Sample records for tank dst transfer

  1. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PACQUET, E.A.

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineeringmore » case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.« less

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY TC; ABBOTT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  3. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  4. Double shell tanks (DST) chemistry control data quality objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-10-09

    One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less

  5. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  6. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome ofmore » this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.« less

  7. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Themore » overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  8. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TURNER DA; KIRCH NW; WASHENFELDER DJ

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  9. ESP`s Tank 42 washwater transfer to the 241-F/H tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.; Lee, E.D.

    1997-12-01

    As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washingmore » steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.« less

  10. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  11. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the firstmore » three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.« less

  12. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances ofmore » the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.« less

  13. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  14. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  15. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  16. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  17. Hanford Double-Shell Tank Inspection Annual Report Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petermann, Tasha M.; Boomer, Kayle D.; Washenfelder, D. J.

    2013-12-02

    The double-shell tanks (DSTs) were constructed between 1968 and 1986. They will have exceeded their design life before the waste can be removed and trasferred to the Waste Treatment and Immobilization Plant for vitrification. The Double-Shell Tank Integrity Project has been established to evaluate tank aging, and ensure that each tank is structurally sound for continued use. This is the first issue of the Double-Shell Tank Inspection Annual Report. The purpose of this issue is to summarize the results of DST inspections conducted from the beginnng of the inspection program through the end of CY2012. Hereafter, the report will bemore » updated annually with summaries of the past year's DST inspection activities.« less

  18. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  19. USGS 1-min Dst index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.

    2011-01-01

    We produce a 1-min time resolution storm-time disturbance index, the USGS Dst, called Dst8507-4SM. This index is based on minute resolution horizontal magnetic field intensity from low-latitude observatories in Honolulu, Kakioka, San Juan and Hermanus, for the years 1985-2007. The method used to produce the index uses a combination of time- and frequency-domain techniques, which more clearly identifies and excises solar-quiet variation from the horizontal intensity time series of an individual station than the strictly time-domain method used in the Kyoto Dst index. The USGS 1-min Dst is compared against the Kyoto Dst, Kyoto Sym-H, and the USGS 1-h Dst (Dst5807-4SH). In a time series comparison, Sym-H is found to produce more extreme values during both sudden impulses and main phase maximum deviation, possibly due to the latitude of its contributing observatories. Both Kyoto indices are shown to have a peak in their distributions below zero, while the USGS indices have a peak near zero. The USGS 1-min Dst is shown to have the higher time resolution benefits of Sym-H, while using the more typical low-latitude observatories of Kyoto Dst. ?? 2010.

  20. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  1. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’smore » remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.« less

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  3. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.« less

  4. Architectural constructs of Ampex DST

    NASA Technical Reports Server (NTRS)

    Johnson, Clay

    1993-01-01

    The DST 800 automated library is a high performance, automated tape storage system, developed by AMPEX, providing mass storage to host systems. Physical Volume Manager (PVM) is a volume server which supports either a DST 800, DST 600 stand alone tape drive, or a combination of DST 800 and DST 600 subsystems. The objective of the PVM is to provide the foundation support to allow automated and operator assisted access to the DST cartridges with continuous operation. A second objective is to create a data base about the media, its location, and its usage so that the quality and utilization of the media on which specific data is recorded and the performance of the storage system may be managed. The DST tape drive architecture and media provides several unique functions that enhance the ability to achieve high media space utilization and fast access. Access times are enhanced through the implementation of multiple areas (called system zones) on the media where the media may be unloaded. This reduces positioning time in loading and unloading the cartridge. Access times are also reduced through high speed positioning in excess of 800 megabytes per second. A DST cartridge can be partitioned into fixed size units which can be reclaimed for rewriting without invalidating other recorded data on the tape cartridge. Most tape management systems achieve space reclamation by deleting an entire tape volume, then allowing users to request a 'scratch tape' or 'nonspecific' volume when they wish to record data to tape. Physical cartridge sizes of 25, 75, or 165 gigabytes will make this existing process inefficient or unusable. The DST cartridge partitioning capability provides an efficient mechanism for addressing the tape space utilization problem.

  5. Progress in Hanford's Double-Shell Tank Integrity Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.

    2008-07-01

    The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the

  6. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest

  7. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  8. Data Quality Objectives for Tank Farms Waste Compatibility Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presentlymore » in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.« less

  9. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  10. Tank 26 Evaporator Feed Pump Transfer Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.« less

  11. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  12. Use of avoidance response by rainbow trout to carbon dioxide for fish self-transfer between tanks

    USGS Publications Warehouse

    Clingerman, J.; Bebak, J.; Mazik, P.M.; Summerfelt, S.T.

    2007-01-01

    Convenient, economical, and reduced labor fish harvest and transfer systems are required to realize operating cost savings that can be achieved with the use of much larger and deeper circular culture tanks. To achieve these goals, we developed a new technology for transferring fish based on their avoidance behavior to elevated concentrations of dissolved carbon dioxide (CO2). We observed this behavioral response during controlled, replicated experiments that showed dissolved CO2 concentrations of 60-120 mg/L induced rainbow trout (Oncorhynchus mykiss) to swim out of their 11 m3 "growout" tank, through a transfer pipe carrying a flow with ???23 mg/L dissolved CO2, into a second 11 m3 "harvest" tank. The research was conducted using separate groups of rainbow trout held at commercially relevant densities (40-60 kg/m3). The average weight of fish ranged from 0.15 to 1.3 kg during the various trials. In all trials that used a constant flow of low CO2 water (???23 mg/L) entering the growout tank from the harvest tank, approximately 80-90% of the fish swam from the growout tank, through the transfer pipe, and into the harvest tank after the CO2 concentration in the growout tank had exceeded 60 mg/L. The fish that remained in the growout tank stayed within the area of relatively low CO2 water at the entrance of the transfer pipe. However, the rate of fish transfer from the growout tank to the harvest tank was more than doubled when the diameter of the transfer pipe was increased from 203 to 406 mm. To consistently achieve fish transfer efficiencies of 99%, water flow rate through the fish transfer pipe had to be reduced to 10-20% of the original flow just before the conclusion of each trial. Reducing the flow of relatively low CO2 water near the end of each fish transfer event, restricted the zone of relatively low CO2 water about the entrance of the fish transfer pipe, and provided the stimulus for all but a few remaining fish to swim out of the growout tank. Results

  13. Real-time validation of the Dst Predictor model

    USGS Publications Warehouse

    McCollough, James P.; Young, Shawn L.; Rigler, E. Joshua; Simpson, Hal A.

    2015-01-01

    The Dst Predictor model, which has been running real-time in the Space Weather Analysis and Forecast System (SWAFS), provides 1-hour and 4-hour forecasts of the Dst index. This is useful for awareness of impending geomagnetic activity, as well as driving other real-time models that use Dst as an input. In this report, we examine the performance of this forecast model in detail. When validating indices it should be noted that performance is only with respect to a reference index as they are derived quantities assumed to reflect a state of the magnetosphere that cannot be directly measured. In this case U.S. Geological Survey (USGS) Definitive Dst is the reference index (Section 3). Whether or not the model better reflects the actual activity level is nearly impossible to discern and is outside the scope of this report. We evaluate the performance of the model by computing continuous predictant skill scores against USGS Definitive Dst values as “observations” (Section 4.2). The two sets of data are not well-correlated for both 1-hour and 4-hour forecasts. The Dst Predictor Prediction Efficiency for both the 1- and 4-hour forecasts suggests poor performance versus the climatological mean. However, the skill score against a nowcast persistence model is positive, suggesting value added by the Dst Predictor model. We further examine statistics for storm times (Section 4.3) with similar results: nowcast persistence performs worse than Dst Predictor.  Dst Predictor is superior to the nowcast persistence model for the metric used in this study. We recommend continued use of the DstPredictor model for 1-and4-hour Dst predictions along with active study of other Dst forecast models that do not rely on nowcast inputs (Section 6). The lack of certified requirements makes further recommendations difficult. A study of how the error in Dst translates to error in models and a better understanding of operational needs for magnetic storm warning are needed to determine

  14. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tankmore » toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.« less

  15. Heat transfer in a tank with a cryogenic fluid under conditions of external heating

    NASA Astrophysics Data System (ADS)

    Notkin, V. L.

    Heat transfer in the gas layer of a horizontal cylindrical tank with a fluctuating level of boiling liquid nitrogen is investigated experimentally. Criterial equations for heat transfer in the gas cavity of the tank are obtained. A procedure is proposed for calculating heat fluxes, temperature fields, and cryogenic fluid evaporation during the filling and draining of the tank.

  16. Mysql Data-Base Applications for Dst-Like Physics Analysis

    NASA Astrophysics Data System (ADS)

    Tsenov, Roumen

    2004-07-01

    The data and analysis model developed and being used in the HARP experiment for studying hadron production at CERN Proton Synchrotron is discussed. Emphasis is put on usage of data-base (DB) back-ends for persistent storing and retrieving "alive" C++ objects encapsulating raw and reconstructed data. Concepts of "Data Summary Tape" (DST) as a logical collection of DB-persistent data of different types, and of "intermediate DST" (iDST) as a physical "tag" of DST, are introduced. iDST level of persistency allows a powerful, DST-level of analysis to be performed by applications running on an isolated machine (even laptop) with no connection to the experiment's main data storage. Implementation of these concepts is considered.

  17. Provisional hourly values of equatorial Dst for 1971

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1972-01-01

    Tables and plots of provisional hourly values of the equatorial Dst index for 1971 are given, a table of daily mean Dst values for 1971 is also provided. The base line values for the four observatories, Hermanus, Kakioka, Honolulu, and San Juan, were obtained from extrapolations using the coefficients for the secular variations determined for the previous years. Examining the Dst values for quiet days, the base lines so determined appear to be slightly low, so that the Dst index for quiet periods tends to be high.

  18. Large Eddy Simulations using oodlesDST

    DTIC Science & Technology

    2016-01-01

    Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes

  19. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  20. 78 FR 63235 - Tank Vessel Oil Transfers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... protect the marine environment from oil spilled during oil transfers to or from tank vessels; and what... of your document so that we can contact you if we have questions regarding your submission. To submit... ``Open Docket Folder'' on the line associated with this notice. If you do not have access to the internet...

  1. Vented Tank Resupply Experiment Demonstrated Vane Propellant Management Device for Fluid Transfer

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1998-01-01

    The Vented Tank Resupply Experiment (VTRE) flown on STS-77 confirmed the design approaches presently used in the development of vane-type propellant management devices (PMD) for use in resupply and tank-venting situations, and it provided the first practical demonstration of an autonomous fluid transfer system. All the objectives were achieved. Transfers were more stable than drop tower testing indicated. Liquid was retained successfully at the highest flow rate tested (2.73 gal/min), demonstrating that rapid fills could be achieved. Liquid-free vents were achieved for two different tanks, although the flow rate was higher for the spherical tank (0.1591 cu ft/min) than for the tank with a short barrel section (0.0400 cu ft/min). Recovery from a thruster firing, which moved the liquid to the opposite end of the tank from the PMD, was achieved in 30 sec, showing that liquid rewicked more quickly into the PMD after thruster firing than pretest projections had predicted. In addition, researchers obtained great insights into the PMD behavior from the video footage provided, and discovered new considerations for future PMD designs that would not have been seen without this flight test.

  2. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  3. Riser Difference Uncertainty Methodology Based on Tank AY-101 Wall Thickness Measurements with Application to Tank AN-107

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weier, Dennis R.; Anderson, Kevin K.; Berman, Herbert S.

    2005-03-10

    The DST Integrity Plan (RPP-7574, 2003, Double-Shell Tank Integrity Program Plan, Rev. 1A, CH2M HILL Hanford Group, Inc., Richland, Washington.) requires the ultrasonic wall thickness measurement of two vertical scans of the tank primary wall while using a single riser location. The resulting measurements are then used in extreme value methodology to predict the minimum wall thickness expected for the entire tank. The representativeness of using a single riser in this manner to draw conclusions about the entire circumference of a tank has been questioned. The only data available with which to address the representativeness question comes from Tank AY-101more » since only for that tank have multiple risers been used for such inspection. The purpose of this report is to (1) further characterize AY-101 riser differences (relative to prior work); (2) propose a methodology for incorporating a ''riser difference'' uncertainty for subsequent tanks for which only a single riser is used, and (3) specifically apply the methodology to measurements made from a single riser in Tank AN-107.« less

  4. U.S. Geological Survey Near Real-Time Dst Index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.; Friberg, P.A.; Stewart, D.C.; Lisowski, S.W.

    2011-01-01

    The operational version of the United States Geological Survey one-minute Dst index (a global geomagnetic disturbance-intensity index for scientific studies and definition of space-weather effects) uses either four- or three-station input (including Honolulu, Hawaii; San Juan, Puerto Rico; Hermanus, South Africa; and Kakioka, Japan; or Honolulu, San Juan and Guam) and a method based on the U.S. Geological Survey definitive Dst index, in which Dst is more rigorously calculated. The method uses a combination of time-domain techniques and frequency-space filtering to produce the disturbance time series at an individual observatory. The operational output is compared to the U.S. Geological Survey one-minute Dst index (definitive version) and to the Kyoto (Japan) Final Dst to show that the U.S. Geological Survey operational output matches both definitive indices well.

  5. 71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. DETAIL OF NITROGEN GAS STORAGE TANKS AND TRANSFER TUBING ON SLC-3W LIQUID OXYGEN APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. No Vent Tank Fill and Transfer Line Chilldown Analysis by Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2013-01-01

    The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.

  7. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with

  8. WASTE CONDITIONING FOR TANK HEEL TRANSFER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the research carried out at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) for the fiscal year 1998 (FY98) under the Tank Focus Area (TFA) project ''Waste Conditioning for Tank Slurry Transfer.'' The objective of this project is to determine the effect of chemical and physical properties on the waste conditioning process and transfer. The focus of this research consisted in building a waste conditioning experimental facility to test different slurry simulants under different conditions, and analyzing their chemical and physical properties. This investigation would provide experimental data and analysis results that can make the tankmore » waste conditioning process more efficient, improve the transfer system, and influence future modifications to the waste conditioning and transfer system. A waste conditioning experimental facility was built in order to test slurry simulants. The facility consists of a slurry vessel with several accessories for parameter control and sampling. The vessel also has a lid system with a shaft-mounted propeller connected to an air motor. In addition, a circulation system is connected to the slurry vessel for simulant cooling and heating. Experimental data collection and analysis of the chemical and physical properties of the tank slurry simulants has been emphasized. For this, one waste slurry simulant (Fernald) was developed, and another two simulants (SRS and Hanford) obtained from DOE sites were used. These simulants, composed of water, soluble metal salts, and insoluble solid particles, were used to represent the actual radioactive waste slurries from different DOE sites. The simulants' chemical and physical properties analyzed include density, viscosity, pH, settling rate, and volubility. These analyses were done to samples obtained from different experiments performed at room temperature but different mixing time and strength. The experimental results indicate

  9. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  10. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JENSEN, C.E.

    2000-01-10

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

  11. Influence of the substorm current wedge on the Dst index

    NASA Astrophysics Data System (ADS)

    Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.

    1999-03-01

    One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.

