generation, the buoyancy measurements provide an upper bound estimate of the density in Tank 48H required to float the solids.« less

  1. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  2. Core sample extractor

    NASA Technical Reports Server (NTRS)

    Akins, James; Cobb, Billy; Hart, Steve; Leaptrotte, Jeff; Milhollin, James; Pernik, Mark

    1989-01-01

    The problem of retrieving and storing core samples from a hole drilled on the lunar surface is addressed. The total depth of the hole in question is 50 meters with a maximum diameter of 100 millimeters. The core sample itself has a diameter of 60 millimeters and will be two meters in length. It is therefore necessary to retrieve and store 25 core samples per hole. The design utilizes a control system that will stop the mechanism at a certain depth, a cam-linkage system that will fracture the core, and a storage system that will save and catalogue the cores to be extracted. The Rod Changer and Storage Design Group will provide the necessary tooling to get into the hole as well as to the core. The mechanical design for the cam-linkage system as well as the conceptual design of the storage device are described.

  3. STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E.

    2012-03-14

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above

  4. Statistical Analysis of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2013-01-31

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  5. Statistical Analysis Of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2012-08-01

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some

  6. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  7. Headspace vapor characterization of Hanford Waste Tank 241-BY-108: Results from samples collected January 23, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quotes}, and the sample jobs were designated S6004, S6005, and S6006. Samples were collected by WHC on January 23, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  8. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mLmore » stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H 2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.« less

  9. STATISTICAL ANALYSIS OF TANK 18F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 18F as per the statistical sampling plan developed by Shine [1]. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL [2]. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » [3] to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL{sub 95%}) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 18F. The uncertainty is quantified in this report by an upper 95% confidence limit (UCL{sub 95%}) on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL{sub 95%} was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  10. Headspace vapor characterization of Hanford Waste Tank 241-S-102: Results from samples collected on January 26, 1996. Tank Vapor Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.

    1996-07-01

    This report describes the results of vapor samples obtained to compare vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling System (ISVS) with and without particulate prefiltration. Samples were collected from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) was contracted by Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for water, ammonia, permanent gases, total nonmethane hydrocarbons (TNMHCs, also known as TO-12), and organic analytes in samples collected in SUMMA{trademark} canisters and on triple sorbentmore » traps (TSTs) from the tank headspace. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sampling and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Sampling and Analysis Plan for Tank Vapor Sampling Comparison Test{close_quote}, and the sample jobs were designated S6007, S6008, and S6009. Samples were collected by WHC on January 26, 1996, using the VSS, a truck-based sampling method using a heated probe; and the ISVS with and without particulate prefiltration.« less

  11. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  12. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPESmore » results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.« less

  13. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  14. Abundance of Naegleria fowleri in roof-harvested rainwater tank samples from two continents.

    PubMed

    Waso, Monique; Dobrowsky, Penelope Heather; Hamilton, Kerry Ann; Puzon, Geoffrey; Miller, Haylea; Khan, Wesaal; Ahmed, Warish

    2018-02-01

    Roof-harvested rainwater (RHRW) has been used as an alternative source of water in water scarce regions of many countries. The microbiological and chemical quality of RHRW has been questioned due to the presence of bacterial and protozoan pathogens. However, information on the occurrence of pathogenic amoeba in RHRW tank samples is needed due to their health risk potential and known associations with opportunistic pathogens. Therefore, this study aims to determine the quantitative occurrence of Naegleria fowleri in RHRW tank samples from Southeast Queensland (SEQ), Australia (AU), and the Kleinmond Housing Scheme located in Kleinmond, South Africa (SA). In all, 134 and 80 RHRW tank samples were collected from SEQ, and the Kleinmond Housing Scheme, Western Cape, SA, respectively. Quantitative PCR (qPCR) assays were used to measure the concentrations of N. fowleri, and culture-based methods were used to measure fecal indicator bacteria (FIB) Escherichia coli (E. coli) and Enterococcus spp. Of the 134 tank water samples tested from AU, 69 and 62.7% were positive for E. coli, and Enterococcus spp., respectively. For the SA tank water samples, FIB analysis was conducted for samples SA-T41 to SA-T80 (n = 40). Of the 40 samples analyzed from SA, 95 and 35% were positive for E. coli and Enterococcus spp., respectively. Of the 134 water samples tested in AU, 15 (11.2%) water samples were positive for N. fowleri, and the concentrations ranged from 1.7 × 10 2 to 3.6 × 10 4 gene copies per 100 mL of water. Of the 80 SA tank water samples screened for N. fowleri, 15 (18.8%) tank water samples were positive for N. fowleri and the concentrations ranged from 2.1 × 10 1 to 7.8 × 10 4 gene copies per 100 mL of tank water. The prevalence of N. fowleri in RHRW tank samples from AU and SA thus warrants further development of dose-response models for N. fowleri and a quantitative microbial risk assessment (QMRA) to inform and prioritize strategies for reducing

  15. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  16. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue tomore » indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.« less

  17. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperaturemore » fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na

  18. Analysis of tank 38H (HTF-38-17-18, -19) and tank 43H (HTF-43-17-20, -21) samples for support of the enrichment control and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.; Coleman, C. J.; Diprete, D. P.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H samples ranged from 53.7 mg/L for the surface sample to 57.0 mg/L in the sub-surface sample. The Tank 43H samples showed uranium concentrations of 46.2 mg/L for the surface sample and 45.7 mg/L in the sub-surface sample. The U-235 percentage was 0.63% in the Tank 38H samples and 0.62% in the Tank 43H samples. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The plutonium results for the Tank 38Hmore » surface sample are slightly higher than recent sample results, while the Tank 43H plutonium results are within the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and subsurface samples are slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples are within the range of values measured on previous samples. The comparison of the sum of the cations in each sample versus the sum of the anions shows a difference of 23% for the Tank 38H surface sample and 18% for the Tank 43H surface sample. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 80.2 to 105 mg/L.« less

  19. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-03-06

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  20. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-31

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  1. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-04-10

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissionsmore » Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.« less

  2. Analysis of Tank 38H (HTF-38-17-52, -53) and Tank 43H (HTF-43-17-54, -55) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Coleman, C.; Diprete, D.

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less

  3. Test Results for Caustic Demand Measurements on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Bolling, Stacie D.

    Caustic demand testing is used to determine the necessary amount of caustic required to neutralize species present in the Hanford tank waste and obtain a target molarity of free hydroxide for tank corrosion control. The presence and quantity of hydroxide-consuming analytes are just as important in determining the caustic demand as is the amount of free hydroxide present. No single data point can accurately predict whether a satisfactory hydroxide level is being met, as it is dependent on multiple factors (e.g., free hydroxide, buffers, amphoteric metal hydroxides, bicarbonate, etc.). This enclosure contains the caustic demand, scanning electron microscopy (SEM), polarizedmore » light microscopy (PLM), and X-ray diffraction (XRD) analysis for the tank 241-AX-101 (AX-101) and 241-AX-103 (AX-103) samples. The work was completed to fulfill a customer request outlined in the test plan, WRPS-1505529, “Test Plan and Procedure for Caustic Demand Testing on Tank 241-AX-101 and Tank 241-AX-103 Archive Samples.” The work results will provide a baseline to support planned retrieval of AX-101 and AX-103.« less

  4. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  5. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  6. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  7. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  8. Characterization of the SRNL-Washed tank 51 sludge batch 9 qualification sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.

    2016-01-01

    Savannah River National Laboratory (SRNL) personnel have been requested to qualify the next sludge batch (Sludge Batch 9 – SB9) for processing at the Defense Waste Processing Facility (DWPF). To accomplish this task, Savannah River Remediation (SRR) sent SRNL a 3-L sample of Tank 51H slurry to be characterized, washed, and then used in a lab-scale demonstration of the DWPF flowsheet (after combining with Tank 40H sludge). SRNL has washed the Tank 51H sample per the Tank Farm washing strategy as of October 20, 2015. A part of the qualification process is extensive radionuclide and chemical characterization of the SRNL-washedmore » Tank 51H slurry. This report documents the chemical characterization of the washed slurry; radiological characterization is in progress and will be documented in a separate report. The analytical results of this characterization are comparable to the Tank Farm projections. Therefore, it is recommended that SRNL use this washed slurry for the ongoing SB9 qualification activities.« less

  9. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pumpmore » shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.« less

  10. Results for the first quarter calendar year 2017 tank 50H salt solution sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.

    2017-04-12

    In this memorandum, the chemical and radionuclide contaminant results from the First Quarter Calendar Year 2017 (CY17) sample of Tank 50H salt solution are presented in tabulated form. The First Quarter CY17 Tank 50H samples [a 200 mL sample obtained 6” below the surface (HTF-50-17-7) and a 1 L sample obtained 66” from the tank bottom (HTF-50-17-8)] were obtained on January 15, 2017 and received at Savannah River National Laboratory (SRNL) on January 16, 2017. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours and the samples were pulled immediately after pumpmore » shut down. All volatile organic analysis (VOA) and semi-volatile organic analysis (SVOA) were performed on the surface sample and all other analyses were performed on the variable depth sample. The information from this characterization will be used by Savannah River Remediation (SRR) for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. The chemical and radionuclide contaminant results from the characterization of the First Quarter CY17 sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan (TTQAP). This memorandum is part of Deliverable 2 from SRR request. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the TTQAP for the Tank 50H saltstone task.« less

  11. Tank 241-AX-104 upper vadose zone cone penetrometer demonstration sampling and analysis plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FIELD, J.G.

    1999-02-02

    This sampling and analysis plan (SAP) is the primary document describing field and laboratory activities and requirements for the tank 241-AX-104 upper vadose zone cone penetrometer (CP) demonstration. It is written in accordance with Hanford Tank Initiative Tank 241-AX-104 Upper Vadose Zone Demonstration Data Quality Objective (Banning 1999). This technology demonstration, to be conducted at tank 241-AX-104, is being performed by the Hanford Tanks Initiative (HTI) Project as a part of Tank Waste Remediation System (TWRS) Retrieval Program (EM-30) and the Office of Science and Technology (EM-50) Tanks Focus Area. Sample results obtained as part of this demonstration will providemore » additional information for subsequent revisions to the Retrieval Performance Evaluation (RPE) report (Jacobs 1998). The RPE Report is the result of an evaluation of a single tank farm (AX Tank Farm) used as the basis for demonstrating a methodology for developing the data and analyses necessary to support making tank waste retrieval decisions within the context of tank farm closure requirements. The RPE includes a study of vadose zone contaminant transport mechanisms, including analysis of projected tank leak characteristics, hydrogeologic characteristics of tank farm soils, and the observed distribution of contaminants in the vadose zone in the tank farms. With limited characterization information available, large uncertainties exist as to the nature and extent of contaminants that may exist in the upper vadose zone in the AX Tank Farm. Traditionally, data has been collected from soils in the vadose zone through the installation of boreholes and wells. Soil samples are collected as the bore hole is advanced and samples are screened on site and/or sent to a laboratory for analysis. Some in-situ geophysical methods of contaminant analysis can be used to evaluate radionuclide levels in the soils adjacent to an existing borehole. However, geophysical methods require compensation for

  12. Analysis of Tank 38H (HTF-38-16-80, 81) and Tank 43H (HTF-43-16-82, 83) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.

    2016-10-24

    SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentrationmore » is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.« less

  13. Analysis of Tank 38H (HTF-38-16-26, 27) and Tank 43H (HTF-43-16-28, 29) Samples for Support of the Enrichment Control and Corrosion Control Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M. S.

    Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less

  14. Description of core samples returned by Apollo 12

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.; Fryxell, R.

    1971-01-01

    Three core samples were collected by the Apollo 12 astronauts. Two are single cores, one of which (sample 12026) was collected close to the lunar module during the first extravehicular activity period and is 19.3 centimeters long. The second core (sample 12027) was collected at Sharp Crater during the second extravehicular activity period and is 17.4 centimeters long. The third sample is a double core (samples 12025 and 12028), which was collected near Halo Crater during the second extravehicular activity period. Unlike the other cores, the double-drive-tube core sample has complex layering with at least 10 clearly defined stratigraphic units. This core sample is approximately 41 centimeters long.

  15. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; LaMothe, M. E.; Lachut, J. S.

    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  16. Tank 241-AP-103 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BELL, K.E.

    1999-12-09

    This document is the format IV, final report for the tank 241-AP-103 (AP-103) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-103 samples were performed as directed in ''Compatibility Grub Sampling and Analysis Plan for Fiscal Year 1999'' (Sasaki 1999a). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. No notification limits were exceeded.

  17. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of inmore » the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.« less

  18. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  19. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Fink, S. D.

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and themore » previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).« less

  20. Results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Bannochie, C. J.

    2017-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H and fulfills the requirements of Deliverable 3 of the Technical Task Request (TTR). Further work will report the results of the Extraction-Scrub-Strip (ESS) testing (Task 5 of the TTR) using the Tank 21H material. Task 4 of the TTR (MST Strike) will not be completed for Salt Batch 10.

  1. Analytical Results from Salt Solution Feed Tank (SSFT) Samples HTF-16-6 and HTF-16-40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    Two samples from the Salt Solution Feed Tank (SSFT) were analyzed by SRNL, HTF-16-6 and HTF-16-40. Multiple analyses of these samples indicate a general composition almost identical to that of the Salt Batch 8-B feed and the Tank 21H sample results.

  2. Tank Vapor Characterization Project: Tank 241-S-102 fourth temporal study: Headspace gas and vapor characterization results from samples collected on December 19, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pool, K.H.; Evans, J.C.; Olsen, K.B.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis planmore » (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.410% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <2.973% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.« less

  3. Results of initial analyses of the salt (macro) batch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2017-01-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 10 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 10 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  4. Results of initial analyses of the salt (macro) batch 11 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 11 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 11 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amounts of solids, or unusual colors. Further sample results will be reported in a futuremore » document. This memo satisfies part of Deliverable 3 of the Technical Task Request (TTR).« less

  5. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutz, W W; Consultant, Wellington, Delaware; Strachan, D M

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observedmore » in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.« less

  6. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  7. Results of initial analyses of the salt (macro) batch 9 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    2015-10-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics or observations, such as floating solids, the presence of large amount of solids, or unusual colors. Further results on the chemistry and other tests willmore » be issued in the future.« less

  8. Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N

    2015-10-01

    This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.

  9. Chemical Characterization of an Envelope B/D Sample from Hanford Tank 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.S.

    2000-08-23

    A sample from Hanford waste tank 241-AZ-102 was received at the Savannah River Technology Center (SRTC) and chemically characterized. The sample containing supernate and a small amount of sludge solids was analyzed as-received. The filtered supernatant liquid, the total dried solids of the sample, and the washed insoluble solids obtained from filtration of the sample were analyzed. A mass balance calculation of the three fractions of the sample analyzed indicate the analytical results appear relatively self-consistent for major components of the sample. However, some inconsistency was observed between results were more than one method of determination was employed and formore » species present in low concentrations. The actinides isotopes, plutonium, americium, and curium, present analytical challenges due to the low concentration of these species and the potential for introduction of small amounts of contamination during sampling handling resulting in large uncertainties. A direct comparison to previous analyses of material from tank 241-AZ-102 showed good agreement with the filtered supernatant liquid. However, the comparison of solids data showed poor agreement. The poor agreement shown between the current results for the solids samples and previous analyses most likely results from the uncertainties associated with obtaining small solids samples from a large non-homogenized waste tank.« less

  10. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H{sub 2}O) and ammonia (NH{sub 3}), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA{trademark} canisters and on triple sorbent traps (TSTs).more » Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC.« less

  11. A BASIS FOR MODIFYING THE TANK 12 COMPOSITE SAMPLING DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    The SRR sampling campaign to obtain residual solids material from the Savannah River Site (SRS) Tank Farm Tank 12 primary vessel resulted in obtaining appreciable material in all 6 planned source samples from the mound strata but only in 5 of the 6 planned source samples from the floor stratum. Consequently, the design of the compositing scheme presented in the Tank 12 Sampling and Analysis Plan, Pavletich (2014a), must be revised. Analytical Development of SRNL statistically evaluated the sampling uncertainty associated with using various compositing arrays and splitting one or more samples for compositing. The variance of the simple meanmore » of composite sample concentrations is a reasonable standard to investigate the impact of the following sampling options. Composite Sample Design Option (a). Assign only 1 source sample from the floor stratum and 1 source sample from each of the mound strata to each of the composite samples. Each source sample contributes material to only 1 composite sample. Two source samples from the floor stratum would not be used. Composite Sample Design Option (b). Assign 2 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that one source sample from the floor must be used twice, with 2 composite samples sharing material from this particular source sample. All five source samples from the floor would be used. Composite Sample Design Option (c). Assign 3 source samples from the floor stratum and 1 source sample from each of the mound strata to each composite sample. This infers that several of the source samples from the floor stratum must be assigned to more than one composite sample. All 5 source samples from the floor would be used. Using fewer than 12 source samples will increase the sampling variability over that of the Basic Composite Sample Design, Pavletich (2013). Considering the impact to the variance of the simple mean of the composite sample

  12. Sludge batch 9 (SB9) acceptance evaluation. Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Diprete, D. P.; Pareizs, J. M.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  13. Sludge batch 9 (SB9) accepance evaluation: Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.; Diprete, D.; Pareizs, J.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a compositioniv expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  14. 46 CFR 153.935 - Opening of tanks and cargo sampling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...

  15. 46 CFR 153.935 - Opening of tanks and cargo sampling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...

  16. 46 CFR 153.935 - Opening of tanks and cargo sampling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...

  17. 46 CFR 153.935 - Opening of tanks and cargo sampling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...

  18. 46 CFR 153.935 - Opening of tanks and cargo sampling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Opening of tanks and cargo sampling. 153.935 Section 153.935 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General...

  19. Evaporator Feed Qualification Analysis Of Tank 38H And 43H Samples: January 2010 Through April 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Coleman, C. J.

    2013-08-21

    This report provides the results of analyses that focused on the chemical species that pertain to the sodium aluminosilicate formation potential for archived Tank 38H and 43H subsurface samples from January 2010 through April 2013. Analyses included warm acid strike preparation followed by analysis of silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. The Tank 43H and 38H supernatant liquid silicon measurements for the January 2010 through April 2013 time period exhibit a slight increasing trend. Over this time period, the silicon concentration in the Tank 43H and Tank 38H samples averaged 179 mg/L andmore » 235 mg/L, respectively. Comparison of Tank 43H sample results from 2005 through April 2013 to the previously developed process control models indicates that the current formation of sodium aluminosilicate in the 2H system is due to the seeded direct precipitation of cancrinite and sodalite.« less

  20. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  1. Characterization of the tank 51 alternate reductant sludge batch 9 slurry sample (HTF-51-15-130)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.

    Tank 51 slurry sample HTF-51-15-130 was collected following sludge washing at the Tank Farm. The sample was received at SRNL and then characterized in preparation for qualification of the alternate reductant Sludge Batch 9 (SB9) flowsheet. In this characterization, densities, solids distribution, elemental constituents, anionic constituents, carbon content, and select radioisotopes were quantified.

  2. Rheology and TIC/TOC results of ORNL tank samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determinedmore » from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.« less

  3. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  4. Tank 241-SY-102 January 2000 Compatibility Grab Samples Analytical Results for the Final Report [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BELL, K.E.

    This document is the format IV, final report for the tank 241-SY-102 (SY-102) grab samples taken in January 2000 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank SY-102 samples were performed as directed in Comparability Grab Sampling and Analysis Plan for Fiscal Year 2000 (Sasaki 1999). No notification limits were exceeded. Preliminary data on samples 2SY-99-5, -6, and -7 were reported in ''Format II Report on Tank 241-SY-102 Waste Compatibility Grab Samples Taken in January 2000'' (Lockrem 2000). The data presented here represent the final results.

  5. Solvent hold tank sample results for MCU-16-1317-1318-1319: September 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 9% below their nominal concentrations. The suppressor (TiDG) is 76% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  6. Solvent hold tank sample results for MCU-16-1363-1364-1365: November 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  7. Solvent hold tank sample results for MCU-16-1247-1248-1249: August 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below.

  8. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  9. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less

  10. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  11. Characterization of tank 51 sludge samples (HTF-51-17-44/ HTF-51-17-48) in support of sludge batch 10 processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The two Tank 51 sludge samples were sampled and delivered to SRNL in May of 2017. These two tank 51 sludge samples were combined into one composite sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids and aluminum hydroxides (gibbsite and boehmite) by x-ray diffraction.

  12. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  13. ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Chu, Philip; Spring, Justin; Zacny, Kris

    2014-01-01

    The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.

  14. X-33 Tank Failure During Autoclave Fabrication

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The composite liquid hydrogen tank (tank #1 of 2) for the X-33 flight vehicle is made up of four lobes that have a sandwich construction, bonded to a frame of longerons. Lobes 1 and 4 showed local disbonds to the longerons they were bonded to. The 'bad' areas were cut away and patched with new material. The new material was cured by placing the entire tank in a heated autoclave with no pressure. Upon removal from the autoclave, it was noted that lobe 1 had severe skin/core disbonds on the inner and outer skins. The skins on this lobe were cracked as well. The core was disbonded from the inner skin across the entire acreage, except for spots around the lobe perimeter. The outer skin was separated from the core in a region near the center of the lobe. Lobe 1 was removed from the tank on January 13, 1999. Bolts were placed through the lobe to hold it together and the cuts on the inner skin were not continuous, but 'tabs' were left for final cutting and removal. Upon closer inspection of the disbonded basesheet, it was noted that there was a lack of filleting into the honeycomb core. Good fillets are critical to bond strength.

  15. Monitoring Well Installation and Groundwater Sampling and Analysis Plan at the USARC Training Reserve, 84th Division, Milwaukee, Wisconsin

    DTIC Science & Technology

    1988-11-01

    paint chips at the sampling site. 0 Clean water tanks, pumps, mud pans, hoses, including hoses and tanks used to transfer water from source to drill rig...TO’ LCA , Filll I F’APCr,;I~- € C/ " rKL2PIrlA , ATTFNrIGN TO SMOKING. ALCOHOLF MFDrICATIONP AND FXPOSI.RE TO CARCINOGENS.1 ENERAL MEDICAl. HISTORY...A. General: 1. Place samples in core trough for visual inspection. After logging, place selected samples in sample jars or wood core boxes. 2. Seal

  16. Tank 241-S-111 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report [SEC 1 and SEC 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STEEN, F.H.

    This document is the format IV, final report for the tank 241-S-111 (S-111) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank S-111 samples were performed as directed in Compatibility Grab Sampling and Analysis Plan for Fiscal Year 1999 (Sasaki 1999a,b). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. The notification limit for {sup 137}Cs was exceeded on two samples. Results are discussed in Section 5.3.2. No other notification limits were exceeded.

  17. Toxoplasma gondii Antibodies in Bulk Tank Milk Samples of Caprine Dairy Herds.

    PubMed

    Gazzonis, Alessia Libera; Zanzani, Sergio Aurelio; Stradiotto, Katia; Olivieri, Emanuela; Villa, Luca; Manfredi, Maria Teresa

    2018-06-15

    A major public health issue, Toxoplasma gondii infection can affect humans mainly via the consumption of animal products from certain species, including small ruminants. Therefore, a regular monitoring of the infection in ovine and caprine populations is advisable for the control of human and animal toxoplasmosis. Antibody detection in individual and bulk tank milk may represent a valid alternative to serological analysis, being its collection easy and not affecting animal welfare. Many serological tools for milk analysis have already been validated for several parasites, including Apicomplexa. Thus, the aim of the present study was to obtain epidemiological data on T. gondii infection through the detection of antibodies in bulk tank milk of dairy goat herds from an important area for caprine dairy production (Northern Italy). The performance of a commercial ELISA was first evaluated for analysis on caprine milk samples, using a panel of serum-milk pairs of goats naturally infected by T. gondii. The analysis on bulk tank milk confirmed the presence of antibodies anti-T. gondii in 59% of the samples. Toxoplasma gondii antibody positivity was more frequently found in farms reared under extensive (64.9%) or semi-intensive systems (68.7%) in comparison to intensive farms (51.1%). Analysis on milk revealed to be a valid alternative to serological tests, being easily applied in large-scale epidemiological surveys and for continuous monitoring of T. gondii infection.

  18. Think Tanks, Education and Elite Policy Actors

    ERIC Educational Resources Information Center

    Savage, Glenn C.

    2016-01-01

    The past decade has seen think tanks operate in sophisticated ways to influence the development of education policies. In this paper, I reflect upon the influence of think tanks in the formation of national reform, using the Common Core State Standards initiative in the USA as an illustrative case. In doing so, I explore how certain think tanks,…

  19. Findings from the X-33 Hydrogen Tank Failure Investigation

    NASA Technical Reports Server (NTRS)

    Niedermeyer, Melinda; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The X-33 Hydrogen tank failed during test in November of 1999 at MSFC. The tank completed the structural loading phase of the test successfully and was drained of hydrogen prior to the failure. The failure initiated in the acreage of Lobe 1 and was instantaneous, peeling the outer skin and core away from the inner skin. It was determined there were several factors that provided the opportunity for the tank to fail in this way. The factor giving life to these opportunistic circumstances was hydrogen infiltration into the core of the tank. The mechanism for this phenomenon will be discussed in this presentation.

  20. Characterization of Tank 51 Sludge Slurry Samples (HTF-51-17-67, -68, -69, -74, -75, and -76) in Support of Sludge Batch 10 Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.; Reboul, S. H.

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) Engineering (SRR-E) to provide sample characterization and analyses of Tank 51 sludge samples in support of Sludge Batch (SB) 10. The six Tank 51 sludge samples were sampled and delivered to SRNL in August of 2017. These six Tank 51 sludge samples, after undergoing physical characterizations which included rheology, weight percent total solid, dissolved solids and density measurements, were combined into one composite Tank 51 sample and analyzed for corrosion controls analytes, select radionuclides, chemical elements, density and weight percent total solids.

  1. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  2. Solvent Hold Tank Sample Results for MCU-16-596-597-598: April 2016 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    2016-07-12

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-596-597-598), pulled on 04/30/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-596-597-598 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 14% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. This analysis confirms the solvent may require the addition of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expectedmore » to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less

  3. Solvent hold tank sample results for MCU-16-1317-1318-1319. September 2016 monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    2017-01-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1317-1318-1319), pulled on 09/12/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1317-1318-1319 indicated the Isopar™L concentration is above its nominal level (102%). The extractant (MaxCalix) and the modifier (CS-7SB) are 5% and 10 % below their nominal concentrations. The suppressor (TiDG) is 77% below its nominal concentration. A summary of the concentration of the relevant solvent components is shown below. This analysis confirms the Isopar™ addition to the solvent in August. This analysis also indicates the solvent maymore » require the addition of TiDG, and possibly of modifier to restore them to nominal levels.« less

  4. A core handling device for the Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1989-01-01

    A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.

  5. CHARACTERIZATION OF TANK 16H ANNULUS SAMPLES PART II: LEACHING RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Reboul, S.

    2012-06-19

    The closure of Tank 16H will require removal of material from the annulus of the tank. Samples from Tank 16H annulus were characterized and tested to provide information to evaluate various alternatives for removing the annulus waste. The analysis found all four annulus samples to be composed mainly of Si, Na, and Al and lesser amounts of other elements. The XRD data indicate quartz (SiO{sub 2}) and sodium aluminum nitrate silicate hydrate (Na{sub 8}(Al{sub 6}Si{sub 6}O{sub 24})(NO{sub 3}){sub 2}.4H{sub 2}O) as the predominant crystalline mineral phases in the samples. The XRD data also indicate the presence of crystalline sodium nitratemore » (NaNO{sub 3}), sodium nitrite (NaNO{sub 2}), gibbsite (Al(OH){sub 3}), hydrated sodium bicarbonate (Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O), and muscovite (KAl{sub 2}(AlSi{sub 3}O{sub 10})(OH){sub 2}). Based on the weight of solids remaining at the end of the test, the water leaching test results indicate 20-35% of the solids dissolved after three contacts with an approximately 3:1 volume of water at 45 C. The chemical analysis of the leachates and the XRD results of the remaining solids indicate sodium salts of nitrate, nitrite, sulfate, and possibly carbonate/bicarbonate make up the majority of the dissolved material. The majority of these salts were dissolved in the first water contact and simply diluted with each subsequent water contact. The water leaching removed large amounts of the uranium in two of the samples and approximately 1/3 of the {sup 99}Tc from all four samples. Most of the other radionuclides analyzed showed low solubility in the water leaching test. The oxalic acid leaching test result indicate approximately 34-47% of the solids in the four annulus samples will dissolve after three contacts with an approximately 3:1 volume of acid to solids at 45 C. The same sodium salts found in the water leaching test comprise the majority of dissolved material in the oxalic acid leaching test. However, the oxalic

  6. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were

  7. Comprehensive study of thermal properties of lunar core samples

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Horath, K.

    1975-01-01

    The feasibility of a technique for measuring the thermal conductivity of lunar core samples was investigated. The thermal conduction equation for a composite cylinder was solved to obtain a mathematical expression for the surface temperature of the core tube filled with lunar material. The sample is heated by radiation from the outside at a known rate, the variation of the temperature at the surface of the core tube is measured, and the thermal conductivity determined by comparing the observed temperature with the theoretically expected one. The apparatus used in the experiment is described.

  8. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  9. ANALYSES OF HTF-48-12-20/24 (FEBRUARY, 2012) AND ARCHIVED HTF-E-05-021 TANK 48H SLURRY SAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; Peters, T.

    Personnel characterized a Savannah River National Laboratory (SRNL) archived sample of Tank 48H slurry (HTF-E-05-021) in addition to the composite of samples HTF-48-12-20 and HTF-48-12-24, which were both retrieved in February 2012. The combined February 2012 sample is referred to as HTF-48-12-20/24 in this report. The results from these analyses are compared with Tank 48H samples analyzed in 2003, 2004, and 2005. This work supports the effort to demonstrate copper-catalyzed peroxide oxidation (CCPO) of organic content in this material. The principal findings with respect to the chemical and physical characteristics of the most recent sample are: (1) The measured potassiummore » tetraphenylborate (KTPB) solid concentration is 1.76 wt %; (2) Titanium was in line with 2004 and 2005 slurry measurements at 897 mg/L, it represents 0.1535 {+-} 0.0012 wt % monosodium titanate (MST); (3) The measured insoluble solids content was 1.467 wt %; (4) The free hydroxide concentration in the Tank 48H filtrate sample (1.02 {+-} 0.02 M) is close to the Tank 48H limit (1.0 M); (5) Carbonate reported by total inorganic carbon (TIC, 1.39 {+-} 0.03 M) is more than double the concentrations measured in past (2003-2005) samples; (6) The soluble potassium content (measured at 286 {+-} 23 mg/L) in the filtrate is in line with all past measurements; and (7) The measured {sup 137}Cs concentration is 7.81E + 08 {+-} 3.9E + 07 dpm/mL of slurry (1.33 {+-} 5% Ci/gallon or 3.18E + 05 {+-} 5% curies of {sup 137}Cs in the tank) in the slurry which is in agreement with the 2005 report of 3.14E + 05 {+-} 1.5% curies of {sup 137}Cs in the tank. The filtrate {sup 137}Cs concentration is 2.57E + 07 {+-} 2.6E + 05 dpm/mL. This result is consistent with previous results. Significant analytical data are summarized in Table 1.« less

  10. Analysis of Tank 13H (HTF-13-14-156, 157) Surface and Subsurface Supernatant Samples in Support of Enrichment Control, Corrosion Control and Sodium Aluminosilicate Formation Potential Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    2015-02-18

    The 2H Evaporator system includes mainly Tank 43H (feed tank) and Tank 38H (drop tank) with Tank 22H acting as the DWPF recycle receipt tank. The Tank 13H is being characterized to ensure that it can be transferred to the 2H evaporator. This report provides the results of analyses on Tanks 13H surface and subsurface supernatant liquid samples to ensure compliance with the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator. The U-235 mass divided by the total uranium averaged 0.00799 (0.799 % uranium enrichment) for both the surface and subsurface Tankmore » 13H samples. This enrichment is slightly above the enrichment for Tanks 38H and 43H, where the enrichment normally ranges from 0.59 to 0.7 wt%. The U-235 concentration in Tank 13H samples ranged from 2.01E-02 to 2.63E-02 mg/L, while the U-238 concentration in Tank 13H ranged from 2.47E+00 to 3.21E+00 mg/L. Thus, the U-235/total uranium ratio is in line with the prior 2H-evaporator ECP samples. Measured sodium and silicon concentrations averaged, respectively, 2.46 M and 1.42E-04 M (3.98 mg/L) in the Tank 13H subsurface sample. The measured aluminum concentration in Tanks 13H subsurface samples averaged 2.01E-01 M.« less

  11. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet

  12. Detection of multiple Mycoplasma species in bulk tank milk samples using real-time PCR and conventional culture and comparison of test sensitivities.

    PubMed

    Justice-Allen, A; Trujillo, J; Goodell, G; Wilson, D

    2011-07-01

    The objective of this study was to further validate a SYBR PCR protocol for Mycoplasma spp. by comparing it with standard microbial culture in the detection of Mycoplasma spp. in bulk tank milk samples. Additionally, we identified Mycoplasma spp. present by analysis of PCR-generated amplicons [dissociation (melt) temperature (T(m)), length, and DNA sequence]. The research presented herein tests the hypothesis that the SYBR PCR protocol is as sensitive as conventional culture for the detection of Mycoplasma spp. in bulk tank milk samples. Mycoplasmas cause several important disease syndromes in cattle, including mastitis in dairy cows. The standard diagnostic method at the herd level has been microbial isolation of mycoplasmas on 1 of several specialized media and speciation through biochemical or immunological techniques; repeated sampling schemes are recommended. The development of a real-time SYBR PCR protocol offers advantages in decrease of time to detection, cost, and complexity. The T(m) of the double-stranded DNA generated from the PCR reaction was used to detect the presence of and tentatively identify the species of mycoplasmas other than Mycoplasma bovis. In the SYBR PCR protocol, the presence of multiple species of mycoplasmas is indicated by an atypical dissociation curve. Gel electrophoresis and sequencing of the amplicons was used to confirm the mycoplasma species present when a non-M. bovis organism was detected (T(m) not equal to M. bovis) and used to identify all the mycoplasma species present for the samples with atypical dissociation curves. Mycoplasma bovis was identified in 83% of SYBR PCR mycoplasma-positive bulk tank samples. Another mycoplasma was identified either alone or in addition to M. bovis in 25% of SYBR PCR mycoplasma-positive bulk tank milk samples. Four species of mycoplasma other than M. bovis (Mycoplasma alkalescens, Mycoplasma arginini, Mycoplasma bovigenitalium, and Mycoplasma gateae) were identified in bulk tank milk samples

  13. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memorandamore » documenting the WAC analyses results have been issued for these three samples.« less

  14. Description, dissection, and subsampling of Apollo 14 core sample 14230

    NASA Technical Reports Server (NTRS)

    Fryxell, R.; Heiken, G.

    1971-01-01

    Core sample 14230, collected at Triplet Crater near the Fra Mauro landing site of the Apollo 14 mission, was dissected in greater detail than any previous core. Sediment from the actual lunar surface was missing, and 6.7 grams of sediment were removed from the base of the core for a portion of the biotest prime sample. Upper and lower portions of the original 70.7-gram core (12.5 centimeters long) were fractured excessively but not mixed stratigraphically. Three major morphologic units and 11 subdivisions were recognized. Dissection provided 55 subsamples in addition to three others made by removing longitudinal sections of the core impregnated with n-butyl methacrylate for use as a permanent documentary record and for studies requiring particles of known orientation.

  15. Within-herd prevalence thresholds for herd-level detection of mastitis pathogens using multiplex real-time PCR in bulk tank milk samples.

    PubMed

    Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K

    2017-10-01

    The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis

  16. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  17. Characterization of Vadose Zone Sediment: Borehole 299-E33-46 Near Tank B-110 in the B-BX-BY Waste Management Area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.

    2002-12-15

    This report presents vadose sediment characterization data that improves understanding of the nature and extent of past releases in the B tank farm. A vertical borehole, located approximately 15 ft (5 m) from the northeast edge of single-shell tank 241-B-110 was drilled to a total depth of 264.4 ft bgs, the groundwater table was encountered at 255.8 ft bgs. During drilling, a total of 3 two-ft long, 4-inch diameter split-spoon core samples were collected between 10 and 254 ft bgs-an average of every 7.5 ft. Grab samples were collected between these core sample intervals to yield near continuous samples tomore » a depth of 78.3 m (257 ft). Geologic logging occurred after each core segment was emptied into an open plastic container, followed by photographing and sub-sampling for physical and chemical characterization. In addition, 54 out of a total of 120 composite grab samples were opened, sub-sampled, logged, and photographed. Immediately following the geologic examination, the core and selected grab samples were sub-sampled for moisture content, gamma-emission radiocounting, tritium and strontium-90 determinations, total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants) and one-to-one sediment to water extracts (which provide soil pH, electrical conductivity, cation, and anion data and water soluble contaminant data. Later, additional aliquots of selected sleeves or grab samples were removed to measure particle size distribution and mineralogy and to squeeze porewater. Major conclusions follow. Vadose zone contamination levels were lower than generally anticipated prior to the initiation of the field investigation. Strong evidence of extensive vadose zone lateral migration in WMA BBXBY exists. There are indications that such lateral migration may have extended into WMA B-BX-BY from adjacent past practice discharge sites. Ponding of runoff from natural precipitation

  18. Influence of item distribution pattern and abundance on efficiency of benthic core sampling

    USGS Publications Warehouse

    Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.