  12. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  13. A Study on the Optimal Duration of Daylight Saving Time (DST) in Korea

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Ahn, Young Sook; Kim, Dong-Bin; Yang, Hong-Jin

    2009-09-01

    Daylight saving time aims at spending effective daylight in summer season. Korea had enforced daylight saving time twelve times from 1948 to 1988. Since 1988, it is not executed, but it is recently discussed the resumption of DST. In this paper, we investigate the trend of DST in other countries, review the history of DST in Korea, and suggest the optimal DST duration in terms of astronomical aspects (times of sunrise and sunset). We find that the starting day of DST in Korea is apt for the second Sunday in May or the second Sunday in April according to the time of sunrise or to the difference between Korean standard meridian and observer's, respectively. We also discuss time friction that might be caused by time difference between DST and Korea Standard Time (KST).

  14. Revised Dst and the epicycles of magnetic disturbance: 1958-2007

    USGS Publications Warehouse

    Love, J.J.; Gannon, J.L.

    2009-01-01

    A revised version of the storm-time disturbance index Dst is calculated using hourly-mean magnetic-observatory data from four standard observatories and collected over the years 1958-2007. The calculation algorithm is a revision of that established by Sugiura et al., and which is now used by the Kyoto World Data Center for routine production of Dst. The most important new development is for the removal of solar-quiet variation. This is done through time and frequency-domain band-stop filtering - selectively removing specific Fourier terms approximating stationary periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit around the Sun, and their mutual coupling. The resulting non-stationary disturbance time series are weighted by observatory-site geomagnetic latitude and then averaged together across longitudes to give what we call Dst5807-4SH. Comparisons are made with the standard Kyoto D st. Various biases, especially for residual solar-quiet variation, are identified in the Kyoto Dst, and occasional storm-time errors in the Kyoto Dst are noted. Using Dst5807-4SH, storms are ranked for maximum storm-time intensity, and we show that storm-occurrence frequency follows a power-law distribution with an exponential cutoff. The epicycles of magnetic disturbance are explored: we (1) map low-latitude local-time disturbance asymmetry, (2) confirm the 27-day storm-recurrence phenomenon using autocorrelation, (3) investigate the coupled semi-annual-diurnal variation of magnetic activity and the proposed explanatory equinoctial and Russell-McPherron hypotheses, and (4) illustrate the well-known solar-cycle modulation of storm-occurrence likelihood. Since Dst5807-4SH is useful for a variety of space physics and solid-Earth applications, it is made freely available to the scientific community.

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Reportmore » is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the

  16. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  17. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  18. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  19. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  20. 46 CFR 154.1831 - Persons in charge of transferring liquid cargo in bulk or preparing cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in bulk or a cool-down, warm-up, gas-free, or air-out of each cargo tank; (2) Each transfer of liquid cargo in bulk, and each cool-down, warm-up, gas-free, or air-out of a cargo tank, is supervised by a... in bulk or a cool-down, warm-up, gas-free, or air-out of a cargo tank possesses the qualifications...

  1. Tank Waste Retrieval Lessons Learned at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, R.A.

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons ofmore » this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST salt-cake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the Tri- Party Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U.S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 ft{sup 3} in 530,000 gallon or larger tanks; 30 ft{sup 3} in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and

  2. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  3. Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.

    PubMed

    Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi

    2013-02-01

    Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Rationale for Selection of Pesticides, Herbicides, and Related Compounds from the Hanford SST/DST Waste Considered for Analysis in Support of the Regulatory DQO (Privatization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemers, K.D.; Daling, P.; Meier, K.

    1999-01-04

    Regulated pesticides, herbicides, miticides, and fungicides were evaluated for their potential past and current use at the Hanford Site. The starting list of these compounds is based on regulatory analyte input lists discussed in the Regulatory DQO. Twelve pesticide, herbicide, miticide, and fungicide compounds are identified for analysis in the Hanford SST and DST waste in support of the Regulatory DQO. The compounds considered for additional analyses are non-detected, considered stable in the tank waste matrix, and of higher toxicity/carcinogenicity.

  5. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  6. Dst and a map of average equivalent ring current: 1958-2007

    NASA Astrophysics Data System (ADS)

    Love, J. J.

    2008-12-01

    A new Dst index construction is made using the original hourly magnetic-observatory data collected over the years 1958-2007; stations: Hermanus South Africa, Kakioka Japan, Honolulu Hawaii, and San Juan Puerto Rico. The construction method we use is generally consistent with the algorithm defined by Sugiura (1964), and which forms the basis for the standard Kyoto Dst index. This involves corrections for observatory baseline shifts, subtraction of the main-field secular variation, and subtraction of specific harmonics that approximate the solar-quiet (Sq) variation. Fourier analysis of the observatory data reveals the nature of Sq: it consists primarily of periodic variation driven by the Earth's rotation, the Moon's orbit, the Earth's orbit, and, to some extent, the solar cycle. Cross coupling of the harmonics associated with each of the external periodic driving forces results in a seemingly complicated Sq time series that is sometimes considered to be relatively random and unpredictable, but which is, in fact, well described in terms of Fourier series. Working in the frequency domain, Sq can be filtered out, and, upon return to the time domain, the local disturbance time series (Dist) for each observatory can be recovered. After averaging the local disturbance time series from each observatory, the global magnetic disturbance time series Dst is obtained. Analysis of this new Dst index is compared with that produced by Kyoto, and various biases and differences are discussed. The combination of the Dist and Dst time series can be used to explore the local-time/universal-time symmetry of an equivalent ring current. Individual magnetic storms can have a complicated disturbance field that is asymmetrical in longitude, presumably due to partial ring currents. Using 50 years of data we map the average local-time magnetic disturbance, finding that it is very nearly proportional to Dst. To our surprise, the primary asymmetry in mean magnetic disturbance is not between

  7. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  8. Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Osherovich, Vladimir A.; Fainberg, Joseph

    2015-01-01

    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm.

  9. 76 FR 32227 - DST Systems, Inc., Including On-Site Leased Workers From Comsys Information Technology Services...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Technologies, a wholly owned subsidiary of DSI Systems, Inc., Boston, Massachusetts operated in conjunction... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,649; TA-W-74,649a] DST Systems... Kelly Services Kansas City, MO; DST Technologies, a Wholly Owned Subsidiary of DST Systems, Inc., Boston...

  10. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    DTIC Science & Technology

    2015-10-01

    calibration of the flow in the test section of the Research Wind Tunnel at DST Group. The calibration was performed to establish the flow quality and to...of the Flow in the Test Section of the Research Wind Tunnel at DST Group Executive Summary The Defence Science and Technology Group (DST

  11. Simulation of Hanford Tank 241-C-106 Waste Release into Tank 241-Y-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KP Recknagle; Y Onishi

    Waste stored in Hdord single-shell Tank 241-C-106 will be sluiced with a supernatant liquid from doubIe-shell Tank 241 -AY- 102 (AY-1 02) at the U.S. Department of Energy's Har@ord Site in Eastern Washington. The resulting slurry, containing up to 30 wtYo solids, will then be transferred to Tank AY-102. During the sluicing process, it is important to know the mass of the solids being transferred into AY- 102. One of the primary instruments used to measure solids transfer is an E+ densitometer located near the periphery of the tank at riser 15S. This study was undert.dcen to assess how wellmore » a densitometer measurement could represent the total mass of soiids transferred if a uniform lateral distribution was assumed. The study evaluated the C-1 06 slurry mixing and accumulation in Tank AY- 102 for the following five cases: Case 1: 3 wt'%0 slurry in 6.4-m AY-102 waste Case 2: 3 w-t% slurry in 4.3-m AY-102 waste Case 3: 30 wtYo slurry in 6.4-m AY-102 waste Case 4: 30 wt% slurry in 4.3-m AY-102 waste Case 5: 30 wt% slurry in 5. O-m AY-102 waste. The tirne-dependent, three-dimensional, TEMPEST computer code was used to simulate solid deposition and accumulation during the injection of the C-106 slurry into AY-102 through four injection nozzles. The TEMPEST computer code was applied previously to other Hanford tanks, AP-102, SY-102, AZ-101, SY-101, AY-102, and C-106, to model tank waste mixing with rotating pump jets, gas rollover events, waste transfer from one tank to another, and pump-out retrieval of the sluiced waste. The model results indicate that the solid depth accumulated at the densitometer is within 5% of the average depth accumulation. Thus the reading of the densitometer is expected to represent the total mass of the transferred solids reasonably well.« less

  12. 40 CFR 63.685 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in paragraph (c)(2)(i) of this section when a tank is used as an interim transfer point to transfer... fixed-roof tank equipped with an internal floating roof in accordance with the requirements specified in paragraph (e) of this section; (2) A tank equipped with an external floating roof in accordance with the...

  13. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  14. Comparison between three algorithms for Dst predictions over the 2003 2005 period

    NASA Astrophysics Data System (ADS)

    Amata, E.; Pallocchia, G.; Consolini, G.; Marcucci, M. F.; Bertello, I.

    2008-02-01

    We compare, over a two and half years period, the performance of a recent artificial neural network (ANN) algorithm for the Dst prediction called EDDA [Pallocchia, G., Amata, E., Consolini, G., Marcucci, M.F., Bertello, I., 2006. Geomagnetic Dst index forecast based on IMF data only. Annales Geophysicae 24, 989-999], based on IMF inputs only, with the performance of the ANN Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm and the Wang et al. [2003. Influence of the solar wind dynamic pressure on the decay and injection of the ring current. Journal of Geophysical Research 108, 51] algorithm based on differential equations, which both make use of both IMF and plasma inputs. We show that: (1) all three algorithms perform similarly for "small" and "moderate" storms; (2) the EDDA and Wang algorithms perform similarly and considerably better than the Lundstedt et al. [2002. Operational forecasts of the geomagnetic Dst index. Geophysical Research Letters 29, 341] algorithm for "intense" and for "severe" storms; (3) the EDDA algorithm has the clear advantage, for space weather operational applications, that it makes use of IMF inputs only. The advantage lies in the fact that plasma data are at times less reliable and display data gaps more often than IMF measurements, especially during large solar disturbances, i.e. during periods when space weather forecast are most important. Some considerations are developed on the reasons why EDDA may forecast the Dst index without making use of solar wind density and velocity data.

  15. Mass Transfer Coefficientin Stirred Tank for p-Cresol Extraction Process from Coal Tar

    NASA Astrophysics Data System (ADS)

    Fardhyanti, D. S.; Tyaningsih, D. S.; Afifah, S. N.

    2017-04-01

    Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such asp-cresol (11% v/v). It is widely used as a disinfectant. Extractionof p-Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p-Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted inthe baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p-Cresol extraction increasesthe yield of p-Cresol and the mass transfer coefficient. The highest yield of p-Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10-6kg/m2s.

  16. Supporting document for the historical tank content estimate for AY-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  17. Shock interference heat transfer to tank configurations mated to a straight-wing space shuttle orbiter at Mach number 10.3. [investigated in a Langley hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, D. H.

    1976-01-01

    Heat transfer was measured on a space shuttle-tank configuration with no mated orbiter in place and with the orbiter in 10 different mated positions. The orbiter-tank combination was tested at angles of attack of 0 deg and 5 deg, at a Mach number of 10.3, and at a free-stream Reynolds number of one million based on the length of the tank. Comparison of interference heat transfer with no-interference heat transfer shows that shock interference can increase the heat transfer to the tank by two orders of magnitude along the ray adjacent to the orbiter and can cause high temperature gradients along the tank skin. The relative axial location of the two mated vehicles determined the location of the sharp peaks of extreme heating as well as their magnitude. The other control variables (the angle of attack, the gap, and the cross-section shape) had significant effects that were not as consistent or as extreme.

  18. Supporting document for the historical tank content estimate for AX-tank farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  19. Pad B Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  20. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  1. Geospace environment modeling 2008--2009 challenge: Dst index

    USGS Publications Warehouse

    Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.

    2013-01-01

    This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.

  2. Project W-211 initial tank retrieval systems year 2000 compliance assessment project plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUSSELL, J.H.

    1999-08-24

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-211, Initial Tank Retrieval Systems (ITRS). The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-211 is to provide systems for retrieval of radioactive wastes from ten double-shell tanks (DST). systems will be installed in tanks 102-AP, 104-AP, 105-AN, 104-AN, 102-AZ, 101-AW, 103-AN, 107-AN, 102-AY, and 102-SY. The current tank selection and sequence supports phasemore » I feed delivery to privatized processing plants. A detailed description of system dates, functions, interfaces, potential Y2K problems, and date resolutions can not be described since the project is in the definitive design phase. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems.« less

  3. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service followingmore » deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.« less

  4. Two types of geomagnetic storms and relationship between Dst and AE indexes

    NASA Astrophysics Data System (ADS)

    Shadrina, Lyudmila P.

    2017-10-01

    The study of the relationship between Dst and AE indices of the geomagnetic field and its manifestation in geomagnetic storms in the XXIII solar cycle was carried out. It is shown that geomagnetic storms are divided into two groups according to the ratio of the amplitude of Ds index decrease to the sum of the AE index during the main phase of the storm. For the first group it is characteristic that for small depressions of the Dst index, significant amounts of the AE index are observed. Most often these are storms with a gradual beginning and a long main phase associated with recurrent solar wind streams. Storms of the second group differ in large amplitudes of Dst index decrease, shorter duration of main phase and small amounts of AE-index. Usually these are sporadic geomagnetic storms with a sudden commencement caused by interplanetary disturbances of the CME type. The storms of these two types differ also in their geoeffects, including the effect on human health.

  5. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  6. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  7. Evaluation of oxygen transfer rates in stirred-tank bioreactors for clinical manufacturing.

    PubMed

    Bellucci, Joseph J; Hamaker, Kent H

    2011-01-01

    Several methods are available for determining the volumetric oxygen transfer coefficient in bioreactors, though their application in industrial bioprocess has been limited. To be practically useful, mass transfer measurements made in nonfermenting systems must be consistent with observed microbial respiration rates. This report details a procedure for quantifying the relationship between agitation frequency and oxygen transfer rate that was applied in stirred-tank bioreactors used for clinical biologics manufacturing. The intrinsic delay in dissolved oxygen (DO) measurement was evaluated by shifting the bioreactor pressure and fitting a first-order mathematical model to the DO response. The dynamic method was coupled with the DO lag results to determine the oxygen transfer rate in Water for Injection (WFI) and a complete culture medium. A range of agitation frequencies was investigated at a fixed air sparge flow rate, replicating operating conditions used in Pichia pastoris fermentation. Oxygen transfer rates determined by this method were in excellent agreement with off-gas calculations from cultivation of the organism (P = 0.1). Fermentation of Escherichia coli at different operating parameters also produced respiration rates that agreed with the corresponding dynamic method results in WFI (P = 0.02). The consistency of the dynamic method results with the off-gas data suggests that compensation for the delay in DO measurement can be combined with dynamic gassing to provide a practical, viable model of bioreactor oxygen transfer under conditions of microbial fermentation. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  8. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.

    2003-06-30

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40more » tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits.« less

  9. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    DTIC Science & Technology

    2015-10-01

    fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wire ) probes is described. Areas covered include a...fluid-flow studies, including testing of models of aircraft, ships and submarines in wind and water tunnels. Hot- wire anemometers and associated hot...spectra of velocity fluctuations in the low-speed wind tunnel at DST Group. The use of both single- wire and crossed- wire (2 wires ) probes is

  10. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank.

    PubMed

    Liu, Zhan; Li, Cui

    2018-03-15

    A calibrated CFD model is built to investigate the influence of slosh baffles on the pressurization performance in liquid hydrogen (LH 2 ) tank. The calibrated CFD model is proven to have great predictive ability by compared against the flight experimental results. The pressure increase, thermal stratification and wall heat transfer coefficient of LH 2 tank have been detailedly studied. The results indicate that slosh baffles have a great influence on tank pressure increase, fluid temperature distribution and wall heat transfer. Owning to the existence of baffles, the stratification thickness increases gradually with the distance from tank axis to tank wall. While for the tank without baffles, the stratification thickness decreases firstly and then increases with the increase of the distance from the axis. The "M" type stratified thickness distribution presents in tank without baffles. One modified heat transfer coefficient correlation has been proposed with the change of fluid temperature considered by multiplying a temperature correction factor. It has been proven that the average relative prediction errors of heat transfer coefficient reduced from 19.08% to 4.98% for the wet tank wall of the tank, from 8.93% to 4.27% for the dry tank wall, respectively, calculated by the modified correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. LH2 fuel tank design for SSTO

    NASA Technical Reports Server (NTRS)

    Wright, Geoff

    1994-01-01

    This report will discuss the design of a liquid hydrogen fuel tank constructed from composite materials. The focus of this report is to recommend a design for a fuel tank which will be able to withstand all static and dynamic forces during manned flight. Areas of study for the design include material selection, material structural analysis, heat transfer, thermal expansion, and liquid hydrogen diffusion. A structural analysis FORTRAN program was developed for analyzing the buckling and yield characteristics of the tank. A thermal analysis Excel spreadsheet was created to determine a specific material thickness which will minimize heat transfer through the wall of the tank. The total mass of the tank was determined by the combination of both structural and thermal analyses. The report concludes with the recommendation of a layered material tank construction. The designed system will include exterior insulation, combination of metal and organize composite matrices and honeycomb.

  12. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  13. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  14. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vapor space of the inner tank to facilitate unloading the liquid lading must be approved. [Amdt. 179-32... Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping. (a) Product lines. The piping system for vapor and liquid phase transfer and venting must be made for...

  15. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  16. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  17. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  18. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  19. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  20. 19 CFR 151.44 - Storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...

  1. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  2. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-07-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  3. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    NASA Astrophysics Data System (ADS)

    Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.

    2014-02-01

    In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.

  4. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  5. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  6. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  7. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  8. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  9. 14 CFR 25.957 - Flow between interconnected tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  10. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; hide

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind

  11. CSF 5-HIAA and DST non-suppression--orthogonal biologic risk factors for suicide in male mood disorder inpatients.

    PubMed

    Jokinen, Jussi; Nordström, Anna-Lena; Nordström, Peter

    2009-01-30

    Two biomarkers of suicide risk; non-suppression in the dexamethasone suppression test (DST) and low 5-hydroxyindoleacetic acid (5-HIAA) in the cerebrospinal fluid (CSF) have been reported to be predictors of suicide in mood disorders. The interrelation of the two systems seems to be different in suicide attempters compared with depressed inpatients who have not made a suicide attempt, indicating that the two biomarkers may be seen as independent. This investigation examined the interrelation of low CSF 5-HIAA and DST non-suppression in suicide victims with mood disorder. Fifty-eight mood disorder inpatients not receiving any treatment with antidepressants underwent lumbar puncture and the DST. Plasma cortisol levels at 8:00 a.m., 4:00 p.m. and 11:00 p.m. were analysed in relation to CSF 5-HIAA. All patients were followed up for causes of death and suicides were verified with death certificates. During follow-up (mean 21 years), 11 (19%) patients had committed suicide. In male suicide victims (n=6), the serum cortisol level at 4:00 p.m. showed a significant positive correlation with CSF 5-HIAA. Low CSF 5-HIAA predicted all early suicides (within 1 year), whereas all males who committed suicide after 1 year were DST non-suppressors. In female suicide victims (n=5), the post-DST serum cortisol did not correlate with CSF 5-HIAA. Low CSF 5-HIAA and DST non-suppression are orthogonal biologic risk factors for suicide in male mood disorder inpatients. CSF 5-HIAA is associated with short-term suicide risk; dysregulation of the hypothalamic-pituitary-adrenal axis seems to be a long-term suicide predictor.

  12. Earthquake bursts and fault branching: lessons from the Carmel fault branch (CFB) of the Dead Sea Transform (DST)

    NASA Astrophysics Data System (ADS)

    Agnon, A.; Rockwell, T. K.; Stein, S.; Raphael, K.

    2017-12-01

    The DST, accommodating most of the displacement across the boundary zone between the Arabian and Sinai plates, is an ideal plate boundary on which to study earthquake sequences because of 1) a long (>2 kyr) record of historical earthquakes (corroborated and extended several millennia back with ancient ruins); 2) deformed sediments and rockfalls, offering datable archives of strong shaking at various distances from the fault, spanning 300 kyr; 3) a moderate fault slip rate, allowing separation and dating of individual earthquakes for comparison to the historical record, and 4) a growing body of paleoseismic trench data on both timing and displacement across some sectors of the fault. Here we explore the role of a secondary fault branch on clustering using a new approach for the analysis of earthquake bursts. The CFZ is a ≥100 km long shear zone, branching northwestward from the N-S trending Jordan Valley segment of the DST. GPS monitoring of the CFZ indicates a slip rate of <1 mm/yr, absorbing up to 20% of the slip between Arabia Plate and the Sinai-Levant Block across the DST. CFZ seismicity is recorded by three datasets with different time scales and maximum magnitudes: 1) Instrumental seismicity, M≤5.3 (1984); 2) Historic documents suggesting a M>6 event in 363 CE, with ruins distributed up to 100 km from the CFZ; 3) 5 ka cave deposits showing damage greater than from any subsequent earthquake, implying 6The CFZ branch events interact with ruptures on the main DST. At 5 ka destruction was widespread along the DST. The 363 CE earthquake was accompanied by another event in the Arava Valley. The pair skipped the 100 km long Dead Sea segment of the DST. An earlier pair in the northern Levant preceded that pair by several decades: 303 & 347 CE, following a two-century long quiescence, and a harbinger for a shaky millennium. We suggest that the 363 CE pair reflects a rare state that enables a CFZ rupture. This oblique branch is unfavorably oriented for slip under

  13. Dst Index in the 2008 GEM Modeling Challenge - Model Performance for Moderate and Strong Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kuznetsova, Maria; Hesse, Michael; Chulaki, Anna; Pulkkinen, Antti; Ridley, Aaron J.; Gombosi, Tamas; Vapirev, Alexander; Raeder, Joachim; Wiltberger, Michael James; hide

    2010-01-01

    The GEM 2008 modeling challenge efforts are expanding beyond comparing in-situ measurements in the magnetosphere and ionosphere to include the computation of indices to be compared. The Dst index measures the largest deviations of the horizontal magnetic field at 4 equatorial magnetometers from the quiet-time background field and is commonly used to track the strength of the magnetic disturbance of the magnetosphere during storms. Models can calculate a proxy Dst index in various ways, including using the Dessler-Parker Sckopke relation and the energy of the ring current and Biot-Savart integration of electric currents in the magnetosphere. The GEM modeling challenge investigates 4 space weather events and we compare models available at CCMC against each other and the observed values of Ost. Models used include SWMF/BATSRUS, OpenGGCM, LFM, GUMICS (3D magnetosphere MHD models), Fok-RC, CRCM, RAM-SCB (kinetic drift models of the ring current), WINDMI (magnetosphere-ionosphere electric circuit model), and predictions based on an impulse response function (IRF) model and analytic coupling functions with inputs of solar wind data. In addition to the analysis of model-observation comparisons we look at the way Dst is computed in global magnetosphere models. The default value of Dst computed by the SWMF model is for Bz the Earth's center. In addition to this, we present results obtained at different locations on the Earth's surface. We choose equatorial locations at local noon, dusk (18:00 hours), midnight and dawn (6:00 hours). The different virtual observatory locations reveal the variation around the earth-centered Dst value resulting from the distribution of electric currents in the magnetosphere during different phases of a storm.

  14. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  15. Vented Tank Resupply Experiment--Flight Test Results

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Martin, Timothy A.

    1997-01-01

    This paper reports the results of the Vented Tank Resupply Experiment (VTRE) which was flown as a payload on STS 77. VTRE looks at the ability of vane Propellant Management Devices (PMD) to separate liquid and gas in low gravity. VTRE used two clear 0.8 cubic foot tanks one spherical and one with a short barrel section and transferred Refrigerant 113 between them as well as venting it to space. Tests included retention of liquid during transfer, liquid free venting, and recovery of liquid into the PMD after thruster firing. Liquid was retained successfully at the highest flow rate tested (2.73 gpm). Liquid free vents were achieved for both tanks, although at a higher flow rate (0.1591 cfm) for the spherical tank than the other (0.0400 cfm). Recovery from a thruster firing which moved the liquid to the opposite end of the tank from the PMD was achieved in 30 seconds.

  16. Correlation Study Of Diffenrential Skin Temperatures (DST) For Ovulation Detection Using Infra-Red Thermography

    NASA Astrophysics Data System (ADS)

    Rao, K. H. S.; Shah, A. v.; Ruedi, B.

    1982-11-01

    The importance of ovulation time detection in the Practice of Natural Birth Control (NBC) as a contraceptive tool, and for natural/artificial insemination among women having the problem of in-fertility, is well known. The simple Basal Body Temperature (BBT) method of ovulation detection is so far unreliable. A newly proposed Differential Skin Temperature (DST) method may help minimize disturbing physiological effects and improve reliability. This paper explains preliminary results of a detailed correlative study on the DST method, using Infra-Red Thermography (IRT) imaging, and computer analysis techniques. Results obtained with five healthy, normally menstruating women volunteers will be given.

  17. A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors.

    PubMed

    Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L

    2013-04-01

    Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 11C-4DST PET/CT Imaging of Cardiac Sarcoidosis: Comparison With 18F-FDG and Cardiac MRI.

    PubMed

    Hotta, Masatoshi; Minamimoto, Ryogo; Kubota, Shuji; Awaya, Toru; Hiroi, Yukio

    2018-06-01

    A 75-year-old woman with a history of sarcoidosis presenting with low cardiac output and complete right bundle-branch block underwent 4'-[methyl-C]-thiothymidine (4DST) PET/CT after cardiac MRI and FDG PET/CT for the evaluation of suspected cardiac sarcoidosis (CS) before treatment. Cardiac MRI revealed late gadolinium enhancement on the anterior-to-lateral and posterior wall, indicating CS. FDG uptake was shown on the anterior-to-lateral wall, but not on the posterior wall. In contrast, 4DST uptake was demonstrated on both anterior-to-lateral and posterior walls. Use of 4DST appears promising for detecting CS without dietary restriction, due to the lack of physiological uptake in myocardium.

  19. Verification of short lead time forecast models: applied to Kp and Dst forecasting

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus

    2016-04-01

    In the ongoing EU/H2020 project PROGRESS models that predicts Kp, Dst, and AE from L1 solar wind data will be used as inputs to radiation belt models. The possible lead times from L1 measurements are shorter (10s of minutes to hours) than the typical duration of the physical phenomena that should be forecast. Under these circumstances several metrics fail to single out trivial cases, such as persistence. In this work we explore metrics and approaches for short lead time forecasts. We apply these to current Kp and Dst forecast models. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637302.

  20. Floating baffle to improve efficiency of liquid transfer from tanks

    NASA Technical Reports Server (NTRS)

    Howard, F. S. (Inventor)

    1973-01-01

    A floating baffle is described which rides up and down on a vertical shaft over a drain in a tank as the liquid level within the tank varies. When the baffle is in the raised position, the liquid is allowed to flow out of the drain at an unrestricted rate. When the baffle is in the lowered position, pull-through of air or gas that is above the liquid is presented, which would interfere and reduce the flow of liquid from the tank.

  1. Assessing the validity of station location assumptions made in the calculation of the geomagnetic disturbance index, Dst

    USGS Publications Warehouse

    Gannon, Jennifer

    2012-01-01

    In this paper, the effects of the assumptions made in the calculation of the Dst index with regard to longitude sampling, hemisphere bias, and latitude correction are explored. The insights gained from this study will allow operational users to better understand the local implications of the Dst index and will lead to future index formulations that are more physically motivated. We recompute the index using 12 longitudinally spaced low-latitude stations, including the traditional 4 (in Honolulu, Kakioka, San Juan, and Hermanus), and compare it to the standard United States Geological Survey definitive Dst. We look at the hemisphere balance by comparing stations at equal geomagnetic latitudes in the Northern and Southern hemispheres. We further separate the 12-station time series into two hemispheric indices and find that there are measurable differences in the traditional Dst formulation due to the undersampling of the Southern Hemisphere in comparison with the Northern Hemisphere. To analyze the effect of latitude correction, we plot latitudinal variation in a disturbance observed during the year 2005 using two separate longitudinal observatory chains. We separate these by activity level and find that while the traditional cosine form fits the latitudinal distributions well for low levels of activity, at higher levels of disturbance the cosine form does not fit the observed variation. This suggests that the traditional latitude scaling is insufficient during active times. The effect of the Northern Hemisphere bias and the inadequate latitude scaling is such that the standard correction underestimates the true disturbance by 10–30 nT for storms of main phase magnitude deviation greater than 150 nT in the traditional Dst index.

  2. Test Plan - Solids Accumulation Scouting Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilizationmore » Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.« less

  3. Integral Radiator and Storage Tank

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  4. A DST Model of Multilingualism and the Role of Metalinguistic Awareness

    ERIC Educational Resources Information Center

    Jessner, Ulrike

    2008-01-01

    This paper suggests that a dynamic systems theory (DST) provides an adequate conceptual metaphor for discussing multilingual development. Multilingual acquisition is a nonlinear and complex dynamic process depending on a number of interacting factors. Variability plays a crucial role in the multilingual system as it changes over time (Herdina &…

  5. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.

    PubMed

    Ungerman, Andrew J; Heindel, Theodore J

    2007-01-01

    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.

  6. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus,more » natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.« less

  7. Sinda/Fluint Stratfied Tank Modeling

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara A.

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created and used to simulate the Ksite1 LH2 liquid self-pressurization tests as well as axial jet mixing within the liquid region of the tank. The S/F model employed the use of stratified layers, i.e. S/F lumps, in the vapor ullage as well as in the liquid region. The model was constructed to analyze a general purpose stratified tank that could incorporate the following features: Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries. Extensive user logic was used to allow for tailoring of the above features to specific cases. Most of the code input for a specific case could be done through the Registers Data Block.

  8. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  9. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases.

    PubMed

    Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa

    2017-10-01

    The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis.

  10. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drug-resistant Tuberculosis Cases

    PubMed Central

    Tekin, Kemal; Albay, Ali; Simsek, Hulya; Sig, Ali Korhan; Guney, Mustafa

    2017-01-01

    Objective: The present study aimed to evaluate the performances of the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test for detecting second-line antituberculosis drug resistance in Multidrug-resistant TB (MDR-TB) cases. Materials and Methods: Forty-six MDR-TB strains were studied. Second-line antituberculosis drug resistances were detected using the BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl test. The Middlebrook 7H10 agar proportion method was used as the reference test. Results: The sensitivity and specificity values for the BACTEC MGIT 960 SL DST kit were both 100% for amikacin, kanamycin, capreomycin (4 µg/mL), and ofloxacin; 100% and 95.3%, respectively, for capreomycin (10 µg/mL); and 85.7% and 100%, respectively, for moxifloxacin (0.5 µg/mL). The sensitivity and specificity values for the GenoType MTBDRsl test to detect fluoroquinolone and aminoglycoside/cyclic peptide resistance were 88.9% and 100%, respectively, for ofloxacin and 85.7% and 94.9%, respectively, for moxifloxacin (0.5 µg/mL). The accuracy of the GenoType MTBDRsl assay for kanamycin, capreomycin, ofloxacin, and moxifloxacin was lower than that of the BACTEC MGIT 960 SL DST. Conclusion: The BACTEC MGIT 960 SL DST kit and the GenoType MTBDRsl were successful in detecting second-line antituberculosis drug resistance. Preliminary results of the GenoType MTBDRsl are very valuable for early treatment decisions, but we still recommend additional BACTEC MGIT 960 SL DST kit usage in the routine evaluation of drug-resistant tuberculosis. PMID:29123441

  11. Comparison of 4'-[methyl-(11)C]thiothymidine ((11)C-4DST) and 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) PET/CT in human brain glioma imaging.