    2014-01-01

    ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.

  19. Characterization of the March 2017 tank 10 surface sample (combination of HTF-10-17-30 AND HTF-10-17-31) and variable depth sample (combination of HTF-10-17-32 and HTF-10-17-33)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.

    Two surface samples (HTF-10-17-30 and HTF-10-17-31) and two variable depth samples (HTF-10-17-32 and HTF-10-17-33) were collected from SRS Tank 10 during March 2017 and submitted to SRNL for characterization. At SRNL, the two surface samples were combined in one container, the two variable depth samples (VDSs) were combined in another container, and then the two composite samples were each characterized by a series of physical, ionic, radiological, and elemental analysis methods. The surface sample composite was characterized primarily for Tank Farm corrosion control purposes, while the VDS composite was characterized primarily for Tank Closure Cesium Removal (TCCR) purposes.

  20. Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)

    NASA Astrophysics Data System (ADS)

    Anders, E.; Rothfuss, M.; Müller, W. H.

    2009-04-01

    Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be

  1. Characterization Results for the January 2017 H-Tank Farm 2H Evaporator Overhead Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truong, T.; Nicholson, J.

    2017-04-11

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on January 19, 2017. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  2. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, J. C.

    2016-05-09

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits.

  3. Opportunities and Challenges of Linking Scientific Core Samples to the Geoscience Data Ecosystem

    NASA Astrophysics Data System (ADS)

    Noren, A. J.

    2016-12-01

    Core samples generated in scientific drilling and coring are critical for the advancement of the Earth Sciences. The scientific themes enabled by analysis of these samples are diverse, and include plate tectonics, ocean circulation, Earth-life system interactions (paleoclimate, paleobiology, paleoanthropology), Critical Zone processes, geothermal systems, deep biosphere, and many others, and substantial resources are invested in their collection and analysis. Linking core samples to researchers, datasets, publications, and funding agencies through registration of globally unique identifiers such as International Geo Sample Numbers (IGSNs) offers great potential for advancing several frontiers. These include maximizing sample discoverability, access, reuse, and return on investment; a means for credit to researchers; and documentation of project outputs to funding agencies. Thousands of kilometers of core samples and billions of derivative subsamples have been generated through thousands of investigators' projects, yet the vast majority of these samples are curated at only a small number of facilities. These numbers, combined with the substantial similarity in sample types, make core samples a compelling target for IGSN implementation. However, differences between core sample communities and other geoscience disciplines continue to create barriers to implementation. Core samples involve parent-child relationships spanning 8 or more generations, an exponential increase in sample numbers between levels in the hierarchy, concepts related to depth/position in the sample, requirements for associating data derived from core scanning and lithologic description with data derived from subsample analysis, and publications based on tens of thousands of co-registered scan data points and thousands of analyses of subsamples. These characteristics require specialized resources for accurate and consistent assignment of IGSNs, and a community of practice to establish norms

  4. Optical Methods for Identifying Hard Clay Core Samples During Petrophysical Studies

    NASA Astrophysics Data System (ADS)

    Morev, A. V.; Solovyeva, A. V.; Morev, V. A.

    2018-01-01

    X-ray phase analysis of the general mineralogical composition of core samples from one of the West Siberian fields was performed. Electronic absorption spectra of the clay core samples with an added indicator were studied. The speed and availability of applying the two methods in petrophysical laboratories during sample preparation for standard and special studies were estimated.

  5. Tank 241-U-103, grab samples 3U-99-1, 3u-99-2 and 3U-99-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STEEN, F.H.

    This document is the final report for tank 241-U-103 grab samples. Three grab samples were collected from riser 13 on March 12, 1999 and received by the 222-S laboratory on March 15, 1999. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999 (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in the data summary report. None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP.

  6. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  7. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient formore » continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  8. A sample-freezing drive shoe for a wire line piston core sampler

    USGS Publications Warehouse

    Murphy, F.; Herkelrath, W.N.

    1996-01-01

    Loss of fluids and samples during retrieval of cores of saturated, noncohesive sediments results in incorrect measures of fluid distributions and an inaccurate measure of the stratigraphic position of the sample. To reduce these errors, we developed a hollow drive shoe that freezes in place the lowest 3 inches (75 mm) of a 1.88-inch-diameter (48 mm), 5-foot-long (1.5 m) sediment sample taken using a commercial wire line piston core sampler. The end of the core is frozen by piping liquid carbon dioxide at ambient temperature through a steel tube from a bottle at the land surface to the drive shoe where it evaporates and expands, cooling the interior surface of the shoe to about -109??F (-78??C). Freezing a core end takes about 10 minutes. The device was used to collect samples for a study of oil-water-air distributions, and for studies of water chemistry and microbial activity in unconsolidated sediments at the site of an oil spill near Bemidji, Minnesota. Before freezing was employed, samples of sandy sediments from near the water table sometimes flowed out of the core barrel as the sampler was withdrawn. Freezing the bottom of the core allowed for the retention of all material that entered the core barrel and lessened the redistribution of fluids within the core. The device is useful in the unsaturated and shallow saturated zones, but does not freeze cores well at depths greater than about 20 feet (6 m) below water, possibly because the feed tube plugs with dry ice with increased exhaust back-pressure, or because sediment enters the annulus between the core barrel and the core barrel liner and blocks the exhaust.

  9. Extraction, -scrub, -strip test results from the interim salt disposition program macrobatch 10 tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 10 for the Interim Salt Disposition Program (ISDP). The Salt Batch 10 characterization results were previously reported.ii,iii An Extraction, -Scrub, -Strip (ESS) test was performed to determine cesium distribution ratios (D(Cs)) and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a sample of the NGS Blend solvent currently being used at the Modularmore » Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D(Cs) value of 110. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This is better than the predicted value of 39.8 from a recently created D(Cs) model.« less

  10. Solvent Hold Tank Sample Results for MCU-16-1247-1248-1249: August 2016 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier and MaxCalix to restore then to nominal levels. Based on the current monthly sample, the levelsmore » of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. At the time of writing this report, A solvent trim batch containing TiDG, modifier and MaxCalix, was added to the SHT (October 2016) and expect the concentration of these components to be at their nominal values.« less

  11. Tank 241-AN-101, grab samples, 1AN-98-1, 1AN-98-2 and 1AN-98-3 analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FULLER, R.K.

    1999-02-24

    This document is the final report for tank 241-AN-101 grab samples. Three grab samples 1AN-98-1, 1AN-98-2 and 1AN-98-3 were taken from riser 16 of tank 241-AN-101 on April 8, 1998 and received by the 222-S Laboratory on April 9, 1998. Analyses were performed in accordance with the ''Compatability Grab Sampling and Analysis Plan'' (TSAP) and the ''Data Quality Objectives for Tank Farms Waste Compatability Program'' (DQO). The analytical results are presented in the data summary report. No notification limits were exceeded.

  12. Bonding and Sealing Evaluations for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

  13. Description and Analysis of Core Samples: The Lunar Experience

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Allton, Judith H.

    1997-01-01

    Although no samples yet have been returned from a comet, extensive experience from sampling another solar system body, the Moon, does exist. While, in overall structure, composition, and physical properties the Moon bears little resemblance to what is expected for a comet, sampling the Moon has provided some basic lessons in how to do things which may be equally applicable to cometary samples. In particular, an extensive series of core samples has been taken on the Moon, and coring is the best way to sample a comet in three dimensions. Data from cores taken at 24 Apollo collection stations and 3 Luna sites have been used to provide insight into the evolution of the lunar regolith. It is now well understood that this regolith is very complex and reflects gardening (stirring of grains by micrometeorites), erosion (from impacts and solar wind sputtering), maturation (exposure on the bare lunar surface to solar winds ions and micrometeorite impacts) and comminution of coarse grains into finer grains, blanket deposition of coarse-grained layers, and other processes. All of these processes have been documented in cores. While a cometary regolith should not be expected to parallel in detail the lunar regolith, it is possible that the upper part of a cometary regolith may include textural, mineralogical, and chemical features which reflect the original accretion of the comet, including a form of gardening. Differences in relative velocities and gravitational attraction no doubt made this accretionary gardening qualitatively much different than the lunar version. Furthermore, at least some comets, depending on their orbits, have been subjected to impacts of the uppermost surface by small projectiles at some time in their history. Consequently, a more recent post-accretional gardening may have occurred. Finally, for comets which approach the sun, large scale erosion may have occurred driven by gas loss. The uppermost material of these comets may reflect some of the features

  14. Solvent Hold Tank Sample Results for MCU-16-934-935-936: June 2016 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    2016-08-30

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-934-935-936), pulled on 07/01/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-934-935-936 indicated the Isopar™L concentration is above its nominal level (101%). The modifier (CS-7SB) and the TiDG concentrations are 8% and 29 % below their nominal concentrations. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease withmore » time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 21.1 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample (as determined by the XRF method of undigested sample). The current gamma level (1.41E5 dpm/mL) confirmed that the gamma concentration has returned to previous levels (as observed in the late 2015 samples) where the process operated normally and as expected.« less

  15. Quantitative x-ray diffraction mineralogy of Los Angeles basin core samples

    USGS Publications Warehouse

    Hein, James R.; McIntyre, Brandie R.; Edwards, Brian D.; Lakota, Orion I.

    2006-01-01

    This report contains X-ray diffraction (XRD) analysis of mineralogy for 81 sediment samples from cores taken from three drill holes in the Los Angeles Basin in 2000-2001. We analyzed 26 samples from Pier F core, 29 from Pier C core, and 26 from the Webster core. These three sites provide an offshore-onshore record across the Southern California coastal zone. This report is designed to be a data repository; these data will be used in further studies, including geochemical modeling as part of the CABRILLO project. Summary tables quantify the major mineral groups, whereas detailed mineralogy is presented in three appendices. The rationale, methodology, and techniques are described in the following paper.

  16. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  17. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  18. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  19. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the

  2. Sample Based Unit Liter Dose Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, L.

    The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999a) and the Final Safety Analysis Report (FSAR) (FDH 1999b) were developed. The Nuclear Safety and Licensing (NS and L) organization wants to use the new datamore » to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in producing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks. The results given in this report are a revision to similar results given in an earlier version of the document (Jensen and Wilmarth 1999). The main difference between the results in this document and the earlier version is that the dose conversion factors (DCF) for converting {mu}Ci/g or {mu}Ci/L to Sv/L (sieverts per liter) have changed. There are now two DCFs, one based on ICRP-68 and one based on ICW-71 (Brevick 2000).« less

  3. Vapor space characterization of Waste Tank 241-TY-104 (in situ): Results from samples collected on 8/5/94

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligotke, M.W.; Pool, K.H.; Lucke, R.B.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not performed. Inmore » addition, the authors looked for the 39 TO-14 compounds plus an additional 14 analytes. Of these, eight were observed above the 5-ppbv reporting cutoff. Twenty-four organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TY-104. Tank TY-104 is on the Ferrocyanide Watch List.« less

  4. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  5. Effects of core retrieval, handling, and preservation on hydrate-bearing samples

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Lu, H.; Winters, W. J.; Hunter, R. B.

    2009-12-01

    Recovery, preservation, storage, and transport of samples containing natural gas hydrate cause changes in the stress conditions, temperature, pressure, and hydrate saturation of samples. Sample handling at the ground surface and sample preservation, either by freezing in liquid nitrogen (LN) or repressurization using methane, provides additional time and driving forces for sample alteration. The extent to which these disturbances alter the properties of the hydrate bearing sediments (HBS) depend on specific sample handling techniques, as well as on the sample itself. HBS recovered during India’s National Gas Hydrate Program (NGHP) Expedition 01 and the 2007 BP Exploration Alaska - Department of Energy - U.S. Geological Survey (BP-DOE-USGS) Mount Elbert (ME) gas hydrate well on the Alaskan North Slope provide comparisons of sample alterations induced by multiple handling techniques. HBS samples from the NGHP and the ME projects were examined using x-ray computed tomography. Mount Elbert sand samples initially preserved in LN have non-uniform short “crack-like” low-density zones in the center that probably do not extend to the outside perimeter. Samples initially preserved by repressurization show fewer “crack-like” features and higher densities. Two samples were analyzed in detail by Lu and coworkers showing reduced hydrate saturations approaching the outer surface, while substantial hydrate remained in the central region. Non-pressure cored NGHP samples show relatively large altered regions approaching the core surface, while pressure-cored-liquid-nitrogen preserved samples have much less alteration.

  6. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    PubMed

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Investigation of Tank 241-AN-101 Floating Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, Douglas P.; Meznarich, H. K.

    Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floatingmore » and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.« less

  8. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D.A.

    1997-04-04

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106.

  9. A Xhosa language translation of the CORE-OM using South African university student samples.

    PubMed

    Campbell, Megan M; Young, Charles

    2016-10-01

    The translation of well established psychometric tools from English into Xhosa may assist in improving access to psychological services for Xhosa speakers. The aim of this study was to translate the Clinical Outcomes in Routine Evaluation - Outcome Measure (CORE-OM), a measure of general distress and dysfunction developed in the UK, into Xhosa for use at South African university student counselling centres. The CORE-OM and embedded CORE-10 were translated into Xhosa using a five-stage translation design. This design included (a) forward-translation, (b) back-translation, (c) committee approach, (d) qualitative piloting, and (e) quantitative piloting on South African university students. Clinical and general samples were drawn from English-medium South African universities. Clinical samples were generated from university student counselling centres. General student samples were generated through random stratified cluster sampling of full-time university students. Qualitative feedback from the translation process and results from quantitative piloting of the 34-item CORE-OM English and Xhosa versions supported the reduction of the scale to 10 items. This reduced scale is referred to as the South African CORE-10 (SA CORE-10). A measurement and structural model of the SA CORE-10 English version was developed and cross-validated using an English-speaking university student sample. Equivalence of this model with the SA CORE-10 Xhosa version was investigated using a first-language Xhosa-speaking university sample. Partial measurement equivalence was achieved at the metric level. The resultant SA CORE-10 Xhosa and English versions provide core measures of distress and dysfunction. Additional, culture- and language-specific domains could be added to increase sensitivity and specificity. © The Author(s) 2016.

  10. Geotechnical properties of core sample from methane hydrate deposits in Eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Egawa, K.; Konno, Y.; Ito, T.; Kida, M.; Jin, Y.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2013-12-01

    To date, MH extraction has been simulated in several ways to help ensure the safe and efficient production of gas, with a particular focus on the investigation of landsliding, uneven settlement, and production well integrity. The mechanical properties of deep sea sediments and gas-hydrate-bearing sediments, typically obtained through material tests, are essential for the geomechanical response simulation to hydrate extraction. We conducted triaxial compression tests and the geotechnical properties of the sediments was investigated. Consolidated undrained compression tests were performed for silty sediments. And consolidated drained tests were performed for sandy samples. In addition, permeability was investigated from isotropic consolidation results. These core samples recovered from methane hydrate deposits of Daini Atsumi Knoll in Eastern Nankai Trough during the 2012 JOGMEC/JAPEX Pressure coring operation. The pressure core samples were rapidly depressurized on the ship and it were frozen using liquid nitrogen to prevent MH dissociation. Undrained shear strength of the core samples increase linearly with depth from sea floor. These core samples should be normally consolidated sample in-situ. Drained shear strength increases dramatically with hydrate saturation increases. Peak stress ratio q/p' of the core sample which has 73% of hydrate saturation was approximately 2.0 and it decrease down to 1.3 at the critical state. Dilatancy also changed from compressive tendency to dilative tendency with hydrate saturation increase. This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).

  11. A high-throughput core sampling device for the evaluation of maize stalk composition

    PubMed Central

    2012-01-01

    Background A major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Currently, highly accurate and precise robotic analysis systems are available for the evaluation of biomass composition, on a large number of samples, with a variety of pretreatments. However, the lack of an inexpensive and high-throughput process for large scale sampling of biomass resources is still an important limiting factor. Our goal was to develop a simple mechanical maize stalk core sampling device that can be utilized to collect uniform samples of a dimension compatible with robotic processing and analysis, while allowing the collection of hundreds to thousands of samples per day. Results We have developed a core sampling device (CSD) to collect maize stalk samples compatible with robotic processing and analysis. The CSD facilitates the collection of thousands of uniform tissue cores consistent with high-throughput analysis required for breeding, genetics, and production studies. With a single CSD operated by one person with minimal training, more than 1,000 biomass samples were obtained in an eight-hour period. One of the main advantages of using cores is the high level of homogeneity of the samples obtained and the minimal opportunity for sample contamination. In addition, the samples obtained with the CSD can be placed directly into a bath of ice, dry ice, or liquid nitrogen maintaining the composition of the biomass sample for relatively long periods of time. Conclusions The CSD has been demonstrated to successfully produce homogeneous stalk core samples in a repeatable manner with a throughput substantially superior to the currently available sampling methods. Given the variety of maize developmental stages and the diversity of stalk diameter evaluated, it is expected that the CSD will have utility for other bioenergy crops as well. PMID

  12. Do-It-Yourself Device for Recovery of Cryopreserved Samples Accidentally Dropped into Cryogenic Storage Tanks

    PubMed Central

    Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike

    2012-01-01

    Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues 1,2. The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn'2, which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces2. In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks1. These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials3. However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy. PMID:22617806

  13. Do-It-Yourself device for recovery of cryopreserved samples accidentally dropped into cryogenic storage tanks.

    PubMed

    Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike

    2012-05-11

    Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues (1,2). The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn' (2), which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces (2). In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks (1). These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials (3). However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy.

  14. Characterization Results for the March 2016 H-Tank Farm 2H Evaporator Overhead Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, J. C.

    This report contains the radioanalytical results of the 2H evaporator overhead sample received at SRNL on March 16, 2016. Specifically, concentrations of 137Cs, 90Sr, and 129I are reported and compared to the corresponding Waste Acceptance Criteria (WAC) limits of the Effluent Treatment Project (ETP) Waste Water Collection Tank (WWCT) (rev. 6). All of the radionuclide concentrations in the sample were found to be in compliance with the ETP WAC limits. Revision 1 of this document corrects the cumulative beta count initially reported for 90Sr content with the sole 90Sr count obtained after recharacterization of the sample. The initial data wasmore » found to be a cumulative beta count rather than the 90Sr count requested.« less

  15. Solvent Hold Tank Sample Results for MCU-15-661-662-663: April 2015 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Taylor-Pashow, K.