    PubMed

    Toyota, Yasunori; Miyake, Keisuke; Kawai, Nobuyuki; Hatakeyama, Tetsuhiro; Yamamoto, Yuka; Toyohara, Jun; Nishiyama, Yoshihiro; Tamiya, Takashi

    2015-01-01

    3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, (18)F-FLT has several limitations in clinical use. Recently, (11)C-labeled thymidine analogue, 4'-[methyl-(11)C]thiothymidine ((11)C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of (11)C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of (18)F-FLT PET. Twenty patients with primary and recurrent brain gliomas underwent (18)F-FLT and (11)C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of (11)C-4DST and (18)F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual (18)F-FLT and (11)C-4DST uptake values in the tumors was also examined. (11)C-4DST uptake was significantly higher than that of (18)F-FLT in the normal brain. The uptake values of (11)C-4DST in the tumor were similar to those of (18)F-FLT resulting in better visualization with (18)F-FLT. No significant differences in the uptake values of (18)F-FLT and (11)C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of (11)C-4DST (r = 0.50, P < 0.05) and (18)F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of (11)C-4DST (r = 0.52, P < 0.05) and (18)F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of (11)C-4DST and (18)F-FLT in the tumor (r

  12. Principles for identification of High Potency Category Chemicals for which the Dermal Sensitisation Threshold (DST) approach should not be applied.

    PubMed

    Roberts, David W; Api, Anne Marie; Safford, Robert J; Lalko, Jon F

    2015-08-01

    An essential step in ensuring the toxicological safety of chemicals used in consumer products is the evaluation of their skin sensitising potential. The sensitising potency, coupled with information on exposure levels, can be used in a Quantitative Risk Assessment (QRA) to determine an acceptable level of a given chemical in a given product. Where consumer skin exposure is low, a risk assessment can be conducted using the Dermal Sensitisation Threshold (DST) approach, avoiding the need to determine potency experimentally. Since skin sensitisation involves chemical reaction with skin proteins, the first step in the DST approach is to assess, on the basis of the chemical structure, whether the chemical is expected to be reactive or not. Our accompanying publication describes the probabilistic derivation of a DST of 64 μg/cm(2) for chemicals assessed as reactive. This would protect against 95% of chemicals assessed as reactive, but the remaining 5% would include chemicals with very high potency. Here we discuss the chemical properties and structural features of high potency sensitisers, and derive an approach whereby they can be identified and consequently excluded from application of the DST. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Romanenko looks through a Rodnik Tank in the SM

    NASA Image and Video Library

    2012-12-31

    ISS034-E-010446 (31 Dec. 2012) --- Russian cosmonaut Roman Romanenko, Expedition 34 flight engineer, looks through a Rodnik tank in the Zvezda Service Module of the International Space Station. Romanenko performed a water transfer from a Rodnik tank in the Progress to a Rodnik tank in the Zvezda Service Module. Note the multiple refractions of the cosmonaut?s head and shoulders in the bubbles.

  14. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  15. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  16. Pressurizer tank upper support

    DOEpatents

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  17. Pressurizer tank upper support

    DOEpatents

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  18. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareizs, J.; Click, D.; Lambert, D.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from Hmore » Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the

  19. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  2. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  3. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  4. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  5. Development and Exploration of a Regional Stormwater BMP Performance Database to Parameterize an Integrated Decision Support Tool (i-DST)

    NASA Astrophysics Data System (ADS)

    Bell, C.; Li, Y.; Lopez, E.; Hogue, T. S.

    2017-12-01

    Decision support tools that quantitatively estimate the cost and performance of infrastructure alternatives are valuable for urban planners. Such a tool is needed to aid in planning stormwater projects to meet diverse goals such as the regulation of stormwater runoff and its pollutants, minimization of economic costs, and maximization of environmental and social benefits in the communities served by the infrastructure. This work gives a brief overview of an integrated decision support tool, called i-DST, that is currently being developed to serve this need. This presentation focuses on the development of a default database for the i-DST that parameterizes water quality treatment efficiency of stormwater best management practices (BMPs) by region. Parameterizing the i-DST by region will allow the tool to perform accurate simulations in all parts of the United States. A national dataset of BMP performance is analyzed to determine which of a series of candidate regionalizations explains the most variance in the national dataset. The data used in the regionalization analysis comes from the International Stormwater BMP Database and data gleaned from an ongoing systematic review of peer-reviewed and gray literature. In addition to identifying a regionalization scheme for water quality performance parameters in the i-DST, our review process will also provide example methods and protocols for systematic reviews in the field of Earth Science.

  6. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  7. Method for Detecting Perlite Compaction in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert

    2010-01-01

    Perlite is the most typical insulating powder used to separate the inner and outer shells of cryogenic tanks. The inner tank holds the low-temperature commodity, while the outer shell is exposed to the ambient temperature. Perlite minimizes radiative energy transfer between the two tanks. Being a powder, perlite will settle over time, leading to the danger of transferring any loads from the inner shell to the outer shell. This can cause deformation of the outer shell, leading to damaged internal fittings. The method proposed is to place strain or displacement sensors on several locations of the outer shell. Loads induced on the shell by the expanding inner shell and perlite would be monitored, providing an indication of the location and degree of compaction.

  8. Researchers Demonstrate Liquid Transfer Equipment for Apollo 14 Test

    NASA Image and Video Library

    1970-12-21

    Two researchers at the National Aeronautics and Space Administration (NASA) Lewis Research Center demonstrate the test equipment they devised to study the transfer of liquid in microgravity onboard the Apollo 14 mission. The test was an early step in developing the ability to transfer liquids from a tanker vehicle to spacecraft in space. Researchers needed to know the tank’s outflow characteristics, the fluid’s behavior when entering new tank, and the effects of accelerations. Others had performed some calculations and analytical studies, but no one had examined the complete transfer from one tank to another in microgravity. The early calculations concluded that the transfer process was impossible without devices to control the liquid and gas. This investigation specifically sought to demonstrate the effectiveness of two different surface-tension baffle designs. The experiment was an entirely closed system with two baffled-tanks. The researchers also built a similar device without the baffles. The experiment was carried onboard the Apollo 14 spacecraft and conducted during the coast period on the way to the moon. The two surface tension baffle designs in the separate tanks were shown to be effective both as supply tanks and as receiver tanks. The liquid transferred within two percent of the design value with ingesting gas. The unbaffled tanks ingested gas after only 12-percent of the fluid had transferred.

  9. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievablemore » storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.« less

  10. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plusmore » adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to

  11. Correlation of Apollo oxygen tank thermodynamic performance predictions

    NASA Technical Reports Server (NTRS)

    Patterson, H. W.

    1971-01-01

    Parameters necessary to analyze the stratified performance of the Apollo oxygen tanks include g levels, tank elasticity, flow rates and pressurized volumes. Methods for estimating g levels and flow rates from flight plans prior to flight, and from quidance and system data for use in the post flight analysis are described. Equilibrium thermodynamic equations are developed for the effects of tank elasticity and pressurized volumes on the tank pressure response and their relative magnitudes are discussed. Correlations of tank pressures and heater temperatures from flight data with the results of a stratification model are shown. Heater temperatures were also estimated with empirical heat transfer agreement with flight data when fluid properties were averaged rather than evaluated at the mean film temperature.

  12. CFD analysis of aircraft fuel tanks thermal behaviour

    NASA Astrophysics Data System (ADS)

    Zilio, C.; Longo, G. A.; Pernigotto, G.; Chiacchio, F.; Borrelli, P.; D'Errico, E.

    2017-11-01

    This work is carried out within the FP7 European research project TOICA (Thermal Overall Integrated Conception of Aircraft, http://www.toica-fp7.eu/). One of the tasks foreseen for the TOICA project is the analysis of fuel tanks as possible heat sinks for future aircrafts. In particular, in the present paper, commercial regional aircraft is considered as case study and CFD analysis with the commercial code STAR-CCM+ is performed in order to identify the potential capability to use fuel stored in the tanks as a heat sink for waste heat dissipated by other systems. The complex physical phenomena that characterize the heat transfer inside liquid fuel, at the fuel-ullage interface and inside the ullage are outlined. Boundary conditions, including the effect of different ground and flight conditions, are implemented in the numerical simulation approach. The analysis is implemented for a portion of aluminium wing fuel tank, including the leading edge effects. Effect of liquid fuel transfer among different tank compartments and the air flow in the ullage is included. According to Fuel Tank Flammability Assessment Method (FTFAM) proposed by the Federal Aviation Administration, the results are exploited in terms of exponential time constants and fuel temperature difference to the ambient for the different cases investigated.

  13. Tank characterization report for double-shell tank 241-AW-105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, L.M.

    1997-06-05

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventorymore » estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which

  14. The subscale orbital fluid transfer experiment

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry

    1995-01-01

    The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, examination of methods for accurately metering the amount of liquid transferred between the two tanks, examination of possible test fluids, and consideration of the materials to use for the elastomeric diaphragm. The objective of the visual observation is to locate the fluid-vapor interfaces and, if possible, quantify the amount of vapor and the area of the interface. It is proposed to use video cameras to view the overall process in each tank and to place borescopes or other devices through the tank walls to obtain detailed, undistorted views inside the tanks of critical portions of the transfer process. Further work will continue to find an economical means for providing this detailed view, which clearly would increase the data obtained from the experiment.

  15. Mission analysis for cross-site transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.

    1995-11-01

    The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ``initial state`` (or current cross-site transfer system) to meet the requirements and constraints.

  16. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  17. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  18. Wall mounted heat exchanger characterization. [cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1975-01-01

    Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.

  19. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  20. A Novel Model on DST-Induced Transplantation Tolerance by the Transfer of Self-Specific Donor tTregs to a Haplotype-Matched Organ Recipient

    PubMed Central

    Mohr Gregoriussen, Angelica Maria; Bohr, Henrik Georg

    2017-01-01

    Donor-specific blood transfusion (DST) can lead to significant prolongation of allograft survival in experimental animal models and sometimes human recipients of solid organs. The mechanisms responsible for the beneficial effect on graft survival have been a topic of research and debate for decades and are not yet fully elucidated. Once we discover how the details of the mechanisms involved are linked, we could be within reach of a procedure making it possible to establish donor-specific tolerance with minimal or no immunosuppressive medication. Today, it is well established that CD4+Foxp3+ regulatory T cells (Tregs) are indispensable for maintaining immunological self-tolerance. A large number of animal studies have also shown that Tregs are essential for establishing and maintaining transplantation tolerance. In this paper, we present a hypothesis of one H2-haplotype-matched DST-induced transplantation tolerance (in mice). The formulated hypothesis is based on a re-interpretation of data from an immunogenetic experiment published by Niimi and colleagues in 2000. It is of importance that the naïve recipient mice in this study were never immunosuppressed and were therefore fully immune competent during the course of tolerance induction. Based on the immunological status of the recipients, we suggest that one H2-haplotype-matched self-specific Tregs derived from the transfusion blood can be activated and multiply in the host by binding to antigen-presenting cells presenting allopeptides in their major histocompatibility complex (MHC) class II (MHC-II). We also suggest that the endothelial and epithelial cells within the solid organ allograft upregulate the expression of MHC-II and attract the expanded Treg population to suppress inflammation within the graft. We further suggest that this biological process, here termed MHC-II recruitment, is a vital survival mechanism for organs (or the organism in general) when attacked by an immune system. PMID:28270810

  1. Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter.

    PubMed

    Takesono, Satoshi; Onodera, Masayuki; Toda, Kiyoshi; Yoshida, Masanori; Yamagiwa, Kazuaki; Ohkawa, Akira

    2006-03-01

    This study examined a stirred-tank fermenter (STF) containing low-viscosity foaming liquids with an agitation impeller and foam-breaking impeller mounted on the same shaft. Results showed that the performance of the foam-breaking impeller can be improved by changing a conventional six-blade turbine impeller into a rod impeller as the agitation impeller. The volumetric oxygen-transfer coefficient, kLa, in the mechanical foam-control method (MFM) using a six-blade vaned disk as the foam-breaking impeller in the STF with the rod impeller was approximately five times greater than that of the chemical foam-control method (CFM) adding an anti-foaming agent in the STF with the six-blade turbine impeller. Application of the present method to the cultivation of Saccharomyces cerevisiae K-7 demonstrated that the cultivation time up to the maximum cell concentration was remarkably shorter than that achieved using a conventional CFM.

  2. Review of Orbital Propellant Transfer Techniques and the Feasibility of a Thermal Bootstrap Propellant Transfer Concepts

    NASA Technical Reports Server (NTRS)

    Yoshikawa, H. H.; Madison, I. B.

    1971-01-01

    This study was performed in support of the NASA Task B-2 Study Plan for Space Basing. The nature of space-based operations implies that orbital transfer of propellant is a prime consideration. The intent of this report is (1) to report on the findings and recommendations of existing literature on space-based propellant transfer techniques, and (2) to determine possible alternatives to the recommended methods. The reviewed literature recommends, in general, the use of conventional liquid transfer techniques (i.e., pumping) in conjunction with an artificially induced gravitational field. An alternate concept that was studied, the Thermal Bootstrap Transfer Process, is based on the compression of a two-phase fluid with subsequent condensation to a liquid (vapor compression/condensation). This concept utilizes the intrinsic energy capacities of the tanks and propellant by exploiting temperature differentials and available energy differences. The results indicate the thermodynamic feasibility of the Thermal Bootstrap Transfer Process for a specific range of tank sizes, temperatures, fill-factors and receiver tank heat transfer coefficients.

  3. Runtime and Pressurization Analyses of Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  4. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron

  5. The Subscale Orbital Fluid Transfer Experiment

    NASA Technical Reports Server (NTRS)

    Meserole, J. S.; Collins, Frank G.; Jones, Ogden; Antar, Basil; Menzel, Reinhard; Gray, Perry

    1989-01-01

    The Center for Advanced Spacecraft Propulsion (CASP) is a subcontractor to Boeing Aerospace Corporation to provide support for the concept definition and design of a subscale orbital fluid transfer experiment (SOFTE). SOFTE is an experiment that will look at the fluid mechanics of the process of transfer of a saturated fluid between two tanks. The experiment will be placed in two get away special (GAS) can containers; the tanks will be in one container and the power and electronics will be in a second container. Since GAS cans are being used, the experiment will be autonomous. The work during the present year consisted of examining concepts for visual observation of the fluid transfer process, methods for accurately metering the amount of fluid transferred between the two tanks, possible test fluids, and materials for the elastomeric diaphragm.

  6. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  7. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the

  8. Liquefied Natural Gas Transfer

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  9. Superposed epoch analysis and storm statistics from 25 years of the global geomagnetic disturbance index, USGS-Dst

    USGS Publications Warehouse

    Gannon, J.L.

    2012-01-01

    Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.