    2015-07-08

    The Savannah River National Lab (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-661, MCU-15-662, and MCU-15-663 pulled on April 2, 2015) for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-661-662-663 indicated a low concentration (~ 63% of nominal) of the suppressor (TiDG) and a slightly below the nominal concentration (~ 10% below nominal) of the extractant (MaxCalix). The modifier (CS-7SB) level was also 10% below its nominal value while the Isopar™ L level was slightly above its nominal value. This analysis confirms the addition of Isopar™L to the solvent onmore » March 6, 2015. Despite that the values are below target component levels, the current levels of TiDG, CS-7SB and MaxCalix are sufficient for continuing operation without adding a trim at this time until the next monthly sample. No impurities above the 1000 ppm level were found in this solvent. However, the sample was found to contain approximately 18.4 ug/g solvent mercury. The gamma level increased to 8 E5 dpm/mL solvent and it represents an order of magnitude increase relative to previous solvent samples. The increase means less cesium is being stripped from the solvent. Further analysis is needed to determine if the recent spike in the gamma measurement is due to external factors such as algae or other material that may impede stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.« less

  16. Tank 241-AP-106, Grab samples, 6AP-98-1, 6AP-98-2 and 6AP-98-3 Analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FULLER, R.K.

    1999-02-23

    This document is the final report for tank 241-AP-106 grab samples. Three grab samples 6AP-98-1, 6AP-98-2 and 6AP-98-3 were taken from riser 1 of tank 241-AP-106 on May 28, 1998 and received by the 222-S Laboratory on May 28, 1998. Analyses were performed in accordance with the ''Compatability Grab Sampling and Analysis Plan'' (TSAP) (Sasaki, 1998) and the ''Data Quality Objectives for Tank Farms Waste Compatability Program (DQO). The analytical results are presented in the data summary report. No notification limits were exceeded. The request for sample analysis received for AP-106 indicated that the samples were polychlorinated biphenyl (PCB) suspects.more » The results of this analysis indicated that no PCBs were present at the Toxic Substance Control Act (TSCA) regulated limit of 50 ppm. The results and raw data for the PCB analysis are included in this document.« less

  17. Solvent hold tank sample results for MCU-16-53-55. January 2016 Monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-53-54-55), pulled on 01/25/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-53-54-55 indicated the Isopar™L, and MaxCalix are at nominal levels. The modifier and TiDG concentrations are 3% and 23 % below their nominal concentrations. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on November 28, 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time.more » Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (a possible degradation product of TiDG). In addition, up to 21 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample. There appears to be a possible correlation between the mercury level and the TiDG concentration in the solvent. The current gamma level (9.16 E4 dpm/mL) confirmed that the gamma concentration has returned to previous level where the process operated normally and as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  18. Herd-level prevalence of Map infection in dairy herds of southern Chile determined by culture of environmental fecal samples and bulk-tank milk qPCR.

    PubMed

    Kruze, J; Monti, G; Schulze, F; Mella, A; Leiva, S

    2013-09-01

    Paratuberculosis, an infectious disease of domestic and wild ruminants caused by Mycobacterium avium subsp. paratuberculosis (Map), is an economically important disease in dairy herds worldwide. In Chile the disease has been reported in domestic and wildlife animals. However, accurate and updated estimations of the herd-prevalence in cattle at national or regional level are not available. The objectives of this study were to determine the herd-level prevalence of dairy herds with Map infected animals of Southern Chile, based on two diagnostic tests: culture of environmental fecal samples and bulk-tank milk qPCR. Two composite environmental fecal samples and one bulk-tank milk sample were collected during September 2010 and September 2011 from 150 dairy farms in Southern Chile. Isolation of Map from environmental fecal samples was done by culture of decontaminated samples on a commercial Herrold's Egg Yolk Medium (HEYM) with and without mycobactin J. Suspicious colonies were confirmed to be Map by conventional IS900 PCR. Map detection in bulk-tank milk samples was done by real time IS900 PCR assay. PCR-confirmed Map was isolated from 58 (19.3%) of 300 environmental fecal samples. Holding pens and manure storage lagoons were the two more frequent sites found positive for Map, representing 35% and 33% of total positive samples, respectively. However, parlor exits and cow alleyways were the two sites with the highest proportion of positive samples (40% and 32%, respectively). Herd prevalence based on environmental fecal culture was 27% (true prevalence 44%) compared to 49% (true prevalence 87%) based on bulk-tank milk real time IS900 PC. In both cases herd prevalence was higher in large herds (>200 cows). These results confirm that Map infection is wide spread in dairy herds in Southern Chile with a rough herd-level prevalence of 28-100% depending on the herd size, and that IS900 PCR on bulk-tank milk samples is more sensitive than environmental fecal culture to detect

  19. System Would Acquire Core and Powder Samples of Rocks

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Randolph, James; Bao, Xiaoqi; Sherrit, Stewart; Ritz, Chuck; Cook, Greg

    2006-01-01

    A system for automated sampling of rocks, ice, and similar hard materials at and immediately below the surface of the ground is undergoing development. The system, denoted a sample preparation, acquisition, handling, and delivery (SPAHD) device, would be mounted on a robotic exploratory vehicle that would traverse the terrain of interest on the Earth or on a remote planet. The SPAHD device would probe the ground to obtain data for optimization of sampling, prepare the surface, acquire samples in the form(s) of cores and/or powdered cuttings, and deliver the samples to a selected location for analysis and/or storage.

  20. Fluoride content of tank water in Australia.

    PubMed

    Cochrane, N J; Hopcraft, M S; Tong, A C; Thean, H l; Thum, Y S; Tong, D E; Wen, J; Zhao, S C; Stanton, D P; Yuan, Y; Shen, P; Reynolds, E C

    2014-06-01

    The aims of this study were to: (1) analyse the fluoride content of tank water; (2) determine whether the method of water collection or storage influenced fluoride content; and (3) survey participant attitudes towards water fluoridation. Plastic tubes and a questionnaire were distributed through dentists to households with water tanks in Victoria. A midstream tank water sample was collected and fluoride analysed in triplicate using ion chromatography All samples (n = 123) contained negligible amounts of fluoride, with a mean fluoride concentration of <0.01 ppm (range: <0.01-0.18 ppm). No statistically significant association was found between fluoride content and variables investigated such as tank material, tank age, roof material and gutter material. Most people did not know whether their tank water contained fluoride and 40.8% preferred to have access to fluoridated water. The majority thought fluoride was safe and more than half of the respondents supported fluoridation. Fluoride content of tank water was well below the optimal levels for caries prevention. People who rely solely on tank water for drinking may require additional exposure to fluoride for optimal caries prevention. © 2014 Australian Dental Association.

  1. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  2. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  3. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  4. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough.

    PubMed

    Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua

    2017-02-15

    Sediment core samples from the northern Okinawa Trough (OT) were analyzed to determine abundances and distributions of hydrocarbons by gas chromatography-mass spectrometer (GC-MS). The results show that the n-alkanes in this sediment core conform to a bimodal distribution, and exhibit an odd-to-even predominance of high molecular weights compared to an even-to-odd predominance in low molecular weight n-alkanes with maxima at C 16 and C 18 . The concentrations of bitumen, alkanes and polyaromatic hydrocarbons (PAHs) were higher in samples S10-07 than all others. Three maturity parameters as well as the ratios between parent phenanthrenes (Ps) and methylphenanthrenes (MPs) in samples S10-07 and S10-17 were higher. The distribution and composition of hydrocarbons in sample S10-07 suggest that one, or several, undetected hydrothermal fields may be present in the region of this sediment core. Results also suggest that volcanism may be the main reason for the observed distribution and composition of hydrocarbons in S10-17 sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem

    NASA Technical Reports Server (NTRS)

    Younse, Paulo J.; Dicicco, Matthew A.; Morgan, Albert R.

    2012-01-01

    A report describes the PLuto (programmable logic) Mars Technology Rover, a mid-sized FIDO (field integrated design and operations) class rover with six fully drivable and steerable cleated wheels, a rocker-bogey suspension, a pan-tilt mast with panorama and navigation stereo camera pairs, forward and rear stereo hazcam pairs, internal avionics with motor drivers and CPU, and a 5-degrees-of-freedom robotic arm. The technology rover was integrated with an arm-mounted percussive coring tool, microimager, and sample handling encapsulation containerization subsystem (SHEC). The turret of the arm contains a percussive coring drill and microimager. The SHEC sample caching system mounted to the rover body contains coring bits, sample tubes, and sample plugs. The coring activities performed in the field provide valuable data on drilling conditions for NASA tasks developing and studying coring technology. Caching of samples using the SHEC system provide insight to NASA tasks investigating techniques to store core samples in the future.

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  7. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  8. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  9. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  10. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  11. Tank 241-B-108, cores 172 and 173 analytical results for the final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzum, J.L., Fluoro Daniel Hanford

    1997-03-04

    The Data Summary Table (Table 3) included in this report compiles analytical results in compliance with all applicable DQOS. Liquid subsamples that were prepared for analysis by an acid adjustment of the direct subsample are indicated by a `D` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a fusion digest are indicated by an `F` in the A column in Table 3. Solid subsamples that were prepared for analysis by performing a water digest are indicated by a I.wl. or an `I` in the A column of Table 3. Due to poormore » precision and accuracy in original analysis of both Lower Half Segment 2 of Core 173 and the core composite of Core 173, fusion and water digests were performed for a second time. Precision and accuracy improved with the repreparation of Core 173 Composite. Analyses with the repreparation of Lower Half Segment 2 of Core 173 did not show improvement and suggest sample heterogeneity. Results from both preparations are included in Table 3.« less

  12. Vapor characterization of Tank 241-C-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.; Story, M.S.

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from themore » most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.« less

  13. Extraction-Scrub-Strip test results from the interim Salt Disposition Program Macrobatch 9 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2016-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). The Salt Batch 9 characterization results were previously reported. An Extraction-Scrub-Strip (ESS) test was performed to determine cesium distribution ratios (D (Cs)) and cesium concentration in the strip effluent and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a blend solvent prepared by SRNL that mimics the solvent composition currently being used atmore » the Modular Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D (Cs) value of 52.4. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This compares well against the predicted value of 56.5 from a recently created D (Cs) model« less

  14. Solvent hold tank sample results for MCU-15-914-915-916. December 2015 Monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    2016-03-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-914-915-916), pulled on 12/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-914-915-916 indicated the TiDG, Isopar™L, and MaxCalix are at nominal levels. The modifier concentration is 3% below its nominal concentration. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in November 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additionsmore » to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (more indicative of bacteria than a possible degradation product of TiDG). In addition, up to 18 ± 4 micrograms of mercury per gram of solvent (or 14.8 μg/mL) was detected in this sample. The current gamma concentration level (8.48E4 dpm/mL) confirmed that the gamma concentration has returned to the previous level where the process operated normally as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  15. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  16. Debonding Stress Concentrations in a Pressurized Lobed Sandwich-Walled Generic Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    A finite-element stress analysis has been conducted on a lobed composite sandwich tank subjected to internal pressure and cryogenic cooling. The lobed geometry consists of two obtuse circular walls joined together with a common flat wall. Under internal pressure and cryogenic cooling, this type of lobed tank wall will experience open-mode (a process in which the honeycomb is stretched in the depth direction) and shear stress concentrations at the junctures where curved wall changes into flat wall (known as a curve-flat juncture). Open-mode and shear stress concentrations occur in the honeycomb core at the curve-flat junctures and could cause debonding failure. The levels of contributions from internal pressure and temperature loading to the open-mode and shear debonding failure are compared. The lobed fuel tank with honeycomb sandwich walls has been found to be a structurally unsound geometry because of very low debonding failure strengths. The debonding failure problem could be eliminated if the honeycomb core at the curve-flat juncture is replaced with a solid core.

  17. Analysis of Tank 38H (HTF-38-15-47, 49) and Tank 43H (HTF-43-15-51, 53) surface and subsurface supernatant samples in support of enrichment and corrosion control programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP).

  18. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    PubMed

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stabilization of lunar core samples

    NASA Technical Reports Server (NTRS)

    Nagle, J. S.; Duke, M. B.

    1974-01-01

    Processing of lunar cores includes: (1) careful dissection for study of loose fines, and (2) stabilization of the residue by peeling and impregnation. The newly developed technique for preparing thin peels of lunar cores requires application of the methacrylate adhesive to a backing strip, before taking the peel. To ensure complete impregnation of the very fine, dry lunar soil, the low-viscosity epoxy, Araldite 506, is gently flowed onto the core, under vacuum.

  20. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Engineering Analysis Studies for Preliminary Design of Lightweight Cryogenic Hydrogen Tanks in UAV Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Palko, Joseph L.; Tornabene, Robert T.; Bednarcyk, Brett A.; Powers, Lynn M.; Mital, Subodh K.; Smith, Lizalyn M.; Wang, Xiao-Yen J.; Hunter, James E.

    2006-01-01

    A series of engineering analysis studies were conducted to investigate the potential application of nanoclay-enhanced graphite/epoxy composites and polymer cross-linked silica aerogels in cryogenic hydrogen storage tank designs. This assessment focused on the application of these materials in spherical tank designs for unmanned aeronautic vehicles with mission durations of 14 days. Two cryogenic hydrogen tank design concepts were considered: a vacuum-jacketed design and a sandwiched construction with an aerogel insulating core. Analyses included thermal and structural analyses of the tank designs as well as an analysis of hydrogen diffusion to specify the material permeability requirements. The analyses also provided material property targets for the continued development of cross-linked aerogels and nanoclay-enhanced graphite/epoxy composites for cryogenic storage tank applications. The results reveal that a sandwiched construction with an aerogel core is not a viable design solution for a 14-day mission. A vacuum-jacketed design approach was shown to be far superior to an aerogel. Aerogel insulation may be feasible for shorter duration missions. The results also reveal that the application of nanoclay-enhanced graphite/epoxy should be limited to the construction of outer tanks in a vacuum-jacketed design, since a graphite/epoxy inner tank does not provide a significant weight savings over aluminum and since the ability of nanoclay-enhanced graphite/epoxy to limit hydrogen permeation is still in question.

  2. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L. N.

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  3. A wireline piston core barrel for sampling cohesionless sand and gravel below the water table

    USGS Publications Warehouse

    Zapico, Michael M.; Vales, Samuel; Cherry, John A.

    1987-01-01

    A coring device has been developed to obtain long and minimally disturbed samples of saturated cohesionless sand and gravel. The coring device, which includes a wireline and piston, was developed specifically for use during hollow-stem auger drilling but it also offers possibilities for cable tool and rotary drilling. The core barrel consists of an inner liner made of inexpensive aluminum or plastic tubing, a piston for core recovery, and an exterior steel housing that protects the liner when the core barrel is driven into the aquifer. The core barrel, which is approximately 1.6m (5.6 feet) long, is advanced ahead of the lead auger by hammering at the surface on drill rods that are attached to the core barrel. After the sampler has been driven 1.5m (5 feet), the drill rods are detached and a wireline is used to hoist the core barrel, with the sample contained in the aluminum or plastic liner, to the surface. A vacuum developed by the piston during the coring operation provides good recovery of both the sediment and aquifer fluids contained in the sediment. In the field the sample tubes can be easily split along their length for on-site inspection or they can be capped with the pore water fluids inside and transported to the laboratory. The cores are 5cm (2 inches) in diameter by 1.5m (5 feet) long. Core acquisition to depths of 35m (115 feet), with a recovery greater than 90 percent, has become routine in University of Waterloo aquifer studies. A large diameter (12.7cm [5 inch]) version has also been used successfully. Nearly continuous sample sequences from sand and gravel aquifers have been obtained for studies of sedimentology, hydraulic conductivity, hydrogeochemistry and microbiology.

  4. Detection of Mycobacterium avium subspecies paratuberculosis specific IS900 insertion sequences in bulk-tank milk samples obtained from different regions throughout Switzerland

    PubMed Central

    Corti, Sabrina; Stephan, Roger

    2002-01-01

    Background Since Mycobacterium avium subspecies paratuberculosis (MAP) was isolated from intestinal tissue of a human patient suffering Crohn's disease, a controversial discussion exists whether MAP have a role in the etiology of Crohn's disease or not. Raw milk may be a potential vehicle for the transmission of MAP to human population. In a previous paper, we have demonstrated that MAP are found in raw milk samples obtained from a defined region in Switzerland. The aim of this work is to collect data about the prevalence of MAP specific IS900 insertion sequence in bulk-tank milk samples in different regions of Switzerland. Furthermore, we examined eventual correlation between the presence of MAP and the somatic cell counts, the total colony counts and the presence of Enterobacteriaceae. Results 273 (19.7%) of the 1384 examined bulk-tank milk samples tested IS900 PCR-positive. The prevalence, however, in the different regions of Switzerland shows significant differences and ranged from 1.7% to 49.2%. Furthermore, there were no statistically significant (p >> 0.05) differences between the somatic cell counts and the total colony counts of PCR-positive and PCR-negative milk samples. Enterobacteriaceae occur as often in IS900 PCR-positive as in PCR-negative milk samples. Conclusion This is the first study, which investigates the prevalence of MAP in bulk-tank milk samples all over Switzerland and infers the herd-level prevalence of MAP infection in dairy herds. The prevalence of 19.7% IS900 PCR-positive bulk-milk samples shows a wide distribution of subclinical MAP-infections in dairy stock in Switzerland. MAP can therefore often be transmitted to humans by raw milk consumption. PMID:12097144

  5. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convectivemore » layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.« less

  6. Development tests of LOX/LH 2 tank for H-I launch vehicle

    NASA Astrophysics Data System (ADS)

    Takamatsu, H.; Imagawa, K.; Ichimaru, Y.

    H-I is a future launch vehicle of Japan with a capability of placing more than 550 kg payload into a geostationary orbit. The National Space Development Agency of Japan (NASDA) is now directing its efforts to the final development of H-I launch vehicle. H-I's high launch capability is attained by adopting a newly developed second stage with a LOX/LH 2 propulsion system. The second stage propulsion system consists of a tank and an engine. The tank is 2.5 m in diameter and 5.7 m in length and contains 8.7 tons of propellants. This tank is an integral tank with a common bulkhead which separates the tank into forward LH 2 tank and aft LOX tank. The tank is made of 2219 aluminum alloy and is insulated with sprayed polyurethane foam. The common bulkhead is made of FRP honeycomb core and aluminium alloy surface sheets. The most critical item in the development of the tank is the common bulkhead, therefore the cryogenic structural test was carried out to verify the structural integrity of the bulkhead. The structural integrity of the whole LOX/LH 2 tank was verified by the cryogenic structural test of a sub-scale tank and the room temperature structural test of a prototype tank.

  7. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  8. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  9. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  10. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  11. 7 CFR 160.28 - Tank cars of turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Tank cars of turpentine. 160.28 Section 160.28... STANDARDS FOR NAVAL STORES Analysis, Inspection, and Grading on Request § 160.28 Tank cars of turpentine. A tank car loaded for shipment with spirits of turpentine shall, after the same has been sampled for...

  12. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  13. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less

  14. Radiotracer investigation in gold leaching tanks.

    PubMed

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Treesearch

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  16. X-33 Tank Failure During Autoclave Fabrication

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    During a repair cure cycle on tank #1 of the X-33 liquid hydrogen tanks, a skin to core disbond occurred. Both the inner skin and outer skin of the lobe #1 sandwich panel was noted to have been disbonded and cracked- An investigation was undertaken to determine the cause of this failure. The investigation consisted of reviewing all of the processing data and performing testing on the failed lobe #1, as well as the other lobes, which did not fail during the cure cycle. The tests consisted of residual stress measurements in one of the intact lobes and "plug-pulls" to assess skin to core strength on all of the remaining lobes. Results showed an extremely low bondline strength due to lack of proper filleting of the adhesive, in addition, tests showed a very rapid decrease in strength with increasing temperature, as well as a further decrease in strength with a larger number of cycles. Also, the honeycomb used was not vented so pressure could build up within the cells. All of these factors appeared to be contributors to the failure.

  17. Compatibility of the Radio Frequency Mass Gauge with Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Mueller, Carl

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98. Together, these results suggested that a tank constructed from graphite-epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 Q 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  18. Video Intertank for the Core Stage for the first SLS Flight

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System interank, which recently completed assembly at NASA's Michoud Assembly Facility in New Orleans. This tank was bolted together with more than 7,000 bolts. It is the only part of the SLS core stage assembly with bolts rather than by welding. The rocket's interank is located between the core stage liquid oxygen and liquid hydrogen fuel tanks. It has to be strong because the two SLS solid rocket boosters attache to the sides of it. This flight article will be connected to four other parts to form the core stage for the first integrated flight of SLS and Orion.

  19. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  20. CHARACTERIZATION AND EVALUATION OF CAUSTIC WASH TANK AND SOLVENT HOLD TANK SAMPLES FROM MCU FROM AUGUST TO SEPTEMBER 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Fink, S.

    2012-08-01

    During processing of Salt Batches 3 and 4 in the Modular Caustic-Side Solvent Extraction Unit (MCU), the decontamination efficiency for cesium declined from historical values and from expectations based on laboratory testing. This report documents efforts to analyze samples of solvent and process solutions from MCU in an attempt to understand the cause of the reduced performance and to recommend mitigations. CWT Solutions from MCU from the time period of variable decontamination factor (DF) performance which covers from April 2011 to September 2011 (during processing of Salt Batch 4) were examined for impurities using chromatography and spectroscopy. The results indicatemore » that impurities were found to be of two types: aromatic containing impurities most likely from Modifier degradation and aliphatic type impurities most likely from Isopar{reg_sign} L and tri-n-octylamine (TOA) degradation. Caustic washing the Solvent Hold Tank (SHT) solution with 1M NaOH improved its extraction ability as determined from {sup 22}Na uptake tests. Evidence from this work showed that pH variance in the aqueous solutions within the range of 1M nitric acid to 1.91M NaOH that contacted the solvent samples does not influence the analytical determination of the TOA concentration by GC-MS.« less

  1. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, Jr., Fred; Schatzel, Steven J.

    1998-01-01

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas- a selector valve connected to the low and high range pressure transducers, a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container, and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use.

  2. Acquisition and Retaining Granular Samples via a Rotating Coring Bit

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2013-01-01

    This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the

  3. Portable tester for determining gas content within a core sample

    DOEpatents

    Garcia, F. Jr.; Schatzel, S.J.

    1998-04-21

    A portable tester is provided for reading and displaying the pressure of a gas released from a rock core sample stored within a sealed container and for taking a sample of the released pressurized gas for chemical analysis thereof for subsequent use in a modified direct method test which determines the volume of gas and specific type of gas contained within the core sample. The portable tester includes a pair of low and high range electrical pressure transducers for detecting a gas pressure; a pair of low and high range display units for displaying the pressure of the detected gas; a selector valve connected to the low and high range pressure transducers and a selector knob for selecting gas flow to one of the flow paths; control valve having an inlet connection to the sealed container; and outlets connected to: a sample gas canister, a second outlet port connected to the selector valve means for reading the pressure of the gas from the sealed container to either the low range or high range pressure transducers, and a connection for venting gas contained within the sealed container to the atmosphere. A battery is electrically connected to and supplies the power for operating the unit. The pressure transducers, display units, selector and control valve means and the battery is mounted to and housed within a protective casing for portable transport and use. 5 figs.

  4. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  5. WVNS experiences in the detection, monitoring, and leakage from underground tanks containing contaminated kerosene/TBP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenti, P.J.; McVay, C.W.; Bourgeois, P.

    1986-01-01

    Tanks of radioactively contaminated kerosene/tributyl phosphate (TBP) disposed of at West Valley in 1969, when the plant was being utilized to reprocess commercial nuclear fuel, were determined to be leaking. Contaminated kerosene/TBP was initially detected in November 1983 when samples taken from US Geological Survey monitor wells tested positively for both radioactive and organic constituents. An extensive monitoring, sampling, and analysis program, which involved the installation of approx. 100 monitor points, core bores, and scavenger wells, has been in effect since November 1983 when the migrating kerosene/TBP was initially discovered. Sample analysis has served to provide data on the radionuclidemore » concentration as the kerosene/TBP migrates through the soil. Recent acquisition of a portable gas chromatograph is expected to yield even more definitive information on migration rates. Removal of organics from the scavenger wells will continue while more permanent control measures are finalized. The current efforts will involve the installation of a support structure, erection of a light-weight reusable weather shelter, excavation and potential removal of the tanks and contents, as well as packaging and/or otherwise stabilizing of the resulting waste. The significance of this project is that it will provide a data base for future work in former radioactive disposal sites. A discussion of the monitoring, sampling, and analysis is provided in conjunction with the stabilization efforts.« less

  6. Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989

    USGS Publications Warehouse

    Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,

    1990-01-01

    The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

  7. Present-day monitoring underestimates the risk of exposure to pathogenic bacteria from cold water storage tanks

    PubMed Central

    2018-01-01

    Water-borne bacteria, found in cold water storage tanks, are causative agents for various human infections and diseases including Legionnaires’ disease. Consequently, regular microbiological monitoring of tank water is undertaken as part of the regulatory framework used to control pathogenic bacteria. A key assumption is that a small volume of water taken from under the ball valve (where there is easy access to the stored water) will be representative of the entire tank. To test the reliability of this measure, domestic water samples taken from different locations of selected tanks in London properties between November 2015 and July 2016 were analysed for TVCs, Pseudomonas and Legionella at an accredited laboratory, according to regulatory requirements. Out of ~6000 tanks surveyed, only 15 were selected based on the ability to take a water sample from the normal sampling hatch (located above the ball valve) and from the far end of the tank (usually requiring disassembly of the tank lid with risk of structural damage), and permission being granted by the site manager to undertake the additional investigation and sampling. Despite seasonal differences in water temperature, we found 100% compliance at the ball valve end. In contrast, 40% of the tanks exceeded the regulatory threshold for temperature at the far end of the tank in the summer months. Consequently, 20% of the tanks surveyed failed to trigger appropriate regulatory action based on microbiological analyses of the water sample taken under the ball valve compared to the far end sample using present-day standards. These data show that typical water samples collected for routine monitoring may often underestimate the microbiological status of the water entering the building, thereby increasing the risk of exposure to water bourne pathogens with potential public health implications. We propose that water storage tanks should be redesigned to allow access to the far end of tanks for routine monitoring purposes

  8. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    NASA Astrophysics Data System (ADS)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  9. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  10. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  11. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  12. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  13. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, Stephanie J.; Sams, Terry L.

    Full text - Long Abstract. A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections performed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor ofmore » the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it

  14. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  15. Animation: What makes up the Space Launch System’s massive core stage

    NASA Image and Video Library

    2017-04-24

    NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.

  16. Compatibility of the Radio Frequency Mass Gauge with Graphite-Epoxy Composite Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, G. A.; Mueller, C. H.

    2015-01-01

    The radio frequency mass gauge (RFMG) is a low-gravity propellant quantity gauge being developed at NASA for possible use in long-duration space missions utilizing cryogenic propellants. As part of the RFMG technology development process, we evaluated the compatibility of the RFMG with a graphite-epoxy composite material used to construct propellant tanks. The key material property that can affect compatibility with the RFMG is the electrical conductivity. Using samples of 8552/IM7 graphite-epoxy composite, we characterized the resistivity and reflectivity over a range of frequencies. An RF impedance analyzer was used to characterize the out-of-plane electrical properties (along the sample thickness) in the frequency range 10 to 1800 MHZ. The resistivity value at 500 MHz was 4.8 ohm-cm. Microwave waveguide measurements of samples in the range 1.7 - 2.6 GHz, performed by inserting the samples into a WR-430 waveguide, showed reflectivity values above 98%. Together, these results suggested that a tank constructed from graphite/epoxy composite would produce good quality electromagnetic tank modes, which is needed for the RFMG. This was verified by room-temperature measurements of the electromagnetic modes of a 2.4 m diameter tank constructed by Boeing from similar graphite-epoxy composite material. The quality factor Q of the tank electromagnetic modes, measured via RF reflection measurements from an antenna mounted in the tank, was typically in the range 400 less than Q less than 3000. The good quality modes observed in the tank indicate that the RFMG is compatible with graphite-epoxy tanks, and thus the RFMG could be used as a low-gravity propellant quantity gauge in such tanks filled with cryogenic propellants.

  17. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    NASA Technical Reports Server (NTRS)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  18. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  19. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  20. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  1. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  2. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  3. Freeze core sampling to validate time-lapse resistivity monitoring of the hyporheic zone.

    PubMed

    Toran, Laura; Hughes, Brian; Nyquist, Jonathan; Ryan, Robert

    2013-01-01

    A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time-lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time-lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health. © 2012, The Author(s). GroundWater © 2012, National Ground Water Association.

  4. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    USGS Publications Warehouse

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  5. Solvent Hold Tank Sample Results for MCU-16-701-702-703: May 2016 Monthly Sample and MCU-16-710-711-712: May 2016 Superwashed Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    The Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-701, MCU-16-702 and MCU-16-703), pulled on 05/23/2016, and another set of SHT samples (MCU-16-710, MCU-16-711, and MCU-16-712) were pulled on 05/28/2016 after the solvent was superwashed with 300 mM sodium hydroxide for analysis. Samples MCU-16-701, MCU-16-702, and MCU-16-703 were combined into one sample (MCU-16-701-702-703) and samples MCU-16-710, MCU- 16-711, and MCU-16-712 were combined into one sample (MCU-16-710-711-712). Of the two composite samples MCU-16-710-711-712 represents the current chemical state of the solvent at MCU. All analytical conclusions are based on the chemical analysis of MCU-16-710-711-712. Theremore » were no chemical differences between MCU-16-701-702-703 and superwashed MCU-16-710-711-712. Analysis of the composited sample MCU-16-710-712-713 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 16% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. The TiDG level has begun to decrease, and it is 7% below its nominal level as of May 28, 2016. Based on this current analysis, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less

  6. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  7. Identification of Methanoculleus spp. as active methanogens during anoxic incubations of swine manure storage tank samples.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L; Topp, Edward; Verastegui, Yris; Brooks, Stephen P J; Matias, Fernando; Neufeld, Josh D; Talbot, Guylaine

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-(13)C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of (13)C into DNA was detectable at in situ acetate concentrations (~7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the (13)C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis.

  8. Identification of Methanoculleus spp. as Active Methanogens during Anoxic Incubations of Swine Manure Storage Tank Samples

    PubMed Central

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L.; Topp, Edward; Verastegui, Yris; Brooks, Stephen P. J.; Matias, Fernando; Neufeld, Josh D.

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-13C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of 13C into DNA was detectable at in situ acetate concentrations (∼7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the 13C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis. PMID:23104405

  9. Analysis of Tank 38H (HTF-38-15-119, 127) Surface, Subsurface and Tank 43H (HTF-43-15-116, 117 and 118) Surface, Feed Pump Suction and Jet Suction Subsurface Supernatant Samples in Support of Enrichment, Corrosion Control and Salt Batch Planning Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less

  10. Diagnostic performance of an indirect enzyme-linked immunosorbent assay (ELISA) to detect bovine leukemia virus antibodies in bulk-tank milk samples.

    PubMed

    Nekouei, Omid; Durocher, Jean; Keefe, Greg

    2016-07-01

    This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs.

  11. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less

  12. Numerical studies on the performance of a flow distributor in tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soo Jai, E-mail: shinsoojai@kaeri.re.kr; Kim, Young In; Ryu, Seungyeob

    2015-03-10

    Flow distributors are generally observed in several nuclear power plants. During core make-up tank (CMT) injection into the reactor, the condensation and thermal stratification are observed in the CMT, and rapid condensation disturbs the injection operation. To reduce the condensation phenomena in the tank, CMT was equipped with a flow distributor. The optimal design of the flow distributor is very important to ensure the structural integrity the CMT and its safe operation during certain transient or accident conditions. In the present study, we numerically investigated the performance of a flow distributor in tank with different shape factors such as themore » total number of holes, pitch-to-hole diameter ratios, diameter of the hole, and the area ratios. These data will contribute to a design of the flow distributor.« less

  13. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples

    PubMed Central

    D’Alfonso, Timothy M.; Ginter, Paula S.; Shin, Sandra J.

    2015-01-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed. PMID:26095437

  14. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples.

    PubMed

    D'Alfonso, Timothy M; Ginter, Paula S; Shin, Sandra J

    2015-07-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed.

  15. A distance-limited sample of massive star-forming cores from the RMS

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Lumsden, S. L.; Moore, T. J. T.; Mottram, J. C.; Urquhart, J. S.; Cicchini, A.

    2015-09-01

    We analyse C18O (J = 3-2) data from a sample of 99 infrared (IR)-bright massive young stellar objects (MYSOs) and compact H II regions that were identified as potential molecular-outflow sources in the Red MSX Source survey. We extract a distance-limited (D < 6 kpc) sample shown to be representative of star formation covering the transition between the source types. At the spatial resolution probed, Larson-like relationships are found for these cores, though the alternative explanation, that Larson's relations arise where surface-density-limited samples are considered, is also consistent with our data. There are no significant differences found between source properties for the MYSOs and H II regions, suggesting that the core properties are established prior to the formation of massive stars, which subsequently have little impact at the later evolutionary stages investigated. There is a strong correlation between dust-continuum and C18O-gas masses, supporting the interpretation that both trace the same material in these IR-bright sources. A clear linear relationship is seen between the independently established core masses and luminosities. The position of MYSOs and compact H II regions in the mass-luminosity plane is consistent with the luminosity expected from the most massive protostar in the cluster when using an ˜40 per cent star formation efficiency and indicates that they are at a similar evolutionary stage, near the end of the accretion phase.

  16. Toxic chemical considerations for tank farm releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs weremore » not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.« less

  17. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in

  18. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  19. Diagnostic performance of an indirect enzyme-linked immunosorbent assay (ELISA) to detect bovine leukemia virus antibodies in bulk-tank milk samples

    PubMed Central

    Nekouei, Omid; Durocher, Jean; Keefe, Greg

    2016-01-01

    This study assessed the diagnostic performance of a commercial ELISA for detecting bovine leukemia virus antibodies in bulk-tank milk samples from eastern Canada. Sensitivity and specificity of the test were estimated at 97.2% and 100%, respectively. The test was recommended as a cost-efficient tool for large-scale screening programs. PMID:27429469

  20. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  1. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  2. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; Cozzi, A. D.; Hill, K. A.

    2016-06-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 usingmore » the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2” diameter x 11” long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass transfer

  3. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federalmore » Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for

  4. Benthic foraminiferal census data from Mobile Bay, Alabama--counts of surface samples and box cores

    USGS Publications Warehouse

    Richwine, Kathryn A.; Osterman, Lisa E.

    2012-01-01

    A study was undertaken in order to understand recent environmental change in Mobile Bay, Alabama. For this study a series of surface sediment and box core samples was collected. The surface benthic foraminiferal data provide the modern baseline conditions of the bay and can be used as a reference for changing paleoenvironmental parameters recorded in the box cores. The 14 sampling locations were chosen in the bay to cover the wide diversity of fluvial and marine-influenced environments on both sides of the shipping channel.

  5. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  6. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  7. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  8. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  9. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    PubMed

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  10. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  11. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  12. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  13. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  14. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  15. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, Nicida L.; Parmeswar, Ravi; Brinkmeyer, Alan D.; Honarpour, Mehdi

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  16. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  17. Development of lunar drill to take core samples to 100-foot depths

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.

  18. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  19. A tubular-coring device for use in biogeochemical sampling of succulent and pulpy plants

    USGS Publications Warehouse

    Campbell, W.L.

    1986-01-01

    A hand-operated, tubular-coring device developed for use in biogeochemical sampling of succulent and pulpy plants is described. The sampler weighs about 500 g (1.1 lb); and if 25 ?? 175 mm (1 ?? 7 in) screw-top test tubes are used as sample containers, the complete sampling equipment kit is easily portable, having both moderate bulk and weight. ?? 1986.

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  1. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  2. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  3. Results of Fall 1994 sampling of gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This Technical Memorandum, was developed under Work Breakdown Structure 1.4.12.6.1.01.41.12.02. 11 (Activity Data Sheet 3301, ``WAG 1``). This document provides the Environmental Restoration Program with analytical results from liquid and sludge samples from the Gunite and Associated Tanks (GAAT). Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation.

  4. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  5. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  6. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  7. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  8. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  9. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and datamore » interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and

  10. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  11. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  12. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  13. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  14. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  15. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  16. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  17. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  18. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  19. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  20. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  1. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  2. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  3. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  4. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  5. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  6. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  7. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  8. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  9. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  10. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  11. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  12. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  13. A New Method of Stress Measurement Based upon Elastic Deformation of Core Sample with Stress Relief by Drilling

    NASA Astrophysics Data System (ADS)

    Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.

    2017-12-01

    When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the

  14. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  15. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  16. Final report for tank 241-AP-108, grab samples 8AP-96-1, 8AP-96-2 and 8AP-96-FB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, R.A.

    1996-04-19

    This document is the final report deliverable for the tank 241-AP-108 grab samples. The samples were subsampled and analyzed in accordance with the TSAP. Included in this report are the results for the Waste Compatibility analyses, with the exception of DSC and thermogravimetric analysis (TGA) results which were presented in the 45 Day report (Part 2 of this document). The raw data for all analyses, with the exception of DSC and TGA, are also included in this report.

  17. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  18. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  19. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  20. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  1. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  2. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. Assessment of microbiological quality of drinking water from household tanks in Bermuda.