  10. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  11. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  12. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  13. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  14. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  15. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  16. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  17. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  18. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

  19. TANK48 CFD MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2011-05-17

    single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less

  20. Analysis of pulsed injection for microgravity receiver tank chilldown

    NASA Astrophysics Data System (ADS)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  1. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  2. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua; Zhu, Lie; Sojka, Jan; Kokoszka, Piotr; Jach, Agnieszka

    2008-08-01

    A wavelet-based index of storm activity (WISA) has been recently developed [Jach, A., Kokoszka, P., Sojka, L., Zhu, L., 2006. Wavelet-based index of magnetic storm activity. Journal of Geophysical Research 111, A09215, doi:10.1029/2006JA011635] to complement the traditional Dst index. The new index can be computed automatically by using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (1 min), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbed periods and analyze the differences of their spectral features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, the ability of the WISA for handling the missing data is also quantitatively assessed. The assessment results show that the hourly averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance to missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index.

  3. An assessment study of the wavelet-based index of magnetic storm activity (WISA) and its comparison to the Dst index

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zhu, L.; Sojka, J. J.; Kokoszka, P.; Jach, A.

    2006-12-01

    A wavelet-based index of storm activities (WISA) has been recently developed (Jach et al., 2006) to complement the traditional Dst index. The new index can be computed automatically using the wavelet-based statistical procedure without human intervention on the selection of quiet days and the removal of secular variations. In addition, the WISA is flexible on data stretch and has a higher temporal resolution (one minute), which can provide a better description of the dynamical variations of magnetic storms. In this work, we perform a systematic assessment study on the WISA index. First, we statistically compare the WISA to the Dst for various quiet and disturbing periods and analyze the differences of their spectrum features. Then we quantitatively assess the flexibility of the WISA on data stretch and study the effects of varying number of stations on the index. In addition, how well the WISA can handle the missing data is also quantitatively assessed. The assessment results show that the hourly-averaged WISA index can describe storm activities equally well as the Dst index, but its full automation, high flexibility on data stretch, easiness of using the data from varying number of stations, high temporal resolution, and high tolerance on missing data from individual station can be very valuable and essential for real-time monitoring of the dynamical variations of magnetic storm activities and space weather applications, thus significantly complementing the existing Dst index. Jach, A., P. Kokoszka, J. Sojka, and L. Zhu, Wavelet-based index of magnetic storm activity, J. Geophys. Res., in press, 2006.

  4. Space Shuttle Upgrade Liquid Oxygen Tank Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Tunc, Gokturk; Wagner, Howard; Bayazitoglu, Yildiz

    2001-01-01

    In 1997, NASA initiated a study of a liquid oxygen and ethanol orbital maneuvering and reaction control system for space shuttle upgrades as well as other reusable launch vehicle applications. The pressure-fed system uses sub-cooled liquid oxygen at 2413.2 KPa (350 psia) stored passively using insulation. Thermal stratification builds up while the space shuttle is docked at the international space station. The venting from the space shuttle's liquid oxygen tank is not desired during this 96-hr time period. Once the shuttle undocks from the space station there could be a pressure collapse in the liquid oxygen tank caused by fluid mixing due to the thruster fU"ings . The thermal stratification and resulting pressure rise in the tank were examined by a computational fluid dynamic model. Since the heat transfer from the pressurant gas to the liquid will result in a decrease in tank pressure the final pressure after the 96 hours will be significantly less when the tank is pressurized with ambient temperature helium. Therefore, using helium at ambient temperature to pressurize the tank is preferred to pressurizing the tank with helium at the liquid oxygen temperature. The higher helium temperature will also result in less mass of helium to pressurize the tank.

  5. Lunar habitat concept employing the space shuttle external tank.

    PubMed

    King, C B; Butterfield, A J; Hypes, W D; Nealy, J E; Simonsen, L C

    1990-01-01

    The space shuttle external tank, which consists of a liquid oxygen tank, an intertank structure, and a liquid hydrogen tank, is an expendable structure used for approximately 8.5 min during each launch. A concept for outfitting the liquid oxygen tank-intertank unit for a 12-person lunar habitat is described. The concept utilizes existing structures and openings for both man and equipment access without compromising the structural integrity of the tank. Living quarters, instrumentation, environmental control and life support, thermal control, and propulsion systems are installed at Space Station Freedom. The unmanned habitat is then transported to low lunar orbit and autonomously soft landed on the lunar surface. Design studies indicate that this concept is feasible by the year 2000 with concurrent development of a space transfer vehicle and manned cargo lander for crew changeover and resupply.

  6. Sludge batch 9 (SB9) acceptance evaluation. Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Diprete, D. P.; Pareizs, J. M.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a composition expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  7. Sludge batch 9 (SB9) accepance evaluation: Radionuclide concentrations in tank 51 SB9 qualification sample prepared at SRNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C.; Diprete, D.; Pareizs, J.

    Presented in this report are radionuclide concentrations required as part of the program of qualifying Sludge Batch 9 (SB9) for processing in the Defense Waste Processing Facility (DWPF). The SB9 material is currently in Tank 51 and has been washed and prepared for transfer to Tank 40. The acceptance evaluation needs to be completed prior to the transfer of the material in Tank 51 to Tank 40. The sludge slurry in Tank 40 has already been qualified for DWPF processing and is currently being processed as Sludge Batch 8 (SB8). The radionuclide concentrations were measured or estimated in the Tankmore » 51 SB9 Washed Qualification Sample prepared at Savannah River National Laboratory (SRNL). This sample was prepared from a three liter sample of Tank 51 sludge slurry (HTF-51-15-81) taken on July 23, 2015. The sample was delivered to SRNL where it was initially characterized in the Shielded Cells. Under the direction of Savannah River Remediation (SRR) it was then adjusted per the Tank Farm washing strategy as of October 20, 2015. This final slurry now has a compositioniv expected to be similar to that of the slurry in Tank 51 after final preparations have been made for transfer of that slurry to Tank 40.« less

  8. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  9. Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.

    1992-01-01

    Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value.

  10. Study of low gravity propellant transfer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of a program to perform an analytical assessment of potential methods for replenishing the auxiliary propulsion, fuel cell and life support cryogens which may be aboard an orbiting space station. The fluids involved are cryogenic H2, O2, and N2. A complete transfer system was taken to consist of supply storage, transfer, and receiver tank fluid conditioning (pressure and temperature control). In terms of supply storage, the basic systems considered were high pressure (greater than critical), intermediate pressure (less than critical), and modular (transfer of the tanks). Significant findings are included.

  11. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation

    NASA Astrophysics Data System (ADS)

    Iyemori, T.; Rao, D. R. K.

    1996-06-01

    In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called `mid-latitude positive bay\\'; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is re-examined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem. Acknowledgements. This study is supported in part by the Ministry of Education, Science, Sports, and Culture in Japan, under a Grant-in-Aid for Scientific Research (Category B). Topical Editor D. Alcaydé thanks M. Lockwood and N. J. Fox for their help in evaluating this paper.-> Correspondence to: Y. Kamide->

  12. The radiation belts and ring current: the relationship between Dst and relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Grande, M.; Carter, M.; Perry, C. H.

    2002-03-01

    We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.

  13. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  14. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gonnenthal; N. Spyoher

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies

  15. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Sonnenthale

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  16. 2008 GEM Modeling Challenge: Metrics Study of the Dst Index in Physics-Based Magnetosphere and Ring Current Models and in Statistical and Analytic Specifications

    NASA Technical Reports Server (NTRS)

    Rastaetter, L.; Kuznetsova, M.; Hesse, M.; Pulkkinen, A.; Glocer, A.; Yu, Y.; Meng, X.; Raeder, J.; Wiltberger, M.; Welling, D.; hide

    2011-01-01

    In this paper the metrics-based results of the Dst part of the 2008-2009 GEM Metrics Challenge are reported. The Metrics Challenge asked modelers to submit results for 4 geomagnetic storm events and 5 different types of observations that can be modeled by statistical or climatological or physics-based (e.g. MHD) models of the magnetosphere-ionosphere system. We present the results of over 25 model settings that were run at the Community Coordinated Modeling Center (CCMC) and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations we use comparisons of one-hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of one-minute model data with the one-minute Dst index calculated by the United States Geologic Survey (USGS).

  17. Deep Sludge Gas Release Event Analytical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, Terry L.

    2013-08-15

    Long Abstract. Full Text. The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environmentmore » from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this

  18. ICPP tank farm closure study. Volume 2: Engineering design files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less

  19. Energy storage-boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-03-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  20. Energy storage-boiler tank

    NASA Technical Reports Server (NTRS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  1. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on themore » various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  3. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mLmore » stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H 2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.« less

  4. Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hedayat, A.; Holt, K. A.; Sims, J.; Johnson, E. F.; Hastings, L. J.; Lak, T.

    2013-01-01

    Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence.

  5. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  6. Pressurization and expulsion of a flightweight liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Stochl, R. J.

    1993-01-01

    Experimental results are presented for pressurization and expulsion of a flight-weight 4.89 cu m liquid hydrogen storage tank under normal gravity conditions. Pressurization and expulsion times are parametrically varied to study the effects of longer transfer times expected in future space flight applications. It is found that the increase in pressurant consumption with increased operational time is significant at shorter pressurization or expulsion durations and diminishes as the duration lengthens. Gas-to-wall heat transfer in the ullage is the dominant mode of energy exchange, with more than 50 percent of the pressurant energy being lost to tank wall heating in expulsions and the long duration pressurizations. Advanced data analysis will require a multidimensional approach combined with improved measurement capabilities of liquid-vapor interfacial transport phenomena.

  7. 49 CFR 193.2513 - Transfer procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Practice.” (2) Before transfer, verify that each receiving container or tank vehicle does not contain any... volume of each receiving container or tank vehicle to ensure that expansion of the incoming fluid due to... partially filled (excluding cooldown heel) container, determine any differences in temperature or specific...

  8. 49 CFR 193.2513 - Transfer procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Practice.” (2) Before transfer, verify that each receiving container or tank vehicle does not contain any... volume of each receiving container or tank vehicle to ensure that expansion of the incoming fluid due to... partially filled (excluding cooldown heel) container, determine any differences in temperature or specific...

  9. 49 CFR 193.2513 - Transfer procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Practice.” (2) Before transfer, verify that each receiving container or tank vehicle does not contain any... volume of each receiving container or tank vehicle to ensure that expansion of the incoming fluid due to... partially filled (excluding cooldown heel) container, determine any differences in temperature or specific...

  10. 49 CFR 193.2513 - Transfer procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Practice.” (2) Before transfer, verify that each receiving container or tank vehicle does not contain any... volume of each receiving container or tank vehicle to ensure that expansion of the incoming fluid due to... partially filled (excluding cooldown heel) container, determine any differences in temperature or specific...

  11. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  12. Inadvertent Intruder Calculatios for F Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koffman, L

    2005-09-12

    Savannah River National Laboratory (SRNL) has been providing radiological performance assessment analysis for Savannah River Site (SRS) solid waste disposal facilities (McDowell-Boyer 2000). The performance assessment considers numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. An Automated Intruder Analysis application was developed by SRNL (Koffman 2004) that simplifies the inadvertent intruder analysis into a routine, automated calculation. Based on SRNL's experience, personnel from Planning Integration & Technology of Closure Business Unitmore » asked SRNL to assist with inadvertent intruder calculations for F Tank Farm to support the development of the Tank Closure Waste Determination Document. Meetings were held to discuss the scenarios to be calculated and the assumptions to be used in the calculations. As a result of the meetings, SRNL was asked to perform four scenario calculations. Two of the scenarios are the same as those calculated by the Automated Intruder Analysis application and these can be calculated directly by providing appropriate inputs. The other two scenarios involve use of groundwater by the intruder and the Automated Intruder Analysis application was adapted to perform these calculations. The four calculations to be performed are: (1) A post-drilling scenario in which the drilling penetrates a transfer line. (2) A calculation of internal exposure due to drinking water from a well located near a waste tank. (3) A post-drilling calculation in which waste is introduced by irrigation of the garden with water from a well located near a waste tank. (4) A resident scenario where a house is built above transfer lines. Note that calculations 1 and 4 use sources from the waste inventory in the transfer line (given in Table 1) whereas

  13. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)

    NASA Technical Reports Server (NTRS)

    Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.

  14. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet

  15. Results For The Fourth Quarter 2014 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2015-09-30

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2014 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.

  16. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  17. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  18. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  19. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  20. Final Environmental Assessment for the Transfer of the Mukilteo Tank Farm Property Snohomish County, Washington

    DTIC Science & Technology

    2012-10-01

    Criterion D for its ability to contribute to the understanding of human prehistory , as it contains data classes useful for addressing important...chapter 3, does not adequately describe the prehistory use of the Tank Farm properties. The Mukilteo Tank Farm is located at a site that was previously

  1. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  2. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  4. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number. A...

  5. 9 CFR 322.3 - Transferring products for export.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Transferring products for export. 322... INSPECTION AND CERTIFICATION EXPORTS 1 § 322.3 Transferring products for export. When inspected and passed products for export are transferred from tank cars to other containers on vessels, such transfer shall be...

  6. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  8. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  9. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  10. 27 CFR 24.229 - Tank car and tank truck requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank car and tank truck... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  11. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less

  12. On-orbit cryogenic fluid transfer

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.

    1984-01-01

    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.

  13. 77 FR 14327 - Bulk Packaging To Allow for Transfer of Hazardous Liquid Cargoes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... Substance N.O.S. Not otherwise specified OSV Offshore supply vessel PHMSA Pipeline and Hazardous Materials... transfer of hazardous materials to and from portable tanks on vessels. The Coast Guard proposes to expand the list of portable tanks approved for hazardous material transfers to include IMO Type 1 and IMO...

  14. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  15. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  16. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car...

  17. A History of Collapse Factor Modeling and Empirical Data for Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    deQuay, Laurence; Hodge, B. Keith

    2010-01-01

    One of the major technical problems associated with cryogenic liquid propellant systems used to supply rocket engines and their subassemblies and components is the phenomenon of propellant tank pressurant and ullage gas collapse. This collapse is mainly caused by heat transfer from ullage gas to tank walls and interfacing propellant, which are both at temperatures well below those of this gas. Mass transfer between ullage gas and cryogenic propellant can also occur and have minor to significant secondary effects that can increase or decrease ullage gas collapse. Pressurant gas is supplied into cryogenic propellant tanks in order to initially pressurize these tanks and then maintain required pressures as propellant is expelled from these tanks. The net effect of pressurant and ullage gas collapse is increased total mass and mass flow rate requirements of pressurant gases. For flight vehicles this leads to significant and undesirable weight penalties. For rocket engine component and subassembly ground test facilities this results in significantly increased facility hardware, construction, and operational costs. "Collapse Factor" is a parameter used to quantify the pressurant and ullage gas collapse. Accurate prediction of collapse factors, through analytical methods and modeling tools, and collection and evaluation of collapse factor data has evolved over the years since the start of space exploration programs in the 1950 s. Through the years, numerous documents have been published to preserve results of studies associated with the collapse factor phenomenon. This paper presents a summary and selected details of prior literature that document the aforementioned studies. Additionally other literature that present studies and results of heat and mass transfer processes, related to or providing important insights or analytical methods for the studies of collapse factor, are presented.

  18. External tank processing from barge to pad

    NASA Technical Reports Server (NTRS)

    Carpenter, J. E.

    1985-01-01

    Delivery and launch readiness events for the External Tanks (ET) are discussed. The ET is off-loaded at the KSC Barge Turning Basin and towed to the Vertical Assembly Building (VAB), High Bay Transfer Aisle. It is erected vertically and placed in the ET Checkout Area of High Bay 2 or 4 for standalone checkout. At the completion of checkout the ET is transferred to storage or to the Integration Area of High Bay 1 or 3 for SRB and Orbiter Mate. A Systems Integration Test performed with the Orbiter and Solid Rocket Booster is described. Final checkout activities are also described.