    PubMed

    Lévesque, B; Pereg, D; Watkinson, E; Maguire, J S; Bissonnette, L; Gingras, S; Rouja, P; Bergeron, M G; Dewailly, E

    2008-06-01

    Bermuda residents collect rainwater from rooftops to fulfil their freshwater needs. The objective of this study was to assess the microbiological quality of drinking water in household tanks throughout Bermuda. The tanks surveyed were selected randomly from the electoral register. Governmental officers visited the selected household (n = 102) to collect water samples and administer a short questionnaire about the tank characteristics, the residents' habits in terms of water use, and general information on the water collecting system and its maintenance. At the same time, water samples were collected for analysis and total coliforms and Escherichia coli were determined by 2 methods (membrane filtration and culture on chromogenic media, Colilert kit). Results from the 2 methods were highly correlated and showed that approximately 90% of the samples analysed were contaminated with total coliforms in concentrations exceeding 10 CFU/100 mL, and approximately 66% of samples showed contamination with E. coli. Tank cleaning in the year prior to sampling seems to protect against water contamination. If rainwater collection from roofs is the most efficient mean for providing freshwater to Bermudians, it must not be considered a source of high quality drinking water because of the high levels of microbial contamination.

  4. Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia.

    PubMed

    Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  5. Fecal Indicators and Zoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia

    PubMed Central

    Hodgers, L.; Sidhu, J. P. S.; Toze, S.

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  6. CHARACTERIZATION OF TANK 5F VERTICAL COOLING COIL LEACHATES FOR SELECT RADIONUCLIDES 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Diprete, D.

    2001-08-17

    Two twenty-four inch samples of vertical sections of the cooling coils from Tank 5F, taken from Riser 1, were made available to SRNL by SRR for leaching and characterization of the leachates for select radionuclide trapped in the corrosion layer on the exterior of the cooling coils. One piece of cooling coil sample was obtained from a section of a vertical cooling coil located above the 45-inch elevation from the tank floor and the other also from a vertical section of a cooling coil located below the 45-inch elevation from the tank floor of Tank 5F. Analysis results from bothmore » cooling coils show that the predominant radionuclides contributing to the activity in both coils are strontium-90 and cesium-137. The activities for strontium-90 and cesium-137 in the Tank 5F vertical cooling coil located above the 45-inch elevation of the tank and designated as sample 5-R1-A45 averaged 1.34E-02 {+-} 1.12E-03 and 7.27E-04 {+-} 4.46E-05 Ci/ft{sup 2}, respectively, while the activities for the vertical cooling coil located below the 45-inch elevation of the tank and designated as sample 5-R1-B45 averaged 8.93E-03 {+-} 8.25E-04 for Sr-90 and 8.10E-04 {+-} 6.36E-05 Ci/ft{sup 2} for Cs-137. Other significant activity contributing radionuclides are americium-241 and europium-154/155. With the exception of the analysis result for Pu-241 in the 5-R1-A45 cooling coils samples, the target detection limits for the other radionuclides were met in both cooling coil samples. The detection limits for Pu-241 analyses result in coil sample 5-R1-A45 were not met consistently because of possible background changes during counting.« less

  7. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  8. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  9. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, William D.; Hay, Michael S.

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less

  10. Toxicologic evaluation of analytes from Tank 241-C-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team`s objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise,more » including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found.« less

  11. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-07-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  12. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-02-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  13. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia.

    PubMed

    Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G

    2012-03-15

    Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  15. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  16. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  17. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Khalil J.; Rim, Jung Ho; Porterfield, Donivan R.

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace ( 238Pu , 241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am- 241Pu model ages and interpretations.

  18. Precipitation of nitrate-cancrinite in Hanford Tank Sludge.

    PubMed

    Buck, E C; McNamara, B K

    2004-08-15

    The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.

  19. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  20. A laboratory model for solidification of Earth's core

    NASA Astrophysics Data System (ADS)

    Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan

    2005-11-01

    To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the

  1. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  2. High level waste tank closure project: ALARA applications at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Aitken, Steven B; Butler, Richard; Butterworth, Steven W; Quigley, Keith D

    2005-05-01

    Bechtel BWXT Idaho, Maintenance and Operating Contractor for the Department of Energy at the Idaho National Engineering and Environmental Laboratory, has emptied, cleaned, and sampled six of the eleven 1.135 x 10(6) L high level waste underground storage tanks at the Idaho Nuclear Technology and Engineering Center, well ahead of the State of Idaho Consent Order cleaning schedule. Cleaning of a seventh tank is expected to be complete by the end of calendar year 2004. The tanks, with associated vaults, valve boxes, and distribution systems, are being closed to meet Resource Conservation and Recovery Act regulations and Department of Energy orders. The use of remotely operated equipment placed in the tanks through existing tank riser access points, sampling methods and application of as-low-as-reasonably-achievable (ALARA) principles have proven effective in keeping personnel dose low during equipment removal, tank, vault, and valve box cleaning, and sampling activities, currently at 0.03 Sv.

  3. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  4. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  5. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  6. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  7. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  8. Active AirCore Sampling: Constraining Point Sources of Methane and Other Gases with Fixed Wing Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.

    2017-12-01

    Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.

  9. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  10. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  11. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  12. Fluid sampling system

    DOEpatents

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  13. Fluid sampling system

    DOEpatents

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  15. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  16. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  17. 60-day safety screen results and final report for tank 241-C-111, auger samples 95-Aug-002, 95-Aug-003, 95-Aug-016, and 95-Aug-017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, A.D.

    1995-05-30

    This report presents the details of the auger sampling events for underground waste tank C-111. The samples were shipped to the 222-S laboratories were they underwent safety screening analysis and primary ferricyanide analysis. The samples were analyzed for alpha total, total organic carbon, cyanide, Ni, moisture, and temperature differentials. The results of this analysis are presented in this document.

  18. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample wasmore » moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.« less

  19. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  1. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  2. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  3. SUPPLEMENTAL ANALYSES FOR SOLVENT HOLD TANK SAMPLES MCU-11-314, MCU-11-315, MCU-11-316, MCU-11-317, MCU-11-318 AND MCU-11-319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.; Washington, A; . Fondeur, F.

    2011-09-29

    Savannah River National Laboratory (SRNL) periodically analyses solvent samples from Modular Caustic-Side Solvent Extraction Unit (MCU) in support of continuing operations. A quarterly analysis of the solvent is required to maintain solvent composition within specifications. Analytical results of the analyses of Solvent Hold Tank (SHT) samples MCU-11-314, MCU-11-315, MCU-11-316, MCU-11-317, MCU-11-318 and MCU-11-319 have been previously reported. MCU has experienced a modest decline in cesium removal efficiency while processing the current feed, 'Macrobatch 3'. While the target decontamination factor (DF) is 200, the fiscal year 2011 DF average is 161. The results of the prior solvent analysis report did notmore » identify a specific factor that would correlate with the poor cesium decontamination beyond a low concentration of the suppressor, trioctylamine. New analyses of the quarterly sample are reported in this document, as well as a cross-check of {sup 137}Cs measurements for SRNL and F/H lab. Furthermore, in an attempt to discover the reason for the decline in DF at MCU, SRNL was tasked with analyzing numerous Caustic Wash Tank (CWT) and chemical feed samples.« less

  4. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  5. Methanoculleus spp. as a biomarker of methanogenic activity in swine manure storage tanks.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Morissette, Bruno; Topp, Edward; Kalmokoff, Martin; Brooks, Stephen P J; Matias, Fernando; Massé, Daniel I; Masse, Lucie; Talbot, Guylaine

    2012-05-01

    Greenhouse gas emissions represent a major problem associated with manure management in the livestock industry. A prerequisite to mitigate methane emissions occurring during manure storage is a clearer understanding of how the microbial consortia involved in methanogenesis function. Here, we have examined manure stored in outdoor tanks from two different farms, at different locations and depths. Physico-chemical and microbiological characterization of these samples indicated differences between each tank, as well as differences within each tank dependent on the depth of sampling. The dynamics of both the bacterial and archaeal communities within these samples were monitored over a 150-day period of anaerobic incubation to identify and track emerging microorganisms, which may be temporally important in the methanogenesis process. Analyses based on DNA fingerprinting of microbial communities identified trends common among all samples as well as trends specific to certain samples. All archaeal communities became enriched with Methanoculleus spp. over time, indicating that the hydrogenotrophic pathway of methanogenesis predominated. Although the emerging species differed in samples obtained from shallow depths compared to deep samples, the temporal enrichment of Methanoculleus suggests that this genus may represent a relevant indicator of methanogenic activity in swine manure storage tanks. © Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of Agriculture and Agri-food Canada.

  6. New method for stock-tank oil compositional analysis.

    PubMed

    McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut

    2009-01-01

    A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.

  7. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure

  8. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  9. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into amore » 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon

  10. Hanford Tank 241-C-103 Residual Waste Contaminant Release Models and Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.

    2008-01-15

    This report tabulates data generated by laboratory characterization and testing of three samples collected from tank C-103. The data presented here will form the basis for a release model that will be developed for tank C-103. These release models are being developed to support the tank risk assessments performed by CH2M HILL Hanford Group, Inc. for DOE.

  11. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  12. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  13. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  14. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  15. Core belief content examined in a large sample of patients using online cognitive behaviour therapy.

    PubMed

    Millings, Abigail; Carnelley, Katherine B

    2015-11-01

    Computerised cognitive behavioural therapy provides a unique opportunity to collect and analyse data regarding the idiosyncratic content of people's core beliefs about the self, others and the world. 'Beating the Blues' users recorded a core belief derived through the downward arrow technique. Core beliefs from 1813 mental health patients were coded into 10 categories. The most common were global self-evaluation, attachment, and competence. Women were more likely, and men were less likely (than chance), to provide an attachment-related core belief; and men were more likely, and women less likely, to provide a self-competence-related core belief. This may be linked to gender differences in sources of self-esteem. Those who were suffering from anxiety were more likely to provide power- and control-themed core beliefs and less likely to provide attachment core beliefs than chance. Finally, those who had thoughts of suicide in the preceding week reported less competence themed core beliefs and more global self-evaluation (e.g., 'I am useless') core beliefs than chance. Concurrent symptom level was not available. The sample was not nationally representative, and featured programme completers only. Men and women may focus on different core beliefs in the context of CBT. Those suffering anxiety may need a therapeutic focus on power and control. A complete rejection of the self (not just within one domain, such as competence) may be linked to thoughts of suicide. Future research should examine how individual differences and symptom severity influence core beliefs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Cycle 0(CY1991) NLS trade studies and analyses report. Book 1: Structures and core vehicle

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report (SR-1: Structures, Trades, and Analysis), documents the Core Tankage Trades and analyses performed in support of the National Launch System (NLS) Cycle 0 preliminary design activities. The report covers trades that were conducted on the Vehicle Assembly, Fwd Skirt, LO2 Tank, Intertank, LH2 Tank, and Aft Skirt of the NLS Core Tankage. For each trade study, a two page executive summary and the detail trade study are provided. The trade studies contain study results, recommended changes to the Cycle 0 Baselines, and suggested follow on tasks to be performed during Cycle 1.

  17. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  18. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary linermore » to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.« less

  19. Compatibility Grab Sampling and Analysis Plan for FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SASAKI, L.M.

    1999-12-29

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less

  20. Management of intraductal papilloma without atypia of the breast diagnosed on core biopsy: Size and sampling matter.

    PubMed

    Symbol, Brittany; Ricci, Andrew

    2018-04-23

    Due to the potential for atypia (atypical ductal or lobular hyperplasia) or carcinoma (in situ or invasive) on excision, aggressive reflex surgical excision protocols following core biopsy diagnosis of papillary lesions of the breast (ie, intraductal papilloma) are commonplace. Concepts in risk stratification, including radiologic-pathologic correlation, are emerging in an effort to curb unnecessary surgeries. To this end, we examined all excised intraductal papillomas diagnosed at our institution from 2010-2015 (N = 336) and found an overall atypia rate of 20%. To investigate further, we stratified all excised papillomas according to total lesion size (range = 1-40 mm) and found that the atypia rate for lesions ≤1.2 cm (16% with atypia) was statistically significantly lower (P = .008) than the atypia rate for lesions >1.2 cm (36% with atypia). To explore to effects of radiologic-pathologic correlation on the ability of the core biopsy to accurately predict nonatypical lesions we assessed thirteen consecutive paired nonatypical core biopsy/follow-up surgical excision specimens for the percent of the total lesion (on imaging) sampled by the core biopsy (measured histologically). None of the thirteen paired specimens showed upgrade on excision (0/13); the percent of total lesion sampled by biopsy in this cohort averaged 59%. We propose that in the absence of discordant clinical/radiological findings, small lesions (≤1.2 cm) with radiologic-pathologic concordance (>50% sampling of total lesion by core biopsy) may safely forego surgery for close clinical and radiographic follow-up. © 2018 Wiley Periodicals, Inc.

  1. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  2. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    PubMed

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p < 0.001). It is assumed these elevations result from the tendency for fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  3. Analyses of native water, core material, and elutriate samples collected from the Atchafalaya River and Atchafalaya Bay

    USGS Publications Warehouse

    Demas, Charles R.

    1977-01-01

    During October and November 1976 the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected native water and core material from 14 sites along the Atchafalya River in Louisiana (from the head of Whiskey Bay Pilot Channel to American Pass) and 5 sites in Atchafalya Bay for evaluation of possible environmental effects of a proposed channel-enlargement project. Core material from all river sites and one bay site was collected to a depth of 50 feet (15 meters). At the remaining bay sites, samples were collected to a depth of less than 6 inches (15 centimeters) using a pipe dredge. Core material and native water were analyzed (separately and as elutriate samples prepared from mixtures) for selected metals, nutrients, organic compounds, and physical characteristics. No interpretation of the data is given. (Woodard-USGS)

  4. Biosafety and containment plan & design for direct sampling of operating effluent decontamination tanks

    USDA-ARS?s Scientific Manuscript database

    Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...

  5. Evaluation of Hanford Tank Supernatant Availability for Technetium Management Project Studies in FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapko, Brian M.

    2015-09-30

    This report examines the need for actual Hanford tank waste solutions to support tasks in the Technetium Management Program in fiscal year (FY) 2016. One key need is to identify both samples where a majority of the soluble technetium is present as pertechnetate and samples where it is not. The total amount of tank supernatant needed from any given tank waste supernatant was determined by polling the tasks leaders for their technology testing needs in FY16 and then arbitrarily ascribing a 10% process loss associated with consolidation and the Cs-137 removal needed to reduce the dose to a level suitablemore » for testing in radiological fumehoods. These polling results identified a need for approximately 2.1 to 3.6 kg of any particular targeted Hanford tank waste supernatant.« less

  6. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and

  7. Solvent hold tank sample results for MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017): Quarterly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    A trend summary of three Solvent Hold Tank (SHT) monthly samples; MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017) are reported. Analyses indicate that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations are at their nominal recommended levels (169,000 mg/L and 46,300 mg/L respectively). The suppressor (TiDG) level has decreased to a steady state level of 673 mg/L well above the minimum recommended level (479 mg/L). This analysis confirms the Isopar™ addition to the solvent in January 18, 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levelsmore » of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). Another impurity observed in the samples was mercury. Up to 38 ± 8 micrograms of mercury per mL of solvent was detected in these samples (the average of the CV-AA and XRF methods). The higher mercury concentration in the solvent (as determined in the last three monthly samples) is possibly due to the higher mercury concentration in Salt Batches 8 and 9 (Tank 49H) or mixing of previously undisturbed areas of high mercury concentration in Tank 49H. The gamma level (0.21E5 dpm/mL) measured in the February SHT sample was one order of magnitude lower than the gamma levels observed in the December and January SHT samples. The February gamma level is consistent with the solvent being idle (since January 10, 2017). The gamma levels observed in the December and January SHT samples were consistent with previous monthly measurements where the process operated normally. The laboratory will continue to

  8. Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Gilichinsky, D. A.

    1995-01-01

    We studied total organic carbon (TOC), hydrocarbons and fatty acids in a permafrost sediment core sample (well 6-90, length 32.0 m, 1.5-2.5 Ma BP) from northeast Siberia (approximately 70 degrees N, 158 degrees E), Russia, to elucidate their geochemical features in relation to source organisms and paleoenvironmental conditions. Long-chain n-alkanes and n-alkanoic acids (>C19) were most predominant hydrocarbons and fatty acids, respectively, so organic matter in the sediment core was derived mainly from vascular plants and, to a much smaller extent, from bacteria. Low concentrations of unsaturated fatty acids revealed that organic matter in the sediment core was considerably degraded during and/or after sedimentation. The predominance of vascular plant components, the major ionic components of nonmarine sources, and geological data strongly implied that the sediment layers were formed in shallow lacustrine environments, such as swamp with large influences of tundra or forest-tundra vegetation. Also, no drastic changes in paleoenvironmental conditions for biological activity or geological events, such as sea transgressions or ice-sheet influences, occurred at the sampling site approximately 100 km from the coast of the East Siberian Sea during the late Pliocene an early Pleistocene periods.

  9. Sedimentology, stratigraphy and chronology of a decantation tank in the sewer network of Orléans (France).

    NASA Astrophysics Data System (ADS)

    Jacob, Jérémy; Thibault, Alexandre; Simonneau, Anaëlle; Le Milbeau, Claude; DiGiovanni, Christian; Sabatier, Pierre; Reyss, Jean-Louis; Ardito, Luigi; Morio, Cédric

    2017-04-01

    Current debates on the status of the Anthropocene convey geologists and palaeoenvironmentalists toward new spatial and temporal targets. One of the most emblematic socio-ecosystem of the Anthropocene is urban areas in which the dynamics of materials are mainly controlled by human activities. This brings unprecedented elemental, molecular and isotopic concentrations and distributions that lead Norra (2009) to propose a new geological sphere: the Astysphere. Here we propose that sediments accumulated in sewer networks can provide original, integrated, and multi-thematic archives for the recent history of cities by considering urban systems as any catchment where materials are produced, transported and sedimented. The study site is a decantation tank that collects stormwater and wastewater from the north of Orléans city, upstream wastewater plants in Orléans. Sediments accumulated since 1942 over 17 m depth and were never cleaned out until 2015. Two sedimentary cores of 70 (A) and 250 cm long (B) were collected before clean out and then a third of 150 cm (C) after. Sediments are organized into layers constituted by sands and gravels alternating with silts and organic layers. Sharp contacts between those layers indicate evenemential sedimentation, as expected in sewer networks. We formulate the hypothesis that organic/mineral alternations result from a seasonal dynamic. 7Be presence in topmost sample from core A confirms it was deposited within the last 6 months. In core C, only the upper half core, mostly mineral, displays significant 7Be levels whereas 7Be is absent from the lower half, which is mostly organic. This would confirm that our hypothesis of a seasonal alternation, with organic facies deposited during spring- summer and mineral facies deposited during fall-winter. 30 14C dates measured on cores A and B by postbomb method are logically distributed with depth, the most ancient (beginning of the eighties) being recorder at 2.5m depth. This study shows that

  10. Evidence of Avian and Possum Fecal Contamination in Rainwater Tanks as Determined by Microbial Source Tracking Approaches

    PubMed Central

    Hamilton, K. A.; Gyawali, P.; Toze, S.; Haas, C. N.

    2016-01-01

    ABSTRACT Avian and possum fecal droppings may negatively impact roof-harvested rainwater (RHRW) water quality due to the presence of zoonotic pathogens. This study was aimed at evaluating the performance characteristics of a possum feces-associated (PSM) marker by screening 210 fecal and wastewater samples from possums (n = 20) and a range of nonpossum hosts (n = 190) in Southeast Queensland, Australia. The host sensitivity and specificity of the PSM marker were 0.90 and 0.95 (maximum value, 1.00), respectively. The mean concentrations of the GFD marker in possum fecal DNA samples (8.8 × 107 gene copies per g of feces) were two orders of magnitude higher than those in the nonpossum fecal DNA samples (5.0 × 105 gene copies per g of feces). The host sensitivity, specificity, and concentrations of the avian feces-associated GFD marker were reported in our recent study (W. Ahmed, V. J. Harwood, K. Nguyen, S. Young, K. Hamilton, and S. Toze, Water Res 88:613–622, 2016, http://dx.doi.org/10.1016/j.watres.2015.10.050). The utility of the GFD and PSM markers was evaluated by testing a large number of tank water samples (n = 134) from the Brisbane and Currumbin areas. GFD and PSM markers were detected in 39 of 134 (29%) and 11 of 134 (8%) tank water samples, respectively. The GFD marker concentrations in PCR-positive samples ranged from 3.7 × 102 to 8.5 × 105 gene copies per liter, whereas the concentrations of the PSM marker ranged from 2.0 × 103 to 6.8 × 103 gene copies per liter of water. The results of this study suggest the presence of fecal contamination in tank water samples from avian and possum hosts. This study has established an association between the degradation of microbial tank water quality and avian and possum feces. Based on the results, we recommend disinfection of tank water, especially for tanks designated for potable use. IMPORTANCE The use of roof-harvested rainwater (RHRW) for domestic purposes is a globally accepted practice. The presence of

  11. The Benthic Exchange of O2, N2 and Dissolved Nutrients Using Small Core Incubations.

    PubMed

    Owens, Michael S; Cornwell, Jeffrey C

    2016-08-03

    The measurement of sediment-water exchange of gases and solutes in aquatic sediments provides data valuable for understanding the role of sediments in nutrient and gas cycles. After cores with intact sediment-water interfaces are collected, they are submerged in incubation tanks and kept under aerobic conditions at in situ temperatures. To initiate a time course of overlying water chemistry, cores are sealed without bubbles using a top cap with a suspended stirrer. Time courses of 4-7 sample points are used to determine the rate of sediment water exchange. Artificial illumination simulates day-time conditions for shallow photosynthetic sediments, and in conjunction with dark incubations can provide net exchanges on a daily basis. The net measurement of N2 is made possible by sampling a time course of dissolved gas concentrations, with high precision mass spectrometric analysis of N2:Ar ratios providing a means to measure N2 concentrations. We have successfully applied this approach to lakes, reservoirs, estuaries, wetlands and storm water ponds, and with care, this approach provides valuable information on biogeochemical balances in aquatic ecosystems.

  12. The effect of storage temperature and duration on the microbial quality of bulk tank milk.

    PubMed

    O'Connell, A; Ruegg, P L; Jordan, K; O'Brien, B; Gleeson, D

    2016-05-01

    The dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on

  13. Laboratory Investigation of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line

    NASA Astrophysics Data System (ADS)

    Xu, Hongqing; Fyfitch, Steve; Hosier, Ryan; Hyres, James

    A leak was discovered in a Type 316 stainless steel socket weld in the sampling line for the boron injection tank. A section of the pipeline containing the leaking weld was removed for laboratory investigation that included visual and Stereovisual inspections, liquid penetrant (PT) testing, metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and ferrite content determinations. The leak path was a through-wall transgranular crack in the socket weld. Cracking initiated along the weld-metal-to-base-metal interface at the tip of the crevice between the socket and pipe. The crevice was exposed to oxygenated boron solution at <180°F. Shallow intergranular attack (IGA) was found in the exposed base metal inside the crevice. Based on the investigation results, it was concluded that transgranular stress corrosion cracking (TGSCC) is the primary cracking mechanism.

  14. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  15. Free-living ciliates from epiphytic tank bromeliads in Mexico.

    PubMed

    Durán-Ramírez, Carlos Alberto; García-Franco, José Guadalupe; Foissner, Wilhelm; Mayén-Estrada, Rosaura

    2015-02-01

    The ciliate diversity of Mexican bromeliads is poorly known. We studied the ciliate community of two species of epiphytic tank bromeliads from 48 individuals of Tillandsia heterophylla and four of T. prodigiosa. The bromeliads occurred on over 22 tree host species. Samples were collected during 2009 and 2010 in a mountain cloud forest and in two coffee plantations and in a pine-oak forest. The ciliates were identified in live and protargol preparations. We recorded 61 ciliate species distributed in 39 genera grouped in eight classes. Ten species were frequent in the 52 samples (20 ± 3.2) and Leptopharynx bromeliophilus was the most frequent recorded in 25 samples. Thirty-three species are new for the fauna of Mexico, 24 species have been recorded for the first time in tank bromeliads. The classes Spirotrichea, Oligohymenophorea and Colpodea presented the highest number of species, 16, 14, and 12, respectively. Colpoda was the most species-rich genus being present with six species. A low similarity between areas and seasons was obtained with Jaccard's index. We conclude that the two bromeliads species host a rich ciliate diversity whose knowledge contributes to the question of ciliate distribution and specifically, in tank bromeliads. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  17. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  18. Characterization of DWPF recycle condensate tank materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-01-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to undertand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF themore » Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here. The composition of the Sludge Batch 8 (SB8) RCT material is largely a low base solution of 0.2M NaNO 2 and 0.1M NaNO 3 with a small amount of formate present. Insoluble solids comprise only 0.05 wt.% of the slurry. The solids appear to be largely sludge-like solids based on elemental composition and SEM-EDS analysis. The sample contains an elevated concentration of I-129 (38x) and substantial 59% fraction of Tc-99, as compared to the incoming SB8 Tank 40 feed material. The Hg concentration is 5x, when compared to Fe, of that expected based on sludge carryover. The total U and Pu concentrations are reduced significantly, 0.536 wt.% TS and 2.42E-03 wt.% TS, respectively, with the fissile components, U-233, U-235, Pu-239, and Pu-241, an order of magnitude lower in concentration than those in the SB8 Tank 40 DWPF feed material. This report will be revised to include the foaming study requested in the TTR and outlined in the TTQAP when that work is concluded.« less

  19. Investigation of Tank 241-AW-104 Composite Floating Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meznarich, H. K.; Bolling, S. D.; Lachut, J. S.

    Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lowermore » than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.« less

  20. Tank 40 Final SB7b Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2012-11-06

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thoroughmore » mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233

  1. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  4. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  5. Occurrence of mycobacteria in bovine milk samples from both individual and collective bulk tanks at farms and informal markets in the southeast region of Sao Paulo, Brazil

    PubMed Central

    2013-01-01

    Background Mycobacterium spp. is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk and related dairy products. To address this concern, the Brazilian control and eradication program focusing on bovine tuberculosis, was established in 2001. However, bovine tuberculosis continues to afflict approximately 1,3 percent of the cattle in Brazil. In the present study, 300 samples of milk from bovine herds, obtained from both individual and collective bulk tanks and informal points of sale, were cultured on Löwenstein-Jensen and Stonebrink media. Polymerase chain reaction (PCR)-based tests and restriction-enzyme pattern analysis were then performed on the colonies exhibiting phenotypes suggestive of Mycobacterium spp., which were characterized as acid-fast bacilli. Results Of the 300 bovine milk samples that were processed, 24 were positively identified as Mycobacterium spp. Molecular identification detected 15 unique mycobacterial species: Mycobacterium bovis, M. gordonae, M. fortuitum, M. intracellulare, M. flavescens, M. duvalii, M. haemophilum, M. immunogenum, M. lentiflavum, M. mucogenicum, M. novocastrense, M. parafortuitum, M. smegmatis, M. terrae and M. vaccae. The isolation of bacteria from the various locations occurred in the following proportions: 9 percent of the individual bulk-tank samples, 7 percent of the collective bulk-tank samples and 8 percent of the informal-trade samples. No statistically significant difference was observed between the presence of Mycobacterium spp. in the three types of samples collected, the milk production profiles, the presence of veterinary assistance and the reported concerns about bovine tuberculosis prevention in the herds. Conclusion The microbiological cultures associated with PCR-based identification tests are

  6. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  7. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  8. Characterization of Non-pertechnetate Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Andersen, Amity; Du, Yingge

    Among radioactive constituents present in the tank waste stored at the U.S. DOE Hanford Site, technetium-99 (Tc), which is generated from the fission of 235U and 239Pu in high yields, presents a unique challenge in that it has a long half-life ( = 292 keV; T1/2 = 2.11105 y) and exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the waste. In the strongly alkaline environments prevalent in most of the tank waste, its dominant chemical form is pertechnetate (TcO 4 -, oxidation state +7). However, attempts to remove Tc from the Hanford tank wastemore » using ion-exchange processes specific to TcO 4 - only met with limited success, particularly when processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [fac-Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last three years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [fac-Tc(CO) 3] + species (Rapko et al. 2013a; 2013b; Levitskaia et al. 2014; Chatterjee et al. 2015). Obtained results also suggest possible stabilization of Tc(VI) and potentially Tc(IV) oxidation states in the high-ionic-strength alkaline matrices particularly in the presence of organic chelators, so that Tc(IV, VI) can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-pertechnetate species and their

  9. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  10. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  11. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  12. Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling

    NASA Astrophysics Data System (ADS)

    Reyer, D.; Philipp, S. L.

    2014-09-01

    Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.

  13. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  15. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  16. Fate of effluent-borne contaminants beneath septic tank drainfields overlying a Karst aquifer.

    PubMed

    Katz, Brian G; Griffin, Dale W; McMahon, Peter B; Harden, Harmon S; Wade, Edgar; Hicks, Richard W; Chanton, Jeffrey P

    2010-01-01

    Groundwater quality effects from septic tanks were investigated in the Woodville Karst Plain, an area that contains numerous sinkholes and a thin veneer of sands and clays overlying the Upper Floridan aquifer (UFA). Concerns have emerged about elevated nitrate concentrations in the UFA, which is the source of water supply in this area of northern Florida. At three sites during dry and wet periods in 2007-2008, water samples were collected from the septic tank, shallow and deep lysimeters, and drainfield and background wells in the UFA and analyzed for multiple chemical indicators including nutrients, nitrate isotopes, organic wastewater compounds (OWCs), pharmaceutical compounds, and microbiological indicators (bacteria and viruses). Median NO3-N concentration in groundwater beneath the septic tank drainfields was 20 mg L(-1) (8.0-26 mg L(-1)). After adjusting for dilution, about 25 to 40% N loss (from denitrification, ammonium sorption, and ammonia volatilization) occurs as septic tank effluent moves through the unsaturated zone to the water table. Nitrogen loading rates to groundwater were highly variable at each site (3.9-12 kg N yr(-1)), as were N and chloride depth profiles in the unsaturated zone. Most OWCs and pharmaceutical compounds were highly attenuated beneath the drainfields; however, five Cs (caffeine, 1,7-dimethylxanthine, phenol, galaxolide, and tris(dichloroisotopropyl)phosphate) and two pharmaceutical compounds (acetaminophen and sulfamethoxazole) were detected in groundwater samples. Indicator bacteria and human enteric viruses were detected in septic tank effluent samples but only intermittently in soil water and groundwater. Contaminant movement to groundwater beneath each septic tank system also was related to water use and differences in lithology at each site.

  17. Analyses of water, core material, and elutriate samples collected near Buras, Louisiana (New Orleans to Venice, Louisiana, Hurricane Protection Project)

    USGS Publications Warehouse

    Leone, Harold A.

    1977-01-01

    Eight core-material-sampling sites were chosen by the U.S. Army Corps of Engineers as possible borrow areas for fill material to be used in levee contruction near Buras, La. Eleven receiving-water sites also were selected to represent the water that will contact the porposed levees. Analyses of selected nutrients, metals, pesticides, and other organic constitutents were performed upon these bed-material and native-water samples as well as upon elutriate samples of specific core material-receiving water systems. The results of these analyses are presented without interpretation. (Woodard-USGS)

  18. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  19. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  20. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  1. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  2. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  3. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  4. In-Tank Elutriation Test Report And Independent Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.

    2011-04-13

    The Department of Energy (DOE) Office of Environmental Management (EM) funded Technology Development and Deployment (TDD) to solve technical problems associated with waste tank closure for sites such as Hanford Site and Savannah River Site (SRS). One of the tasks supported by this funding at Savannah River National Laboratory (SRNL) and Pacific Northwest Laboratory (PNNL) was In-Tank Elutriation. Elutriation is the process whereby physical separation occurs based on particle size and density. This report satisfies the first phase of Task WP_1.3.1.1 In-Tank Elutriation, which is to assess the feasibility of this method of separation in waste tanks at Hanford Sitemore » and SRS. This report includes an analysis of scoping tests performed in the Engineering Development Laboratory of SRNL, analysis of Hanford's inadvertent elutriation, the viability of separation methods such as elutriation and hydrocyclones and recommendations for a path forward. This report will demonstrate that the retrieval of Hanford salt waste tank S-112 very successfully decreased the tank's inventories of radionuclides. Analyses of samples collected from the tank showed that concentrations of the major radionuclides Cs-136 and Sr-90 were decreased by factors of 250 and 6 and their total curie tank inventories decreased by factors of 60,000 and 2000. The total tank curie loading decreased from 300,000 Ci to 55 Ci. The remaining heel was nearly all innocuous gibbsite, Al(OH){sub 3}. However, in the process of tank retrieval approximately 85% of the tank gibbsite was also removed. Significant amounts of money and processing time could be saved if more gibbsite could be left in tanks while still removing nearly all of the radionuclides. There were factors which helped to make the elutriation of Tank S-112 successful which would not necessarily be present in all salt tanks. 1. The gibbsite particles in the tank were surprisingly large, as much as 200 {micro}m. The gibbsite crystals had probably

  5. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  6. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  7. 49 CFR 179.201-8 - Sampling device and thermometer well.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-8 Sampling...

  8. 49 CFR 179.201-8 - Sampling device and thermometer well.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-8 Sampling...

  9. 49 CFR 179.201-8 - Sampling device and thermometer well.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-8 Sampling...

  10. Spectroscopic Properties of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Andersen, Amity; Chatterjee, Sayandev

    2015-12-04

    Technetium-99 (Tc) exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO4-, oxidation state +7). However, attempts to remove Tc from the Hanford tank waste using ion-exchange processes specific to TcO 4 - only met with limited success, particularly processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as non-pertechnetate low-valent Tc (oxidation statemore » < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last two years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [Tc(CO) 3] + species (Rapko et al. 2013; Levitskaia et al. 2014). It also was observed that high-ionic-strength alkaline matrices stabilize Tc(VI) and potentially Tc(IV) oxidation states, particularly in presence organic chelators, suggesting that the relevant Tc compounds can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc processing, including separation and immobilization, necessitates understanding the molecular structure of these non-pertechnetate species and their identification in the actual tank waste samples. To-date, only limited information exists regarding the nature and characterization of the Tc(I), Tc(IV), and Tc(VI) species. One objective of this project is to identify the form of non-pertechnetate in the

  11. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  12. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  13. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  14. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  15. TANK 40 FINAL SB7B CHEMICAL CHARACTERIZATION RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.

    2012-03-15

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB7b. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred frommore » the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC

  16. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  17. Assessing the microbiomes of scalder and chiller tank waters throughout a typical commercial poultry processing day.

    PubMed

    Rothrock, M J; Locatelli, A; Glenn, T C; Thomas, J C; Caudill, A C; Kiepper, B H; Hiett, K L

    2016-10-01

    The commercial poultry processing environment plays a significant role in reducing foodborne pathogens and spoilage organisms from poultry products prior to being supplied to consumers. While understanding the microbiological quality of these products is essential, little is known about the microbiota of processing water tanks within the processing plant. Therefore, the goal of this study was to assess the microbiomes of the scalder and chiller tanks during a typical commercial processing d, and determine how bacterial populations, including foodborne pathogens and spoilage organisms, change during the processing day in relation to the bacterial communities as a whole. Additionally, considering this is the first microbiomic analysis of processing tank waters, 2 water sampling methods also were compared. Results of this study show that Proteobacteria and Firmicutes represented over half of the sequences recovered from both tanks at the phylum level, but the microbiomic profiles needed to be analyzed at the genus level to observe more dynamic population shifts. Bacteria known to predominate in the live production environment were found to increase in the scalder tank and gram negative spoilage-related bacteria were found to decrease in the chiller tank throughout the processing day. Directly sampling the scalder water, as compared to analyzing filtered samples, resulted in significantly different microbiomic profiles dominated by Anoxybacillus species. While no sequences related to major foodborne pathogens were found, further sampling collection and processing optimization should provide researchers and the poultry industry a new tool to understand the ecological role of spoilage and pathogenic bacteria within processing tank waters. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. A search at the millijansky level for milli-arcsecond cores in a complete sample of radio galaxies

    NASA Technical Reports Server (NTRS)

    Wehrle, A. E.; Preston, R. A.; Meier, D. L.; Gorenstein, M. V.; Shapiro, I. I.; Rogers, A. E. E.; Rius, A.

    1984-01-01

    A complete sample of 26 extended radio galaxies was observed at 2.29 GHz with the Mark III VLBI system. The fringe spacing was about 3 milli-arcsec, and the detection limit was about 2 millijanskys. Half of the galaxies were found to possess milli-arcsec radio cores. In all but three sources, the nuclear flux density was less than 0.04 of the total flux density. Galaxies with high optical luminosity (less than -21.2) were more likely than less luminous galaxies to contain a detectable milliparcsec radio core (69 percent vs. 20 percent). For objects with arcsec cores, 80 percent were found to have a milli-arcsec core, even though the milli-arcsec object did not always contribute the greater part of the arcsec flux density.