  19. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  20. Influence of heat transfer rates on pressurization of liquid/slush hydrogen propellant tanks

    NASA Technical Reports Server (NTRS)

    Sasmal, G. P.; Hochstein, J. I.; Hardy, T. L.

    1993-01-01

    A multi-dimensional computational model of the pressurization process in liquid/slush hydrogen tank is developed and used to study the influence of heat flux rates at the ullage boundaries on the process. The new model computes these rates and performs an energy balance for the tank wall whereas previous multi-dimensional models required a priori specification of the boundary heat flux rates. Analyses of both liquid hydrogen and slush hydrogen pressurization were performed to expose differences between the two processes. Graphical displays are presented to establish the dependence of pressurization time, pressurant mass required, and other parameters of interest on ullage boundary heat flux rates and pressurant mass flow rate. Detailed velocity fields and temperature distributions are presented for selected cases to further illuminate the details of the pressurization process. It is demonstrated that ullage boundary heat flux rates do significantly effect the pressurization process and that minimizing heat loss from the ullage and maximizing pressurant flow rate minimizes the mass of pressurant gas required to pressurize the tank. It is further demonstrated that proper dimensionless scaling of pressure and time permit all the pressure histories examined during this study to be displayed as a single curve.

  1. Experimental investigation of a molten salt thermocline storage tank

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  2. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  3. 33 CFR 155.750 - Contents of transfer procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Monitor the level of cargo in the tank; and (ii) Shut down transfer operations in time to ensure that the... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Contents of transfer procedures... (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS FOR VESSELS Transfer...

  4. Corrosion Evaluation of Tank 40 Leak Detection Box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.I.

    1999-07-29

    'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have blackmore » tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'« less

  5. 33 CFR 127.315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  6. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  7. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERPENBECK EG; LESHIKAR GA

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentiallymore » agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.« less

  8. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    NASA Astrophysics Data System (ADS)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-03-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  9. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  10. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  11. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity. Slop tanks must have the total capacity to retain oily mixtures from cargo tank washings, oil residue, and ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent...

  12. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and

  13. Potential for Waste Stratification from Back-Dilution in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Meyer, P.A.

    Since late 1997, the floating crust layer in Hanford Tank 241-SY-101 (SY-101) has grown about two meters by gas accumulation. To reverse crust growth and reduce its retained gas volume, the waste in SY-101 will be diluted by transferring at least 300,000 gal of waste out of the tank and replacing it with water. In the fall of 1999, approximately 100,000 gal of this waste will be transferred into Tank SY-102; within a few days of that initial transfer, approximately 100,000 gal of water will be added to SY-101. This initial back-dilution is being planned to ensure that the basemore » of the floating crust layer will be lifted away from the mixer pump inlet with minimal effect on the crust itself. The concern is that the added water will pool under the crust, so the resulting fluid mixture will be too light to lift the crust away from the mixer pump and dissolution at the crust base could cause unwanted gas release. To ensure sufficient mixing to prevent such stratification, water will be added near the tank bottom either through an existing sparge ring on the base of the mixer pump or through the dilution line at the inlet of the transfer pump. A number of simulations using the TEMPEST code showed that the mixing of the water and waste by this method is rapid, and the water does not pool under the crust. Although a density gradient is present, its magnitude is small compared with the difference between the slurry and water density. The result is essentially the same whether water is introduced at the base of the mixer pump or at the transfer pump. There is little effect of water flowrate up to the 500 gpm studied. In all cases, the minimum density remained above that required to float the crust and well above the density of saturated liquid. This indicates that the base of the crust will rise during back-dilution and there will be little or no dissolution of the crust base because the water will be close to saturation from the dissolution of solids in the mixed

  14. Single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.

  15. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  16. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  17. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  18. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  19. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  20. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  1. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  2. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  3. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  4. Orbital transfer vehicle studies overview

    NASA Technical Reports Server (NTRS)

    Perkinson, Don

    1987-01-01

    An overview is given in viewgraph form of orbital transfer vehicle concept definition and systems analysis studies. Project development flow charts are shown for key milestones from 1985 until 1997. Diagrams of vehicles are given. Information is presented in outline form on technology requirements, cooling of propellant tanks, cryogenic fluid management, quick connect/disconnect fluid interfaces and propellant mass transfer.

  5. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  6. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  7. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  8. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  9. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to §§ 179.100 and...

  10. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  11. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  12. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  13. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  14. 27 CFR 24.230 - Examination of tank car or tank truck.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Examination of tank car or... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall...

  15. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  16. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  17. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  18. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  19. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  20. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  1. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  2. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car...

  3. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Similar tank design: Inspections... § 157.147 Similar tank design: Inspections on foreign tank vessels. (a) If a foreign tank vessel has..., for only one of those tanks to be inspected under § 157.140(a)(1). (b) Only one tank of a group of...

  4. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  5. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  6. 27 CFR 27.174 - Tank cars and tank trucks to be sealed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Tank cars and tank trucks... Tank cars and tank trucks to be sealed. Where a shipment of distilled spirits from customs custody to the distilled spirits plant is made in a tank car or tank truck, all openings affording access to the...

  7. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  8. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  9. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-522) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  10. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  11. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250... Equipment Cargo Tanks § 153.250 Double-bottom and deep tanks as cargo tanks. Except in those cases in which Commandant (CG-ENG) specifically approves another arrangement, such as a double-bottom or deep tank as a...

  12. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  13. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  14. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  15. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition to...

  16. Aeration costs in stirred-tank and bubble column bioreactors

    DOE PAGES

    Humbird, D.; Davis, R.; McMillan, J. D.

    2017-08-10

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  17. Aeration costs in stirred-tank and bubble column bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, D.; Davis, R.; McMillan, J. D.

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  18. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  19. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  20. 46 CFR 154.476 - Cargo transfer devices and means.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of cargo transfer, such as another pump or gas pressurization. (b) If cargo is transferred by gas... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Support System § 154.476 Cargo transfer devices and means. (a) If a cargo pump in a cargo tank is...

  1. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  2. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  3. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  4. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Periodic retest and inspection of tank cars other than single-unit tank car tanks. 180.519 Section 180.519 Transportation Other Regulations Relating to... (CONTINUED) CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars...

  5. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification DOT-107A * * * * seamless steel tank...) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  6. ADM. Tanks: from left to right: fuel oil tank, fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ADM. Tanks: from left to right: fuel oil tank, fuel pump house (TAN-611), engine fuel tank, water pump house, water storage tank. Camera facing northwest. Not edge of shielding berm at left of view. Date: November 25, 1953. INEEL negative no. 9217 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  7. Physical and mathematical modeling of process of frozen ground thawing under hot tank

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Y.; Shastunova, U.; Shabarov, A.; Kislitsyn, A.; Shuvaev, A.

    2018-05-01

    A description of a new non-stationary thermophysical model in the “hot tank-frozen ground” system is given, taking into account mass transfer of pore moisture. The results of calculated and experimental data are presented, and the position of the thawing front is shown to be in good agreement with the convective heat transfer due to moisture migration in the thawed ground.

  8. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing state, but then becomes less significant.

  9. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. H.

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.

  10. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  11. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  12. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  13. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  14. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    PubMed

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  15. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  16. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  17. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank car...

  18. Potential Follow on Experiments for the Zero Boil Off Tank Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David; Kassemi, Mohammad

    2014-01-01

    Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions; It is identified by NASA as an area with greatest potential for cost saving; This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks; We propose to use the ISS lab to generate & collect archival scientific data:, raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM), develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs

  19. Fuel tank integrity research : fuel tank analyses and test plans

    DOT National Transportation Integrated Search

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  20. Vacuum transfer system increases sugar maple sap yield

    Treesearch

    Russell S. Walters

    1978-01-01

    Yields of sugar maple sap collected from three plastic pipeline systems by gravity, vacuum pump, and a vacuum pump with a transfer tank were compared during 2 years in northern Vermont. The transfer system yielded 27 percent more sap one year and 17 percent more the next year. Higher vacuum levels at the tapholes were observed in the transfer system.

  1. Design criteria monograph for metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.

  2. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  3. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  4. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Special requirements for class 114A * * * tank car...) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  5. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  6. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  7. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  8. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  9. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks. ...

  10. Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations.

    PubMed

    Cantera, Sara; Estrada, José M; Lebrero, Raquel; García-Encina, Pedro A; Muñoz, Raúl

    2016-06-01

    This study demonstrated for the first time the capability of methanotrophs to grow inside silicone oil (SO200) and identified the optimum cultivation conditions for enrichment of hydrophobic methanotrophs (high dilution rates (D) and low CH4 transfer rates). The potential of the hydrophobic methanotrophs enriched was assessed in a single-phase stirred tank reactor (1P-STR) and in a two-phase stirred tank reactor (2P-STR). Different operational conditions were systematically evaluated in both reactors (SO200 fractions of 30 and 60 %, stirring rates of 250 and 500 rpm, and D of 0.1-0.35 day(-1) with and without biomass retention). The results showed that the TPPB only supported a superior CH4 abatement performance compared to the 1P-STR (40% enhancement at 250 rpm and 25% enhancement at 500 rpm) at a D of 0.3 day(-1) due to the retention of the biocatalytic activity inside the SO200, while the 1P-STR achieved higher elimination capacities (EC up to ≈3 times) than the TPPB under the rest of conditions tested (ECmax  = 91.1 g m(-3)  h(-1) ). Furthermore, the microscopic examination and DGGE-sequencing of the communities showed that the presence of SO200 influenced the microbial population structure, impacting on bacterial biodiversity and favoring the growth of methanotrophs such as Methylosarcina. Biotechnol. Bioeng. 2016;113: 1203-1212. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  12. Thermal performance of a liquid hydrogen tank multilayer insulation system at warm boundary temperatures of 630, 530, and 152 R

    NASA Astrophysics Data System (ADS)

    Stochl, Robert J.; Knoll, Richard H.

    1991-06-01

    The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.

  13. Impact of daylight savings time on spontaneous pregnancy loss in in vitro fertilization patients.

    PubMed

    Liu, Constance; Politch, Joseph A; Cullerton, Evan; Go, Kathryn; Pang, Samuel; Kuohung, Wendy

    2017-01-01

    Transition into daylight savings time (DST) has studied negative impacts on health, but little is known regarding impact on fertility. This retrospective cohort study evaluates DST impact on pregnancy and pregnancy loss rates in 1,654 autologous in vitro fertilization cycles (2009 to 2012). Study groups were identified based on the relationship of DST to embryo transfer. Pregnancy rates were similar in Spring and Fall (41.4%, 42.2%). Pregnancy loss rates were also comparable between Spring and Fall (15.5%, 17.1%), but rates of loss were significantly higher in Spring when DST occurred after embryo transfer (24.3%). Loss was marked in patients with a history of prior spontaneous pregnancy loss (60.5%).

  14. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109...

  15. Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huckaby, J.L.

    1995-05-31

    Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  16. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  17. Respostas religiosas à aids no Brasil: impressões de pesquisa acerca da Pastoral de DST/Aids da Igreja Católica1

    PubMed Central

    Seffner, Fernando; Silva, Cristiane Gonçalves Meireles da; Maksud, Ívia; Garcia, Jonathan; Rios, Luís Felipe; Natividade, Marcelo; Borges, Priscila Rodrigues; Parker, Richard; Terto, Veriano

    2009-01-01

    O texto encontra-se estruturado em quatro partes. Na primeira delas, apresentamos um conjunto de considerações e informações acerca da situação da aids no Brasil, das relações entre religião, sexualidade, aids e estado laico, bem como uma descrição mais clara do Projeto Respostas Religiosas ao HIV/Aids no Brasil, do qual este texto apresenta algumas impressões de pesquisa preliminares. A seguir, dedicamos um item a apresentação da Pastoral de DST/Aids, sua história, estrutura e objetivos. No item seguinte problematizamos diversas questões em particular no âmbito das relações Estado e Igreja, relações entre agentes de pastoral e hierarquia da Igreja, e questões ligadas mais diretamente à sexualidade e aids, todas referenciadas ao trabalho da Pastoral de DST/Aids. Ao final, apresentamos a bibliografia e fontes consultadas. PMID:20442806

  18. Experimental and analytical study of cryogenic propellant boiloff to develop and verify alternate pressurization concepts for Space Shuttle external tank using a scaled down tank

    NASA Technical Reports Server (NTRS)

    Akyuzlu, K. M.; Jones, S.; Meredith, T.

    1993-01-01

    Self pressurization by propellant boiloff is experimentally studied as an alternate pressurization concept for the Space Shuttle external tank (ET). The experimental setup used in the study is an open flow system which is composed of a variable area test tank and a recovery tank. The vacuum jacketed test tank is geometrically similar to the external LOx tank for the Space Shuttle. It is equipped with instrumentation to measure the temperature and pressure histories within the liquid and vapor, and viewports to accommodate visual observations and Laser-Doppler Anemometry measurements of fluid velocities. A set of experiments were conducted using liquid Nitrogen to determine the temperature stratification in the liquid and vapor, and pressure histories of the vapor during sudden and continuous depressurization for various different boundary and initial conditions. The study also includes the development and calibration of a computer model to simulate the experiments. This model is a one-dimensional, multi-node type which assumes the liquid and the vapor to be under non-equilibrium conditions during the depressurization. It has been tested for a limited number of cases. The preliminary results indicate that the accuracy of the simulations is determined by the accuracy of the heat transfer coefficients for the vapor and the liquid at the interface which are taken to be the calibration parameters in the present model.

  19. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  20. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  1. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill process to develop an analytical model of No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing stage, but then becomes less significant.

  2. Simulation model of stratified thermal energy storage tank using finite difference method

    NASA Astrophysics Data System (ADS)

    Waluyo, Joko

    2016-06-01

    Stratified TES tank is normally used in the cogeneration plant. The stratified TES tanks are simple, low cost, and equal or superior in thermal performance. The advantage of TES tank is that it enables shifting of energy usage from off-peak demand for on-peak demand requirement. To increase energy utilization in a stratified TES tank, it is required to build a simulation model which capable to simulate the charging phenomenon in the stratified TES tank precisely. This paper is aimed to develop a novel model in addressing the aforementioned problem. The model incorporated chiller into the charging of stratified TES tank system in a closed system. The model was developed in one-dimensional type involve with heat transfer aspect. The model covers the main factors affect to degradation of temperature distribution namely conduction through the tank wall, conduction between cool and warm water, mixing effect on the initial flow of the charging as well as heat loss to surrounding. The simulation model is developed based on finite difference method utilizing buffer concept theory and solved in explicit method. Validation of the simulation model is carried out using observed data obtained from operating stratified TES tank in cogeneration plant. The temperature distribution of the model capable of representing S-curve pattern as well as simulating decreased charging temperature after reaching full condition. The coefficient of determination values between the observed data and model obtained higher than 0.88. Meaning that the model has capability in simulating the charging phenomenon in the stratified TES tank. The model is not only capable of generating temperature distribution but also can be enhanced for representing transient condition during the charging of stratified TES tank. This successful model can be addressed for solving the limitation temperature occurs in charging of the stratified TES tank with the absorption chiller. Further, the stratified TES tank can be

  3. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  4. Nonlinear ARMA models for the D(st) index and their physical interpretation

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.; Baker, D. N.

    1996-01-01

    Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.

  5. Tank vapor mitigation requirements for Hanford Tank Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks,more » are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.« less

  6. The Dst Recovery Near Substorm Onset Due to the Transformation of the Blocked Cross-Tail Current into the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    McWilliams, K. A.; Sofko, G. J.; Hussey, G. C.; Reimer, A. S.