  19. Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project

    NASA Astrophysics Data System (ADS)

    Hirono, Tetsuro; Yeh, En-Chao; Lin, Weiren; Sone, Hiroki; Mishima, Toshiaki; Soh, Wonn; Hashimoto, Yoshitaka; Matsubayashi, Osamu; Aoike, Kan; Ito, Hisao; Kinoshita, Masataka; Murayama, Masafumi; Song, Sheng-Rong; Ma, Kuo-Fong; Hung, Jih-Hao; Wang, Chien-Ying; Tsai, Yi-Ben; Kondo, Tomomi; Nishimura, Masahiro; Moriya, Soichi; Tanaka, Tomoyuki; Fujiki, Toru; Maeda, Lena; Muraki, Hiroaki; Kuramoto, Toshikatsu; Sugiyama, Kazuhiro; Sugawara, Toshikatsu

    2007-07-01

    The Taiwan Chelungpu-Fault Drilling Project was undertaken in 2002 to investigate the faulting mechanism of the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. Hole B penetrated the Chelungpu fault, and core samples were recovered from between 948.42- and 1352.60-m depth. Three major zones, designated FZB1136 (fault zone at 1136-m depth in hole B), FZB1194, and FZB1243, were recognized in the core samples as active fault zones within the Chelungpu fault. Nondestructive continuous physical property measurements, conducted on all core samples, revealed that the three major fault zones were characterized by low gamma ray attenuation (GRA) densities and high magnetic susceptibilities. Extensive fracturing and cracks within the fault zones and/or loss of atoms with high atomic number, but not a measurement artifact, might have caused the low GRA densities, whereas the high magnetic susceptibility values might have resulted from the formation of magnetic minerals from paramagnetic minerals by frictional heating. Minor fault zones were characterized by low GRA densities and no change in magnetic susceptibility, and the latter may indicate that these minor zones experienced relatively low frictional heating. Magnetic susceptibility in a fault zone may be key to the determination that frictional heating occurred during an earthquake on the fault.

  20. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  1. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  3. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  4. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  5. Multiplatform sampling (ship, aircraft, and satellite) of a Gulf Stream warm core ring

    NASA Technical Reports Server (NTRS)

    Smith, Raymond C.; Brown, Otis B.; Hoge, Frank E.; Baker, Karen S.; Evans, Robert H.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to meet the need to measure distributions of physical and biological properties of the ocean over large areas synoptically and over long time periods by means of remote sensing utilizing contemporaneous buoy, ship, aircraft, and satellite (i.e., multiplatform) sampling strategies. A mapping of sea surface temperature and chlorophyll fields in a Gulf Stream warm core ring using the multiplatform approach is described. Sampling capabilities of each sensing system are discussed as background for the data collected by means of these three dissimilar methods. Commensurate space/time sample sets from each sensing system are compared, and their relative accuracies in space and time are determined. The three-dimensional composite maps derived from the data set provide a synoptic perspective unobtainable from single platforms alone.

  6. Video of SLS Liquid Hydrogen Tank Qualification Structural Test Article Being Moved to Cell E at NASA’s Michoud Assembly Facility

    NASA Image and Video Library

    2017-06-29

    This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.

  7. Bushfires and tank rainwater quality: a cause for concern?

    PubMed

    Spinks, Jean; Phillips, Suzanne; Robinson, Priscilla; Van Buynder, Paul

    2006-03-01

    In early 2003, after a prolonged drought period, extensive bushfires occurred in the east of Victoria affecting 1.5 million hectares of land. At the time, smoke and ash from bushfires, settling on roofs, contained pollutants that could potentially contaminate rainwater collected and stored in tanks for domestic use. The major concerns include polycyclic aromatic hydrocarbons (PAHs) from incomplete combustion of organic matter and arsenic from burnt copper chrome arsenate (CCA) treated wood. An increase in microbial contamination through altered nutrient levels was also hypothesised. A pilot study of 49 rainwater tank owners was undertaken in north-east Victoria. A rainwater tank sample was taken and analysed for a variety of parameters including organic compounds, microbiological indicators, metals, nutrients and physico-chemical parameters. A survey was administered concurrently. A number of results were outside the Australian Drinking Water Guideline (ADWG) values for metals and microbiological indicator organisms, but not for any tested organic compounds. PAHs and arsenic are unlikely to be elevated in rainwater tanks as a result of bushfires, but cadmium may be of concern.

  8. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the

  10. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber... the service temperatures. (b) Before a tank car tank is lined with rubber, or other rubber compound, a... suitable for the service temperatures. (f) Polyvinyl chloride lined tanks. Tank car tanks or each...

  11. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  12. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  13. Characterization engineering status report october 1998 - december 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOGER, R.M.

    1999-05-13

    Characterization Engineering (CE) continues to make progress in support of the project goal of characterizing the Hanford high-level waste tanks. Two core sampling systems were operational during this reporting period-push mode core sampling system No. 1 and rotary mode core sampling system No. 4. The availability average for core sampling systems No. 1 , No. 3 and No. 4, combined, was 45 percent, down from 79percent for the previous quarter and 58 percent for FY 1998. System No. 2 did not have scope during the quarter, and availability was not hacked. System No. 3 was out of service the entiremore » quarter for corrective maintenance. Two tanks were core sampled during the reporting period, and 24 samples were retrieved. Core sample recovery increased slightly during the quarter. System No. 1 average sample recovery increased from 80percent to 81 percent, The rotary mode core sampling average recovery increased to 62 percent from 55 percent for the previous quarter. sampling six tanks, one more than scheduled. Vapor Sampling was utilized in support of the sluicing of tank 241-C-106 and for emissions monitoring of three exhaust stacks. Increased support was provided for Vapor Sampling the Standard Hydrogen Monitoring Systems. The sampling was necessary due to freezing problems with the field-installed systems. Preparations are continuing for the Light-Duty Utility Arm (LDUA) deployment with configuration and minor hardware upgrades. The LDUA Operational Readiness Review continues. The oversight of the Nested, Fixed-Depth Sampler system development has started to increase in order to ensure that a usable system is received when the project is completed. To improve configuration control, 92 drawing sheet revisions were completed along with the generation of nine new drawing sheets. The number of outstanding Engineering Change Notices increased slightly because of the addition of more drawings into the project. continues to develop. Organizational responsibilities

  14. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  15. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes

  16. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  17. Pollution characteristics and ecological risk of heavy metals in ballast tank sediment.

    PubMed

    Feng, Daolun; Chen, Xiaofei; Tian, Wen; Qian, Qun; Shen, Hao; Liao, Dexiang; Lv, Baoyi

    2017-02-01

    This study was conducted to illustrate the contents and potential ecological risk of heavy metals in ballast tank sediment. Ballast sediment samples were collected from six ships during their stay in shipyard, and the heavy metals were determined by inductive coupled plasma emission spectrometer. Results showed that high concentrations of heavy metals were detected in all six sediment samples following the order: Zn > Cu > Pb > Cr > As > Cd > Hg. The geoaccumulation index explained the average pollution degree of heavy metals decreased as the following: Zn > Pb > Cu > As > Cr > Hg, and the environmental risk indices suggested that concentration found of Zn, Pb, and Cu might be highly toxic to aquatic organisms. Principal component and correlation analysis indicated the metal pollution in ballast tank sediment was affected by complex and different contamination mechanisms, and the corrosion of ballast tank played an important role in this process. In conclusion, this study is very useful for comprehensive consideration and efficient management of ballast tank sediment in order to protect the marine environment.

  18. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  20. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  1. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysismore » of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA

  2. Petroleum storage tank cleaning using commercial microbial culture products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during themore » treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.« less

  3. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  4. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  5. Geochemical data for core and bottom-sediment samples collected in 2007 from Grand Lake O' the Cherokees, northeast Oklahoma

    USGS Publications Warehouse

    Fey, David L.; Becker, Mark F.; Smith, Kathleen S.

    2010-01-01

    Grand Lake O' the Cherokees is a large reservoir in northeast Oklahoma, below the confluence of the Neosho and Spring Rivers, both of which drain the Tri-State Mining District to the north. The Tri-State district covers an area of 1,200 mi2 (3,100 km2) and comprises Mississippi Valley-type lead-zinc deposits. A result of 120 years of mining activity is an estimated 75 million tons of processed mine tailings (chat) remaining in the district. Concerns of sediment quality and the possibility of human exposure to cadmium and lead through eating fish have led to several studies of the sediments in the Tri-State district. In order to record the transport and deposition of metals from the Tri-State district by the Spring and Neosho Rivers into Grand Lake O' the Cherokees, the U.S. Geological Survey collected 11 sediment cores and 15 bottom-sediment samples in September 2007. Subsamples from five selected cores and the bottom-sediment samples were analyzed for major and trace elements and forms of carbon. The sediment samples collected from the sediment-water interface had larger average concentrations of zinc, cadmium, and lead than local background. The core collected from the Spring River had the largest concentrations of mining-related elements. A core collected just south of Twin Bridges State Park, at the confluence of the Spring and Neosho Rivers, showed a mixing zone with more mining-related elements coming from the Spring River side. The element zinc showed the most definitive patterns in graphs depicting concentration-versus-depth profiles. A core collected from the main body of the reservoir showed affected sediment down to a depth of 85 cm (33 in). This core and two others appear to have penetrated to below mining-affected sediment.

  6. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  7. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  8. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  9. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  10. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  11. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  12. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  13. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  14. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  15. VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK TOP ON LEFT, LOOKING NORTHEAST. CRANE AND VERTICAL HOISTING ELEMENTS AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    USGS Publications Warehouse

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  17. 11. Station Accumulator Tanks, view to the northeast. The tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Station Accumulator Tanks, view to the northeast. The tanks are visible along the right side of photograph, opposite a wall of the Unit 1 turbine pit. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  18. Heated Aluminum Tanks Resist Corrosion

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  19. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  20. Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.

    PubMed

    Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan

    2012-04-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.

  1. Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill; Taggart, Joseph E.

    2010-01-01

    This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.

  2. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solutionmore » currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.« less

  3. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  4. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  5. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest

  6. Abandoned underground storage tank location using fluxgate magnetic surveying: A case study

    USGS Publications Warehouse

    Van Biersel, T. P.; Bristoll, B.C.; Taylor, R.W.; Rose, J.

    2002-01-01

    In 1993, during the removal of a diesel and a gasoline underground storage tank at the municipal garage of the Village of Kohler, Sheboygan County, Wisconsin, soil testing revealed environmental contamination at the site. A site investigation revealed the possibility of a second on-site source of petroleum contamination. Limited historical data and the present usage of structures within the suspected source area precluded the use of most invasive sampling methods and most geophysical techniques. A fluxgate magnetometer survey, followed by confirmatory excavation, was conducted at the site. The fluxgate magnetometer survey identified nine possible magnetic anomalies within the 18 ?? 25 m area. The subsequent excavation near the anomalies revealed the presence of five paired and two individual 2000 L underground storage tanks. The fluxgate magnetometer survey, although affected by the proximity of buildings, was able to detect the buried tanks within 3 m of the brick structures, using a 1.5 ?? 1.5 m sampling array.

  7. Haptoglobin and serum amyloid A in bulk tank milk in relation to raw milk quality.

    PubMed

    Akerstedt, Maria; Waller, Karin Persson; Sternesjö, Ase

    2009-11-01

    The aim of the present study was to evaluate relationships between the presence of the two major bovine acute phase proteins haptoglobin (Hp) and serum amyloid A (SAA) and raw milk quality parameters in bulk tank milk samples. Hp and SAA have been suggested as specific markers of mastitis but recently also as markers for raw milk quality. Since mastitis has detrimental effects on milk quality, it is important to investigate whether the presence of Hp or SAA indicates such changes in the composition and properties of the milk. Bulk tank milk samples (n=91) were analysed for Hp, SAA, total protein, casein, whey protein, proteolysis, fat, lactose, somatic cell count and coagulating properties. Samples with detectable levels of Hp had lower casein content, casein number and lactose content, but higher proteolysis than samples without Hp. Samples with detectable levels of SAA had lower casein number and lactose content, but higher whey protein content than samples without SAA. The presence of acute phase proteins in bulk tank milk is suggested as an indicator for unfavourable changes in the milk composition, e.g. protein quality, due to udder health disturbances, with economical implications for the dairy industry.

  8. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  9. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  10. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.100-8 Section 179.100-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  11. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  12. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  13. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  14. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank...

  15. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  16. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  17. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  18. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  19. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOEpatents

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  20. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  1. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  2. Core Hunter 3: flexible core subset selection.

    PubMed

    De Beukelaer, Herman; Davenport, Guy F; Fack, Veerle

    2018-05-31

    Core collections provide genebank curators and plant breeders a way to reduce size of their collections and populations, while minimizing impact on genetic diversity and allele frequency. Many methods have been proposed to generate core collections, often using distance metrics to quantify the similarity of two accessions, based on genetic marker data or phenotypic traits. Core Hunter is a multi-purpose core subset selection tool that uses local search algorithms to generate subsets relying on one or more metrics, including several distance metrics and allelic richness. In version 3 of Core Hunter (CH3) we have incorporated two new, improved methods for summarizing distances to quantify diversity or representativeness of the core collection. A comparison of CH3 and Core Hunter 2 (CH2) showed that these new metrics can be effectively optimized with less complex algorithms, as compared to those used in CH2. CH3 is more effective at maximizing the improved diversity metric than CH2, still ensures a high average and minimum distance, and is faster for large datasets. Using CH3, a simple stochastic hill-climber is able to find highly diverse core collections, and the more advanced parallel tempering algorithm further increases the quality of the core and further reduces variability across independent samples. We also evaluate the ability of CH3 to simultaneously maximize diversity, and either representativeness or allelic richness, and compare the results with those of the GDOpt and SimEli methods. CH3 can sample equally representative cores as GDOpt, which was specifically designed for this purpose, and is able to construct cores that are simultaneously more diverse, and either are more representative or have higher allelic richness, than those obtained by SimEli. In version 3, Core Hunter has been updated to include two new core subset selection metrics that construct cores for representativeness or diversity, with improved performance. It combines and outperforms the

  3. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  4. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  5. B11-: a moving subnanoscale tank tread

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Jin; Zhao, Xiao-Yun; Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian

    2015-09-01

    We present a concept that an elongated, planar boron cluster can serve as a ``tank tread'' at the sub-nanometer scale, a novel propulsion system for potential nanomachines. Density functional calculations at the PBE0/6-311+G* level for the global-minimum B11-C2v (1A1) and B11C2v (2B2) structures along the soft in-plane rotational mode allow the identification of their corresponding B11-C2v and B11C2v transition states, with small rotational energy barriers of 0.42 and 0.55 kcal mol-1, respectively. The energy barriers are refined to 0.35 and 0.60 kcal mol-1 at the single-point CCSD(T) level, suggesting that the clusters are structurally fluxional at room temperature. Molecular dynamics simulations show that B11- and B11 behave exactly like a tank tread, in which the peripheral B9 ring rotates almost freely around the B2 core. A full turn of rotation may be accomplished in around 2 ps. In contrast to molecular wheels or Wankel motors, the peripheral boron atoms in the tank tread behave as a flexible chain gliding around, rather than as a rigid wheel rotation. This finding is beyond imagination, which expands the concepts of molecular wheels and Wankel motors.We present a concept that an elongated, planar boron cluster can serve as a ``tank tread'' at the sub-nanometer scale, a novel propulsion system for potential nanomachines. Density functional calculations at the PBE0/6-311+G* level for the global-minimum B11-C2v (1A1) and B11C2v (2B2) structures along the soft in-plane rotational mode allow the identification of their corresponding B11-C2v and B11C2v transition states, with small rotational energy barriers of 0.42 and 0.55 kcal mol-1, respectively. The energy barriers are refined to 0.35 and 0.60 kcal mol-1 at the single-point CCSD(T) level, suggesting that the clusters are structurally fluxional at room temperature. Molecular dynamics simulations show that B11- and B11 behave exactly like a tank tread, in which the peripheral B9 ring rotates almost freely

  6. Effects of septic-tank effluent on ground-water quality in northern Williamson County and southern Davidson County, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1991-01-01

    An investigation of the potential contamination of ground water from septic tank systems blasted in bedrock in Williamson and Davidson Counties, Tennessee, was conducted during 1988-89. Water samples were collected from domestic and observation wells, springs, and surface-water sites in a residential subdivision in the northern part of Williamson County near Nashville. The subdivision has a high density of septic-tank field lines installed into blasted bedrock Water samples also were collected from a well located in an area of Davidson County where field lines were installed in 5 feet of soil. Samples were analyzed for major inorganic constituents, nutrients, total organic carbon, optical brighteners, and bacteria. Although results of analyses of water samples from wells indicate no effect of septic-tank effluent on ground-water quality at these sites, water from two springs located downgradient from the subdivision had slightly larger concentrations of nitrite plus nitrate (2.2 and 2.7 milligrams per liter N), and much larger concentrations of fecal coliform and fecal streptococci bacteria (2,000 to 3,200 and 700 to 900 colonies per 100 milliliters of sample, respectively), than other wells and springs sampled during 1988. Water from one of these springs contained optical brighteners, which indicates that septic-tank effluent is affecting ground-water quality.

  7. Chlorine-36 and cesium-137 in ice-core samples from mid-latitude glacial sites in the Northern Hemisphere

    USGS Publications Warehouse

    Green, J.R.; Cecil, L.D.; Synal, H.-A.; Kreutz, K.J.; Wake, C.P.; Naftz, D.L.; Frape, S.K.

    2000-01-01

    Chlorine-36 (36Cl) concentrations, 36Cl/Cl ratios, and 36Cl fluxes in ice-core samples collected from the Upper Fremont Glacier (UFG) in the Wind River Mountain Range, Wyoming, United States and the Nangpai Gosum Glacier (NGG) in the Himalayan Mountains, Nepal, were determined and compared with published results from the Dye-3 ice-core drilling site on the Greenland Ice Sheet. Cesium-137 (137Cs) concentrations in the NGG also were determined. The background fluxes for 36Cl for each glacial site were similar: (1.6??0.3)??10-2 atoms/cm2 s for the UFG samples, (0.7??0.1)??10-2 atoms/cm2 s for the NGG samples, and (0.4??0.1)??10-2 atoms/cm2 s for the Dye-3 samples. The 36Cl fluxes in ice that was deposited as snow during peak atmospheric nuclear weapon test (1957-1958) were (33??1)??10-2 atoms/cm2 s for the UFG site, (291??3)??10-2 atoms/cm2 s for the NGG site, and (124??5)??10-2 atoms/ cm2 s for the Dye-3 site. A weapon test period 137Cs concentration of 0.79??0.05 Bq/kg in the NGG ice core also was detected in the same section of ice that contained the largest 36Cl concentration. ?? 2000 Elsevier Science B.V. All rights reserved.

  8. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  9. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density

  10. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.; King, W.; Hay, M.

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less

  11. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  12. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  13. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  14. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  15. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  16. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  17. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  18. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  19. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  20. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...