    2016-12-01

    During the growth phase the convex curvature of the lobe field lines permits eastward curvature current to dominate on those lobe lines, which blocks the westward cross-tail current (XTJ). The blocked XTJ (BXTJ) is diverted earthward through the tailward portion of the transition plasmasheet (TPS) region of predominantly dipole lines tailward of the plasmapause. The flow shear of the BXTJ in the TPS produces a downward meridional FAC that results in the pre-onset proton arc in the subauroral region. This ionospheric signature of the growth phase lasts for about an hour, ending about 15 minutes before onset, when the pre-onset electron arc appears. Ions in the outer radiation belt precipitate equatorward of the meridional FAC system, because they are on stretched field lines tailward of the ion trapping boundary. The ion precipitation causes the ionospheric conductivity to increases substantially, providing a new high-conductivity route in the ionosphere for the BXTJ. This diversion of the BXTJ forms the Substorm Current Wedge. During the pre-onset proton arc interval, the intensification of the ring current and the flow of the BXTJ cause the Dst index to fall. When the BXTJ is diverted into the ionosphere and forms the substorm current wedge, it produces a northward magnetic field that causes Dst to have a brief positive deflection of 15-20 nT, despite all indications that the ring current continues to grow. The positive Dst deflection is the result both of the loss of the BXTJ from the tailward portion of the TPS and of its new northward field generated by its new route along the SCW. Note that there are two disruptions of the XTJ, first the early growth phase lobe line blocking that diverts the BXTJ earthward into the TPS region, and second (over an hour later, near onset) by the transformation of the BXTJ into the SCW.

  7. In-Tank Elutriation Test Report And Independent Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.

    2011-04-13

    grown in size over a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41" diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube

  8. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  9. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  10. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  11. 46 CFR 32.65-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Tank vessels with independent tanks-TB/ALL. 32.65-30 Section 32.65-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Hull Requirements for Tank Vessels Constructed On or After November 10...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAMS TL; GUILLOT S

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  13. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  14. Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave

    NASA Astrophysics Data System (ADS)

    Oimatsu, S.; Masahito, N.; Takahashi, K.; Yamamoto, K.; Keika, K.; Kletzing, C.; MacDowall, R. J.; Smith, C.; Mitchell, D. G.

    2017-12-01

    Poloidal Pc4 wave and proton flux oscillation due to the drift-bounce resonance are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux modulation is observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of poloidal Pc4 wave. We estimate the resonant energy to be 120 keV for pitch angle (α) of 20º-40º or 140º-160º, and 170-180 keV for α=40º-60º or 120º-140º. The drift-bounce resonance theory gives the resonant energy of 110-120 keV, which is consistent with the observation for small α (or large α when α≥90º), but slightly higher than the observation for large α (or small α when α≥90º). We consider that this discrepancy of the resonant energy is due to the drift shell splitting. In order to examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) in both outbound and inbound paths. Results showed positive gradient in both paths, which means that the energy is transferred from the protons to the wave. During the appearance of poloidal Pc4 wave, the Dst* index shows a sudden increase of 6.7 nT. We estimate the total energy loss of the ring current from the recovery of the Dst* index and the variation of proton flux by the drift-bounce resonance. The estimated energy loss is almost comparable for both cases. Therefore, we suggest that the energy transfer from the ring current protons to the wave via the drift-bounce resonance cause the increase of Dst* index.

  15. Development and Testing of a Mobile Platform for Tank Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.A.

    2001-01-16

    The Department of Energy (DOE) is committed to removing millions of gallons of high level radioactive waste from waste storage tanks at the Savannah River Site (SRS). SRS was the first site in the DOE complex to have emptied and closed high level waste tanks. Tank closure at the Site is now progressing to tanks containing waste composed of liquid and large deposits of solids, including a tank that has a potential ''heel''. A heel is a hardened mass of solid waste material spread across the tank bottom. Tank closure requires breaking up this heel and moving the material tomore » the intake of a pumping system for transfer from the tank. In the past, overhead spray systems have been used with some success at moving waste. But the limited number of risers restricts the coverage area of the overhead spray system. Therefore, a floor- level spray system will be used to separate manageable size chunks of the material from the heel. The chunks will be guided into the pump's intake to be remove from the tank. The floor-level spray system movement will be accomplished by using a mobile platform, a crawler, which provides transport to nearly every point on the tank floor. Transport of the spray system will allow the system to ''corral'' the waste away from the tank walls and control the movement of the material across the tank floor. Because the available access riser is small, and a wide crawler platform is required to support the spray system, the crawler's frame must fold to enter the tank. After entry into the tank, the crawler unfolds on the tank floor using the crawler drive tracks to expand the frame and position the mobile platform under the entry riser. The spray system will then be lowered separately through the entry riser and mated onto the crawler on the tank floor. The crawler and spray system are tethered and controlled remotely by personnel at the control station. Motorized cable reels will also be remotely controlled to pay out, retrieve, and manage the

  16. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  17. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removalmore » and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated

  18. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  19. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    NASA Astrophysics Data System (ADS)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  20. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  1. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120...

  2. Progression from laparoscopic-assisted to totally laparoscopic distal gastrectomy: comparison of circular stapler (i-DST) and linear stapler (BBT) for intracorporeal anastomosis.

    PubMed

    Ikeda, Tetsuo; Kawano, Hiroyuki; Hisamatsu, Yuichi; Ando, Koji; Saeki, Hiroshi; Oki, Eiji; Ohga, Takefumi; Kakeji, Yoshihiro; Tsujitani, Shunichi; Kohnoe, Shunji; Maehara, Yoshihiko

    2013-01-01

    Billroth I (B-I) gastroduodenostomy is an anastomotic procedure that is widely performed after gastric resection for distal gastric cancer. A circular stapler often is used for B-I gastroduodenostomy in open and laparoscopic-assisted distal gastrectomy. Recently, totally laparoscopic distal gastrectomy (TLDG) has been considered less invasive than laparoscopic-assisted gastrectomy, and many institutions performing laparoscopic-assisted distal gastrectomy are trying to progress to TLDG without markedly changing the anastomosis method. The purpose of this report is to introduce the technical details of new methods of intracorporeal gastroduodenostomy using either a circular or linear stapler and to evaluate their technical feasibility and safety. Seventeen patients who underwent TLDG with the intracorporeal double-stapling technique using a circular stapler (n = 7) or the book-binding technique (BBT) using a linear stapler (n = 10) between February 2010 and April 2011 were enrolled in the study. Clinicopathological data, surgical data, and postoperative outcomes were analyzed. There were no intraoperative complications or conversions to open surgery in any of the 17 patients. The usual postoperative complications following gastroduodenostomy, such as anastomotic leakage and stenosis, were not observed. Anastomosis took significantly longer to complete with DST (64 ± 24 min) than with BBT (34 ± 7 min), but more stapler cartridges were needed with BBT than with DST. TLDG using a circular or linear stapler is feasible and safe to perform. DST will enable institutions performing laparoscopic-assisted distal gastrectomy with circular staplers to progress to TLDG without problems, and this progression may be more economical because fewer stapler cartridges are used during surgery. However, if an institution has already been performing δ anastomosis in TLDG but has been experiencing certain issues with δ anastomosis, converting from δ anastomosis to BBT should be

  3. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  4. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of inmore » the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.« less

  5. Comparing the results of an analytical model of the no-vent fill process with no-vent fill test results for a 4.96 cubic meters (175 cubic feet) tank

    NASA Technical Reports Server (NTRS)

    Taylor, William J.; Chato, David J.

    1993-01-01

    The NASA Lewis Research Center (NASA/LeRC) have been investigating a no-vent fill method for refilling cryogenic storage tanks in low gravity. Analytical modeling based on analyzing the heat transfer of a droplet has successfully represented the process in 0.034 m and 0.142 cubic m commercial dewars using liquid nitrogen and hydrogen. Recently a large tank (4.96 cubic m) was tested with hydrogen. This lightweight tank is representative of spacecraft construction. This paper presents efforts to model the large tank test data. The droplet heat transfer model is found to over predict the tank pressure level when compared to the large tank data. A new model based on equilibrium thermodynamics has been formulated. This new model is compared to the published large scale tank's test results as well as some additional test runs with the same equipment. The results are shown to match the test results within the measurement uncertainty of the test data except for the initial transient wall cooldown where it is conservative (i.e., overpredicts the initial pressure spike found in this time frame).

  6. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  7. Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms.

    PubMed

    Khiyami, Mohammad A; Pometto Iii, Anthony L; Brown, Robert C

    2005-04-20

    Plant biomass can be liquefied into fermentable sugars (levoglucosan then to glucose) for the production of ethanol, lactic acid, enzymes, and more by a process called pyrolysis. During the process microbial inhibitors are also generated. Pseudomonas putida (ATCC 17484) and Streptomyces setonii75Vi2 (ATCC 39116) were employed to degrade microbial inhibitors in diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors. The detoxification process evaluation included measuring total phenols and changes in UV spectra, a GC-MS analysis, and a bioassay, which employed Lactobacillus casei subsp. rhamosus (ATCC 11443) growth as an indicator of detoxification. Suspended-cell cultures illustrated limited detoxification ability of Dcs and Dst. P. putida and S. setoniiplastic compost support (PCS) biofilm continuous-stirred-tank-reactor pure cultures detoxified 10 and 25% (v/v) Dcs and Dst, whereas PCS biofilm mixed culture also partially detoxified 50% (v/v) Dcs and Dst in repeated batch culture. Therefore, PCS biofilm mixed culture is the process of choice to detoxify diluted pyrolysis liquors.

  8. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spentmore » zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as

  9. 46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) The factor (K) must be calculated as follows: (1) Plot (I/d)tan T on Graph 170.295 where— (i) (I) is... the roll tank; and (iii) (T) is the angle of heel. (2) Plot the moments of transference of the liquid...

  10. Developing a model for moisture in saltcake waste tanks: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, C.S.; Aimo, N.; Fayer, M.J.

    1997-07-01

    This report describes a modeling effort to provide a computer simulation capability for estimating the distribution and movement of moisture in the saltcake-type waste contained in Hanford`s single-shell radioactive waste storage tanks. This moisture model goes beyond an earlier version because it describes water vapor movement as well as the interstitial liquid held in a saltcake waste. The work was performed by Pacific Northwest National Laboratory to assist Duke Engineering and Services Hanford with the Organic Tank Safety Program. The Organic Tank Safety Program is concerned whether saltcake waste, when stabilized by jet pumping, will retain sufficient moisture near themore » surface to preclude any possibility of an accidental ignition and propagation of burning. The nitrate/nitrite saltcake, which might also potentially include combustible organic chemicals might not always retain enough moisture near the surface to preclude any such accident. Draining liquid from a tank by pumping, coupled with moisture evaporating into a tank`s head space, may cause a dry waste surface that is not inherently safe. The moisture model was devised to help examine this safety question. The model accounts for water being continually cycled by evaporation into the head space and returned to the waste by condensation or partly lost through venting to the external atmosphere. Water evaporation occurs even in a closed tank, because it is driven by the transfer to the outside of the heat load generated by radioactivity within the waste. How dry a waste may become over time depends on the particular hydraulic properties of a saltcake, and the model uses those properties to describe the capillary flow of interstitial liquid as well as the water vapor flow caused by thermal differences within the porous waste.« less

  11. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  12. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of themore » Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.« less

  13. Evaluation of procedural learning transfer from a virtual environment to a real situation: a case study on tank maintenance training.

    PubMed

    Ganier, Franck; Hoareau, Charlotte; Tisseau, Jacques

    2014-01-01

    Virtual reality opens new opportunities for operator training in complex tasks. It lowers costs and has fewer constraints than traditional training. The ultimate goal of virtual training is to transfer knowledge gained in a virtual environment to an actual real-world setting. This study tested whether a maintenance procedure could be learnt equally well by virtual-environment and conventional training. Forty-two adults were divided into three equally sized groups: virtual training (GVT® [generic virtual training]), conventional training (using a real tank suspension and preparation station) and control (no training). Participants then performed the procedure individually in the real environment. Both training types (conventional and virtual) produced similar levels of performance when the procedure was carried out in real conditions. Performance level for the two trained groups was better in terms of success and time taken to complete the task, time spent consulting job instructions and number of times the instructor provided guidance.

  14. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  15. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solidsmore » dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.« less

  16. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  17. 27 CFR 25.35 - Tanks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Tanks. 25.35 Section 25.35... TREASURY ALCOHOL BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device. (Sec...

  18. The subscale orbital fluid transfer experiment

    NASA Technical Reports Server (NTRS)

    Collins, Frank G.; Antar, Basil N.; Menzel, Reinhard W.; Meserole, Jere S.; Meserole, Jere S.; Jones, Ogden

    1990-01-01

    The Subscale Orbital Fluid Transfer Experiment (SOFTE) is a planned Shuttle Orbiter fluid transfer experiment. CASP (Center for Advanced Space Propulsion) performed certain aspects of the conceptual design of this experiment. The CASP work consisted of the conceptual design of the optical system, the search for alternative experimental fluids, the determination of the flow meter specifications and the examination of materials to use for a bladder that will empty one of the tanks in the experiment.

  19. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste

  20. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's... equivalent to a fuel tank that complies with the external fuel tank requirements in § 238.223(a). (b) Internal fuel tanks. Internal fuel tanks shall comply with the requirements specified in § 238.223(b). ...

  1. Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loadsmore » for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.« less

  2. Tank characterization report for single-shell tank 241-U-110. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  3. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girardot, Crystal; Harlow, Don; Venetz, Theodore

    2012-07-01

    related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)« less

  4. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VENETZ TJ; WASHENFELDER D; JOHNSON J

    2012-01-25

    related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.« less

  5. NASA JPL Distributed Systems Technology (DST) Object-Oriented Component Approach for Software Inter-Operability and Reuse

    NASA Technical Reports Server (NTRS)

    Hall, Laverne; Hung, Chaw-Kwei; Lin, Imin

    2000-01-01

    The purpose of this paper is to provide a description of NASA JPL Distributed Systems Technology (DST) Section's object-oriented component approach to open inter-operable systems software development and software reuse. It will address what is meant by the terminology object component software, give an overview of the component-based development approach and how it relates to infrastructure support of software architectures and promotes reuse, enumerate on the benefits of this approach, and give examples of application prototypes demonstrating its usage and advantages. Utilization of the object-oriented component technology approach for system development and software reuse will apply to several areas within JPL, and possibly across other NASA Centers.

  6. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  7. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less

  8. View of tanks T18 and T19 with redwood tanks to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of tanks T18 and T19 with redwood tanks to right. Old rain shed (Building No. 43) can be seen behind the tanks. Ground catchment can be seen at left in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  9. Rock-bed thermocline storage: A numerical analysis of granular bed behavior and interaction with storage tank

    NASA Astrophysics Data System (ADS)

    Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy

    2017-06-01

    Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

  10. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes...

  11. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  12. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Compressed gases in tank cars and multi-unit tank cars. 173.314 Section 173.314 Transportation Other Regulations Relating to Transportation PIPELINE AND... Compressed gases in tank cars and multi-unit tank cars. (a) Definitions. For definitions of compressed gases...

  13. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  14. 49 CFR 179.200 - General specifications applicable to non-pressure tank car tanks (Class DOT-111).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank car tanks (Class DOT-111). 179.200 Section 179.200 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW...

  15. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  16. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  17. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  18. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  19. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  20. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  1. 46 CFR 32.60-30 - Tank vessels with independent tanks-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tanks and hull structure can be made. (b) When an independent cargo tank is located in an enclosed space... be safeguarded as such as required by this subpart. (c) Cargo tanks independent of the hull structure shall be supported in saddles or on foundations of steel or other suitable material and securely...

  2. Results of Hg speciation testing on tank 39 and 1Q16 tank 50 samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2016-03-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The seventeenth shipment of samples was designated to include two Tank 39 samples and the 1Q16 Tank 50 Quarterly WAC sample. The surface Tank 39 sample was pulled at 262.1” from the tank bottom, and the depth Tank 39 sample was pulled at 95” from the tank bottom. The 1Q16 Tank 50 WAC sample was drawn from the 1-L variable depth sample received bymore » SRNL.« less

  3. Modeling of Liquefaction of Cryogenic Propellant in a Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bolshinskiy, L. G.; Majumdar, A. K.

    2017-01-01

    Over the past decades NASA has been focusing to develop technology that would to allow for production of cryogenic propellants on the surface of Mars. The in-situ propellant production reduces the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Utilizing Martian resources, the produced gaseous propellants (i.e., oxygen and methane) are liquefied and stored prior to use on the Mars ascent vehicle. In this paper, a model for the liquefaction process of gaseous propellants in a cryogenically refrigerated tank is presented. The tank is considered to be cylindrical with elliptical top and bottom domes. A multi-node transient model is developed based on the mass and energy conservation equations and wall-gas and liquid-gas interface mass and heat transfer correlations. Description of the model and predicted results will be presented in the final paper.

  4. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  5. 49 CFR 179.221 - Individual specification requirements applicable to tank car tanks consisting of an inner...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.221 Individual specification... to tank car tanks consisting of an inner container supported within an outer shell. 179.221 Section...

  6. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  7. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  8. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  9. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  10. 49 CFR 173.315 - Compressed gases in cargo tanks and portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (b) of this section See par. (b) of this section DOT-51, MC-330, MC-331 100. Carbon dioxide...-338 275; see Note 11. Hexafluoropropylene 110 See Note 7 DOT-51, MC-330, MC-331 250. Hydrogen chloride... as specified for MC 331 cargo tanks. Note 3: If cargo tanks and portable tank containers for carbon...

  11. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into amore » 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon

  12. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  13. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  14. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  15. Integrated heat exchanger design for a cryogenic storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindricalmore » tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.« less

  16. 33 CFR 127.1315 - Preliminary transfer inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1315 Preliminary... capacity of each storage tank to or from which LHG will be transferred, to ensure that it is safe for...

  17. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  18. 39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DIABLO POWERHOUSE: GRAVITY LUBRICATING OIL TANKS. THESE TANKS ARE LOCATED AT ROOF LEVEL AT THE NORTHEAST REAR CORNER OF DIABLO POWERHOUSE, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  19. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  20. 9 CFR 316.14 - Marking tank cars and tank trucks used in transportation of edible products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Marking tank cars and tank trucks used in transportation of edible products. 316.14 Section 316.14 Animals and Animal Products FOOD SAFETY... CONTAINERS § 316.14 Marking tank cars and tank trucks used in transportation of edible products. Each tank...

  1. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CSTmore » columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.« less

  2. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pumpmore » shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.« less

  3. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber... the service temperatures. (b) Before a tank car tank is lined with rubber, or other rubber compound, a... suitable for the service temperatures. (f) Polyvinyl chloride lined tanks. Tank car tanks or each...

  4. Numerical analysis of single tank thermocline thermal storage system for concentrated solar power plant

    NASA Astrophysics Data System (ADS)

    Afrin, Samia

    The overall efficiency of a Concentrating Solar Power (CSP) plant depends on the effectiveness of Thermal Energy Storage (TES) system. A Single tank TES system has potential to provide effective solution. In a single tank TES system, a thermocline region, which produces the temperature gradient between hot and cold storage fluid by density difference, is used. Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. One of the major challenges for the single tank thermocline is actually maintaining the thermocline region in the tank, so that it does not spread out to occupy the entire tank. Since the thermocline is a horizontal surface, the hot and cold fluid must be introduce in such a way that it does not disturb the thermocline. If the fluid is introduced in a jet stream, it will disturb the thermocline and mix the hot and cold fluids into a homogeneous medium. So the objective of this thesis is to preserve the thermocline region by maximizing the uniformity of the velocity distribution. An ideal distributor will minimize the thermocline spreading and hence maximize the useable form of thermal energy storage in a single tank system. The performance of two different types of distributors: pipe flow distributor and honeycomb distributor, were checked. The effectiveness of the pipe flow distributor was checked by varying the dimension of the geometry i.e. number of holes, distance between the holes, position of the holes and number of distributor pipes. Thermal energy storage system from solar power relies on high temperature thermal storage units for continuous operation. The storage units should have facilitated with high thermal conductivity and heat capacity storage fluid. Hence it is necessary to find a better performing heat transfer fluid at higher operating temperature. Novel materials such as nanomaterial additives can become cost effective and can

  5. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  6. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    NASA Astrophysics Data System (ADS)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  7. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    PubMed

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day.

  8. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  9. Experimental data of lithium-ion battery and ultracapacitor under DST and UDDS profiles at room temperature.

    PubMed

    Wang, Yujie; Liu, Chang; Pan, Rui; Chen, Zonghai

    2017-06-01

    This article provides the dataset of both the LiFePO 4 type lithium-ion battery (LIB) behavior and the Maxwell ultracapacitor behavior. The dynamic stress test (DST) condition and the urban dynamometer driving schedule (UDDS) condition were carried out to analyze the battery/ultracapacitor features. The datasets were achieved at room temperature, in August, 2016. The shared data contributes to clarify the behavior of the LIBs and ultracapacitors and can be used to predict the state-of-charge (SOC) of the LIBs and ultracapacitors, which is also shown in the article of "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator" (United States Advanced Battery Consortium, 1996) [1].

  10. Recommended high-tank temperatures for maintenance of high-tank backup support, Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, O.H.

    1964-05-20

    Purpose of this note is to recommend revised curves for the high-tank temperature required to maintain adequate high-tank backup support at the six small reactors. Compliance with the conditions shown on these curves will ensure adequate high-tank flow rates following the simultaneous loss of electric and steam power.

  11. 49 CFR 179.220 - General specifications applicable to nonpressure tank car tanks consisting of an inner container...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank car tanks consisting of an inner container supported within an outer shell (class DOT-115). 179... AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220...

  12. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  13. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    USDA-ARS?s Scientific Manuscript database

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  14. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  15. 46 CFR 154.439 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  16. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  17. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  18. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  19. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  20. 46 CFR 153.266 - Tank linings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank linings. 153.266 Section 153.266 Shipping COAST... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Tanks § 153.266 Tank linings. A tank lining must be: (a) At least as elastic as the tank material; and (b) Applied or...

  1. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  2. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  3. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  4. 49 CFR 238.423 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  5. VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PDP TANK TOP, LEVEL 0’, WITH LTR TANK TOP ON LEFT, LOOKING NORTHEAST. CRANE AND VERTICAL HOISTING ELEMENTS AT TOP - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  6. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memorandamore » documenting the WAC analyses results have been issued for these three samples.« less

  7. Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Vera, Jerry

    2015-01-01

    Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.

  8. Experimental Thermal Performance Testing of Cryogenic Tank Systems and Materials

    NASA Technical Reports Server (NTRS)

    Myers, Wesley C.; Fesmire, J. E.

    2018-01-01

    A comparative study was conducted to collect and analyze thermal conductivity data on a wide variety of low density materials, as well as thermal performance data on a number of vacuum-jacketed cryogenic tank systems. Although a vast number of these types of materials and cryogenic tank systems exist, the thermal conductivity of insulation materials and the thermal performance of cryogenic tank systems is often difficult to compare because many industrial methods and experimental conditions are available and utilized. The availability of a new thermal conductivity measurement device, the Macroflash Cup Cryostat, which is applicable for assessing a variety of materials, is accessible at NASA's Cryogenic Test Laboratory (CTL) at the Kennedy Space Center (KSC). The convenience of this device has resulted in the ability to rapidly measure the thermal conductivity properties of these materials by using a flat-plate liquid nitrogen (LN2) boiloff technique that employs a guarded heat flow test methodology in order to determine the effective thermal conductivity (ke) of a test specimen. As the thermal conductivities are measured at cryogenic temperatures, materials suitable for both future space missions and cryogenic tank systems can be identified and experimentally analyzed. Also recognizable are materials which may help increase energy efficiency by limiting the thermal losses encountered under various environmental conditions. The overall focus of this work consisted of two parts. One part, was to produce and analyze thermal conductivity data on a wide variety of materials with suitable properties conducive to those needed to aid in the production of a calibration curve for the "low end" of the Macroflash instrument. (Low end meaning materials with a thermal conductivity rating below 100 milliwatts per meter-Kelvin). The second part was to collect and analyze heat transfer data for a variety of small vacuum-jacketed vessels (cryogenic tank systems) in order to compare

  9. 11. Station Accumulator Tanks, view to the northeast. The tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Station Accumulator Tanks, view to the northeast. The tanks are visible along the right side of photograph, opposite a wall of the Unit 1 turbine pit. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  10. Heated Aluminum Tanks Resist Corrosion

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  11. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  12. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  13. Use of Thermoset Composite Materials in Cryogenic Tanks

    NASA Astrophysics Data System (ADS)

    Diaz, V.; Cardone, T.; Ramusat, G.

    2014-06-01

    To improve the performances of Future Expendable Launchers, one of the key aspects to be considered is the mass optimization of the cryogenic upper stage of the launcher, where a mass saving of one Kg, is directly transferred to one more Kg of payload.This optimization is inherently linked to the use of composite materials in all the structures that conforms the upper stage of the launcher.Currently, most of the upper stage structures of the operational launchers, like Ariane 5, are made in composite materials, with the exception of the cryogenic (LH2 and LOX) tanks which remain metallic.So, from a structural point of view, the next qualitative step in the development of new expendable launcher, would be the manufacturing of the upper stage cryogenic tanks in composite materials.To reach this objective important concerns mainly related to the potential for leaks and the compatibility with the LOX need to be resolved.In the frame of the FLPP (Future Launcher Preparatory Program) funded by ESA, an activity related to the use of thermoset composite material in the cryogenic tanks has been included.This paper presents a summary of the performed work which includes:* The selection and characterization of the most suitable candidate materials for the considered application* The design and analysis of a subscale demonstrator representative of the LH2 compartment* The design, manufacturing and testing of some test articles representatives of the selected design solutions* The manufacturing and testing of the selected subscale demonstrator.

  14. Tank 40 Final SB7b Chemical Characterization Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.

    2012-11-06

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thoroughmore » mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233

  15. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  16. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  17. 49 CFR 179.100-8 - Tank heads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank heads. 179.100-8 Section 179.100-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100-8 Tank heads. (a) The tank head shape...

  18. 49 CFR 179.200-8 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.200-8 Section 179.200-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-8 Tank heads. (a) All external tank heads...

  19. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  20. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  1. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank...

  2. 49 CFR 179.400-7 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.400-7 Section 179.400-7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-7 Tank heads. (a...

  3. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  4. In-service Inspection of Radioactive Waste Tanks at the Savannah River Site – 15410

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Bruce; Maryak, Matthew; Baxter, Lindsay

    2015-01-12

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. The high level wastes are processed in several of the tanks and then transferred by piping to other site facilities for further processing before they are stabilized in a vitrified or grout waste form. Based on waste removal and processing schedules, many of the tanks will be required to be in service for times exceeding the initial intended life. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement functionmore » by providing a barrier to the environment and by maintaining acceptable structural stability during design basis events, which include loadings from both normal service and abnormal (e.g., earthquake) conditions. A structural integrity program is in place to maintain the structural and leak integrity functions of these waste tanks throughout their intended service life. In-service inspection (ISI) is an essential element of a comprehensive structural integrity program for the waste tanks at the Savannah River Site (SRS). The ISI program was developed to determine the degree of degradation the waste tanks have experienced due to service conditions. As a result of the inspections, an assessment can be made of the effectiveness of corrosion controls for the waste chemistry, which precludes accelerated localized and general corrosion of the waste tanks. Ultrasonic inspections (UT) are performed to detect and quantify the degree of general wall thinning, pitting and cracking as a measure of tank degradation. The results from these inspections through 2013, for the 27 Type III/IIIA tanks, indicate no reportable in-service corrosion degradation in the primary tank (i.e., general, pitting, or cracking). The average wall thickness for all tanks remains above the manufactured nominal thickness minus 0.25 millimeter and the largest pit identified is

  5. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be usedmore » during qualification testing and acceptance testing to verify operability.« less

  6. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  7. 49 CFR 179.220-8 - Tank heads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank heads. 179.220-8 Section 179.220-8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-8 Tank heads. (a) Tank heads of the inner...

  8. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to supportmore » analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape

  9. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  10. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  11. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D.A.

    1997-04-04

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106.

  12. Results for the DWPF Slurry Mix Evaporator Condensate Tank, Off Gas Condensate Tank, And Recycle Collection Tank Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TERRI, FELLINGER

    2004-12-21

    The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less

  13. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  14. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  15. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  16. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  17. 7 CFR 58.320 - Brine tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet. ...

  18. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  19. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  20. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  1. 49 CFR 229.217 - Fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Locomotive Crashworthiness Design Requirements § 229.217 Fuel tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum...

  2. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  3. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  4. 33 CFR 157.147 - Similar tank design: Inspections on foreign tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tanks similar in dimensions and internal structure, the owner or operator may submit a written request... tanks similar in dimensions and internal structure is inspected under § 157.140(a)(1), if the Commandant...

  5. Teaching with Spreadsheets: An Example from Heat Transfer.

    ERIC Educational Resources Information Center

    Drago, Peter

    1993-01-01

    Provides an activity which measures the heat transfer through an insulated cylindrical tank, allowing the student to gain a better knowledge of both the physics involved and the working of spreadsheets. Provides both a spreadsheet solution and a maximum-minimum method of solution for the problem. (MVL)

  6. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  7. VOLUMETRIC TANK TESTING: AN OVERVIEW

    EPA Science Inventory

    This report summarizes the technical findings of an EPA study on volumetric tank testing. The results of this study, which evaluated the viability of volumetric tank tests as a means of detecting leaks in underground storage tanks, are described. Also, the accuracy requirements s...

  8. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, J.; Vandekamp, R.

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall andmore » accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall

  9. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Tank mounting. 179.10 Section 179.10... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car structure shall be...

  10. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Tank mounting. 179.10 Section 179.10... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car structure shall be...

  11. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank mounting. 179.10 Section 179.10... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car structure shall be...

  12. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Tank mounting. 179.10 Section 179.10... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design Requirements § 179.10 Tank mounting. (a) The manner in which tanks are attached to the car structure shall be...

  13. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Toroidal Tank Development for Upper-stages

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Roberts, Keith

    2003-01-01

    The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.

  15. Analysis of Tank 38H (HTF-38-15-119, 127) Surface, Subsurface and Tank 43H (HTF-43-15-116, 117 and 118) Surface, Feed Pump Suction and Jet Suction Subsurface Supernatant Samples in Support of Enrichment, Corrosion Control and Salt Batch Planning Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.

    Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less

  16. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  17. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  18. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shield as prescribed in § 179.16(c)(1). (d) Alternative tank car tanks for materials poisonous by... the alternative tank car jacket and head shield. When the jacket and head shield are made from any...., the thickness to be added to the jacket and head shield must be increased by a factor of 1.157...

  19. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...

  20. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a framework...